51
|
Abstract
Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar.
Collapse
|
52
|
Vaughan CA, Singh S, Windle B, Yeudall WA, Frum R, Grossman SR, Deb SP, Deb S. Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes Cancer 2012; 3:491-502. [PMID: 23264849 DOI: 10.1177/1947601912462719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/01/2012] [Indexed: 12/30/2022] Open
Abstract
p53 mutations are present in up to 70% of lung cancer. Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 or no p53. Expression of tumor-derived mutant p53 in cells leads to up-regulated expression of genes that may affect cell growth and oncogenesis. In our study of this aggressive phenotype, we have investigated the receptor protein tyrosine kinase Axl, which is up-regulated by p53 mutants at both RNA and protein levels in H1299 lung cancer cells expressing mutants p53-R175H, -R273H, and -D281G. Knockdown of endogenous mutant p53 levels in human lung cancer cells H1048 (p53-R273C) and H1437 (p53-R267P) led to a reduction in the level of Axl as well. This effect on Axl expression is refractory to the mutations at positions 22 and 23 of p53, suggesting that p53's transactivation domain may not play a critical role in the up-regulation of Axl gene expression. Chromatin immunoprecipitation (ChIP) assays carried out with acetylated histone antibodies demonstrated induced histone acetylation on the Axl promoter region by mutant p53. Direct mutant p53 nucleation on the Axl promoter was demonstrated by ChIP assays using antibodies against p53. The Axl promoter has a p53/p63 binding site, which however is not required for mutant p53-mediated transactivation. Knockdown of Axl by Axl-specific RNAi caused a reduction of gain-of-function (GOF) activities, reducing the cell growth rate and motility rate in lung cancer cells expressing mutant p53. This indicates that for lung cancer cell lines with mutant p53, GOF activities are mediated in part through Axl.
Collapse
Affiliation(s)
- Catherine A Vaughan
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Lin K, Lane B, Carter A, Johnson GG, Onwuazor O, Oates M, Zenz T, Stilgenbauer S, Atherton M, Douglas A, Ebrahimi B, Sherrington PD, Pettitt AR. The gene expression signature associated withTP53mutation/deletion in chronic lymphocytic leukaemia is dominated by the under-expression ofTP53and other genes on chromosome 17p. Br J Haematol 2012; 160:53-62. [DOI: 10.1111/bjh.12092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Anthony Carter
- Department of Haematology; Royal Liverpool and Broadgreen University Hospitals NHS Trust; Liverpool; UK
| | | | - Obiageli Onwuazor
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | | | | | - Mark Atherton
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Angela Douglas
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Bahram Ebrahimi
- Centre for Genome Research; University of Liverpool; Liverpool; UK
| | | | | |
Collapse
|
54
|
Vaughan CA, Frum R, Pearsall I, Singh S, Windle B, Yeudall A, Deb SP, Deb S. Allele specific gain-of-function activity of p53 mutants in lung cancer cells. Biochem Biophys Res Commun 2012; 428:6-10. [PMID: 22989750 DOI: 10.1016/j.bbrc.2012.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 01/15/2023]
Abstract
p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with "gain of function" (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437, carrying endogenous mutants p53-P278S and -R267P, show reduction in growth rate on knock-down on p53 levels. However, whereas reduction of the p53 level induces loss of tumorigenicity in nude mice for ABC1 cells, it escalates tumorigenicity for H1437 cells. We have tested their transactivation potential on p53 target gene promoters by performing transient transcriptional assays in the p53-null H1299 lung cancer cell line. Interestingly, while the mutant p53 target promoter Axl was activated by both the mutants, the p21 promoter was activated by p53-R267P and wild-type p53 but not by p53-P278S; showing a clear difference in transcriptional activity between the two mutants. Our results demonstrate allele specificity between GOF p53 mutants and attempt to show that the specificity is dependent on the transactivation property of GOF p53; it also suggests importance of p21 activation in tumor suppression by p53.
Collapse
Affiliation(s)
- Catherine A Vaughan
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Jones RJ, Bjorklund CC, Baladandayuthapani V, Kuhn DJ, Orlowski RZ. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA. Mol Cancer Ther 2012; 11:2243-53. [PMID: 22933706 DOI: 10.1158/1535-7163.mct-12-0135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation.
Collapse
Affiliation(s)
- Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, 7455 Fannin St, Unit 403, Houston, TX 77054, USA.
| | | | | | | | | |
Collapse
|
56
|
Quante T, Otto B, Brázdová M, Kejnovská I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle 2012; 11:3290-303. [PMID: 22894900 DOI: 10.4161/cc.21646] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms underlying mutant p53 (mutp53) "gain-of-function" (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components.
Collapse
|
57
|
Coffill CR, Muller PAJ, Oh HK, Neo SP, Hogue KA, Cheok CF, Vousden KH, Lane DP, Blackstock WP, Gunaratne J. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 2012; 13:638-44. [PMID: 22653443 DOI: 10.1038/embor.2012.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/19/2022] Open
Abstract
The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them--nardilysin (NRD1)--promotes an invasive response to heparin binding-epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.
Collapse
Affiliation(s)
- Cynthia R Coffill
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect Immun 2012; 80:2847-57. [PMID: 22689813 DOI: 10.1128/iai.00258-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.
