51
|
Venkatakrishnan K, Zhou X, Ecsedy J, Mould DR, Liu H, Danaee H, Fingert H, Kleinfield R, Milton A. Dose selection for the investigational anticancer agent alisertib (MLN8237): Pharmacokinetics, pharmacodynamics, and exposure-safety relationships. J Clin Pharmacol 2014; 55:336-47. [PMID: 25302940 DOI: 10.1002/jcph.410] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/06/2014] [Indexed: 11/09/2022]
Abstract
We report population pharmacokinetic, pharmacodynamic, and pharmacokinetic-safety analyses to support phase II/III dose/regimen selection of alisertib, a selective Aurora A kinase (AAK) inhibitor. Phase I studies in adult cancer patients evaluated dosing on Days 1-7 in 21-day cycles or Days 1-21 in 35-day cycles, with corresponding maximum tolerated doses of 50 mg twice daily (BID) and 50 mg QD, respectively. Population pharmacokinetic analyses supported dose- and time-linear pharmacokinetics without identification of clinically meaningful covariates. Exposure-related increases in skin mitotic index and decreases in chromosomal alignment/spindle bipolarity in tumor mitotic cells confirmed AAK inhibition. Exposures in the 7-day schedule at or near 50 mg BID are expected to result in tumor AAK inhibition based on pharmacodynamic assessment in patient tumors. Exposure-safety analyses of data from patients receiving doses of 5-200 mg/day in the 7-day schedule support a low (∼7%) predicted incidence of dose-limiting toxicity at 50 mg BID. Taken together, these analyses support a pharmacologically active and acceptably tolerated dose range of alisertib for future clinical development.
Collapse
Affiliation(s)
- Karthik Venkatakrishnan
- Department of Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Xiaofei Zhou
- Department of Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Jeffrey Ecsedy
- Department of Translational Medicine, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | | | - Hua Liu
- Department of Biostatistics, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Hadi Danaee
- Department of Translational Medicine, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Howard Fingert
- Department of Clinical Research, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Robert Kleinfield
- Department of Drug Development Management, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Ashley Milton
- Department of Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| |
Collapse
|
52
|
Driscoll DL, Chakravarty A, Bowman D, Shinde V, Lasky K, Shi J, Vos T, Stringer B, Amidon B, D'Amore N, Hyer ML. Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines. PLoS One 2014; 9:e111060. [PMID: 25365521 PMCID: PMC4218841 DOI: 10.1371/journal.pone.0111060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/21/2014] [Indexed: 01/17/2023] Open
Abstract
Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens.
Collapse
Affiliation(s)
- Denise L. Driscoll
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Arijit Chakravarty
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Doug Bowman
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Vaishali Shinde
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Kerri Lasky
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Judy Shi
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Tricia Vos
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Bradley Stringer
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Ben Amidon
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Natalie D'Amore
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| | - Marc L. Hyer
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, United States of America
| |
Collapse
|
53
|
Van Brocklyn JR, Wojton J, Meisen WH, Kellough DA, Ecsedy JA, Kaur B, Lehman NL. Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res 2014; 74:5364-70. [PMID: 25106428 DOI: 10.1158/0008-5472.can-14-0386] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma remains a devastating disease for which novel therapies are urgently needed. Here, we report that the Aurora-A kinase inhibitor alisertib exhibits potent efficacy against glioblastoma neurosphere tumor stem-like cells in vitro and in vivo. Many glioblastoma neurosphere cells treated with alisertib for short periods undergo apoptosis, although some regain proliferative activity upon drug removal. Extended treatment, however, results in complete and irreversible loss of tumor cell proliferation. Moreover, alisertib caused glioblastoma neurosphere cells to partially differentiate and enter senescence. These effects were also observed in glioma cells treated with the Aurora-A inhibitor TC-A2317 or anti-Aurora-A siRNA. Furthermore, alisertib extended median survival of mice bearing intracranial human glioblastoma neurosphere tumor xenografts. Alisertib exerted similar effects on glioblastoma neurosphere cells in vivo and resulted in markedly reduced activated phosphoThr288Aurora-A and increased abnormal mitoses and cellular ploidy, consistent with on-target activity. Our results offer preclinical proof-of-concept for alisertib as a new therapeutic for glioma treatment.
Collapse
Affiliation(s)
| | - Jeffrey Wojton
- Department of Neurosurgery, The Ohio State University, Columbus Ohio
| | - Walter H Meisen
- Department of Neurosurgery, The Ohio State University, Columbus Ohio
| | - David A Kellough
- Department of Pathology, The Ohio State University, Columbus Ohio
| | - Jeffery A Ecsedy
- Oncology Translational Medicine, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Balveen Kaur
- Department of Neurosurgery, The Ohio State University, Columbus Ohio. Department of Neuroscience, The Ohio State University, Columbus Ohio
| | - Norman L Lehman
- Department of Pathology, The Ohio State University, Columbus Ohio. Department of Neuroscience, The Ohio State University, Columbus Ohio.
| |
Collapse
|
54
|
Jia L, Lee HS, Wu CF, Kundu J, Park SG, Kim RN, Wang LH, Erkin ÖC, Choi JS, Chae SW, Yang HB, Choi YL, Shin YK. SMAD4 suppresses AURKA-induced metastatic phenotypes via degradation of AURKA in a TGFβ-independent manner. Mol Cancer Res 2014; 12:1779-95. [PMID: 25061104 DOI: 10.1158/1541-7786.mcr-14-0191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED SMAD4 has been suggested to inhibit the activity of the WNT/β-catenin signaling pathway in cancer. However, the mechanism by which SMAD4 antagonizes WNT/β-catenin signaling in cancer remains largely unknown. Aurora A kinase (AURKA), which is frequently overexpressed in cancer, increases the transcriptional activity of β-catenin/T-cell factor (TCF) complex by stabilizing β-catenin through the inhibition of GSK-3β. Here, SMAD4 modulated AURKA in a TGFβ-independent manner. Overexpression of SMAD4 significantly suppressed AURKA function, including colony formation, migration, and invasion of cell lines. In addition, SMAD4 bound to AURKA induced degradation of AURKA by the proteasome. A luciferase activity assay revealed that the transcriptional activity of the β-catenin/TCF complex was elevated by AURKA, but decreased by SMAD4 overexpression. Moreover, target gene analysis showed that SMAD4 abrogated the AURKA-mediated increase of β-catenin target genes. However, this inhibitory effect of SMAD4 was abolished by overexpression of AURKA or silencing of AURKA in SMAD4-overexpressed cells. Meanwhile, the SMAD4-mediated repression of AURKA and β-catenin was independent of TGFβ signaling because blockage of TGFβR1 or restoration of TGFβ signaling did not prevent suppression of AURKA and β-catenin signaling by SMAD4. These results indicate that the tumor-suppressive function of SMAD4 is mediated by downregulation of β-catenin transcriptional activity via AURKA degradation in a TGFβ-independent manner. IMPLICATIONS SMAD4 interacts with AURKA and antagonizes its tumor-promoting potential, thus demonstrating a novel mechanism of tumor suppression.
