51
|
Minh Hung H, Dieu Hang T, Nguyen MT. Structural Investigation of Human Prolactin Receptor Transmembrane Domain Homodimerization in a Membrane Environment through Multiscale Simulations. J Phys Chem B 2019; 123:4858-4866. [PMID: 31099581 DOI: 10.1021/acs.jpcb.9b01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well established that prolactin (PRL) and its receptor (PRLR) are associated with hundreds of biological functions. They have been postulated to be linked to breast and prostate cancers, and PRLR signaling has attracted considerable medical and pharmaceutical interest in the development of compounds targeting PRLR. Dimerization of the receptor through its transmembrane (TM) domain is a key step for understanding its signaling and related issues. Our multiscale simulation results revealed that its TM domain can form dimers in a membrane environment with distinct states stabilized by different residue motifs. On the basis of the simulated data, an activation mechanism of PRL with the importance of two symmetrical tryptophan residues was proposed in detail to determine the conformational change of its receptor, which is essential for signal transduction. The better knowledge of PRLR structure and its protein-protein interaction can considerably contribute to a further understanding of PRLR signaling action and thereby help to develop some new PRLR signaling-based strategies for PRL-related diseases.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Department of Chemistry , Quy Nhon University , Quy Nhon 590000 , Vietnam
| | - Tran Dieu Hang
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Department of Chemistry , Quy Nhon University , Quy Nhon 590000 , Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group , Ton Duc Thang University , Ho Chi Minh City 700000 Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
52
|
Yu S, Alkharusi A, Norstedt G, Gräslund T. An in vivo half-life extended prolactin receptor antagonist can prevent STAT5 phosphorylation. PLoS One 2019; 14:e0215831. [PMID: 31063493 PMCID: PMC6504076 DOI: 10.1371/journal.pone.0215831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that signaling through the prolactin/prolactin receptor axis is important for stimulation the growth of many cancers including glioblastoma multiforme, breast and ovarian carcinoma. Efficient inhibitors of signaling have previously been developed but their applicability as cancer drugs is limited by the short in vivo half-life. In this study, we show that a fusion protein, consisting of the prolactin receptor antagonist PrlRA and an albumin binding domain for half-life extension can be expressed as inclusion bodies in Escherichia coli and efficiently refolded and purified to homogeneity. The fusion protein was found to have strong affinity for the two intended targets: the prolactin receptor (KD = 2.3±0.2 nM) and mouse serum albumin (KD = 0.38±0.01 nM). Further investigation showed that it could efficiently prevent prolactin mediated phosphorylation of STAT5 at 100 nM concentration and above, similar to the PrlRA itself, suggesting a potential as drug for cancer therapy in the future. Complexion with HSA weakened the affinity for the receptor to 21±3 nM, however the ability to prevent phosphorylation of STAT5 was still prominent. Injection into rats showed a 100-fold higher concentration in blood after 24 h compared to PrlRA itself.
Collapse
Affiliation(s)
- Shengze Yu
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amira Alkharusi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Gunnar Norstedt
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Center for Molecular Medicine, Karolinska Institute, Solna, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
53
|
López-Ozuna VM, Hachim IY, Hachim MY, Lebrun JJ, Ali S. Prolactin modulates TNBC aggressive phenotype limiting tumorigenesis. Endocr Relat Cancer 2019; 26:321-337. [PMID: 30640712 DOI: 10.1530/erc-18-0523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for ~20% of all breast cancer cases. The management of TNBC represents a challenge due to its aggressive phenotype, heterogeneity and lack of targeted therapy. Loss of cell differentiation and enrichment with breast cancer stem-like cells (BCSC) are features of TNBC contributing to its aggressive nature. Here, we found that treatment of TNBC cells with PRL significantly depletes the highly tumorigenic BCSC subpopulations CD44+/CD24- and ALDH+ and differentiates them to the least tumorigenic CD44-/CD24- and ALDH- phenotype with limited tumorsphere formation and self-renewal capacities. Importantly, we found PRL to induce a heterochromatin phenotype marked by histone H3 lysine 9 trimethylation (H3K9me3) and accompanied by ultra-structural cellular architecture associated with differentiation and senescence rendering the cells refractory to growth signals. Crucially, we found PRL to mediate these effects in vivo in a pre-clinical animal xenograft of TNBC controlling tumor growth. These results reveal that the lactogenic hormone PRL may exert its anti-tumorigenic effects on TNBC through cellular reprogramming indicative of differentiation resulting in the depletion of BCSCs and restricting tumorigenesis.
Collapse
Affiliation(s)
- Vanessa M López-Ozuna
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| |
Collapse
|
54
|
Gabrielson M, Ubhayasekera K, Ek B, Andersson Franko M, Eriksson M, Czene K, Bergquist J, Hall P. Inclusion of Plasma Prolactin Levels in Current Risk Prediction Models of Premenopausal and Postmenopausal Breast Cancer. JNCI Cancer Spectr 2018; 2:pky055. [PMID: 31360875 PMCID: PMC6649752 DOI: 10.1093/jncics/pky055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/31/2018] [Accepted: 10/08/2018] [Indexed: 01/07/2023] Open
Abstract
Background Circulating plasma prolactin is associated with breast cancer risk and may improve our ability to identify high-risk women. Mammographic density is a strong risk factor for breast cancer, but the association with prolactin is unclear. We studied the association between breast cancer, established breast cancer risk factors and plasma prolactin, and improvement of risk prediction by adding prolactin. Methods We conducted a nested case-control study including 721 breast cancer patients and 1400 age-matched controls. Plasma prolactin levels were assayed using immunoassay and mammographic density measured by STRATUS. Odds ratios (ORs) were calculated by multivariable adjusted logistic regression, and improvement in the area under the curve for the risk of breast cancer by adding prolactin to established risk models. Statistical tests were two-sided. Results In multivariable adjusted analyses, prolactin was associated with risk of premenopausal (OR, top vs bottom quintile = 1.9; 1.88 (95% confidence interval [CI] = 1.08 to 3.26) but not with postmenopausal breast cancer. In postmenopausal cases prolactin increased by 10.6% per cBIRADS category (Ptrend = .03). In combined analyses of prolactin and mammographic density, ORs for women in the highest vs lowest tertile of both was 3.2 (95% CI = 1.3 to 7.7) for premenopausal women and 2.44 (95% CI = 1.44 to 4.14) for postmenopausal women. Adding prolactin to current risk models improved the area under the curve of the Gail model (+2.4 units, P = .02), Tyrer-Cuzick model (+3.8, P = .02), and the CAD2Y model (+1.7, P = .008) in premenopausal women. Conclusion Circulating plasma prolactin and mammographic density appear independently associated with breast cancer risk among premenopausal women, and prolactin may improve risk prediction by current risk models.
Collapse
Affiliation(s)
- Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kumari Ubhayasekera
- Analytical Chemistry and Neurochemistry, Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Bo Ek
- Analytical Chemistry and Neurochemistry, Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Andersson Franko
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, South General Hospital, Stockholm, Sweden
| |
Collapse
|
55
|
Denholm R, De Stavola BL, Hipwell JH, Doran SJ, Holly JMP, Folkerd E, Dowsett M, Leach MO, Hawkes DJ, Dos-Santos-Silva I. Circulating Growth and Sex Hormone Levels and Breast Tissue Composition in Young Nulliparous Women. Cancer Epidemiol Biomarkers Prev 2018; 27:1500-1508. [PMID: 30228153 DOI: 10.1158/1055-9965.epi-18-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/30/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Endogenous hormones are associated with breast cancer risk, but little is known about their role on breast tissue composition, a strong risk predictor. This study aims to investigate the relationship between growth and sex hormone levels and breast tissue composition in young nulliparous women. METHODS A cross-sectional study of 415 young (age ∼21.5 years) nulliparous women from an English prebirth cohort underwent a MRI examination of their breasts to estimate percent-water (a proxy for mammographic percent density) and provided a blood sample to measure plasma levels of growth factors (insulin-like growth factor-I, insulin-like growth factor-II, insulin growth factor-binding protein-3, growth hormone) and, if not on hormonal contraception (n = 117) sex hormones (dehydroepiandrosterone, androstenedione, testosterone, estrone, estadiol, sex hormone-binding globulin, prolactin). Testosterone (n = 330) and sex hormone-binding globulin (n = 318) were also measured at age 15.5 years. Regression models were used to estimate the relative difference (RD) in percent-water associated with one SD increment in hormone levels. RESULTS Estradiol at age 21.5 and sex hormone-binding globulin at age 21.5 were positively associated with body mass index (BMI)-adjusted percent-water [RD (95% confidence interval (CI)): 3% (0%-7%) and 3% (1%-5%), respectively]. There was a positive nonlinear association between androstenedione at age 21.5 and percent-water. Insulin-like growth factor-I and growth hormone at age 21.5 were also positively associated with BMI-adjusted percent-water [RD (95% CI): 2% (0%-4%) and 4% (1%-7%), respectively]. CONCLUSIONS The findings suggest that endogenous hormones affect breast tissue composition in young nulliparous women. IMPACT The well-established associations of childhood growth and development with breast cancer risk may be partly mediated by the role of endogenous hormones on breast tissue composition.