Collapse
|
59
|
Lanni C, Racchi M, Memo M, Govoni S, Uberti D. p53 at the crossroads between cancer and neurodegeneration. Free Radic Biol Med 2012; 52:1727-33. [PMID: 22387179 DOI: 10.1016/j.freeradbiomed.2012.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Aging, dementia, and cancer share a critical set of altered cellular functions in response to DNA damage, genotoxic stress, and other insults. Recent data suggest that the molecular machinery involved in maintaining neural function in neurodegenerative disease may be shared with oncogenic pathways. Cancer and neurodegenerative diseases may be influenced by common signaling pathways regulating the balance of cell survival versus death, a decision often governed by checkpoint proteins. This paper focuses on one such protein, p53, which represents one of the most extensively studied proteins because of its role in cancer prevention and which, furthermore, has been recently shown to be involved in aging and Alzheimer disease (AD). The contribution of a conformational change in p53 to aging and neurodegenerative processes has yet to be elucidated. In this review we discuss the multiple functions of p53 and how these correlate between cancer and neurodegeneration, focusing on various factors that may have a role in regulating p53 activity. The observation that aging and AD interfere with proteins controlling duplication and cell cycle may lead to the speculation that, in senescent neurons, aberrations in proteins generally dealing with cell cycle control and apoptosis could affect neuronal plasticity and functioning rather than cell duplication.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
60
|
Stangelberger A, Schally AV, Rick FG, Varga JL, Baker B, Zarandi M, Halmos G. Inhibitory effects of antagonists of growth hormone releasing hormone on experimental prostate cancers are associated with upregulation of wild-type p53 and decrease in p21 and mutant p53 proteins. Prostate 2012; 72:555-65. [PMID: 21796649 DOI: 10.1002/pros.21458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The tumor suppressor gene p53 is implicated in cell cycle control and apoptosis. Antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit human experimental prostate cancers. METHODS We investigated the involvement of p53 apoptotic pathways in this effect. Nude mice bearing xenografted PC-3, DU-145, and MDA-PCa-2b human prostate cancer lines were treated with a new potent GHRH antagonist MZ-J-7-138. To determine whether tumor inhibition by MZ-J-7-138 involves apoptotic mechanisms such as p53 and p21, we evaluated by Western Blot the expression of mutant mt-p53 in PC-3 and DU-145 and of wild type (wt-p53) in MDA-PCa-2b prostate cancers as well as p21. RESULTS MZ-J-7-138 significantly inhibited the growth of PC-3, DU-145, and MDA-PCa-2b xenografts in nude mice. Androgen deprivation with the LHRH antagonist Cetrorelix enhanced the anti-proliferative effect of GHRH antagonist MZ-J-7-138 on MDA-PCa-2b tumors. The expression of mutant (mt-p53) and p21 protein in PC-3 and DU-145 tumors was significantly decreased by treatment with MZ-J-7-138, whereas wild type wt-p53 expression in MDA-PCA-2b tumors was up regulated by treatment with Cetrorelix. All three models investigated expressed specific, high affinity GHRH receptors. CONCLUSIONS Our findings indicate that the anti-proliferative effects of GHRH antagonist MZ-J-7-138 and LHRH antagonist Cetrorelix on prostate cancers involve p53 and p21 signaling.
Collapse
|
61
|
p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch Biochem Biophys 2011; 518:79-88. [PMID: 22198284 DOI: 10.1016/j.abb.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022]
Abstract
Cancer cells with p53 mutations, in general, grow more aggressively than those with wild-type p53 and show "gain of function" (GOF) phenotypes such as increased growth rate, enhanced resistance to chemotherapeutic drugs, increased cell motility and tumorigenicity; although the mechanism for this function remains unknown. In this communication we report that p53-mediated NF-κB2 up-regulation significantly contributes to the aggressive oncogenic behavior of cancer cells. Lowering the level of mutant p53 in a number of cancer cell lines resulted in a loss of GOF phenotypes directly implicating p53 mutants in the process. RNAi against NF-κB2 in naturally occurring cancer cell lines also lowers GOF activities. In H1299 cells expressing mutant p53, chromatin immunoprecipitation (ChIP) assays indicate that mutant p53 induces histone acetylation at specific sites on the regulatory regions of its target genes. ChIP assays using antibodies against transcription factors putatively capable of interacting with the NF-κB2 promoter show increased interaction of CBP and STAT2 in the presence of mutant p53. Thus, we propose that in H1299 cells, mutant p53 elevates expression of genes capable of enhancing cell proliferation, motility, and tumorigenicity by inducing acetylation of histones via recruitment of CBP and STAT2 on the promoters causing CBP-mediated histone acetylation.
Collapse
|
62
|
Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 2011; 33:442-51. [PMID: 22114072 DOI: 10.1093/carcin/bgr270] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The role of dominant transforming p53 in carcinogenesis is poorly understood. Our previous data suggested that aberrant p53 proteins can enhance tumorigenesis and metastasis. Here, we examined potential mechanisms through which gain-of-function (GOF) p53 proteins can induce motility. Cells expressing GOF p53 -R175H, -R273H and -D281G showed enhanced migration, which was reversed by RNA interference (RNAi) or transactivation-deficient mutants. In cells with engineered or endogenous p53 mutants, enhanced migration was reduced by downregulation of nuclear factor-kappaB2, a GOF p53 target. We found that GOF p53 proteins upregulate CXC-chemokine expression, the inflammatory mediators that contribute to multiple aspects of tumorigenesis. Elevated expression of CXCL5, CXCL8 and CXCL12 was found in cells expressing oncogenic p53. Transcription was elevated as CXCL5 and CXCL8 promoter activity was higher in cells expressing GOF p53, whereas wild-type p53 repressed promoter activity. Chromatin immunoprecipitation assays revealed enhanced presence of acetylated histone H3 on the CXCL5 promoter in H1299/R273H cells, in agreement with increased transcriptional activity of the promoter, whereas RNAi-mediated repression of CXCL5 inhibited cell migration. Consistent with this, knockdown of the endogenous mutant p53 in lung cancer or melanoma cells reduced CXCL5 expression and cell migration. Furthermore, short hairpin RNA knockdown of mutant p53 in MDA-MB-231 cells reduced expression of a number of key targets, including several chemokines and other inflammatory mediators. Finally, CXCL5 expression was also elevated in lung tumor samples containing GOF p53, indicating relevance to human cancer. The data suggest a mechanistic link between GOF p53 proteins and chemokines in enhanced cell motility.
Collapse
Affiliation(s)
- W Andrew Yeudall
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Donzelli S, Biagioni F, Fausti F, Strano S, Fontemaggi G, Blandino G. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Curr Genomics 2011; 9:200-7. [PMID: 19440517 PMCID: PMC2679646 DOI: 10.2174/138920208784340713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 01/07/2023] Open
Abstract
Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients.
Collapse
Affiliation(s)
- Sara Donzelli
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158-Rome, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Sankala H, Vaughan C, Wang J, Deb S, Graves PR. Upregulation of the mitochondrial transport protein, Tim50, by mutant p53 contributes to cell growth and chemoresistance. Arch Biochem Biophys 2011; 512:52-60. [PMID: 21621504 DOI: 10.1016/j.abb.2011.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/17/2011] [Accepted: 05/14/2011] [Indexed: 12/01/2022]
Abstract
The p53 gene is one of the most frequently mutated genes in human cancer. Some p53 mutations impart additional functions that promote oncogenesis. To investigate how these p53 mutants function, a proteomic analysis was performed. The protein, translocator of the inner mitochondrial membrane 50 (Tim50), was upregulated in a non-small cell lung carcinoma cell line (H1299) that expressed the p53 mutants R175H and R273H compared to cells lacking p53. Tim50 was also elevated in the breast cancer cell lines MDA-MB-468 and SK-BR-3, that endogenously express the p53 mutants R175H and R273H, respectively, compared to MCF-10A. The p53 mutants R175H and R273H, but not WT p53, upregulated the expression of a Tim50 promoter construct and chromatin immunoprecipitation (ChIP) analysis indicated increased histone acetylation and increased interaction of the transcription factors Ets-1, CREB and CREB-binding protein (CBP) with the Tim50 promoter in the presence of mutant p53. Finally, reduction of Tim50 expression reduced the growth rate and chemoresistance of cells harboring mutant p53 but had no effect upon cells lacking p53. Taken together, these findings identify the Tim50 gene as a transcriptional target of mutant p53 and suggest a novel mechanism by which p53 mutants enhance cell growth and chemoresistance.