Collapse
Affiliation(s)
- Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chun Fu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Juthika Kundu
- College of Pharmacy, Keimyung University, Deagu, Korea
| | - Sang Gyu Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Gyuggido, Korea
| | - Ryong Nam Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Özgür Cem Erkin
- Department of Bioengineering, Faculty of Engineering, Adana Science and Technology, Adana, Turkey
| | - Jong-Sun Choi
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Bin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea. Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea.
| |
Collapse
|
55
|
Komrskova P, Susor A, Malik R, Prochazkova B, Liskova L, Supolikova J, Hladky S, Kubelka M. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS One 2014; 9:e101222. [PMID: 24983972 PMCID: PMC4077738 DOI: 10.1371/journal.pone.0101222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.
Collapse
Affiliation(s)
- Pavla Komrskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Prochazkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Lucie Liskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Jaroslava Supolikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Stepan Hladky
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
- * E-mail:
| |
Collapse
|
56
|
Mannino M, Gomez-Roman N, Hochegger H, Chalmers AJ. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res 2014; 13:135-43. [PMID: 24879067 PMCID: PMC4085484 DOI: 10.1016/j.scr.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/01/2014] [Accepted: 05/02/2014] [Indexed: 11/28/2022] Open
Abstract
Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells.
Collapse
Affiliation(s)
- Mariella Mannino
- Genome Damage and Stability Centre, University of Sussex, Brighton BN19RQ, UK
| | | | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton BN19RQ, UK.
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
57
|
Huck JJ, Zhang M, Mettetal J, Chakravarty A, Venkatakrishnan K, Zhou X, Kleinfield R, Hyer ML, Kannan K, Shinde V, Dorner A, Manfredi MG, Shyu WC, Ecsedy JA. Translational exposure-efficacy modeling to optimize the dose and schedule of taxanes combined with the investigational Aurora A kinase inhibitor MLN8237 (alisertib). Mol Cancer Ther 2014; 13:2170-83. [PMID: 24980948 DOI: 10.1158/1535-7163.mct-14-0027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora A kinase orchestrates multiple key activities, allowing cells to transit successfully into and through mitosis. MLN8237 (alisertib) is a selective Aurora A inhibitor that is being evaluated as an anticancer agent in multiple solid tumors and heme-lymphatic malignancies. The antitumor activity of MLN8237 when combined with docetaxel or paclitaxel was evaluated in in vivo models of triple-negative breast cancer grown in immunocompromised mice. Additive and synergistic antitumor activity occurred at multiple doses of MLN8237 and taxanes. Moreover, significant tumor growth delay relative to the single agents was achieved after discontinuing treatment; notably, durable complete responses were observed in some mice. The tumor growth inhibition data generated with multiple dose levels of MLN8237 and paclitaxel were used to generate an exposure-efficacy model. Exposures of MLN8237 and paclitaxel achieved in patients were mapped onto the model after correcting for mouse-to-human variation in plasma protein binding and maximum tolerated exposures. This allowed rank ordering of various combination doses of MLN8237 and paclitaxel to predict which pair would lead to the greatest antitumor activity in clinical studies. The model predicted that 60 and 80 mg/m(2) of paclitaxel (every week) in patients lead to similar levels of efficacy, consistent with clinical observations in some cancer indications. The model also supported using the highest dose of MLN8237 that can be achieved, regardless of whether it is combined with 60 or 80 mg/m(2) of paciltaxel. The modeling approaches applied in these studies can be used to guide dose-schedule optimization for combination therapies using other therapeutic agents.
Collapse
Affiliation(s)
- Jessica J Huck
- Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Mengkun Zhang
- Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Jerome Mettetal
- Department of DMPK, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Arijit Chakravarty
- Department of DMPK, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Karthik Venkatakrishnan
- Department of Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Xiaofei Zhou
- Department of Clinical Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Rob Kleinfield
- Department of Drug Development Management, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Marc L Hyer
- Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Karuppiah Kannan
- Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Vaishali Shinde
- Department of Molecular Pathology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Andy Dorner
- Department of Translational Medicine, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Mark G Manfredi
- Department of Cancer Pharmacology, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Wen Chyi Shyu
- Department of DMPK, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts
| | - Jeffrey A Ecsedy
- Department of Translational Medicine, Takeda Pharmaceuticals International Co., Cambridge, Massacheusetts.
| |
Collapse
|
58
|
Investigational Aurora A kinase inhibitor alisertib (MLN8237) as an enteric-coated tablet formulation in non-hematologic malignancies: phase 1 dose-escalation study. Invest New Drugs 2014; 32:1181-7. [PMID: 24879333 DOI: 10.1007/s10637-014-0121-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND This phase 1b study evaluated an enteric-coated tablet (ECT) formulation of the investigational Aurora A kinase inhibitor, alisertib (MLN8237). METHODS Patients with advanced, non-hematologic malignancies received oral alisertib ECT for 7 d BID followed by 14 d treatment-free (21-day cycles; 3 + 3 dose escalation schema). Objectives were to assess safety, pharmacokinetics, and antitumor activity, and to define a recommended phase 2 dose (RP2D) of alisertib. RESULTS 24 patients were treated. Median age was 57 years. Patients received a median of 2 cycles (range 1-12). The RP2D was determined as 50 mg BID for 7 d (21-day cycles). A cycle 1 dose-limiting toxicity of grade 4 febrile neutropenia was observed in 1 of 13 patients at RP2D. The most common drug-related adverse event (AE) was neutropenia (50%). At doses ≥ 40 mg BID, 7 patients had drug-related AEs that were serious but largely reversible/manageable by dose reduction and supportive care, including 3 with febrile neutropenia. Pharmacokinetic data were available in 24 patients. Following administration of alisertib ECT, the plasma peak concentration of alisertib was achieved at ~3 h; systemic exposure increased with increasing dose over 10-60 mg BID. Mean t½ was ~21 h following multiple dosing. Renal clearance was negligible. Nine patients achieved stable disease (3.98*, 5.59, 1.28*, 2.56, 5.45*, 3.48, 3.15, 8.31, and 6.93* months; *censored). CONCLUSIONS Alisertib ECT was generally well tolerated in adults with advanced, non-hematologic malignancies. The RP2D is 50 mg BID for 7 d and is being evaluated in ongoing phase 2 studies.