Collapse
Affiliation(s)
- Rachel Denholm
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bianca L De Stavola
- Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - John H Hipwell
- Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
| | - Simon J Doran
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Folkerd
- The Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Mitch Dowsett
- The Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - David J Hawkes
- Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, UCL, London, United Kingdom
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
56
|
Li J, Rice MS, Huang T, Hankinson SE, Clevenger CV, Hu FB, Tworoger SS. Circulating prolactin concentrations and risk of type 2 diabetes in US women. Diabetologia 2018; 61:2549-2560. [PMID: 30306190 PMCID: PMC6309828 DOI: 10.1007/s00125-018-4733-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/16/2018] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Prolactin, a multifunctional hormone, is involved in regulating insulin sensitivity and glucose homeostasis in experimental studies. However, whether circulating concentrations of prolactin are associated with risk of type 2 diabetes remains uncertain. METHODS We analysed the prospective relationship between circulating prolactin concentrations and type 2 diabetes risk in the Nurses' Health Study (NHS) and NHSII with up to 22 years of follow-up. Total plasma prolactin was measured using immunoassay in 8615 women free of type 2 diabetes and cardiovascular disease at baseline blood collection (NHS 1989-1990; NHSII 1996-1999) and a subset of 998 NHS women providing a second blood sample during 2000-2002. Baseline bioactive prolactin was measured in a subset of 2478 women using the Nb2 bioassay. HRs were estimated using Cox regression. RESULTS A total of 699 incident type 2 diabetes cases were documented during 156,140 person-years of follow-up. Total plasma prolactin levels were inversely associated with type 2 diabetes risk; the multivariable HR comparing the highest with the lowest quartile was 0.73 (95% CI 0.55, 0.95; ptrend = 0.02). The associations were similar by menopausal status and other risk factors (pinteraction > 0.70). Additional adjustment for sex and growth hormones, adiponectin, and inflammatory and insulin markers did not significantly alter the results. The association of plasma bioactive prolactin with type 2 diabetes risk was non-significantly stronger than that of total prolactin (HR comparing extreme quartiles, 0.53 vs 0.81 among the subset of 2478 women, pdifference = 0.11). The inverse association of total prolactin with type 2 diabetes was significant during the first 9 years after blood draw but waned linearly with time, whereas for bioactive prolactin, the inverse relationship persisted for a longer follow-up time after blood draw. CONCLUSIONS/INTERPRETATION A normally high circulating total prolactin concentration was associated with a lower type 2 diabetes risk within 9-10 years of follow-up since blood draw in US women. Our findings are consistent with experimental evidence, suggesting that among healthy women, prolactin within the biologically normal range may play a protective role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan S Rice
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tianyi Huang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan E Hankinson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Inc., 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL, 33612-9497, USA.
| |
Collapse
|
57
|
Sarink D, Schock H, Johnson T, Chang-Claude J, Overvad K, Olsen A, Tjønneland A, Arveux P, Fournier A, Kvaskoff M, Boeing H, Karakatsani A, Trichopoulou A, La Vecchia C, Masala G, Agnoli C, Panico S, Tumino R, Sacerdote C, van Gils CH, Peeters PHM, Weiderpass E, Agudo A, Rodríguez-Barranco M, Huerta JM, Ardanaz E, Gil L, Kaw KT, Schmidt JA, Dossus L, His M, Aune D, Riboli E, Kaaks R, Fortner RT. Receptor activator of nuclear factor kB ligand, osteoprotegerin, and risk of death following a breast cancer diagnosis: results from the EPIC cohort. BMC Cancer 2018; 18:1010. [PMID: 30348163 PMCID: PMC6196438 DOI: 10.1186/s12885-018-4887-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Receptor activator of nuclear factor kappa-B (RANK)-signaling is involved in tumor growth and spread in experimental models. Binding of RANK ligand (RANKL) to RANK activates signaling, which is inhibited by osteoprotegerin (OPG). We have previously shown that circulating soluble RANKL (sRANKL) and OPG are associated with breast cancer risk. Here we extend these findings to provide the first data on pre-diagnosis concentrations of sRANKL and OPG and risk of breast cancer-specific and overall mortality after a breast cancer diagnosis. METHODS Two thousand six pre- and postmenopausal women with incident invasive breast cancer (1620 (81%) with ER+ disease) participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were followed-up for mortality. Pre-diagnosis concentrations of sRANKL and OPG were quantified in baseline serum samples using an enzyme-linked immunosorbent assay and electrochemiluminescent assay, respectively. Hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer-specific and overall mortality were calculated using Cox proportional hazards regression models. RESULTS Especially in women with ER+ disease, higher circulating OPG concentrations were associated with higher risk of breast cancer-specific (quintile 5 vs 1 HR 1.77 [CI 1.03, 3.04]; ptrend 0.10) and overall mortality (q5 vs 1 HR 1.39 [CI 0.94, 2.05]; ptrend 0.02). sRANKL and the sRANKL/OPG ratio were not associated with mortality following a breast cancer diagnosis. CONCLUSIONS High pre-diagnosis endogenous concentrations of OPG, the decoy receptor for RANKL, were associated with increased risk of death after a breast cancer diagnosis, especially in those with ER+ disease. These results need to be confirmed in well-characterized patient cohorts.
Collapse
Affiliation(s)
- Danja Sarink
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Helena Schock
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Patrick Arveux
- Breast and Gynaecologic Cancer Registry of Côte d’Or, Georges-François Leclerc Comprehensive Cancer Care Centre, Dijon, France
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Agnès Fournier
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Marina Kvaskoff
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Haidari, Athens, Greece
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute – ISP, Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicine Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, “Civic M.P.Arezzo” Hospital, Azienda Sanitaria Provinciale, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Carla H. van Gils
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Petra H. M. Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José María Huerta
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Kay Tee Kaw
- Cancer Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Laure Dossus
- International Agency for Research on Cancer, Lyon, France
| | - Mathilde His
- International Agency for Research on Cancer, Lyon, France
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
58
|
Differentiated thyroid cancer: Why does it affect predominantly women during the reproductive period and have higher incidence of mutual association with breast cancer? Med Hypotheses 2018; 122:5-7. [PMID: 30593422 DOI: 10.1016/j.mehy.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Differentiated thyroid cancer (DTC) is markedly more common in women than men, and its occurrence and risk for poorer prognosis are associated with pregnancy. Further, it is known that there is a high frequency of co-occurrence of DTC and breast cancer. Although the underlying mechanisms that contribute to these phenomena are not entirely clear, 2 hypotheses are proposed here. First, human chorionic gonadotropin (hCG) produced by the placenta may be involved, since hCG has a similar function to stimulate the thyroid as thyroid-stimulating hormone (TSH), the latter of which is known to play a role in causing DTC and may promote breast cancer through the secretion of thyroid hormones (THs). Second, thyrotropin-releasing hormone (TRH), which is stimulated by suckling in the puerperal period, induces the secretion of not only TSH and thus indirectly THs, but also prolactin (PRL), which can accelerate the development of breast cancer. These hypotheses also explain the pregnancy-associated transient increase in breast cancer risk, while inhibition of estrogen by PRL may have a long-term preventive effect on breast cancer. Pregnancy-associated hyperthyroidism may also account for female preponderance of thyroid disease in general as well as tumors in organs that the thyroid hormone targets such as cardiac myxoma and diffuse-type gastric carcinoma.
Collapse
|
59
|
Zhang X, Rice M, Tworoger SS, Rosner BA, Eliassen AH, Tamimi RM, Joshi AD, Lindstrom S, Qian J, Colditz GA, Willett WC, Kraft P, Hankinson SE. Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case-control study. PLoS Med 2018; 15:e1002644. [PMID: 30180161 PMCID: PMC6122802 DOI: 10.1371/journal.pmed.1002644] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/25/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND No prior study to our knowledge has examined the joint contribution of a polygenic risk score (PRS), mammographic density (MD), and postmenopausal endogenous hormone levels-all well-confirmed risk factors for invasive breast cancer-to existing breast cancer risk prediction models. METHODS AND FINDINGS We conducted a nested case-control study within the prospective Nurses' Health Study and Nurses' Health Study II including 4,006 cases and 7,874 controls ages 34-70 years up to 1 June 2010. We added a breast cancer PRS using 67 single nucleotide polymorphisms, MD, and circulating testosterone, estrone sulfate, and prolactin levels to existing risk models. We calculated area under the curve (AUC), controlling for age and stratified by menopausal status, for the 5-year absolute risk of invasive breast cancer. We estimated the population distribution of 5-year predicted risks for models with and without biomarkers. For the Gail model, the AUC improved (p-values < 0.001) from 55.9 to 64.1 (8.2 units) in premenopausal women (Gail + PRS + MD), from 55.5 to 66.0 (10.5 units) in postmenopausal women not using hormone therapy (HT) (Gail + PRS + MD + all hormones), and from 58.0 to 64.9 (6.9 units) in postmenopausal women using HT (Gail + PRS + MD + prolactin). For the Rosner-Colditz model, the corresponding AUCs improved (p-values < 0.001) by 5.7, 6.2, and 6.5 units. For estrogen-receptor-positive tumors, among postmenopausal women not using HT, the AUCs improved (p-values < 0.001) by 14.3 units for the Gail model and 7.3 units for the Rosner-Colditz model. Additionally, the percentage of 50-year-old women predicted to be at more than twice 5-year average risk (≥2.27%) was 0.2% for the Gail model alone and 6.6% for the Gail + PRS + MD + all hormones model. Limitations of our study included the limited racial/ethnic diversity of our cohort, and that general population exposure distributions were unavailable for some risk factors. CONCLUSIONS In this study, the addition of PRS, MD, and endogenous hormones substantially improved existing breast cancer risk prediction models. Further studies will be needed to confirm these findings and to determine whether improved risk prediction models have practical value in identifying women at higher risk who would most benefit from chemoprevention, screening, and other risk-reducing strategies.