Collapse
Affiliation(s)
- Heidi Sankala
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0058, USA
| | | | | | | | | |
Collapse
|
65
|
Abstract
In its wild-type form, p53 is a major tumor suppressor whose function is critical for protection against cancer. Many human tumors carry missense mutations in the TP53 gene, encoding p53. Typically, the affected tumor cells accumulate excessive amounts of the mutant p53 protein. Various lines of evidence indicate that, in addition to abrogating the tumor suppressor functions of wild-type p53, the common types of cancer-associated p53 mutations also endow the mutant protein with new activities that can contribute actively to various stages of tumor progression and to increased resistance to anticancer treatments. Collectively, these activities are referred to as mutant p53 gain-of-function. This article addresses the biological manifestations of mutant p53 gain-of-function, the underlying molecular mechanisms, and their possible clinical implications.
Collapse
Affiliation(s)
- Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel.
| | | |
Collapse
|
66
|
Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G. Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 2010; 285:14160-9. [PMID: 20223820 PMCID: PMC2863202 DOI: 10.1074/jbc.m109.094813] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/09/2010] [Indexed: 01/02/2023] Open
Abstract
Mitogen-activated protein kinase kinase 3 (MAP2K3) is a member of the dual specificity kinase group. Growing evidence links MAP2K3 to invasion and tumor progression. Here, we identify MAP2K3 as a transcriptional target of endogenous gain-of-function p53 mutants R273H, R175H, and R280K. We show that MAP2K3 modulation occurred at the mRNA and protein levels and that endogenous mutant p53 proteins are capable of binding to and activate the MAP2K3 promoter. In addition, we found that the studied p53 mutants regulate MAP2K3 gene expression through the involvement of the transcriptional cofactors NF-Y and NF-kappaB. Finally, functional studies showed that endogenous MAP2K3 knockdown inhibits proliferation and survival of human tumor cells, whereas the ectopic expression of MAP2K3 can rescue the proliferative defect induced by mutant p53 knockdown. Taken together, our findings define a novel player through which mutant p53 exerts its gain-of-function activity in cancer cells.
Collapse
Affiliation(s)
- Aymone Gurtner
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Giuseppe Starace
- the National Council of Research, Istituto di Neurobiologia e Medicina Molecolare, 00133 Rome, Italy
| | - Giuseppe Norelli
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Giulia Piaggio
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Ada Sacchi
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| | - Gianluca Bossi
- From the Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi D'Oro 156, 00158 Rome, Italy and
| |
Collapse
|
67
|
Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R, Siegfried Z, Shiff I, Kogan I, Shay M, Kalo E, Blandino G, Simon I, Oren M, Rotter V. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 2010; 17:273-85. [PMID: 20227041 PMCID: PMC2882298 DOI: 10.1016/j.ccr.2009.11.025] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/06/2009] [Accepted: 02/08/2010] [Indexed: 12/21/2022]
Abstract
The p53 gene is mutated in many human tumors. Cells of such tumors often contain abundant mutant p53 (mutp53) protein, which may contribute actively to tumor progression via a gain-of-function mechanism. We applied ChIP-on-chip analysis and identified the vitamin D receptor (VDR) response element as overrepresented in promoter sequences bound by mutp53. We report that mutp53 can interact functionally and physically with VDR. Mutp53 is recruited to VDR-regulated genes and modulates their expression, augmenting the transactivation of some genes and relieving the repression of others. Furthermore, mutp53 increases the nuclear accumulation of VDR. Importantly, mutp53 converts vitamin D into an antiapoptotic agent. Thus, p53 status can determine the biological impact of vitamin D on tumor cells.
Collapse
Affiliation(s)
- Perry Stambolsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Ample data indicate that mutant p53 proteins not only lose their tumour suppressive functions, but also gain new abilities that promote tumorigenesis. Moreover, recent studies have modified our view of mutant p53 proteins, portraying them not as inert mutants, but rather as regulated proteins that influence the cancer cell transcriptome and phenotype. This influence is clinically manifested as association of TP53 mutations with poor prognosis and drug resistance in a growing array of malignancies. Here, we review recent studies on mutant p53 regulation, gain-of-function mechanisms, transcriptional effects and prognostic association, with a focus on the clinical implications of these findings.
Collapse
Affiliation(s)
- Ran Brosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
69
|
Buganim Y, Rotter V. p53: Balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45 Suppl 1:217-34. [DOI: 10.1016/s0959-8049(09)70037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Damaraju S, Zhang N, Li N, Tao L, Damaraju VL, Dufour J, Santos C, Sun XJ, Mackey J, Wishart DS, Cass CE, Li L. Evidence for copurification of micronuclei in sucrose density gradient-enriched plasma membranes from cell lines. Anal Biochem 2009; 396:69-75. [PMID: 19699175 DOI: 10.1016/j.ab.2009.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/06/2009] [Accepted: 08/17/2009] [Indexed: 11/26/2022]
Abstract
Sucrose density gradient-enriched membrane preparations and membrane fraction enrichment through affinity purification techniques are commonly used in proteomic analysis. However, published proteomic profiles characterized by the above methods show the presence of nuclear proteins in addition to membrane proteins. While shuttling of nuclear proteins across cellular compartments and their transient residency at membrane interfaces could explain some of these observations, the presence of nuclear proteins in proteomic profiles generated with crude and enriched membranes could be the result of nonspecific contamination of nuclear debris during cell fractionation procedures. We hypothesized that micronuclei arising from the genomic instability inherent to cancer cells may copurify with plasma membrane fractions on sucrose gradients. Using sucrose gradient-enriched plasma membranes from breast cancer cell lines derived from the MCF-7 cell line, we provide experimental evidence to indicate that micronuclei are present in fresh preparations of plasma membranes. The origin of these micronuclei was traced to budding of nuclei in intact cells. Furthermore, mass spectrometric analysis confirmed the presence of nuclear proteins as well as membrane and associated signaling proteins in sucrose gradient-enriched preparations.