Collapse
|
59
|
Hong X, O'Donnell JP, Salazar CR, Van Brocklyn JR, Barnett KD, Pearl DK, deCarvalho AC, Ecsedy JA, Brown SL, Mikkelsen T, Lehman NL. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother Pharmacol 2014; 73:983-90. [PMID: 24627220 DOI: 10.1007/s00280-014-2430-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023]
Abstract
The selective Aurora-A kinase inhibitor MLN8237 is in clinical trials for hematologic malignancies, ovarian cancer and other solid tumors. We previously showed that MLN8237 is potently antiproliferative toward standard monolayer-cultured glioblastoma cells. We have now investigated the effect of MLN8237 with and without temozolomide or ionizing radiation on the proliferation of glioblastoma tumor stem-like cells (neurospheres) using soft agar colony formation assays and normal human astrocytes by MTT assay. Western blotting was utilized to compare MLN8237 IC50s to cellular Aurora-A and phosphoThr(288)Aurora-A levels. MLN8237 was more potently antiproliferative to neurosphere cells than to standard monolayer glioma cells, and was non-toxic to normal human astrocytes. Western blot analysis revealed that MLN8237 treatment inhibits phosphoThr(288)Aurora-A levels providing proof of drug target-hit in glioblastoma cells. Furthermore, phosphoThr(288)Aurora-A levels partially predicted the antiproliferative efficacy of MLN8237. We also found that Aurora-A inhibition by MLN8237 was synergistic with temozolomide and potentiated the effects of ionizing radiation on colony formation in neurosphere glioblastoma tumor stem-like cells. These results further support the potential of Aurora-A inhibitors as primary chemotherapy agents or biologic response modifiers in glioblastoma patients.
Collapse
Affiliation(s)
- Xin Hong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kozyreva VK, McLaughlin SL, Livengood RH, Calkins RA, Kelley LC, Rajulapati A, Ice RJ, Smolkin MB, Weed SA, Pugacheva EN. NEDD9 regulates actin dynamics through cortactin deacetylation in an AURKA/HDAC6-dependent manner. Mol Cancer Res 2014; 12:681-93. [PMID: 24574519 DOI: 10.1158/1541-7786.mcr-13-0654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The prometastatic protein NEDD9 (neural precursor cell expressed, developmentally downregulated 9) is highly expressed in many cancers and is required for mesenchymal individual cell migration and progression to the invasive stage. Nevertheless, the molecular mechanisms of NEDD9-driven migration and the downstream targets effecting metastasis are not well defined. In the current study, knockdown of NEDD9 in highly metastatic tumor cells drastically reduces their migratory capacity due to disruption of actin dynamics at the leading edge. Specifically, NEDD9 deficiency leads to a decrease in the persistence and stability of lamellipodial protrusions similar to knockdown of cortactin (CTTN). Mechanistically, it was shown that NEDD9 binds to and regulates acetylation of CTTN in an Aurora A kinase (AURKA)/HDAC6-dependent manner. The knockdown of NEDD9 or AURKA results in an increase in the amount of acetylated CTTN and a decrease in the binding of CTTN to F-actin. Overexpression of the deacetylation mimicking (9KR) mutant of CTTN is sufficient to restore actin dynamics at the leading edge and migration proficiency of the tumor cells. Inhibition of AURKA and HDAC6 activity by alisertib and Tubastatin A in xenograft models of breast cancer leads to a decrease in the number of pulmonary metastases. Collectively, these findings identify CTTN as the key downstream component of NEDD9-driven migration and metastatic phenotypes. IMPLICATIONS This study provides a mechanistic platform for therapeutic interventions based on AURKA and HDAC6 inhibition for patients with metastatic breast cancer to prevent and/or eradicate metastases.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- Authors' Affiliations: Mary Babb Randolph Cancer Center; Departments of 2Biochemistry, 3Pathology, and 4Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cullinane C, Waldeck KL, Binns D, Bogatyreva E, Bradley DP, de Jong R, McArthur GA, Hicks RJ. Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Nucl Med Biol 2014; 41:148-54. [DOI: 10.1016/j.nucmedbio.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/03/2023]
|
62
|
Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X, Howe C, O’Brien S, Maglaty M, Ecsedy JA, Litwin S, Golemis EA, Schilder RJ, Godwin AK, Connolly DC. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014; 33:539-49. [PMID: 23334327 PMCID: PMC3640671 DOI: 10.1038/onc.2012.632] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 12/26/2022]
Abstract
Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Fang Xiao
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Laura E. Bickel
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | | | - Harsh B. Pathak
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Xiang Hua
- Transgenic Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Caitlin Howe
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Shane O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Marisa Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jeffrey A. Ecsedy
- Department of Translational Medicine, Millennium Pharmaceuticals Inc., Cambridge, MA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Russell J. Schilder
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA
- Department of Gynecologic Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Andrew K. Godwin
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Denise C. Connolly
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
63
|
Pérez de Castro I, Aguirre-Portolés C, Fernández-Miranda G, Cañamero M, Cowley DO, Van Dyke T, Malumbres M. Requirements for Aurora-A in tissue regeneration and tumor development in adult mammals. Cancer Res 2014; 73:6804-15. [PMID: 24242071 DOI: 10.1158/0008-5472.can-13-0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A is a kinase involved in the formation and maturation of the mitotic spindle and chromosome segregation. This kinase is frequently overexpressed in human cancer, and its activity may confer resistance to antitumoral drugs such as Taxol. Inhibition of Aurora-A results in mitotic defects, and this kinase is considered as an attractive therapeutic target for cancer. Nevertheless, the specific requirements for this kinase in adult mammalian tissues remain unclear. Conditional genetic ablation of Aurora-A in adult tissues results in polyploid cells that display a DNA-damage-like response characterized by the upregulation of p53 and the cell-cycle inhibitor p21(Cip1). This is accompanied by apoptotic, differentiation, or senescence markers in a tissue-specific manner. Therapeutic elimination of Aurora-A prevents the progression of skin and mammary gland tumors. However, this is not due to significant levels of apoptosis or senescence, but because Aurora-A-deficient tumors accumulate polyploid cells with limited proliferative potential. Thus, Aurora-A is required for tumor formation in vivo, and the differential response observed in various tissues might have relevant implications in current therapeutic strategies aimed at inhibiting this kinase in the treatment of human cancer.