Collapse
Affiliation(s)
- Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Megan Rice
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shelley S. Tworoger
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bernard A. Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - A. Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Rulla M. Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Amit D. Joshi
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sara Lindstrom
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Jing Qian
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Graham A. Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Walter C. Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
60
|
Pottegård A, Lash TL, Cronin-Fenton D, Ahern TP, Damkier P. Use of antipsychotics and risk of breast cancer: a Danish nationwide case-control study. Br J Clin Pharmacol 2018; 84:2152-2161. [PMID: 29858518 DOI: 10.1111/bcp.13661] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022] Open
Abstract
AIMS Some antipsychotics increase prolactin levels, which might increase the risk of breast cancer. Existing evidence is conflicting and based on sparse data, especially for the increasingly used second-generation antipsychotics. We conducted a nationwide case-control study of the association between antipsychotic use and incident breast cancer. METHODS From the Danish Cancer Registry, we identified women with a first-time diagnosis of breast cancer 2000-2015 (n = 60 360). For each case, we age-matched 10 female population controls. Using conditional logistic regression, we calculated odds ratios (ORs) for breast cancer associated with use of antipsychotics. We stratified antipsychotics by first- and second-generation status and by ability to induce elevation of prolactin. RESULTS In total, 4951 cases (8.1%) and 47 643 controls (7.9%) had ever used antipsychotics. Long-term use (≥10 000 mg olanzapine equivalents) was associated with breast cancer, with an adjusted OR of 1.18 [95% confidence interval (CI), 1.06, 1.32]. A weak dose-response pattern was seen, with ORs increasing to 1.27 (95% CI 1.01, 1.59) for ≥50 000 mg olanzapine equivalents. Associations were similar for first- and second-generation antipsychotics (ORs 1.17 vs. 1.11), but also for nonprolactin inducing-antipsychotics (OR 1.17). Stratifying by oestrogen receptor status, positive associations were seen for oestrogen receptor-positive cancers (long-term use: OR 1.29; 95% CI 1.13, 1.47) while no associations were observed for oestrogen receptor-negative cancers. CONCLUSIONS Overall, our results do not suggest a clinically important association between antipsychotic use and risk of breast cancer. The importance of drug-induced prolactin elevation is unclear but may lead to a slightly increased risk of oestrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Anton Pottegård
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Thomas P Ahern
- Departments of Surgery and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
61
|
Shea MP, O'Leary KA, Wegner KA, Vezina CM, Schuler LA. High collagen density augments mTOR-dependent cancer stem cells in ERα+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Lett 2018; 433:1-9. [PMID: 29935374 DOI: 10.1016/j.canlet.2018.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022]
Abstract
Metastatic estrogen receptor alpha positive (ERα+) cancers account for most breast cancer mortality. Cancer stem cells (CSCs) and dense/stiff extracellular matrices are implicated in aggression and therapy resistance. We examined this interplay and response to mTOR inhibition using ERα+ adenocarcinomas from NRL-PRL females in combination with Col1a1tmJae/+ (mCol1a1) mice, which accumulate collagen-I around growing tumors. Orthotopic transplantation of tumor cells to mCol1a1 but not wildtype hosts resulted in striking desmoplasia. Mammary tumors in mCol1a1 recipients displayed higher CSC activity and enhanced AKT-mTOR and YAP activation, and these animals developed more and larger lung metastases. Treatment with the mTOR inhibitor, rapamycin, with or without the anti-estrogen, ICI182780, rapidly diminished mammary tumors, which rapidly reversed when treatment ceased. In contrast, lung metastases, which exhibited lower proliferation and pS6RP, indicating lower mTOR activity, were unresponsive, and mCol1a1 hosts continued to sustain greater metastatic burdens. These findings shed light on the influence of desmoplastic tumor microenvironments on the CSC niche and metastatic behavior in ERα+ breast cancer. The differential mTOR dependence of local mammary tumors and pulmonary lesions has implications for success of mTOR inhibitors in advanced ERα+ disease.
Collapse
Affiliation(s)
- Michael P Shea
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyle A Wegner
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Linda A Schuler
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
62
|
Clinicodiagnostic management and bacteriological etiology of non-puerperal mastitis in the population of Southern China. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
63
|
Moran O, Zaman T, Eisen A, Demsky R, Blackmore K, Knight JA, Elser C, Ginsburg O, Zbuk K, Yaffe M, Narod SA, Salmena L, Kotsopoulos J. Serum osteoprotegerin levels and mammographic density among high-risk women. Cancer Causes Control 2018; 29:507-517. [PMID: 29679262 DOI: 10.1007/s10552-018-1035-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/18/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. METHODS We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. RESULTS Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm2 vs. 15.2 cm2; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. CONCLUSIONS These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.
Collapse
Affiliation(s)
- Olivia Moran
- Women's College Research Institute, Women's College Hospital, 76 Grenville St., 6th Floor, Toronto, ON, M5S 1B2, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Tasnim Zaman
- Women's College Research Institute, Women's College Hospital, 76 Grenville St., 6th Floor, Toronto, ON, M5S 1B2, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andrea Eisen
- Toronto-Sunnybrook Regional Cancer Center, Toronto, ON, Canada
| | - Rochelle Demsky
- Division of Gynecologic Oncology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Christine Elser
- Division of Medical Oncology and Hematology, Department of Medicine, Mount Sinai Hospital and The Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada
| | - Ophira Ginsburg
- Laura and Isaac Perlmutter Cancer Centre, NYU Langone Medical Center, NYU School of Medicine, New York, NY, USA
| | - Kevin Zbuk
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Martin Yaffe
- Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, 76 Grenville St., 6th Floor, Toronto, ON, M5S 1B2, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, 76 Grenville St., 6th Floor, Toronto, ON, M5S 1B2, Canada. .,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada. .,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
64
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
65
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
66
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
67
|
Shea MP, O'Leary KA, Fakhraldeen SA, Goffin V, Friedl A, Wisinski KB, Alexander CM, Schuler LA. Antiestrogen Therapy Increases Plasticity and Cancer Stemness of Prolactin-Induced ERα + Mammary Carcinomas. Cancer Res 2018; 78:1672-1684. [PMID: 29363543 DOI: 10.1158/0008-5472.can-17-0985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 12/24/2022]
Abstract
Although antiestrogen therapies are successful in many patients with estrogen receptor alpha-positive (ERα+) breast cancer, 25% to 40% fail to respond. Although multiple mechanisms underlie evasion of these treatments, including tumor heterogeneity and drug-resistant cancer stem cells (CSC), further investigations have been limited by the paucity of preclinical ERα+ tumor models. Here, we examined a mouse model of prolactin-induced aggressive ERα+ breast cancer, which mimics the epidemiologic link between prolactin exposure and increased risk for metastatic ERα+ tumors. Like a subset of ERα+ patient cancers, the prolactin-induced adenocarcinomas contained two major tumor subpopulations that expressed markers of normal luminal and basal epithelial cells. CSC activity was distributed equally across these two tumor subpopulations. Treatment with the selective estrogen receptor downregulator (SERD), ICI 182,780 (ICI), did not slow tumor growth, but induced adaptive responses in CSC activity, increased markers of plasticity including target gene reporters of Wnt/Notch signaling and epithelial-mesenchymal transition, and increased double-positive (K8/K5) cells. In primary tumorsphere cultures, ICI stimulated CSC self-renewal and was able to overcome the dependence of self-renewal upon Wnt or Notch signaling individually, but not together. Our findings demonstrate that treatment of aggressive mixed lineage ERα+ breast cancers with a SERD does not inhibit growth, but rather evokes tumor cell plasticity and regenerative CSC activity, predicting likely negative impacts on patient tumors with these characteristics.Significance: This study suggests that treatment of a subset of ERα+ breast cancers with antiestrogen therapies may not only fail to slow growth but also promote aggressive behavior by evoking tumor cell plasticity and regenerative CSC activity. Cancer Res; 78(7); 1672-84. ©2018 AACR.
Collapse
Affiliation(s)
- Michael P Shea
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saja A Fakhraldeen
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kari B Wisinski
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Caroline M Alexander
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin. .,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
68
|
Abstract
SummaryThis overview explains antipsychotic-induced hyperprolactinaemia and offers guidance on the management of this common and underestimated problem in general psychiatric practice.
Collapse
|
69
|
Abstract
SummaryMedications prescribed by psychiatrists are known to elevate serum prolactin levels, but hyperprolactinaemia remains underrecognised, as the adverse effects of an elevated prolactin are mostly not visible. Hyperprolactinaemia can lead to adverse health outcomes, so clinicians need not only to be alert to its symptoms, but to manage the consequences as well. In this article we provide a brief overview of prolactin physiology, regulation and function. We list various factors that can lead to elevated serum prolactin. We discuss the interpretation of blood results and the management of psychotropic-induced hyperprolactinaemia. We include a flow diagram to assist clinicians in decision-making in the clinical management of hyperprolactinaemia.Learning Objectives• Understand prolactin physiology and regulation• Understand hyperprolactinaemia and its causes• Know the consequences of hyperprolactinaemia and appropriately manage it in clinical practice
Collapse
|
70
|
|
71
|
Katz TA, Wu AH, Stanczyk FZ, Wang R, Koh WP, Yuan JM, Oesterreich S, Butler LM. Determinants of prolactin in postmenopausal Chinese women in Singapore. Cancer Causes Control 2018; 29:51-62. [PMID: 29124543 PMCID: PMC5962355 DOI: 10.1007/s10552-017-0978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Mechanistic and observational data together support a role for prolactin in breast cancer development. Determinants of prolactin in Asian populations have not been meaningfully explored, despite the lower risk of breast cancer in Asian populations. METHODS Determinants of plasma prolactin were evaluated in 442 postmenopausal women enrolled in the Singapore Chinese Health Study, a population-based prospective cohort study. At baseline all cohort members completed an in-person interview that elicited information on diet, menstrual and reproductive history, and lifestyle factors. One year after cohort initiation we began collecting blood samples. Quantified were plasma concentrations of prolactin, estrone, estradiol, testosterone, androstenedione, and sex hormone-binding globulin (SHBG). Analysis of covariance method was used for statistical analyses with age at blood draw, time since last meal, and time at blood draw as covariates. RESULTS Mean prolactin levels were 25.1% lower with older age at menarche (p value = 0.001), and 27.6% higher with greater years between menarche and menopause (p value = 0.009). Prolactin levels were also positively associated with increased sleep duration (p value = 0.005). The independent determinants of prolactin were years from menarche to menopause, hours of sleep, and the plasma hormones estrone and SHBG (all p values < 0.01). CONCLUSION The role of prolactin in breast cancer development may involve reproductive and lifestyle factors, such as a longer duration of menstrual cycling and sleep patterns.