Collapse
Affiliation(s)
- Sambasivarao Damaraju
- PolyomX Program, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada T6G 1Z2
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Yoshida S, Furukawa N, Haruta S, Tanase Y, Kanayama S, Noguchi T, Sakata M, Yamada Y, Oi H, Kobayashi H. Expression Profiles of Genes Involved in Poor Prognosis of Epithelial Ovarian Carcinoma: A Review. Int J Gynecol Cancer 2009; 19:992-7. [DOI: 10.1111/igc.0b013e3181aaa93a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background:Epithelial ovarian cancer (EOC) is the commonest cause of gynecological cancer-related mortality. Although the prognosis for patients with advanced cancer is poor, there is a wide range of outcomes for individual patients.Objective:The aim of this study was to review molecular factors predictive of poor prognosis of women with EOC by reviewing microarray research identifying gene expression profiles.Methods:A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2008, combining the keywords "genome-wide," "microarray," "epithelial ovarian cancer" "prognosis," and "epithelial-mesenchymal transition" with specific expression profiles of genes.Results:Many genes that participated in cell signaling, growth factors, transcription factors, proteinases, metabolism, cell adhesion, extracellular matrix component, cell proliferation, and anti-apoptosis were overexpressed in patients with poor prognosis. Several important prognosis-related genes overlap with those known to be regulated by epithelial-mesenchymal transition (EMT). This signaling pathway of EMT (E-cadherin, β-catenin, receptor tyrosine kinases, NF-κB, TGF-β, or Wnt signalings) will be discussed, as it provides new insights into a new treatment strategy.Conclusions:This review summarizes recent advances in prognosis-related molecular biology. Collectively, molecular changes possibly through EMT are considered to be a major contributor to the poor prognosis of EOC.
Collapse
|
72
|
A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci U S A 2009; 106:3964-9. [PMID: 19225112 DOI: 10.1073/pnas.0813333106] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Through targeted homologous recombination, we developed a panel of matched colorectal cancer cell lines that differ only with respect to their endogenous TP53 status. We then used these lines to define the genes whose expression was altered after DNA damage induced by ionizing radiation. Transcriptome analyses revealed a consistent up-regulation of polo-like kinase 1 (PLK1) as well as other genes controlling the G(2)/M transition in the cells whose TP53 genes were inactivated compared with those with WT TP53 genes. This led to the hypothesis that the viability of stressed cells without WT TP53 depended on PLK1. This hypothesis was validated by demonstrating that stressed cancer cells without WT TP53 alleles were highly sensitive to PLK1 inhibitors, both in vivo and in vitro.
Collapse
|
73
|
Vrba L, Junk DJ, Novak P, Futscher BW. p53 induces distinct epigenetic states at its direct target promoters. BMC Genomics 2008; 9:486. [PMID: 18922183 PMCID: PMC2585595 DOI: 10.1186/1471-2164-9-486] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022] Open
Abstract
Background The tumor suppressor protein p53 is a transcription factor that is mutated in many cancers. Regulation of gene expression by binding of wild-type p53 to its target sites is accompanied by changes in epigenetic marks like histone acetylation. We studied DNA binding and epigenetic changes induced by wild-type and mutant p53 in non-malignant hTERT-immortalized human mammary epithelial cells overexpressing either wild-type p53 or one of four p53 mutants (R175H, R249S, R273H and R280K) on a wild-type p53 background. Results Using chromatin immunoprecipitation coupled to a 13,000 human promoter microarray, we found that wild-type p53 bound 197 promoters on the microarray including known and novel p53 targets. Of these p53 targets only 20% showed a concomitant increase in histone acetylation, which was linked to increased gene expression, while 80% of targets showed no changes in histone acetylation. We did not observe any decreases in histone acetylation in genes directly bound by wild-type p53. DNA binding in samples expressing mutant p53 was reduced over 95% relative to wild-type p53 and very few changes in histone acetylation and no changes in DNA methylation were observed in mutant p53 expressing samples. Conclusion We conclude that wild-type p53 induces transcription of target genes by binding to DNA and differential induction of histone acetylation at target promoters. Several new wild-type p53 target genes, including DGKZ, FBXO22 and GDF9, were found. DNA binding of wild-type p53 is highly compromised if mutant p53 is present due to interaction of both p53 forms resulting in no direct effect on epigenetic marks.
Collapse
Affiliation(s)
- Lukas Vrba
- Arizona Cancer Center, the University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
74
|
Hassan NMM, Tada M, Hamada JI, Kashiwazaki H, Kameyama T, Akhter R, Yamazaki Y, Yano M, Inoue N, Moriuchi T. Presence of dominant negative mutation of TP53 is a risk of early recurrence in oral cancer. Cancer Lett 2008; 270:108-19. [DOI: 10.1016/j.canlet.2008.04.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 02/07/2023]
|
75
|
Millau JF, Bastien N, Drouin R. P53 transcriptional activities: a general overview and some thoughts. Mutat Res 2008; 681:118-133. [PMID: 18639648 DOI: 10.1016/j.mrrev.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 05/05/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
P53 is a master transcriptional regulator controlling several main cellular pathways. Its role is to adapt gene expression programs in order to maintain cellular homeostasis and genome integrity in response to stresses. P53 is found mutated in about half of human cancers and most mutations are clustered within the DNA-binding domain of the protein resulting in altered p53 transcriptional activity. This illustrates the importance of the gene regulations achieved by p53. The aim of this review is to provide a global overview of the current understanding of p53 transcriptional activities and to discuss some ongoing questions and unresolved points about p53 transcriptional activity.
Collapse
Affiliation(s)
- Jean-François Millau
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Nathalie Bastien
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada
| | - Régen Drouin
- Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke J1H 5N4, QC, Canada.
| |
Collapse
|
76
|
Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 2008; 10:450-61. [PMID: 18472962 DOI: 10.1593/neo.08120] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/11/2008] [Accepted: 02/15/2008] [Indexed: 12/11/2022] Open
Abstract
Aberrations of p53 occur in most, if not all, human cancers. In breast cancer, p53 mutation is the most common genetic defect related to a single gene. Immortalized human mammary epithelial cells resemble the earliest forms of aberrant breast tissue growth but do not express many malignancy-associated phenotypes. We created a model of human mammary epithelial tumorigenesis by infecting hTERT-HME1 immortalized human mammary epithelial cells expressing wild-type p53 with four different mutant p53 constructs to determine the role of p53 mutation on the evolution of tumor phenotypes. We demonstrate that different mutant/wild-type p53 heterozygous models generate loss of function, dominant negative activity, and a spectrum of gain of function activities that induce varying degrees of invasive potential. We suggest that this model can be used to elucidate changes that occur in early stages of human mammary epithelial tumorigenesis. These changes may constitute novel biomarkers or reveal novel treatment modalities that could inhibit progression from primary to metastatic breast disease.