Collapse
Affiliation(s)
- Ignacio Pérez de Castro
- Authors' Affiliations: Cell Division and Cancer Group; Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | | | | | | | | | | | | |
Collapse
|
64
|
Aurora-A: a potential DNA repair modulator. Tumour Biol 2013; 35:2831-6. [PMID: 24277377 DOI: 10.1007/s13277-013-1393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022] Open
Abstract
It is well-known that overexpression of Aurora-A promotes tumorigenesis, but the role of Aurora-A in the development of cancer has not been fully investigated. Recent studies indicate that Aurora-A may confer cancer cell chemo- and radioresistance through dysregulation of cell cycle progression and DNA damage response. Direct evidences from literatures suggest that Aurora-A inhibits pRb, p53, p21(waf1/cip1), and p27(cip/kip) but enhances Plk1, CDC25, CDK1, and cyclin B1 to repeal cell cycle checkpoints and to promote cell cycle progression. Other studies indicate that Aurora-A suppresses BRCA1, BRCA2, RAD51, poly(ADP ribose) polymerase (PARP), and gamma-H2AX to dysregulate DNA damage response. Aurora-A may also interact with RAS and Myc to control DNA repair indirectly. In this review, we summarized the potential role of Aurora-A in DNA repair from the current literatures and concluded that Aurora-A may function as a DNA repair modulator to control cancer cell radio- and chemosensitivity, and that Aurora-A-associated DNA repair molecules may be considered for targeted cancer therapy.
Collapse
|
65
|
Shinde V, Burke KE, Chakravarty A, Fleming M, McDonald AA, Berger A, Ecsedy J, Blakemore SJ, Tirrell SM, Bowman D. Applications of Pathology-Assisted Image Analysis of Immunohistochemistry-Based Biomarkers in Oncology. Vet Pathol 2013; 51:292-303. [DOI: 10.1177/0300985813511124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunohistochemistry-based biomarkers are commonly used to understand target inhibition in key cancer pathways in preclinical models and clinical studies. Automated slide-scanning and advanced high-throughput image analysis software technologies have evolved into a routine methodology for quantitative analysis of immunohistochemistry-based biomarkers. Alongside the traditional pathology H-score based on physical slides, the pathology world is welcoming digital pathology and advanced quantitative image analysis, which have enabled tissue- and cellular-level analysis. An automated workflow was implemented that includes automated staining, slide-scanning, and image analysis methodologies to explore biomarkers involved in 2 cancer targets: Aurora A and NEDD8-activating enzyme (NAE). The 2 workflows highlight the evolution of our immunohistochemistry laboratory and the different needs and requirements of each biological assay. Skin biopsies obtained from MLN8237 (Aurora A inhibitor) phase 1 clinical trials were evaluated for mitotic and apoptotic index, while mitotic index and defects in chromosome alignment and spindles were assessed in tumor biopsies to demonstrate Aurora A inhibition. Additionally, in both preclinical xenograft models and an acute myeloid leukemia phase 1 trial of the NAE inhibitor MLN4924, development of a novel image algorithm enabled measurement of downstream pathway modulation upon NAE inhibition. In the highlighted studies, developing a biomarker strategy based on automated image analysis solutions enabled project teams to confirm target and pathway inhibition and understand downstream outcomes of target inhibition with increased throughput and quantitative accuracy. These case studies demonstrate a strategy that combines a pathologist’s expertise with automated image analysis to support oncology drug discovery and development programs.
Collapse
Affiliation(s)
- V. Shinde
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
- Contributed equally to this work
| | - K. E. Burke
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
- Contributed equally to this work
| | - A. Chakravarty
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - M. Fleming
- Boston Children’s Hospital, Department of Pathology, Boston, MA, USA
| | | | - A. Berger
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - J. Ecsedy
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - S. J. Blakemore
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - S. M. Tirrell
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - D. Bowman
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| |
Collapse
|
66
|
Preclinical pharmacokinetic/pharmacodynamic/efficacy relationships for alisertib, an investigational small-molecule inhibitor of Aurora A kinase. Cancer Chemother Pharmacol 2013; 72:1255-64. [DOI: 10.1007/s00280-013-2305-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023]
|
67
|
Kim HJ, Cho JH, Kim JR. Downregulation of Polo-like kinase 1 induces cellular senescence in human primary cells through a p53-dependent pathway. J Gerontol A Biol Sci Med Sci 2013; 68:1145-56. [PMID: 23525475 DOI: 10.1093/gerona/glt017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays a key role in various stages of mitosis from entry into M phase to exit from mitosis. However, its role in cellular senescence remains to be determined. Therefore, the effects of PLK1 on cellular senescence in human primary cells were investigated. We found that expression of PLK1 decreased in human dermal fibroblasts and human umbilical vein endothelial cells under replicative senescence and premature senescence induced by adriamycin. PLK1 knockdown with PLK1 small interfering RNAs in young cells induced premature senescence. In contrast, upregulation of PLK1 in old cells partially reversed senescence phenotypes. Cellular senescence by PLK1 inhibition was observed in p16 knockdown cells but not in p53 knockdown cells. Our data suggest that PLK1 repression might result in cellular senescence in human primary cells via a p53-dependent pathway.
Collapse
Affiliation(s)
- Hee-Jin Kim
- These authors contributed equally to this work
| | | | | |
Collapse
|
68
|
Toughiri R, Li X, Du Q, Bieberich CJ. Phosphorylation of NuMA by Aurora-A kinase in PC-3 prostate cancer cells affects proliferation, survival, and interphase NuMA localization. J Cell Biochem 2013; 114:823-30. [PMID: 23097092 DOI: 10.1002/jcb.24421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022]
Abstract
Aurora-A is a serine/threonine kinase that has oncogenic properties in vivo. The expression and kinase activity of Aurora-A are up-regulated in multiple malignancies. Aurora-A is a key regulator of mitosis that localizes to the centrosome from the G2 phase through mitotic exit and regulates mitotic spindle formation as well as centrosome separation. Overexpression of Aurora-A in multiple malignancies has been linked to higher tumor grade and poor prognosis through mechanisms that remain to be defined. Using an unbiased proteomics approach, we identified the protein nuclear mitotic apparatus (NuMA) as a robust substrate of Aurora-A kinase. Using a small molecule Aurora-A inhibitor in conjunction with a reverse in-gel kinase assay (RIKA), we demonstrate that NuMA becomes hypo-phosphorylated in vivo upon Aurora-A inhibition. Using an alanine substitution strategy, we identified multiple Aurora-A phospho-acceptor sites in the C-terminal tail of NuMA. Functional analyses demonstrate that mutation of three of these phospho-acceptor sites significantly diminished cell proliferation. In addition, alanine mutation at these sites significantly increased the rate of apoptosis. Using confocal immunofluorescence microscopy, we show that the NuMA T1804A mutant mis-localizes to the cytoplasm in interphase nuclei in a punctate pattern. The identification of Aurora-A phosphorylation sites in NuMA that are important for cell cycle progression and apoptosis provides new insights into Aurora-A function.