Collapse
Affiliation(s)
- Tiffany A Katz
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Molecular and Cellular Biology, The Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank Z Stanczyk
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Renwei Wang
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Lesley M Butler
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
72
|
Reeves KW, Okereke OI, Qian J, Tamimi RM, Eliassen AH, Hankinson SE. Depression, Antidepressant Use, and Breast Cancer Risk in Pre- and Postmenopausal Women: A Prospective Cohort Study. Cancer Epidemiol Biomarkers Prev 2017; 27:306-314. [PMID: 29263188 DOI: 10.1158/1055-9965.epi-17-0707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Depression and antidepressant use is highly prevalent among U.S. women and may be related to increased breast cancer risk. However, prior studies are not in agreement regarding an increase in risk.Methods: We conducted a prospective cohort study within the Nurses' Health Study (NHS) and NHSII among females age 25 and older. Over more than 10 years of follow-up in each cohort, 4,014 incident invasive breast cancers were diagnosed. We used Cox proportional hazards regressions with updating of exposures and covariates throughout follow-up to estimate HRs and 95% confidence intervals (CIs) for associations between clinical depression and antidepressant use with invasive breast cancer risk. Analyses were repeated separately for in situ disease, as well as stratified by estrogen receptor (ER) subtype and menopausal status at diagnosis.Results: No statistically significant associations were observed between clinical depression (HR for reporting ≥3 times vs. 0, 1.13; 95% CI, 0.85-1.49) or antidepressant use (HR for reporting ≥3 times vs. 0, 0.92; 95% CI, 0.80-1.05) and invasive breast cancer risk in multivariable analyses. Likewise, we observed no significant associations between clinical depression or antidepressant use and risk of in situ, ER+, ER-, premenopausal, or postmenopausal breast cancer.Conclusions: In the largest prospective study to date, we find no evidence that either depression or antidepressant use increase risk of breast cancer.Impact: The results of this study are reassuring in that neither depression nor antidepressant use appear to be related to subsequent breast cancer risk. Cancer Epidemiol Biomarkers Prev; 27(3); 306-14. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine W Reeves
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Olivia I Okereke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jing Qian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
73
|
Gupta N, Mendiratta G, Singal R, Sharma NS. Plasma Prolactin and Total Lipid Levels and Subsequent Risk of Breast Cancer in Pre- and Postmenopausal Women: Experience from an Indian Rural Centre. MAEDICA 2017; 12:258-266. [PMID: 29610588 PMCID: PMC5879588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AIMS AND OBJECTIVES 1) To analyze serum lipid and prolactin levels in breast cancer patients and normal subjects; 2) to correlate those levels with risk and prognostic factors. MATERIAL AND METHODS The present study was performed in the Department of Surgery, MMIMSR, Mullana, Ambala, from 2013 to 2014, at a rural centre. The study group comprised 40 patients with carcinoma of the breast who underwent surgery and the control group included 10 patients who underwent surgery for reasons other than carcinoma of the breast. Apart from routine tests, special investigations like estimation of serum lipids and prolactin levels were carried out in each patient to assess the general health status and detect any potential evidence of distance metastasis. RESULTS Most patients were in the fourth and fifth decade of life. The mean value of serum total cholesterol in the study group (190.77 mg/dL) was higher than that of the control group (166.22 mg/dL), which was statistically significant. The mean value of LDL in the study group was 153.8 mg/dL, as compared to 118.4 mg/dL in the control group; therefore, the difference in LDL cholesterol levels between the two groups was statistically significant. The VLDL level was also higher in breast cancer patients, with a mean value of 35.25 mg/dL, as compared to 22.6 mg/dL in the control group. Serum triglycerides showed higher trends in the study group than in controls. The correlation coefficient of total lipids and prolactin was 0.428, which was significant (p value 0.002), and pointed to a positive relation between prolactin and total lipids, meaning that an elevation in total lipids would lead to an increase in prolactin levels. CONCLUSIONS It was observed that significantly increased prolactin levels were found among patients with breast cancer. Serum lipids in carcinoma of the breast had higher levels of VLDL and LDL cholesterol and elevated triglyceride concentrations. Serum prolactin showed a statistically significant elevation in premenopausal patients as compared to postmenopausal subjects with breast cancer. Prolactin level may be also one of the risk factors for breast cancer, which points to its diagnostic significance.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Surgery, M.M. Institute of Medical Sciences and Research, Mullana (Distt-Ambala), Haryana, India
| | - Gautam Mendiratta
- Department of Surgery, M.M. Institute of Medical Sciences and Research, Mullana (Distt-Ambala), Haryana, India
| | - Rikki Singal
- Department of Surgery, M.M. Institute of Medical Sciences and Research, Mullana (Distt-Ambala), Haryana, India
| | - N S Sharma
- Department of Surgery, M.M. Institute of Medical Sciences and Research, Mullana (Distt-Ambala), Haryana, India
| |
Collapse
|
74
|
Griffith OL, Chan SR, Griffith M, Krysiak K, Skidmore ZL, Hundal J, Allen JA, Arthur CD, Runci D, Bugatti M, Miceli AP, Schmidt H, Trani L, Kanchi KL, Miller CA, Larson DE, Fulton RS, Vermi W, Wilson RK, Schreiber RD, Mardis ER. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas. Cell Rep 2017; 17:249-260. [PMID: 27681435 DOI: 10.1016/j.celrep.2016.08.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.
Collapse
Affiliation(s)
- Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA
| | - Szeman Ruby Chan
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Kilannin Krysiak
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Julie A Allen
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Daniele Runci
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Alexander P Miceli
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Heather Schmidt
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Lee Trani
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Krishna-Latha Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - David E Larson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Section of Pathology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Piazza del Mercato, 15, 25121 Brescia, Italy
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 425 S Euclid Ave., St. Louis, MO 63110, USA.
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, 4921 Parkview Pl., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
75
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Soto-Pedre E, Newey PJ, Bevan JS, Leese GP. Morbidity and mortality in patients with hyperprolactinaemia: the PROLEARS study. Endocr Connect 2017; 6:580-588. [PMID: 28954743 PMCID: PMC5633062 DOI: 10.1530/ec-17-0171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE High serum prolactin concentrations have been associated with adverse health outcomes in some but not all studies. This study aimed to examine the morbidity and all-cause mortality associated with hyperprolactinaemia. METHODS A population-based matched cohort study in Tayside (Scotland, UK) from 1988 to 2014 was performed. Record-linkage technology was used to identify patients with hyperprolactinaemia that were compared to an age-sex-matched cohort of patients free of hyperprolactinaemia. The number of deaths and incident admissions with diabetes mellitus, cardiovascular disease, cancer, breast cancer, bone fractures and infectious conditions were compared by the survival analysis. RESULTS Patients with hyperprolactinaemia related to pituitary tumours had no increased risk of diabetes, cardiovascular disease, bone fractures, all-cause cancer or breast cancer. Whilst no increased mortality was observed in patients with pituitary microadenomas (HR = 1.65, 95% CI: 0.79-3.44), other subgroups including those with pituitary macroadenomas and drug-induced and idiopathic hyperprolactinaemia demonstrated an increased risk of death. Individuals with drug-induced hyperprolactinaemia also demonstrated increased risks of diabetes, cardiovascular disease, infectious disease and bone fracture. However, these increased risks were not associated with the degree of serum prolactin elevation (Ptrend > 0.3). No increased risk of cancer was observed in any subgroup. CONCLUSIONS No excess morbidity was observed in patients with raised prolactin due to pituitary tumours. Although the increased morbidity and mortality associated with defined patient subgroups are unlikely to be directly related to the elevation in serum prolactin, hyperprolactinaemia might act as a biomarker for the presence of some increased disease risk in these patients.
Collapse
Affiliation(s)
- Enrique Soto-Pedre
- Division of Molecular and Clinical MedicineSchool of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Paul J Newey
- Division of Molecular and Clinical MedicineSchool of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Endocrinology and DiabetesNinewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John S Bevan
- JJR Macleod Centre for DiabetesEndocrinology and Metabolism (Mac-DEM), Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, UK
| | - Graham P Leese
- Division of Molecular and Clinical MedicineSchool of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Endocrinology and DiabetesNinewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
77
|
Barka I, Dendana E, Chikhrouhou N, Maroufi A, Kacem M, Chadli M, Ach K. [Prolactin-secreting microadenoma in menopausal women]. Pan Afr Med J 2017; 27:177. [PMID: 28904704 PMCID: PMC5579441 DOI: 10.11604/pamj.2017.27.177.11677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/12/2017] [Indexed: 11/11/2022] Open
Abstract
Prolactin-secreting adenoma is rare in elderly women. Patient's clinical picture may be confused with that of menopause, making diagnosis sometimes difficult. We report the case of a 57-year old woman with a 2-year history of secondary amenorrhea without hot flushes associated with galactorrhea in order to highlight the peculiarities of prolactin-secreting microadenomas. Physical examination confirmed the diagnosis of galactorrhoea and biology showed hyperprolactinemia at mIU/L, FSH = 15.1 IU/L and LH = 4,1 IU/L. Pituitary MRI showed left adenoma measuring 8 mm. Patient's evolution under dopaminergic treatment was marked by the recovery, for a transitional period, of mestrual cycles and the occurrence of hot flushes, normalization of prolactin levels and reduction of adenoma size.