Collapse
|
77
|
Amundson SA. Functional Genomics and a New Era in Radiation Biology and Oncology. Bioscience 2008; 58:491-500. [PMID: 25249699 DOI: 10.1641/b580606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ionizing radiation is a ubiquitous stress to which all life is continuously exposed, and thus complex mechanisms have evolved to regulate cellular responses to radiation, including cell cycle arrest, DNA repair, and programmed cell death. Changes in gene expression shape part of the response to radiation, and have historically provided insight into the underlying mechanisms of that response. However, the advent of microarrays, which can measure expression of all the genes in a cell simultaneously, has transformed the study of gene expression, and is beginning to have an impact on both basic mechanistic and clinical studies. This article provides an overview of concepts in gene expression and microarray technology, and highlights their impacts on the study of radiation biology.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research at Columbia University Medical Center in New York. ( )
| |
Collapse
|
78
|
Donninger H, Binder A, Bohm L, Parker MI. Differential effects of novel tumour-derived p53 mutations on the transformation of NIH-3T3 cells. Biol Chem 2008; 389:57-67. [PMID: 18095870 DOI: 10.1515/bc.2008.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor gene is frequently mutated in human tumours and different tumour-derived mutations have varying effects on cells. The effect of a novel tumour-derived p53 mutation and two recently described mutations from South African breast cancer patients on the growth rate, colony formation, cell cycle arrest after irradiation and response to chemotherapeutic drugs was investigated. None of the p53 mutations had any significant effect on the inherent growth rate of the cells; however, contact inhibition of growth in two of the mutants was lost. These same two mutants formed colonies in soft agar, whereas the third mutant did not. All three of the mutants failed to show a G(1) cell cycle arrest after exposure to 7 Gy of [(60)Co] radiation, albeit to different degrees. Cells expressing the p53 mutants were either more sensitive to cisplatin and melphalan or more resistant than the untransfected cells, depending on the mutation. However, there was no difference in response to daunorubicin treatment. These results demonstrate that different p53 mutations exert varying biological effects on normal cells, with some altering checkpoint activation more effectively than others. The data also suggest that the nature of the p53 mutation influences the sensitivity to cytostatic drugs.
Collapse
Affiliation(s)
- Howard Donninger
- Division of Medical Biochemistry, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | | | | | | |
Collapse
|
79
|
DNA (cytosine-5)-methyltransferase 1 as a mediator of mutant p53-determined p16ink4A down-regulation. J Biomed Sci 2007; 15:163-8. [DOI: 10.1007/s11373-007-9222-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022] Open
|
80
|
Scian MJ, Carchman EH, Mohanraj L, Stagliano KER, Anderson MAE, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S. Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 2007; 27:2583-93. [PMID: 17982488 DOI: 10.1038/sj.onc.1210898] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or beta-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21.
Collapse
Affiliation(s)
- M J Scian
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kommagani R, Payal V, Kadakia MP. Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. J Biol Chem 2007; 282:29847-54. [PMID: 17716971 PMCID: PMC2771332 DOI: 10.1074/jbc.m703641200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63 and p73, members of the p53 family, have been shown to be functionally distinct from p53. Vitamin D receptor (VDR) is a ligand (vitamin D(3))-dependent transcription factor, which is shown to play a major role in calcium homeostasis and keratinocyte differentiation. Vitamin D and its analogues in combination with DNA-damaging agents are extensively used for cancer chemotherapy. In this report, we examined whether p53 affects p63-mediated induction of VDR and studied the effect of DNA damage on VDR induction in p53 null cell lines. Our results demonstrate that p53 itself does not induce VDR expression, nor does it affect p63-mediated VDR induction in the cell lines tested in this study. Furthermore, we observed p53-independent activation of VDR upon DNA damage and associated the induction of VDR to p73. We have demonstrated that ectopic expression of various p73 isoforms can induce VDR expression. Inhibition of p73 in cells treated with DNA-damaging agents exhibited decreased VDR expression. Finally, we show that upon DNA damage, induction of VDR sensitizes the cells to vitamin D treatment. In conclusion, our results indicate that VDR is regulated by p63 and p73 and that the induction of VDR expression upon DNA damage is p73-dependent.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
| | - Vandana Payal
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435
- Center for Genomics Research, Wright State University, Dayton, Ohio 45435
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Wright State University, 3640 Col. Glenn Hwy., Dayton, OH 45435.
| |
Collapse
|
82
|
Strano S, Dell'Orso S, Mongiovi AM, Monti O, Lapi E, Di Agostino S, Fontemaggi G, Blandino G. Mutant p53 proteins: between loss and gain of function. Head Neck 2007; 29:488-96. [PMID: 17123310 DOI: 10.1002/hed.20531] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cancer might result from both the aberrant activation of genes, whose physiological tuning is essential for the life of a normal cell, and the inactivation of tumor suppressor genes, whose main job is to preserve the integrity of cell genome. Among the latter, p53 is considered a key tumor suppressor gene that is inactivated mainly by missense mutations in half of human cancers. It is becoming increasingly clear that the resulting mutant p53 proteins gain oncogenic properties favoring the insurgence, the maintenance, and the spreading of malignant tumors. In this review, we mainly discuss the molecular mechanisms underlying gain of function of human tumor-derived p53 mutants, their impact on the chemoresistance and the prognosis of human tumors, with a special focus on head and neck cancers, and the perspectives of treating tumors through the manipulation of mutant p53 proteins.
Collapse
Affiliation(s)
- Sabrina Strano
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Yang D, Qi Y, Chen Q, Wang Z, Jin X, Gao J, Fu J, Xiao X, Zhou Z. The over-expression of p53 H179Y residue mutation causes the increase of cyclin A1 and Cdk4 expression in HELF cells. Mol Cell Biochem 2007; 304:219-26. [PMID: 17530187 DOI: 10.1007/s11010-007-9503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 04/27/2007] [Indexed: 01/10/2023]
Abstract
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.
Collapse
Affiliation(s)
- Di Yang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Since the very early days of p53 research, the gain of oncogenic activities by some mutant p53 proteins had been suspected as an important factor contributing to cancer progression. Considerable progress towards understanding the biology of mutant p53 has been made during the last years, the quintessence being the realization that the impact of mutant p53 proteins on the transcriptome of a tumor cell is much more global than previously thought. The emerging role of mutant p53 proteins in coordinating oncogenic signaling and chromatin modifying activities reveals an until now unsuspected function of these proteins as important modifiers of the oncogenic transcriptional response. Notwithstanding the fact that the sequence-specific DNA binding activity of mutant p53 proteins is impaired, they are still able to associate with specific loci on DNA by utilizing different mechanisms. The ability to associate with DNA appears to be crucial for the master role of mutant p53 proteins in coordinating oncogenic transcriptional responses.