Collapse
Affiliation(s)
- Raheleh Toughiri
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
69
|
Bush TL, Payton M, Heller S, Chung G, Hanestad K, Rottman JB, Loberg R, Friberg G, Kendall RL, Saffran D, Radinsky R. AMG 900, a small-molecule inhibitor of aurora kinases, potentiates the activity of microtubule-targeting agents in human metastatic breast cancer models. Mol Cancer Ther 2013; 12:2356-66. [PMID: 23990115 DOI: 10.1158/1535-7163.mct-12-1178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most prevalent malignancy affecting women and ranks second in cancer-related deaths, in which death occurs primarily from metastatic disease. Triple-negative breast cancer (TNBC) is a more aggressive and metastatic subtype of breast cancer that is initially responsive to treatment of microtubule-targeting agents (MTA) such as taxanes. Recently, we reported the characterization of AMG 900, an orally bioavailable, potent, and highly selective pan-Aurora kinase inhibitor that is active in multidrug-resistant cell lines. In this report, we investigate the activity of AMG 900 alone and in combination with two distinct classes of MTAs (taxanes and epothilones) in multidrug-resistant TNBC cell lines and xenografts. In TNBC cells, AMG 900 inhibited phosphorylation of histone H3 on Ser(10), a proximal substrate of Aurora-B, and induced polyploidy and apoptosis. Furthermore, AMG 900 potentiated the antiproliferative effects of paclitaxel and ixabepilone at low nanomolar concentrations. In mice, AMG 900 significantly inhibited the growth of MDA-MB-231 (F(11); parental), MDA-MB-231 (F(11)) PTX-r (paclitaxel-resistant variant), and DU4475 xenografts. The combination of AMG 900 with docetaxel enhanced tumor inhibition in MDA-MB-231 (F(11)) xenografts compared with either monotherapy. Notably, combining AMG 900 with ixabepilone resulted in regressions of MDA-MB-231 (F(11)) PTX-r xenografts, in which more than 50% of the tumors failed to regrow 75 days after the cessation of drug treatment. These findings suggest that AMG 900, alone and in combination with MTAs, may be an effective intervention strategy for the treatment of metastatic breast cancer and provide potential therapeutic options for patients with multidrug-resistant tumors.
Collapse
Affiliation(s)
- Tammy L Bush
- Corresponding Author: Tammy L. Bush, Amgen Inc., 360 Binney Street, Mailstop 7-G-12, Cambridge, MA 02142.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Lee SY, Lee GR, Woo DH, Park NH, Cha HJ, Moon YH, Han IS. Depletion of Aurora A leads to upregulation of FoxO1 to induce cell cycle arrest in hepatocellular carcinoma cells. Cell Cycle 2013; 12:67-75. [PMID: 23255113 DOI: 10.4161/cc.22962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aurora A kinase has drawn considerable attention as a therapeutic target for cancer therapy. However, the underlying molecular and cellular mechanisms of the anticancer effects of Aurora A kinase inhibition are still not fully understood. Herein, we show that depletion of Aurora A kinase by RNA interference (RNAi) in hepatocellular carcinoma (HCC) cells upregulated FoxO1 in a p53-dependent manner, which induces cell cycle arrest. Introduction of an RNAi-resistant Aurora A kinase into Aurora A-knockdown cells resulted in downregulation of FoxO1 expression and rescued proliferation. In addition, silencing of FoxO1 in Aurora A-knockdown cells allowed the cells to exit cytostatic arrest, which, in turn, led to massive cell death. Our results suggest that FoxO1 is responsible for growth arrest at the G2/M phase that is induced by Aurora A kinase inhibition.
Collapse
Affiliation(s)
- Sun-Young Lee
- Biomedical Research Center Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
71
|
Lahtela J, Corson LB, Hemmes A, Brauer MJ, Koopal S, Lee J, Hunsaker TL, Jackson PK, Verschuren EW. A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. Cell Cycle 2013; 12:625-34. [PMID: 23324396 PMCID: PMC3594263 DOI: 10.4161/cc.23515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16INK4a expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Liu Y, Hawkins OE, Su Y, Vilgelm AE, Sobolik T, Thu YM, Kantrow S, Splittgerber RC, Short S, Amiri KI, Ecsedy JA, Sosman JA, Kelley MC, Richmond A. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence. EMBO Mol Med 2013; 5:149-66. [PMID: 23180582 PMCID: PMC3569660 DOI: 10.1002/emmm.201201378] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 01/07/2023] Open
Abstract
Oncogene-induced senescence can provide a protective mechanism against tumour progression. However, production of cytokines and growth factors by senescent cells may contribute to tumour development. Thus, it is unclear whether induction of senescence represents a viable therapeutic approach. Here, using a mouse model with orthotopic implantation of metastatic melanoma tumours taken from 19 patients, we observed that targeting aurora kinases with MLN8054/MLN8237 impaired mitosis, induced senescence and markedly blocked proliferation in patient tumour implants. Importantly, when a subset of tumour-bearing mice were monitored for tumour progression after pausing MLN8054 treatment, 50% of the tumours did not progress over a 12-month period. Mechanistic analyses revealed that inhibition of aurora kinases induced polyploidy and the ATM/Chk2 DNA damage response, which mediated senescence and a NF-κB-related, senescence-associated secretory phenotype (SASP). Blockade of IKKβ/NF-κB led to reversal of MLN8237-induced senescence and SASP. Results demonstrate that removal of senescent tumour cells by infiltrating myeloid cells is crucial for inhibition of tumour re-growth. Altogether, these data demonstrate that induction of senescence, coupled with immune surveillance, can limit melanoma growth.