Collapse
Affiliation(s)
- Ines Barka
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| | - Emna Dendana
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| | | | - Amel Maroufi
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| | - Maha Kacem
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| | - Molka Chadli
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| | - Koussay Ach
- Service d'Endocrinologie, CHU Farhat Hached de Sousse, Tunisie
| |
Collapse
|
78
|
O'Leary KA, Shea MP, Salituro S, Blohm CE, Schuler LA. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action. Stem Cell Reports 2017; 9:1167-1179. [PMID: 28919264 PMCID: PMC5639259 DOI: 10.1016/j.stemcr.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael P Shea
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie Salituro
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Courtney E Blohm
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
79
|
Wang XQ, Aka JA, Li T, Xu D, Doillon CJ, Lin SX. Inhibition of 17beta-hydroxysteroid dehydrogenase type 7 modulates breast cancer protein profile and enhances apoptosis by down-regulating GRP78. J Steroid Biochem Mol Biol 2017. [PMID: 28645527 DOI: 10.1016/j.jsbmb.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
17beta-hydroxysteroid dehydrogenase type 7 (17β-HSD7) promotes breast cancer cell growth via dual-catalytic activity by modulating estradiol and DHT. Here, we clarified the expression pattern of 17β-HSD7 in postmenopausal luminal A type breast cancer with The Cancer Genome Atlas (TCGA) cohort. The impact of 17β-HSD7 inhibition on the proteome of MCF-7 cells was investigated and on cell apoptosis was revealed. MCF-7 cells were treated with an efficient inhibitor of 17β-HSD7 (INH7) or with vehicle, and a differential proteomics study was performed using two-dimensional (2D) gel electrophoresis followed by mass spectrometry and ingenuity pathway analysis (IPA). Cell apoptosis was analyzed by flow cytometry, followed by reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot to investigate the expression of apoptosis-related genes. Our data showed 17β-HSD7 is amplified in primary and progressive breast cancer, inhibition of 17β-HSD7 in MCF-7 cells modulated 104 proteins primarily involved in cell death/survival, cell growth and DNA processing. The expression of 78kDa glucose-regulated protein (GRP78) and anti-apoptosis factor Bcl-2 were significantly suppressed via 17β-HSD7 inhibition with INH7, consequently induced MCF-7 cell apoptosis. However, INH7 treatment of T47D, another widely used epithelial ER+ breast cancer cell line, led to an up-regulation of GRP78 expression, resulting in a limited increase in apoptosis. These results suggest cell-specific effects of INH7 in the breast cancer, which is interesting for further study. An combinatory effect on apoptosis by INH7 and Letrozole (aromatase inhibitor) was further demonstrated in MCF-7. Down-regulation of GRP78 via 17β-HSD7 inhibition enhances cell apoptosis in response to Letrozole. This study highlights GRP78 as a key regulator related to 17β-HSD7 inhibition and effect. Taken together, results from the present study suggest a hypothesis that inhibition of 17β-HSD7 would be a complementary strategy to Letrozole by suppression of GRP78 in ER+ breast cancer. However, from a research perspective, further studies have to be carried out with more breast cancer cell lines as well as in vivo model to assess the efficacy of inhibitor combination.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada; Center of Excellent for Molecular Diagnostics, Department of Pathology, Peking University Third Hospital, Beijing, 100091, China
| | - Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Dan Xu
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Charles J Doillon
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Centre (CHUQ, CHUL), and Faculty of Medicine, Laval University, Quebec City, Quebec, G1 V 4G2, Canada.
| |
Collapse
|
80
|
Hüsing A, Fortner RT, Kühn T, Overvad K, Tjønneland A, Olsen A, Boutron-Ruault MC, Severi G, Fournier A, Boeing H, Trichopoulou A, Benetou V, Orfanos P, Masala G, Pala V, Tumino R, Fasanelli F, Panico S, Bueno de Mesquita HB, Peeters PH, van Gills CH, Quirós JR, Agudo A, Sánchez MJ, Chirlaque MD, Barricarte A, Amiano P, Khaw KT, Travis RC, Dossus L, Li K, Ferrari P, Merritt MA, Tzoulaki I, Riboli E, Kaaks R. Added Value of Serum Hormone Measurements in Risk Prediction Models for Breast Cancer for Women Not Using Exogenous Hormones: Results from the EPIC Cohort. Clin Cancer Res 2017; 23:4181-4189. [PMID: 28246273 DOI: 10.1158/1078-0432.ccr-16-3011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Circulating hormone concentrations are associated with breast cancer risk, with well-established associations for postmenopausal women. Biomarkers may represent minimally invasive measures to improve risk prediction models.Experimental Design: We evaluated improvements in discrimination gained by adding serum biomarker concentrations to risk estimates derived from risk prediction models developed by Gail and colleagues and Pfeiffer and colleagues using a nested case-control study within the EPIC cohort, including 1,217 breast cancer cases and 1,976 matched controls. Participants were pre- or postmenopausal at blood collection. Circulating sex steroids, prolactin, insulin-like growth factor (IGF) I, IGF-binding protein 3, and sex hormone-binding globulin (SHBG) were evaluated using backward elimination separately in women pre- and postmenopausal at blood collection. Improvement in discrimination was evaluated as the change in concordance statistic (C-statistic) from a modified Gail or Pfeiffer risk score alone versus models, including the biomarkers and risk score. Internal validation with bootstrapping (1,000-fold) was used to adjust for overfitting.Results: Among women postmenopausal at blood collection, estradiol, testosterone, and SHBG were selected into the prediction models. For breast cancer overall, model discrimination after including biomarkers was 5.3 percentage points higher than the modified Gail model alone, and 3.4 percentage points higher than the Pfeiffer model alone, after accounting for overfitting. Discrimination was more markedly improved for estrogen receptor-positive disease (percentage point change in C-statistic: 7.2, Gail; 4.8, Pfeiffer). We observed no improvement in discrimination among women premenopausal at blood collection.Conclusions: Integration of hormone measurements in clinical risk prediction models may represent a strategy to improve breast cancer risk stratification. Clin Cancer Res; 23(15); 4181-9. ©2017 AACR.
Collapse
Affiliation(s)
- Anika Hüsing
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif, France
- Université Paris Sud, UMRS 1018, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif, France
- Université Paris Sud, UMRS 1018, Villejuif, France
- Gustave Roussy, Villejuif, France
- Human Genetics Foundation (HuGeF), Turin, Italy
| | - Agnes Fournier
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif, France
- Université Paris Sud, UMRS 1018, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, School of Medicine, Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Benetou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, School of Medicine, Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Philippos Orfanos
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, School of Medicine, Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | - Francesca Fasanelli
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Sperimentale, Federico II University, Naples, Italy
| | - H Bas Bueno de Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - Carla H van Gills
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | | | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - Aurelio Barricarte
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Pilar Amiano
- Public Health Division and Biodonostia Research Institute - Ciberesp, Basque Regional Health Department, San Sebastian, Spain
| | - Kay-Tee Khaw
- Cancer Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Kuanrong Li
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Melissa A Merritt
- School of Public Health, Imperial College London, London, United Kingdom
| | - Ioanna Tzoulaki
- School of Public Health, Imperial College London, London, United Kingdom
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
81
|
Castillo LF, Rivero EM, Goffin V, Lüthy IA. Alpha 2 -adrenoceptor agonists trigger prolactin signaling in breast cancer cells. Cell Signal 2017; 34:76-85. [DOI: 10.1016/j.cellsig.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
|
82
|
Reutfors J, Wingård L, Brandt L, Wang Y, Qiu H, Kieler H, Bahmanyar S. Risk of breast cancer in risperidone users: A nationwide cohort study. Schizophr Res 2017; 182:98-103. [PMID: 27823949 DOI: 10.1016/j.schres.2016.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several antipsychotics, especially risperidone, are known to increase serum prolactin. Hyperprolactinemia has been linked to the development of mammary gland tumors in animal studies. We therefore investigated the risk of breast cancer in a nationwide cohort of women using risperidone or other antipsychotics. METHODS All women, 18years or older, who initiated treatment with risperidone or any other antipsychotic between 2006 and 2012 were identified in Swedish nationwide registers. Patients with two consecutive dispensations of the same antipsychotic within 3months, no previous cancer diagnosis, and no previous dispensations of paliperidone were included. The final cohort consisted of 55976 women of whom 22908, 24524, and 8544 were exposed to risperidone, other atypical antipsychotics, and typical antipsychotics, respectively. A Cox regression model was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for the association between antipsychotics and breast cancer. RESULTS Patients were followed prospectively, the mean follow-up time ranging from 2.4 to 2.8years between treatment groups. After adjusting for age, there was no increased risk for breast cancer among risperidone users compared to patients exposed to another atypical antipsychotic (HR 0.94, 95% CI 0.72-1.22) or a typical antipsychotic (HR 1.25, 95% CI 0.94-1.66). Analyses stratified by tumor stage, using active treatment follow-up time, or including only treatment naïve patients did not reveal any noteworthy change in the results. CONCLUSION Risperidone use does not confer an increased short-term risk of breast cancer compared to other antipsychotic agents.