Collapse
Affiliation(s)
- E Kim
- Translational Neuro-Oncology Group, Department of Neurosurgery, Georg-August-University of Goettingen, Robert-Koch-Strasse 40, Goettingen, Germany.
| | | |
Collapse
|
85
|
Abstract
In addition to the loss of wild-type p53 activity, a high percentage of tumor cells accumulate mutant p53 protein isoforms. Whereas the hallmark of the wild-type p53 is its tumor suppressor activities, tumor-associated mutant p53 proteins acquire novel functions enabling them to promote a large spectrum of cancer phenotypes. During the last years, it became clear that tumor-associated mutant p53 proteins are not only distinct from the wild-type p53, but they also represent a heterogeneous population of proteins with a variety of structure-function features. One of the major mechanisms underlying mutant p53 gain of function is the ability to regulate gene expression. Although a large number of specific target genes were identified, the molecular basis for this regulation is not fully elucidated. This review describes the present knowledge about the transcriptional activities of mutant p53 and the mechanisms that might underlie its target gene specificity.
Collapse
Affiliation(s)
- L Weisz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
86
|
Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G. Mutant p53: an oncogenic transcription factor. Oncogene 2007; 26:2212-9. [PMID: 17401430 DOI: 10.1038/sj.onc.1210296] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inactivation of tumor-suppressor genes is one of the key hallmarks of a tumor. Unlike other tumor-suppressor genes, p53 is inactivated by missense mutations in half of all human cancers. It has become increasingly clear that the resulting mutant p53 proteins do not represent only the mere loss of wild-type p53 tumor suppressor activity, but gain new oncogenic properties favoring the insurgence, the maintenance, the spreading and the chemoresistance of malignant tumors. The actual challenge is the fine deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. In this review, we will focus mainly on the transcriptional activity of mutant p53 proteins as one of the potential molecular mechanisms. To date, the related knowledge is still quite scarce and many of the raised questions of this review are yet unanswered.
Collapse
Affiliation(s)
- S Strano
- Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi d'oro, Rome, Italy
| | | | | | | | | | | |
Collapse
|
87
|
Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K. Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucleic Acids Res 2007; 35:2093-104. [PMID: 17344317 PMCID: PMC1874625 DOI: 10.1093/nar/gkm099] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tumour-derived p53 mutants are thought to have acquired 'gain-of-function' properties that contribute to oncogenicity. We have tested the hypothesis that p53 mutants suppress p53-target gene expression, leading to enhanced cellular growth. Silencing of mutant p53 expression in several human cell lines was found to lead to the upregulation of wild-type p53-target genes such as p21, gadd45, PERP and PTEN. The expression of these genes was also suppressed in H1299-based isogenic cell lines expressing various hot-spot p53 mutants, and silencing of mutant p53, but not TAp73, abrogated the suppression. Consistently, these hot-spot p53 mutants were able to suppress a variety of p53-target gene promoters. Analysis using the proto-type p21 promoter construct indicated that the p53-binding sites are dispensable for mutant p53-mediated suppression. However, treatment with the histone deacetylase inhibitor trichostatin-A resulted in relief of mutant p53-mediated suppression, suggesting that mutant p53 may induce hypo-acetylation of target gene promoters leading to the suppressive effects. Finally, we show that stable down-regulation of mutant p53 expression resulted in reduced cellular colony growth in human cancer cells, which was found to be due to the induction of apoptosis. Together, the results demonstrate another mechanism through which p53 mutants could promote cellular growth.
Collapse
Affiliation(s)
- Faina Vikhanskaya
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Department of Biochemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260 and Department of Oncology, Mario Negri Institute for Pharmacological Research, Via Eritrea No 62, 20154 Milan, Italy
| | - Ming Kei Lee
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Department of Biochemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260 and Department of Oncology, Mario Negri Institute for Pharmacological Research, Via Eritrea No 62, 20154 Milan, Italy
| | - Marco Mazzoletti
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Department of Biochemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260 and Department of Oncology, Mario Negri Institute for Pharmacological Research, Via Eritrea No 62, 20154 Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Department of Biochemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260 and Department of Oncology, Mario Negri Institute for Pharmacological Research, Via Eritrea No 62, 20154 Milan, Italy
| | - Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Department of Biochemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore 119260 and Department of Oncology, Mario Negri Institute for Pharmacological Research, Via Eritrea No 62, 20154 Milan, Italy
- *To whom correspondence should be addressed. +65 6436 8349+65 6226 5694
| |
Collapse
|
88
|
Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006; 2:e196. [PMID: 17112319 PMCID: PMC1636698 DOI: 10.1371/journal.pgen.0020196] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022] Open
Abstract
Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation. The retinoblastoma protein (pRB) was the first human tumor suppressor to be described, and it works by limiting the activity of the E2F transcription factor. The pRB pathway is inactivated in most forms of cancer, and, accordingly, most tumor cells have deregulated E2F. Uncontrolled E2F drives cell proliferation, but it also sensitizes cells to die (apoptosis). E2F-induced apoptosis is not well understood, but it affects the development of cancer and, potentially, could be exploited for cancer treatment. To date, however, there have been very few studies of E2F-induced apoptosis in animal models. The authors describe a series of genetic tools that allow systematic studies of E2F-induced apoptosis in Drosophila. As validation, this approach identified some known regulators of E2F-dependent apoptosis and also identified Api5, a little-studied gene that had not previously been linked to E2F, as a potent suppressor of E2F-induced cell death. The effects of Api5 on E2F occur in several different tissues and are conserved from flies to humans. This last point is significant since Api5 is upregulated in cancer cells. The discovery of the E2F–Api5 interaction demonstrates that important modulators of E2F-induced apoptosis are waiting to be discovered and that they can be found using Drosophila.
Collapse
Affiliation(s)
- Erick J Morris
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A Michaud
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Jun-Yuan Ji
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nam-Sung Moon
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - James W Rocco
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
89
|
Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ, Broxmeyer HE, Kopelovich L, Nakshatri H. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 2006; 26:3329-37. [PMID: 17130833 DOI: 10.1038/sj.onc.1210120] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemokine receptor CXCR4 and its ligand CXCL12 are suggested to be involved in migration, invasion and metastasis of breast cancer cells. Mutation of the tumor suppressor gene p53 in breast cancer is associated with metastasis and aggressive clinical phenotype. In this report, we demonstrate that wild type but not the dominant-negative mutant (V143A) or cancer-specific mutants (R175H or R280K) of p53 repress CXCR4 expression. Recently described cancer-specific p53 isoform, Delta133p53, also failed to repress CXCR4 promoter activity. Short-interfering RNA-mediated depletion of p53 increased endogenous CXCR4 expression in MCF-7 breast cancer cells that contain wild-type p53. Basal CXCR4 promoter activity in HCT116 colon carcinoma cells deleted of p53 [HCT116(p53KO)] was 10-fold higher compared to that in parental HCT116 cells with functional wild-type p53. Deletion analysis of CXCR4 promoter identified a seven-base pair p53-repressor element homologous to cyclic AMP/AP-1 response (CRE/AP-1) element. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed binding of ATF-1 and cJun to the CRE/AP-1 element. The p53 rescue drug PRIMA-1 reduced CXCR4 mRNA and cell surface expression in MDA-MB-231 cells, which express R280K mutant p53. CP-31398, another p53 rescue drug, similarly reduced cell surface levels of CXCR4. PRIMA-1-mediated decrease in CXCR4 expression correlated with reduced invasion of MDA-MB-231 cells through matrigel. These results suggest a mechanism for elevated CXCR4 expression and metastasis of breast cancers with p53 mutations or isoform expression. We propose that p53 rescue drugs either alone or in combination with chemotherapeutic drugs may be effective in reducing CXCR4-mediated metastasis.