Collapse
Affiliation(s)
- Yan Liu
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Oriana E Hawkins
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Yingjun Su
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Anna E Vilgelm
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Tammy Sobolik
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Yee-Mon Thu
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sara Kantrow
- Division of Dermatology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Ryan C Splittgerber
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sarah Short
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Katayoun I Amiri
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Jeffery A Sosman
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical CenterNashville, TN, USA
| | - Mark C Kelley
- Division of Surgical Oncology, Department of Surgery, Vanderbilt University School of MedicineNashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
73
|
Wunderlich A, Roth S, Ramaswamy A, Greene BH, Brendel C, Hinterseher U, Bartsch DK, Hoffmann S. Combined inhibition of cellular pathways as a future therapeutic option in fatal anaplastic thyroid cancer. Endocrine 2012; 42:637-46. [PMID: 22477151 DOI: 10.1007/s12020-012-9665-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/22/2012] [Indexed: 12/25/2022]
Abstract
Conventional treatment by surgery, radioiodine, and thyroxin-suppressive therapy often fails to cure anaplastic thyroid cancer (ATC). Therefore several attempts have been made to evaluate new therapy options by use of "small molecule inhibitors". ATC was shown to respond to monotherapeutic proteasome and Aurora kinase inhibition in vitro as well as in xenotransplanted tumor cells. Aim of this study was to evaluate the effect of combined treatment targeting the ubiquitin-proteasome system by bortezomib and Aurora kinases by use of MLN8054. Three ATC cell lines (Hth74, C643, and Kat4.1) were used. The antiproliferative effect of combined treatment with bortezomib and MLN8054 was assessed by MTT-assay and cell cycle analysis (FACS). Proapoptotic effects were evaluated by measurement of Caspase-3 activity, and effects on VEGF secretion were analyzed by ELISA. Compared to mono-application combined treatment with bortezomib and MLN8054 resulted in a further decrease of cell density, whereas antagonizing effects were found regarding cell cycle progression. Caspase-3 activity was increased up to 2.7- and 14-fold by mono-application of MLN8054 and bortezomib, respectively. When the two drugs were used in combination, a further enhancement of Caspase-3 activity was achieved, depending on the cell line. VEGF secretion was decreased following bortezomib treatment and remained unchanged by MLN8054. Only in C643 cells, the bortezomib-induced down-regulation was enhanced when MLN8054 was applied simultaneously. In conclusion, our data demonstrate that targeting the proteasome and Aurora kinases simultaneously results in additional antitumoral effects in vitro, especially regarding cell growth and induction of apoptosis. The efficacy of this therapeutic approach remains to be revised by in vivo and clinical application.
Collapse
Affiliation(s)
- Annette Wunderlich
- Department of Surgery, Philipps-University of Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Diamond JR, Eckhardt SG, Tan AC, Newton TP, Selby HM, Brunkow KL, Kachaeva MI, Varella-Garcia M, Pitts TM, Bray MR, Fletcher GC, Tentler JJ. Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models. Clin Cancer Res 2012; 19:291-303. [PMID: 23136197 DOI: 10.1158/1078-0432.ccr-12-1611] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The Aurora kinases are a family of conserved serine-threonine kinases with key roles in mitotic cell division. As with other promising anticancer targets, patient selection strategies to identify a responsive subtype will likely be required for successful clinical development of Aurora kinase inhibitors. The purpose of this study was to evaluate the antitumor activity of the Aurora and angiogenic kinase inhibitor ENMD-2076 against preclinical models of breast cancer with identification of candidate predictive biomarkers. EXPERIMENTAL DESIGN Twenty-nine breast cancer cell lines were exposed to ENMD-2076 and the effects on proliferation, apoptosis, and cell-cycle distribution were evaluated. In vitro activity was confirmed in MDA-MB-468 and MDA-MB-231 triple-negative breast cancer xenografts. Systematic gene expression analysis was used to identify up- and downregulated pathways in the sensitive and resistant cell lines, including within the triple-negative breast cancer subset. RESULTS ENMD-2076 showed antiproliferative activity against breast cancer cell lines, with more robust activity against cell lines lacking estrogen receptor expression and those without increased HER2 expression. Within the triple-negative breast cancer subset, cell lines with a p53 mutation and increased p53 expression were more sensitive to the cytotoxic and proapoptotic effects of ENMD-2076 exposure than cell lines with decreased p53 expression. CONCLUSIONS ENMD-2076 exhibited robust anticancer activity against models of triple-negative breast cancer and the candidate predictive biomarkers identified in this study may be useful in selecting patients for Aurora kinase inhibitors in the future.
Collapse
Affiliation(s)
- Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Cancer Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Shi JQ, Lasky K, Shinde V, Stringer B, Qian MG, Liao D, Liu R, Driscoll D, Nestor MT, Amidon BS, Rao Y, Duffey MO, Manfredi MG, Vos TJ, D' Amore N, Hyer ML. MLN0905, a small-molecule plk1 inhibitor, induces antitumor responses in human models of diffuse large B-cell lymphoma. Mol Cancer Ther 2012; 11:2045-53. [PMID: 22609854 DOI: 10.1158/1535-7163.mct-11-1036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas, accounting for up to 30% of all newly diagnosed lymphoma cases. Current treatment options for this disease are effective, but not always curative; therefore, experimental therapies continue to be investigated. We have discovered an experimental, potent, and selective small-molecule inhibitor of PLK1, MLN0905, which inhibits cell proliferation in a broad range of human tumor cells including DLBCL cell lines. In our report, we explored the pharmacokinetic, pharmacodynamic, and antitumor properties of MLN0905 in DLBCL xenograft models grown in mice. These studies indicate that MLN0905 modulates the pharmacodynamic biomarker phosphorylated histone H3 (pHisH3) in tumor tissue. The antitumor activity of MLN0905 was evaluated in three human subcutaneous DLBCL xenograft models, OCI LY-10, OCI LY-19, and PHTX-22L (primary lymphoma). In each model, MLN0905 yielded significant antitumor activity on both a continuous (daily) and intermittent dosing schedule, underscoring dosing flexibility. The antitumor activity of MLN0905 was also evaluated in a disseminated xenograft (OCI LY-19) model to better mimic human DLBCL disease. In the disseminated model, MLN0905 induced a highly significant survival advantage. Finally, MLN0905 was combined with a standard-of-care agent, rituximab, in the disseminated OCI LY-19 xenograft model. Combining rituximab and MLN0905 provided both a synergistic antitumor effect and a synergistic survival advantage. Our findings indicate that PLK1 inhibition leads to pharmacodynamic pHisH3 modulation and significant antitumor activity in multiple DLBCL models. These data strongly suggest evaluating PLK1 inhibitors as DLBCL anticancer agents in the clinic.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Benzazepines/administration & dosage
- Benzazepines/pharmacokinetics
- Benzazepines/pharmacology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Synergism
- Female
- Gene Knockdown Techniques
- Histones/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- Rituximab
- Thiones/administration & dosage
- Thiones/pharmacokinetics
- Thiones/pharmacology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Judy Quiju Shi
- The Takeda Oncology Company, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Decreased skp2 expression is necessary but not sufficient for therapy-induced senescence in prostate cancer. Transl Oncol 2012; 5:278-87. [PMID: 22937180 DOI: 10.1593/tlo.12181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022] Open
Abstract
Therapy-induced senescence (TIS), a cytostatic stress response in cancer cells, is induced inefficiently by current anticancer agents and radiation. The mechanisms that mediate TIS in cancer cells are not well defined. Herein, we characterize a robust senescence response both in vitro and in vivo to the quinone diaziquone (AZQ), previously identified in a high-throughput senescence-induction small-molecule screen. Using AZQ and several other agents that induce senescence, we screened a series of cyclin-dependent kinase inhibitors and found that p27(Kip1) was induced in all investigated prostate cancer cell lines. The ubiquitin-ligase Skp2 negatively regulates p27(Kip1) and, during TIS, is translocated to the cytoplasm before its expression is decreased in senescent cells. Overexpression of Skp2 blocks the effects of AZQ on senescence and p27(Kip1) induction. We also find that stable long-term short hairpin RNA knockdown of Skp2 decreases proliferation but does not generate the complete senescence phenotype. We conclude that Skp2 participates in regulating TIS but, alone, is insufficient to induce senescence in cancer cells.