Collapse
Affiliation(s)
- Johan Reutfors
- Centre for Pharmacoepidemiology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Louise Wingård
- Centre for Pharmacoepidemiology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Brandt
- Centre for Pharmacoepidemiology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yiting Wang
- Janssen Research and Development, Department of Epidemiology, Titusville, NJ, USA
| | - Hong Qiu
- Janssen Research and Development, Department of Epidemiology, Titusville, NJ, USA
| | - Helle Kieler
- Centre for Pharmacoepidemiology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shahram Bahmanyar
- Centre for Pharmacoepidemiology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
83
|
Zheng Y, Mo W, Yu Y, Zou D, He X, Xia X, Hu J. Breast carcinoma associated with prolactinoma: A case report. Cancer Biol Ther 2017; 18:132-136. [PMID: 28278079 DOI: 10.1080/15384047.2017.1294284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We report a 28-year-old woman who presented with a 6-year history of milk-like discharge from both of her nipples and was diagnosed with prolactinoma based on computed tomography (CT) findings and serum prolactin level. Further breast examination revealed a mass located in the upper outer region of the left breast. She underwent subtotal pituitary tumor resection. Thereafter, modified radical mastectomy was performed for left breast cancer. Twelve years after treatment, prolactinoma recurrence was detected, and bromocriptine therapy was administered. No recurrence of breast cancer was discovered. Based on this case report, we stress the importance of prolactin levels due to their possible biologic effects on breast cancer induction or growth.
Collapse
Affiliation(s)
- Yurong Zheng
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Wenju Mo
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Yang Yu
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Dehong Zou
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Xiangming He
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Xianghou Xia
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| | - Jiejie Hu
- a Department of Breast Surgery , Zhejiang Cancer Hospital , Hangzhou , China
| |
Collapse
|
84
|
Triebel J, Robles-Osorio ML, Garcia-Franco R, Martínez de la Escalera G, Clapp C, Bertsch T. From Bench to Bedside: Translating the Prolactin/Vasoinhibin Axis. Front Endocrinol (Lausanne) 2017; 8:342. [PMID: 29321761 PMCID: PMC5732132 DOI: 10.3389/fendo.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL) and vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, inflammatory and immune processes, coagulation, and behavior. The core element of the PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple different partners to mediate their effects in various tissues and anatomical compartments, indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic macular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent detrimental effects on the myocardial microvascularization. The trial demonstrated that bromocriptine treatment was associated with a high rate of left ventricular recovery and low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear the risk of side effects in the areas of blood coagulation, blood pressure, and alterations of the mental state.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
85
|
Schauwecker SM, Kim JJ, Licht JD, Clevenger CV. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem 2016; 292:2237-2254. [PMID: 28035005 DOI: 10.1074/jbc.m116.764233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Indexed: 01/10/2023] Open
Abstract
The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling.
Collapse
Affiliation(s)
| | - J Julie Kim
- the Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jonathan D Licht
- the Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida 32610, and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
86
|
What Is Breast in the Bone? Int J Mol Sci 2016; 17:ijms17101764. [PMID: 27782069 PMCID: PMC5085788 DOI: 10.3390/ijms17101764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/17/2022] Open
Abstract
The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%–50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural “recycling” of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.
Collapse
|
87
|
Colditz GA, Philpott SE, Hankinson SE. The Impact of the Nurses' Health Study on Population Health: Prevention, Translation, and Control. Am J Public Health 2016; 106:1540-5. [PMID: 27459441 PMCID: PMC4981811 DOI: 10.2105/ajph.2016.303343] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To summarize the overall impact of the Nurses' Health Study (NHS) over the past 40 years on the health of populations through its contributions on prevention, translation, and control. METHODS We performed a narrative review of the findings of the NHS, NHS II, and NHS3 between 1976 and 2016. RESULTS The NHS has generated significant findings about the associations between (1) smoking and type 2 diabetes, cardiovascular diseases, colorectal and pancreatic cancer, psoriasis, multiple sclerosis, and eye diseases; (2) physical activity and cardiovascular diseases, breast cancer, psoriasis, and neurodegeneration; (3) obesity and cardiovascular diseases, numerous cancer sites, psoriasis, multiple sclerosis, kidney stones, and eye diseases; (4) oral contraceptives and cardiovascular disease, melanoma, and breast, colorectal, and ovarian cancer; (5) hormone therapy and cardiovascular diseases, breast and endometrial cancer, and neurodegeneration; (6) endogenous hormones and breast cancer; (7) dietary factors and type 2 diabetes, cardiovascular diseases, breast and pancreatic cancer, non-Hodgkin's lymphoma, neurodegeneration, multiple sclerosis, kidney stones, and eye diseases; and (8) sleep and shift work and chronic diseases. CONCLUSIONS The NHS findings have influenced public health policy and practice both locally and globally to improve women's health.
Collapse
Affiliation(s)
- Graham A Colditz
- Graham A. Colditz and Sydney E. Philpott are with the Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine and Siteman Cancer Center, St Louis, MO. Susan E. Hankinson is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; the Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston; and the Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Sydney E Philpott
- Graham A. Colditz and Sydney E. Philpott are with the Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine and Siteman Cancer Center, St Louis, MO. Susan E. Hankinson is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; the Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston; and the Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Susan E Hankinson
- Graham A. Colditz and Sydney E. Philpott are with the Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine and Siteman Cancer Center, St Louis, MO. Susan E. Hankinson is with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; the Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston; and the Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| |
Collapse
|
88
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
89
|
Rice MS, Eliassen AH, Hankinson SE, Lenart EB, Willett WC, Tamimi RM. Breast Cancer Research in the Nurses' Health Studies: Exposures Across the Life Course. Am J Public Health 2016; 106:1592-8. [PMID: 27459456 DOI: 10.2105/ajph.2016.303325] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To review the contribution of the Nurses' Heath Study (NHS) and the NHS II in identifying risk and protective factors for breast cancer incidence and survival. METHODS We conducted a narrative review of NHS and NHS II articles on breast cancer incidence and survival published from 1976 to 2016, with a focus on exogenous and endogenous hormones; lifestyle factors, including diet, physical activity, and aspirin use; intermediate markers of risk; and genetic factors. RESULTS With the investigation of individual risk factors, as well as their incorporation into risk prediction models, the NHS has contributed to the identification of ways in which women may reduce breast cancer risk, including limiting alcohol consumption, reducing the duration of postmenopausal estrogen-plus-progestin use, avoiding weight gain, and increasing vegetable consumption. In addition, the NHS has helped elucidate the roles of several biomarkers and contributed to the identification of risk alleles. CONCLUSIONS The NHS has contributed to our understanding of lifestyle, hormonal, and genetic risk factors for breast cancer, highlighting the importance of exposures across the life course, and has helped identify lifestyle changes that may reduce risk and improve survival after a diagnosis of breast cancer.
Collapse
Affiliation(s)
- Megan S Rice
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - A Heather Eliassen
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Susan E Hankinson
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Elizabeth B Lenart
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Walter C Willett
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| | - Rulla M Tamimi
- Megan S. Rice is with the Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA. A. Heather Eliassen and Rulla M. Tamimi are with the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston. Elizabeth B. Lenart and Walter C. Willett are with the Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston. Susan E. Hankinson is with the Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst
| |
Collapse
|
90
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.rpsmen.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
91
|
Wang M, Wu X, Chai F, Zhang Y, Jiang J. Plasma prolactin and breast cancer risk: a meta- analysis. Sci Rep 2016; 6:25998. [PMID: 27184120 PMCID: PMC4869065 DOI: 10.1038/srep25998] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common cancer among women, and its incidence is on a constant rise. Previous studies suggest that higher levels of plasma prolactin are associated with escalated risk of breast cancer, however, these results are contradictory and inconclusive. PubMed and Medline were used to search and identify published observational studies that assessed the relationship between plasma prolactin levels and the risk of breast cancer. The pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated using a fixed-effects or random-effects model. A total of 7 studies were included in our analysis. For the highest versus lowest levels of plasma prolactin, the pooled RR (95% CI) of breast cancer were 1.16 (1.04, 1.29). In subgroup analyses, we found a positive association between plasma prolactin levels and the risk of breast cancer among the patients who were postmenopausal, ER(+)/PR(+) or in situ and invasive carcinoma. However, this positive association was not detected in the premenopausal and ER(-)/PR(-) patients. In conclusion, the present study provides evidence supporting a significantly positive association between plasma prolactin levels and the risk of breast cancer.
Collapse
Affiliation(s)
- Minghao Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiujuan Wu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fan Chai
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
92
|
Pedraz-Cuesta E, Fredsted J, Jensen HH, Bornebusch A, Nejsum LN, Kragelund BB, Pedersen SF. Prolactin Signaling Stimulates Invasion via Na(+)/H(+) Exchanger NHE1 in T47D Human Breast Cancer Cells. Mol Endocrinol 2016; 30:693-708. [PMID: 27176613 DOI: 10.1210/me.2015-1299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolactin (PRL) and its receptor (PRLR) are implicated in breast cancer invasiveness, although their exact roles remain controversial. The Na(+)/H(+) exchanger (NHE1) plays essential roles in cancer cell motility and invasiveness, but the PRLR and NHE1 have not previously been linked. Here we show that in T47D human breast cancer cells, which express high levels of PRLR and NHE1, exposure to PRL led to the activation of Janus kinase-2 (JAK2)/signal transducer and activator of transcription-5 (STAT5), Akt, and ERK1/2 signaling and the rapid formation of peripheral membrane ruffles, known to be associated with cell motility. NHE1 was present in small ruffles prior to PRL treatment and was further recruited to the larger, more dynamic ruffles induced by PRL exposure. In PRL-induced ruffles, NHE1 colocalized with activated Akt, ERK1/2, and the ERK effector p90Ribosomal S kinase (p90RSK), known regulators of NHE1 activity. Stimulation of T47D cells with PRL augmented p90RSK activation, Ser703-phosphorylation of NHE1, NHE1-dependent intracellular pH recovery, pericellular acidification, and NHE1-dependent invasiveness. NHE1 activity and localization to ruffles were attenuated by the inhibition of Akt and/or ERK1/2. In contrast, noncancerous MCF10A breast epithelial cells expressed NHE1 and PRLR at lower levels than T47D cells, and their stimulation with PRL induced neither NHE1 activation nor NHE1-dependent invasiveness. In conclusion, we show for the first time that PRLR activation stimulates breast cancer cell invasiveness via the activation of NHE1. We propose that PRL-induced NHE1 activation and the resulting NHE1-dependent invasiveness may contribute to the metastatic behavior of human breast cancer cells.