Collapse
Affiliation(s)
- S A Mehta
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Valbuena A, Vega FM, Blanco S, Lazo PA. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol 2006; 26:4782-93. [PMID: 16782868 PMCID: PMC1489172 DOI: 10.1128/mcb.00069-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable accumulation of p53 is detrimental to the cell because it blocks cell growth and division. Therefore, increases in p53 levels are tightly regulated, mainly by its transcriptional target, mdm2, that downregulates p53. Elucidation of new signaling pathways requires the characterization of the members and the nature of their connection. Vaccinia-related kinase 1 (VRK1) contributes to p53 stabilization by partly interfering with its mdm2-mediated degradation, among other mechanisms; therefore, it is likely that some form of autoregulation between VRK1 and p53 must occur. We report here the identification of an autoregulatory loop between p53 and its stabilizing VRK1. There is an inverse correlation between VRK1 and p53 levels in cell lines, and induction of p53 by UV light downregulates VRK1 in fibroblasts. As the amount of p53 protein increases, there is a downregulation of the VRK1 protein level independent of its promoter. This effect is indirect but requires a transcriptionally active p53. The three most common transcriptionally inactive mutations detected in hereditary (Li-Fraumeni syndrome) and sporadic human cancer, p53(R175H), p53(R248W), and p53(R273H), as well as p53(R280K), are unable to induce downregulation of VRK1 protein. The p53 isoforms Delta40p53 and p53beta, lacking the transactivation and oligomerization domains, respectively, do not downregulate VRK1. VRK1 downregulation induced by p53 is independent of mdm2 activity and proteasome-mediated degradation since it occurs in the presence of proteasome inhibitors and in mdm2-deficient cells. The degradation of VRK1 is sensitive to chloroquine, an inhibitor of the late endosome-lysosome transport, and to serine protease inhibitors of the lysosomal pathway.
Collapse
Affiliation(s)
- Alberto Valbuena
- IBMCC-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
91
|
Zschenker O, Borgmann K, Streichert T, Meier I, Wrona A, Dikomey E. Lymphoblastoid cell lines differing in p53 status show clear differences in basal gene expression with minor changes after irradiation. Radiother Oncol 2006; 80:236-49. [PMID: 16905214 DOI: 10.1016/j.radonc.2006.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE The genetic profile as determined by microarray is considered to be an ideal marker of the individual radiosensitivity. However, it is still an open question, whether this profile has to be determined prior to or only after irradiation, since the expression of some genes is affected by irradiation. These changes are induced mainly due to a p53-dependent transactivation. MATERIALS AND METHODS In this study gene expression profiles were measured for 3 lymphoblastoid cell lines differing in p53 status (p53 wt: TK6; p53null: TK6E6, p53mut: WTK1) measured either prior to or 3h after exposure to 2Gy. The gene expression profile was determined using the Affymetrix Human HG U133A GeneChip and for selective genes, variation in gene expression was validated by qRT-PCR. In addition, different assays were used to characterize the radioresponse of these three strains. RESULTS The three strains were found to be different in all aspects of radiosensitivity studied. Cells with p53wt showed more apoptosis, slightly stronger arrest in G1, but less lethal aberrations and a lower viability when compared to cells with mutated p53, whereas cells absent in p53 are characterized by an intermediate response. The gene expression profile measured prior to irradiation already revealed huge differences. Significance analysis of microarrays (SAM) identified 141 genes that changed expression twofold or more with a false discovery rate (FDR) of 5.4%. When compared to p53null cell line with p53wt showed a twofold difference in up- or down-regulation in 28 genes. A much higher variation was even found when p53mut cells were compared with p53null cells with a twofold difference in even 123 genes. The respective genes were found to be involved mainly in apoptosis, cell cycle regulation, metabolisms and signalling but with only one gene relevant for DNA repair. Radiation was found to affect this profile solely for cells with p53wt with a twofold significant up-regulation in only five genes. For selective genes (BCL2, CASP1, CCND2, DDB2, XPC, RAD51C, SESN1, FUCA1, CDKN1A, MDM2, XPC) array data were confirmed by qRT-PCR. CONCLUSION The result, that the gene expression profile of lymphoblastoid cells differing in p53 status already displayed clear differences when measured prior to irradiation with only few changes after irradiation, which are solely seen for p53wt cells, suggests, that the differences in radiosensitivity observed for these cells are primarily determined by the variation in expression profile present already prior to irradiation.
Collapse
Affiliation(s)
- Oliver Zschenker
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Hui L, Zheng Y, Yan Y, Bargonetti J, Foster DA. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 2006; 25:7305-10. [PMID: 16785993 DOI: 10.1038/sj.onc.1209735] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 is the most commonly mutated gene in human cancer. Although the loss of tumor suppressor functions for p53 in tumorigenesis is well characterized, gain-of-function p53 mutations observed in most cancers are not as widely appreciated. The human breast cancer cell line MDA-MB-231, which has high levels of a mutant p53, has high levels of phospholipase D (PLD) activity, which provides a survival signal in these cells when deprived of serum growth factors. We report here that the mutant p53 in MDA-MB-231 cells is stabilized by the elevated PLD activity in these cells. Surprisingly, the survival of MDA-MB-231 cells deprived of serum was dependent on the mutant p53. These data indicate that a mutant p53, stabilized by elevated PLD activity, can contribute to the suppression of apoptosis in a human breast cancer cell line and suggest a rationale for the selection of p53 mutations early in tumorigenesis to suppress apoptosis in an emerging tumor.