Collapse
|
77
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
78
|
Patel AV, Eaves D, Jessen WJ, Rizvi TA, Ecsedy JA, Qian MG, Aronow BJ, Perentesis JP, Serra E, Cripe TP, Miller SJ, Ratner N. Ras-driven transcriptome analysis identifies aurora kinase A as a potential malignant peripheral nerve sheath tumor therapeutic target. Clin Cancer Res 2012; 18:5020-30. [PMID: 22811580 DOI: 10.1158/1078-0432.ccr-12-1072] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Patients with neurofibromatosis type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST), which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to use comprehensive gene expression analysis to identify novel therapeutic targets. EXPERIMENTAL DESIGN Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST because of the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase overexpression in MPNST in vitro and in vivo using Aurora kinase short hairpin RNAs (shRNA) and compounds that inhibit Aurora kinase. RESULTS We identified 2,000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically overexpressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. CONCLUSION Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST.
Collapse
Affiliation(s)
- Ami V Patel
- Divisions of Experimental Hematology and Cancer Biology, Oncology, and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Komlodi-Pasztor E, Sackett DL, Fojo AT. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 2012; 18:51-63. [PMID: 22215906 DOI: 10.1158/1078-0432.ccr-11-0999] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although they have been advocated with an understandable enthusiasm, mitosis-specific agents such as inhibitors of mitotic kinases and kinesin spindle protein have not been successful clinically. These drugs were developed as agents that would build on the success of microtubule-targeting agents while avoiding the neurotoxicity that encumbers drugs such as taxanes and vinca alkaloids. The rationale for using mitosis-specific agents was based on the thesis that the clinical efficacy of microtubule-targeting agents could be ascribed to the induction of mitotic arrest. However, the latter concept, which has long been accepted as dogma, is likely important only in cell culture and rapidly growing preclinical models, and irrelevant in patient tumors, where interference with intracellular trafficking on microtubules is likely the principal mechanism of action. Here we review the preclinical and clinical data for a diverse group of inhibitors that target mitosis and identify the reasons why these highly specific, myelosuppressive compounds have failed to deliver on their promise.
Collapse
Affiliation(s)
- Edina Komlodi-Pasztor
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1906, USA
| | | | | |
Collapse
|
80
|
Lehman NL, O'Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL, Ecsedy JA, Poisson LM. Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 2012; 11:489-502. [PMID: 22274399 DOI: 10.4161/cc.11.3.18996] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aurora A is critical for mitosis and is overexpressed in several neoplasms. Its overexpression transforms cultured cells, and both its overexpression and knockdown cause genomic instability. In transgenic mice, Aurora A haploinsufficiency, not overexpression, leads to increased malignant tumor formation. Aurora A thus appears to have both tumor-promoting and tumor-suppressor functions. Here, we report that Aurora A protein, measured by quantitative protein gel blotting, is differentially expressed in major glioma types in lineage-specific patterns. Aurora A protein levels in WHO grade II oligodendrogliomas (n=16) and grade III anaplastic oligodendrogliomas (n=16) are generally low, similar to control epilepsy cerebral tissue (n=11). In contrast, pilocytic astrocytomas (n=6) and ependymomas (n=12) express high Aurora A levels. Among grade II to grade III astrocytomas (n=7, n=14, respectively) and grade IV glioblastomas (n=31), Aurora A protein increases with increasing tumor grade. We also found that Aurora A expression is induced by hypoxia in cultured glioblastoma cells and is overexpressed in hypoxic regions of glioblastoma tumors. Retrospective Kaplan-Meier analysis revealed that both lower Aurora A protein measured by quantitative protein gel blot (n=31) and Aurora A mRNA levels measured by real-time quantitative RT-PCR (n=58) are significantly associated with poorer patient survival in glioblastoma. Furthermore, we report that the selective Aurora A inhibitor MLN8237 is potently cytotoxic to glioblastoma cells, and that MLN8237 cytotoxicty is potentiated by ionizing radiation. MLN8237 also appeared to induce senescence and differentiation of glioblastoma cells. Thus, in addition to being significantly associated with survival in glioblastoma, Aurora A is a potential new drug target for the treatment of glioblastoma and possibly other glial neoplasms.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, The Hermelin Brain Tumor Center, Henry Ford Hospital, and Department of Pathology, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Paget JA, Restall IJ, Daneshmand M, Mersereau JA, Simard MA, Parolin DAE, Lavictoire SJ, Amin MS, Islam S, Lorimer IAJ. Repression of cancer cell senescence by PKCι. Oncogene 2011; 31:3584-96. [DOI: 10.1038/onc.2011.524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
82
|
Synthesis and cytotoxic activity of 2,5-disubstituted pyrimido[5,4-c]quinoline derivatives. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2011.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
83
|
Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, Stroud SG, Chen W, Shinde V, Huck JJ, Wysong DR, Janowick DA, Hyer ML, Leroy PJ, Gershman RE, Silva MD, Germanos MS, Bolen JB, Claiborne CF, Sells TB. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 2011; 17:7614-24. [PMID: 22016509 DOI: 10.1158/1078-0432.ccr-11-1536] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays. EXPERIMENTAL DESIGN We investigated the selectivity of alisertib for AAK and ABK and studied the antitumor and antiproliferative activity of alisertib in vitro and in vivo. Novel assays were used to assess chromosome alignment and mitotic spindle bipolarity in human tumor xenografts using immunofluorescent detection of DNA and alpha-tubulin, respectively. In addition, 18F-3'-fluoro-3'-deoxy-l-thymidine positron emission tomography (FLT-PET) was used to noninvasively measure effects of alisertib on in vivo tumor cell proliferation. RESULTS Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. In addition, a dose of alisertib that caused tumor stasis, as measured by volume, resulted in a decrease in FLT uptake, suggesting that noninvasive imaging could provide value over traditional measurements of response. CONCLUSIONS Alisertib is a selective and potent inhibitor of AAK. The novel methods of measuring Aurora A pathway inhibition and application of tumor imaging described here may be valuable for clinical evaluation of small-molecule inhibitors.