Collapse
Affiliation(s)
- Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jacob Fredsted
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Helene H Jensen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Annika Bornebusch
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lene N Nejsum
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Birthe B Kragelund
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology (E.P.-C., J.F., A.B., S.F.P.), Department of Biology, and Structural Biology and NMR laboratory (B.B.K.), Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Molecular Biology and Genetics (H.H.J.) and Department of Clinical Medicine and Interdisciplinary Nanoscience Center (H.H.J., L.N.N.), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
93
|
Antidepressant use and circulating prolactin levels. Cancer Causes Control 2016; 27:853-61. [PMID: 27165168 DOI: 10.1007/s10552-016-0758-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine whether antidepressants (AD), specifically selective serotonin reuptake inhibitors (SSRIs), are linked to elevated prolactin levels among the general population. METHODS Circulating prolactin levels were available for 4593 healthy participants in the Nurses' Health Study (NHS) and NHS2, including 267 AD users. We fit generalized linear models to calculate and compare adjusted mean prolactin levels between AD users and non-users and further among SSRI users. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for "elevated" prolactin levels (>11 ng/mL) comparing AD users to non-users. We evaluated AD use and change in prolactin levels among 610 NHS participants with two measurements an average of 11 years apart. RESULTS Adjusted geometric mean prolactin levels were similar among SSRI users (13.2 ng/mL, 95 % CI 12.2-14.4), users of other classes of ADs (12.7 ng/mL, 95 % CI 11.0-14.6), and non-users (13.1 ng/mL, 95 % CI 12.8-13.4). Neither AD use (OR 1.17, 95 % CI 0.89-1.53) nor SSRI use (OR 0.95, 95 % CI 0.66-1.38) was associated with elevated prolactin levels. Change in prolactin levels was similar across women who started, stopped, consistently used, or never used ADs. CONCLUSIONS This study does not support the hypothesis that AD use would influence breast cancer risk via altered prolactin levels. These results provide some evidence that use of ADs to treat depression or other conditions may not substantially increase prolactin levels in the majority of women.
Collapse
|
94
|
O'Sullivan CC, Bates SE. Targeting Prolactin Receptor (PRLR) Signaling in PRLR-Positive Breast and Prostate Cancer. Oncologist 2016; 21:523-6. [PMID: 27107001 PMCID: PMC4861375 DOI: 10.1634/theoncologist.2016-0108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022] Open
Abstract
In this issue of The Oncologist, Agarwal et al. report negative results from a phase I trial of LFA102. Although “negative” in terms of antitumor activity, the study provides useful pharmacokinetic and pharmacodynamic information. Future trials evaluating PRLR blockers alone and in combination with other agents may still be warranted in patients with breast and prostate cancer.
Collapse
Affiliation(s)
| | - Susan E Bates
- New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
95
|
Agarwal N, Machiels JP, Suárez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, Mosher R, Wasserman E, Wu G, Zhang H, Zieba R, Elmeliegy M. Phase I Study of the Prolactin Receptor Antagonist LFA102 in Metastatic Breast and Castration-Resistant Prostate Cancer. Oncologist 2016; 21:535-6. [PMID: 27091421 PMCID: PMC4861370 DOI: 10.1634/theoncologist.2015-0502] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED Despite evidence for a role for prolactin signaling in breast and prostate tumorigenesis, a prolactin receptor-binding monoclonal antibody has not produced clinical efficacy.Increased serum prolactin levels may be a biomarker for prolactin receptor inhibition.Results from the pharmacokinetic and pharmacodynamics (PD) studies suggest that inappropriately long dosing intervals and insufficient exposure to LFA102 may have resulted in lack of antitumor efficacy.Based on preclinical data, combination therapy of LFA102 with those novel agents targeting hormonal pathways in metastatic castration-resistant prostate cancer and metastatic breast cancer is promising.Given the PD evidence of prolactin receptor blockade by LFA102, this drug has the potential to be used in conditions such as hyperprolactinemia that are associated with high prolactin levels. BACKGROUND Prolactin receptor (PRLR) signaling is implicated in breast and prostate cancer. LFA102, a humanized monoclonal antibody (mAb) that binds to and inhibits the PRLR, has exhibited promising preclinical antitumor activity. METHODS Patients with PRLR-positive metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (mCRPC) received doses of LFA102 at 3-60 mg/kg intravenously once every 4 weeks. Objectives were to determine the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) to investigate the safety/tolerability of LFA102 and to assess pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity. RESULTS A total of 73 patients were enrolled at 5 dose levels. The MTD was not reached because of lack of dose-limiting toxicities. The RDE was established at 60 mg/kg based on PK and PD analysis and safety data. The most common all-cause adverse events (AEs) were fatigue (44%) and nausea (33%) regardless of relationship. Grade 3/4 AEs reported to be related to LFA102 occurred in 4% of patients. LFA102 exposure increased approximately dose proportionally across the doses tested. Serum prolactin levels increased in response to LFA102 administration, suggesting its potential as a biomarker for PRLR inhibition. No antitumor activity was detected. CONCLUSION Treatment with LFA102 was safe and well tolerated, but did not show antitumor activity as monotherapy at the doses tested.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, Division of Medical Oncology, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jean-Pascal Machiels
- Roi Albert II Institute, Medical Oncology Service, University Clinic Saint Luc and Institute of Experimental and Clinical Research (Pôle Molecular Imaging, Radiotherapy & Oncology), Catholic University of Louvain, Brussels, Belgium
| | - Cristina Suárez
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Nancy Lewis
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michaela Higgins
- Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kari Wisinski
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Michela Maur
- Oncology Unit, Department of Oncology, Hematology and Respiratory Disease, University Hospital Policlinico of Modena, Modena, Italy
| | - Mark Stein
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Andy Hwang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | | | | - Gang Wu
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Hefei Zhang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Renata Zieba
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
96
|
Yan H, Zhao M, Huang S, Chen P, Wu WY, Huang J, Wu ZS, Wu Q. Prolactin Inhibits BCL6 Expression in Breast Cancer Cells through a MicroRNA-339-5p-Dependent Pathway. J Breast Cancer 2016; 19:26-33. [PMID: 27066093 PMCID: PMC4822104 DOI: 10.4048/jbc.2016.19.1.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Prolactin (PRL) plays a critical role in breast cancer progression by activating its cognate receptor and promotes the growth and differentiation of breast cancer cells. Studies have shown that B-cell lymphoma 6 (BCL6) is the target gene of microRNA-339-5p (miR-339-5p) and that BCL6 expression contributes to breast cancer progression. Herein, we identified PRL as a potent suppressor of BCL6 expression in human breast cancer cells. METHODS Western blotting and quantitative reverse transcription-polymerase chain reaction were used to investigate molecular mechanisms underlying miR-339-5p expression and BCL6 manipulation in MCF-7, T47D, and SKBR3 breast cancer cells. Phenotypic changes in these breast cancer cell lines were assessed by performing cell viability (MTT), colony formation, migration, and invasion assays. RESULTS PRL suppressed BCL6 protein and mRNA expression and upregulated miR-339-5p expression in MCF-7 and T47D breast cancer cells. Selective downregulation of miR-339-5p expression significantly reversed PRL-induced suppression of BCL6 mRNA and protein expression. Exogenous PRL stimulation significantly decreased the proliferation, colony formation, migration, and invasion of breast cancer cells, and suppression of miR-339-5p expression reversed these processes in vitro. CONCLUSION These results indicated that PRL inhibited BCL6 expression and regulated breast cancer progression through a miR-339-5p-dependent pathway.
Collapse
Affiliation(s)
- Hong Yan
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Shan Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.; Department of Pathology, Anhui Medical University, Hefei, China
| | - Ping Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Wen-Yong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.; Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
97
|
Oladimeji P, Skerl R, Rusch C, Diakonova M. Synergistic Activation of ERα by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Res 2016; 76:2600-11. [PMID: 26944939 DOI: 10.1158/0008-5472.can-15-1758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/06/2016] [Indexed: 01/11/2023]
Abstract
Serine/threonine kinase PAK1 is activated by estrogen and plays an important role in breast cancer. However, the integration of PAK1 into the estrogen response is not fully understood. In this study, we investigated the mechanisms underlying the hormone-induced activation of estrogen receptor (ERα, ESR1). We show that estrogen activated PAK1 through both the ERα and GPER1 membrane receptors. Estrogen-dependent activation of PAK1 required the phosphorylation of tyrosine residues by Etk/Bmx and protein kinase A (PKA) within an assembled signaling complex comprising pTyr-PAK1, Etk/Bmx, the heterotrimer G-protein subunits Gβ1, Gγ2, and/or Gγ5, PAK-associated guanine nucleotide exchange factor (βPIX, ARHGEF7), and PKA. Moreover, the PKA RIIβ subunit is a direct target of PAK1, and thus in response to estrogen, the activated pTyr-PAK1 complex reciprocally potentiated PKA activity, suggesting a positive feedback mechanism. We also demonstrate that PKA phosphorylated Ser305-ERα in response to estrogen, but pTyr-PAK1 phosphorylated Ser305-ERα in response to prolactin (PRL), implying that maximal ERα phosphorylation is achieved when cells are exposed to both PRL and estrogen. Furthermore, S305-ERα activation led to enhanced phosphorylation of Ser118-ERα and promoted cell proliferation and tumor growth. Together, these data strongly support a critical interplay between PRL and estrogen via PAK1 and suggest that ligand-independent activation of ERα through PRL/PAK1 may impart resistance to anti-estrogen therapies. Cancer Res; 76(9); 2600-11. ©2016 AACR.