Collapse
Affiliation(s)
- L Hui
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
93
|
Zalcenstein A, Weisz L, Stambolsky P, Bar J, Rotter V, Oren M. Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 2006; 25:359-69. [PMID: 16170349 DOI: 10.1038/sj.onc.1209061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor-associated mutant forms of p53 can exert an antiapoptotic gain of function activity, which confers a selective advantage upon tumor cells harboring such mutations. We report that mutant p53 suppresses the expression of the MSP (MST-1/HGFL) gene, encoding the ligand of the receptor tyrosine kinase RON, implicated in a variety of cellular responses. Mutant p53 associates with the MSP gene promoter and represses its transcriptional activity, leading to a decrease in mRNA levels and a subsequent decrease in the levels of secreted MSP protein. Forced downregulation of MSP expression in H1299 cells, derived from a large-cell lung carcinoma, confers increased resistance against etoposide-induced cell death. These antiapoptotic consequences of MSP downregulation seemingly conflict with the well-documented ability of the RON receptor to promote cell survival and tumor progression when aberrantly hyperactive. Yet, they are consistent with the fact that reduced MSP expression was observed in many types of human cancer, including large-cell lung carcinoma. Thus, repression of MSP gene expression by mutant p53 may contribute to oncogenesis in a cell type-specific manner.
Collapse
Affiliation(s)
- A Zalcenstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
94
|
Scian MJ, Stagliano KER, Anderson MAE, Hassan S, Bowman M, Miles MF, Deb SP, Deb S. Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 2005; 25:10097-110. [PMID: 16260623 PMCID: PMC1280285 DOI: 10.1128/mcb.25.22.10097-10110.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of mutant p53 is a common theme in tumors, suggesting a selective pressure for p53 mutation in cancer development and progression. To determine how mutant p53 expression may lead to survival advantage in human cancer cells, we generated stable cell lines expressing p53 mutants p53-R175H, -R273H, and -D281G by use of p53-null human H1299 (lung carcinoma) cells. Compared to vector-transfected cells, H1299 cells expressing mutant p53 showed a survival advantage when treated with etoposide, a common chemotherapeutic agent; however, cells expressing the transactivation-deficient triple mutant p53-D281G (L22Q/W23S) had significantly lower resistance to etoposide. Gene expression profiling of cells expressing transcriptionally active mutant p53 proteins revealed the striking pattern that all three p53 mutants induced expression of approximately 100 genes involved in cell growth, survival, and adhesion. The gene NF-kappaB2 is a prominent member of this group, whose overexpression in H1299 cells also leads to chemoresistance. Treatment of H1299 cells expressing p53-R175H with small interfering RNA specific for NF-kappaB2 made these cells more sensitive to etoposide. We have also observed activation of the NF-kappaB2 pathway in mutant p53-expressing cells. Thus, one possible pathway through which mutants of p53 may induce loss of drug sensitivity is via the NF-kappaB2 pathway.
Collapse
Affiliation(s)
- Mariano J Scian
- Department of Biochemistry and Massey Cancer Center, Virginia Commonwealth University, P.O. Box 980614, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Thomas S, Reisman D. Localization of a mutant p53 response element on the tissue inhibitor of metalloproteinase-3 promoter: mutant p53 activities are distinct from wild-type. Cancer Lett 2005; 240:48-59. [PMID: 16236433 DOI: 10.1016/j.canlet.2005.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Missense mutations in the p53 gene have been observed in greater than 60% of all human tumors. Recent evidence indicates that some mutations in p53 arise as the cancer progresses from a benign tumor to a metastatic tumor and that these mutations in p53 actively contribute to the process of cancer progression. Previously, we reported that the expression of the gene encoding the tissue inhibitor of metalloproteinase-3 (TIMP-3) is repressed in cells expressing codons 248 and 281 mutant p53 alleles. The ability of tumor-derived p53 mutants to inhibit TIMP-3 expression provides a novel mechanism for understanding how p53 mutations might contribute to tumorigenesis. Since mutant p53 is often expressed at elevated levels in a variety of cancers, the generation of cells in a tumor carrying certain mutations in p53 would cause inappropriately reduced expression of TIMP-3 and lead to elevated matrix metalloproteinase activity. We present the results of experiments that begin to determine the mechanism by which mutant p53 represses TIMP-3 gene expression. By generating deletion derivatives of the TIMP-3 promoter and testing them for expression and by performing DNA protein binding assays on the regions determined to be required for repression, we have identified elements that are essential for mutant p53-mediated transcriptional repression. These elements respond specifically to mutant but not wild type p53. While mutant p53 itself does not bind to the TIMP-3 promoter, we provide evidence for the presence of DNA binding proteins whose activity is enhanced in the presence of mutant p53.
Collapse
Affiliation(s)
- Shana Thomas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
96
|
Mehlmann M, Townsend MB, Stears RL, Kuchta RD, Rowlen KL. Optimization of fragmentation conditions for microarray analysis of viral RNA. Anal Biochem 2005; 347:316-23. [PMID: 16266686 DOI: 10.1016/j.ab.2005.09.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/30/2022]
Abstract
An important consideration in microarray analysis of nucleic acids is the efficiency with which the target molecule is captured by, or hybridized to, surface-immobilized oligos. For RNA, secondary and tertiary structure of the target strand can significantly decrease capture efficiency. To overcome this limitation, RNA is often fragmented to reduce structural effects. In this study, the metal ion-catalyzed base hydrolysis fragmentation conditions for viral RNA extracted from influenza viruses were evaluated and the hybridization efficiency of the resulting fragments was determined as a function of fragment length. The amount of RNA captured was evaluated qualitatively by fluorescence intensity normalized to an internal standard. Optimized conditions for influenza RNA were determined to include a fragmentation time of 20-30 min at 75 degrees C. These conditions resulted in a maximum concentration of fragments between 38 and 150 nt in length and a maximum in the capture and label efficiency.
Collapse
Affiliation(s)
- Martin Mehlmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
We performed a systematic review of studies that investigated the effect of abnormalities of the tumour suppressor gene p53 upon prognosis in patients with colorectal cancer. The methods used to assess p53 status were immunohistochemistry (IHC), indicating abnormal accumulation of p53, and sequence analysis, indicating presence of p53 mutations (mut). We identified 168 reports, with 241 comparisons of relevant end points and survival data on 18 766 patients. We found evidence of both publication bias and heterogeneity of results. Our analysis was hampered by variability in both the assessment of p53 status and the reporting of results. We used a trim and fill method to correct for publication bias and minimised heterogeneity by using well-defined clinical subgroups for the assessment of outcomes. Overall, patients with abnormal p53 were at increased risk of death: relative risk (RR) with IHC 1.32 (95% confidence interval (c.i.) 1.23–1.42) and with mutation analysis 1.31 (95% c.i. 1.19–1.45). The adverse impact of abnormal p53 was greater in patients with lower baseline risk of dying: good prognosis RR (mut) 1.63 (95% c.i. 1.40–1.90) and poor prognosis RR (mut) 1.04 (95% c.i. 0.91–1.19). We found no effect of abnormal p53 on outcome in patients treated with chemotherapy. Abnormal p53 was associated with failure of response to radiotherapy in patients with rectal cancer: RR (mut) 1.49 (95% c.i. 1.25–1.77).
Collapse
Affiliation(s)
- A J Munro
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|