Collapse
Affiliation(s)
- Peter Oladimeji
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Rebekah Skerl
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Courtney Rusch
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio
| | - Maria Diakonova
- The Department of Biological Sciences, University of Toledo, Toledo, Ohio.
| |
Collapse
|
98
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, Del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2016; 9:158-73. [PMID: 26927534 DOI: 10.1016/j.rpsm.2015.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Iatrogenic hyperprolactinaemia (IHPRL) has been more frequently related to some antipsychotic drugs that provoke an intense blockade of dopamine D2 receptors. There is a wide variation in clinical practice, and perhaps some more awareness between clinicians is needed. Due to the high frequency of chronic treatment in severe mental patients, careful attention is recommended on the physical risk. IHPRL symptoms could be underestimated without routine examination. METHODOLOGY An intense scientific literature search was performed in order to draw up a multidisciplinary consensus, including different specialists of psychiatry, endocrinology, oncology and internal medicine, and looking for a consensus about clinical risk and detection of IHPRL following evidence-based medicine criteria levels (EBM I- IV). RESULTS Short-term symptoms include amenorrhea, galactorrhoea, and sexual dysfunction with decrease of libido and erectile difficulties related to hypogonadism. Medium and long-term symptoms related to oestrogens are observed, including a decrease bone mass density, hypogonadism, early menopause, some types of cancer risk increase (breast and endometrial), cardiovascular risk increase, immune system disorders, lipids, and cognitive dysfunction. Prolactin level, gonadal hormones and vitamin D should be checked in all patients receiving antipsychotics at baseline although early symptoms (amenorrhea-galactorrhoea) may not be observed due to the risk of underestimating other delayed symptoms that may appear in the medium term. Routine examination of sexual dysfunction is recommended due to possible poor patient tolerance and low compliance. Special care is required in children and adolescents, as well as patients with PRL levels >50ng/ml (moderate hyperprolactinaemia). A possible prolactinoma should be investigated in patients with PRL levels >150ng/ml, with special attention to patients with breast/endometrial cancer history. Densitometry should be prescribed for males >50 years old, amenorrhea>6 months, or early menopause to avoid fracture risk.
Collapse
Affiliation(s)
- Ángel L Montejo
- Área de Neurociencias, Instituto de Biomedicina de Salamanca (IBSAL), Universidad de Salamanca, Servicio de Psiquiatría, Hospital Universitario de Salamanca, España.
| | - Celso Arango
- Departamento de Psiquiatría Infanto-Juvenil, Hospital General Universitario Gregorio Marañón (IiSGM). Facultad de Medicina, Universidad Complutense, CIBERSAM, Madrid, España
| | - Miguel Bernardo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - José L Carrasco
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, CIBERSAM, Madrid, España
| | - Benedicto Crespo-Facorro
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria. Hospital Universitario Marqués de Valdecilla, IDIVAL, CIBERSAM, Santander, España
| | - Juan J Cruz
- Servicio de Oncología Médica, Hospital Universitario de Salamanca, Universidad de Salamanca (IBSAL), España
| | - Javier Del Pino
- Servicio Medicina Interna, Hospital Clínico Universitario, Universidad de Salamanca, España
| | | | - Clemente García Rizo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - Ana González-Pinto
- International Mood Disorders Research Centre, CIBERSAM, Hospital Santiago Apóstol, Universidad del País Vasco, Vitoria, España
| | - Ana I Hernández
- FEA Psiquiatría, Red de Salud Mental de Guipúzcoa, San Sebastián, España
| | - Manuel Martín Carrasco
- Instituto de Investigaciones Psiquiátricas, Fundación María Josefa Recio, Bilbao, España; Clínica Psiquiátrica Padre Menni, CIBERSAM, Pamplona, España
| | - Fermin Mayoral Cleries
- UGC Salud Mental, Hospital Regional Universitario, Instituto de Biomedicina de Málaga, Málaga, España
| | | | - M Teresa Mories
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Salamanca, España
| | - Isabella Pachiarotti
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| | - Salvador Ros
- Instituto Internacional de Neurociencias Aplicadas, Barcelona, España
| | - Eduard Vieta
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| |
Collapse
|
99
|
De Hert M, Peuskens J, Sabbe T, Mitchell AJ, Stubbs B, Neven P, Wildiers H, Detraux J. Relationship between prolactin, breast cancer risk, and antipsychotics in patients with schizophrenia: a critical review. Acta Psychiatr Scand 2016; 133:5-22. [PMID: 26114737 DOI: 10.1111/acps.12459] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A recent meta-analysis showed that breast cancer probably is more common in female patients with schizophrenia than in the general population (effect size = 1.25, P < 0.05). Increasing experimental and epidemiological data have alerted researchers to the influence of prolactin (PRL) in mammary carcinogenesis. We therefore investigated the possible relationship between antipsychotic-induced hyperprolactinemia (HPRL) and breast cancer risk in female patients with schizophrenia. METHOD A literature search (1950 until January 2015), using the MEDLINE database, was conducted for English-language published clinical trials to identify and synthesize data of the current state of knowledge concerning breast cancer risk (factors) in women with schizophrenia and its (their) relationship between HPRL and antipsychotic medication. RESULTS Although an increasing body of evidence supports the involvement of PRL in breast carcinogenesis, results of human prospective studies are limited, equivocal, and correlative (with risk ratios ranging from 0.70 to 1.9 for premenopausal women and from 0.76 to 2.03 for postmenopausal women). Moreover, these studies equally do not take into account the local production of PRL in breast epithelium, although amplification or overexpression of the local autocrine/paracrine PRL loop may be a more important mechanism in tumorigenesis. Until now, there is also no conclusive evidence that antipsychotic medication can increase the risk of breast malignancy and mortality. CONCLUSION Other breast risk factors than PRL, such as nulliparity, obesity, diabetes mellitus, and unhealthy lifestyle behaviours (alcohol dependence, smoking, low physical activity), probably are of greater relevance in individual breast cancer cases within the population of female patients with schizophrenia.
Collapse
Affiliation(s)
- M De Hert
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - J Peuskens
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - T Sabbe
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - A J Mitchell
- Department of Psycho-oncology, Cancer & Molecular Medicine, University of Leicester, Leicester, UK
| | - B Stubbs
- School of Health and Social Care, University of Greenwich, Greenwich, UK
| | - P Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - H Wildiers
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - J Detraux
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| |
Collapse
|
100
|
Sutherland A, Forsyth A, Cong Y, Grant L, Juan TH, Lee JK, Klimowicz A, Petrillo SK, Hu J, Chan A, Boutillon F, Goffin V, Egan C, Tang PA, Cai L, Morris D, Magliocco A, Shemanko CS. The Role of Prolactin in Bone Metastasis and Breast Cancer Cell-Mediated Osteoclast Differentiation. J Natl Cancer Inst 2015; 108:djv338. [PMID: 26586670 DOI: 10.1093/jnci/djv338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Metastasis to the bone is a deleterious aspect of breast cancer and is a preferred site that results in bone loss. Hormones such as prolactin (PRL) have not yet been studied for their role in modulating the secondary tumor bone microenvironment. METHODS We used quantitative immunohistochemistry with 134 samples of human primary breast cancer and 17 matched primary breast cancers and bone metastases. A Cox proportional hazards regression model was fitted to evaluate the associations between high prolactin receptor (PRLR) expression and time to bone metastasis, adjusting for estrogen receptor status, lymph node status, and chemotherapy status. We assessed osteoclast differentiation, osteoclast size, and measured pit formation in dentine slices. Statistical tests were two-sided. RESULTS High PRLR expression in the primary breast tumor was associated with a shorter time to metastasis that includes bone (PRLRAQUA Max-per 100 unit hazard ratio = 1.04, 95% confidence interval = 1.00 to 1.07, P = .03). We observed the PRLR in rare samples of bone metastases and matched primary breast cancer. PRL treatment of breast cancer cells induced osteoclast differentiation and bone lysis via secreted factors and was abrogated by a PRLR antagonist (delta1-9-G129R-hPRL). We demonstrated that sonic hedgehog is a PRL-regulated cytokine in breast cancer cells and part of the mechanism that induces osteoclast differentiation. CONCLUSIONS Our evidence indicates that PRL-PRLR can escalate the impact of breast cancer on bone metastasis and that the presence of the PRLR in the tumor microenvironment of breast cancer bone metastasis has the potential to modulate the microenvironment to induce lytic osteoclast formation.
Collapse
Affiliation(s)
- Ashley Sutherland
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Amanda Forsyth
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Yingying Cong
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Laurel Grant
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Tzu-Hua Juan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jae K Lee
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Alexander Klimowicz
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Stephanie K Petrillo
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Jinghui Hu
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Angela Chan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Florence Boutillon
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Vincent Goffin
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Cay Egan
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Patricia A Tang
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Li Cai
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Don Morris
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Anthony Magliocco
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| | - Carrie S Shemanko
- Affiliations of authors: University of Calgary, Department of Biological Sciences and Arnie Charbonneau Cancer Institute , Calgary , Canada (AS, AF, YC, LG, CSS); H. Lee Moffitt Cancer Center & Research Institute, Department of Biostatistics and Bioinformatics , Tampa, FL (THJ, JKL); Tom Baker Cancer Centre, Translational Labs , Calgary , Canada (AK, SKP, JH, AC, CE, PAT, DM, AM); Université Paris Descartes, Inserm U1151, Institut Necker Enfants Malades (INEM), Team "Pathophysiology of PRL/GH" , Paris , France (FB, VG); Medical Department of Breast Oncology, The Tumor Hospital of Harbin Medical University , Harbin , China (YC, LC); H. Lee Moffitt Cancer Center & Research Institute, Department of Anatomical Pathology , Tampa, FL (AM)
| |
Collapse
|