Collapse
Affiliation(s)
- Mark G Manfredi
- Millennium Pharmaceuticals, Inc., Cambridge, 40 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett 2011; 585:3569-76. [DOI: 10.1016/j.febslet.2011.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022]
|
85
|
Abou-El-Ardat K, Monsieurs P, Anastasov N, Atkinson M, Derradji H, De Meyer T, Bekaert S, Van Criekinge W, Baatout S. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells. Mutat Res 2011; 731:27-40. [PMID: 22027090 DOI: 10.1016/j.mrfmmm.2011.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/20/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
Abstract
The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4Gy in both RET/PTC-positive systems but no common genes at 62.5mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent.
Collapse
|
86
|
Cheung CHA, Coumar MS, Chang JY, Hsieh HP. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009-10). Expert Opin Ther Pat 2011; 21:857-84. [PMID: 21591849 DOI: 10.1517/13543776.2011.574614] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Mitosis is a key step in the cell cycle and is controlled by several cell cycle regulators, including aurora kinases. Aurora family members A, B and C are essential for spindle assembly, centrosome maturation, chromosomal segregation and cytokinesis. Overexpression/amplification of aurora kinases has been implicated in oncogenic transformation, including the development of chromosomal instability in cancer cells. Hence, the use of aurora kinase small molecule inhibitors as a potential molecular-targeted therapeutic intervention for cancer is being pursued by various researchers. AREA COVERED This review provides an update on aurora kinase inhibitors based on developments from 2009 to 2010. The medicinal chemistry aspects of aurora kinase inhibitors, with a particular emphasis on the patent literature, are reviewed. Databases such as PubMed, SCOPUS®, Scifinder® and www.clinicaltrials.gov database were used to search for literature in the preparation of this review. EXPERT OPINION Around a dozen aurora kinase inhibitors are currently undergoing various Phase I-II evaluations for different human cancers. Instead of being applied as a monotherapy, combinations of aurora kinase inhibitors and existing chemotherapeutic compounds seem to give better therapeutic outcomes and are, therefore, a promising future cancer therapy.
Collapse
Affiliation(s)
- Chun Hei Antonio Cheung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan, Republic of China
| | | | | | | |
Collapse
|
87
|
Lei Y, Yan S, Ming-De L, Na L, Rui-Fa H. Prognostic significance of Aurora-A expression in human bladder cancer. Acta Histochem 2011; 113:514-8. [PMID: 20598352 DOI: 10.1016/j.acthis.2010.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 12/11/2022]
Abstract
Aurora-A is an oncogenic serine/threonine kinase, which plays important roles in tumorigenesis, development and chemoresistance of human cancers. The aim of the study was to detect the expression of Aurora-A gene in bladder cancer tissues and analyze its association with prognosis of bladder cancer patients. RT-PCR was performed to detect the expression of Aurora-A mRNA in 20 cases of bladder cancer and corresponding non-tumor tissue samples. Immunohistochemistry was performed to detect the localization of Aurora-A protein in 96 cases of bladder cancer tissue samples. Associations between Aurora-A protein expression and clinico-pathological factors or survival of bladder cancer patients were statistically analyzed. It was found that the expression levels of Aurora-A mRNA in bladder cancer tissues (1.08±0.24) were significantly higher than those in corresponding non-tumor tissues (0.22±0.07; P<0.01). Moreover, immunohistochemical staining results showed the localization of Aurora-A protein to be mainly located in the cytoplasm of bladder cancer cells. High levels of Aurora-A protein expression were correlated with pathological stage (P=0.007), lymph node metastasis (P=0.014) and venous invasion (P=0.008), but not with other factors including age, gender, tumor grade and recurrence of superficial cancer. Patients with high expression levels of Aurora-A protein showed lower disease-free and overall survival rates than those with low expression levels (P=0.0072 and 0.0009, respectively). Univariate and multivariate analysis of prognostic factors in bladder cancer patients indicated that Aurora-A expression was an independent unfavorable prognostic factor (hazard ratio: 0.673; 95% confidence interval: 0.388-0.912; P<0.001). Our study suggests that overexpression of Aurora-A gene may play an important role in the progression of bladder cancer and that Aurora-A expression is an independent factor for predicting the prognosis of bladder cancer in patients.
Collapse
|
88
|
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol 2011; 1:5. [PMID: 22655227 PMCID: PMC3356092 DOI: 10.3389/fonc.2011.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.
Collapse
|
89
|
Green MR, Woolery JE, Mahadevan D. Update on Aurora Kinase Targeted Therapeutics in Oncology. Expert Opin Drug Discov 2011; 6:291-307. [PMID: 21556291 DOI: 10.1517/17460441.2011.555395] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION: Mammalian cells contain three distinct serine/threonine protein kinases with highly conserved catalytic domains, including aurora A and B kinases that are essential regulators of mitotic entry and progression. Overexpression of aurora A and/or B kinase is associated with high proliferation rates and poor prognosis, making them ideal targets for anti-cancer therapy. Disruption of mitotic machinery is a proven anti-cancer strategy employed by multiple chemotherapeutic agents. Numerous small molecule inhibitors of the aurora kinases have been discovered and tested in vivo and in vitro, with a few currently in phase II testing. AREAS COVERED: This review provides the reader with updated results from both preclinical and human studies for each of the aurora kinase inhibitors (AKI) that are currently being investigated. The paper also covers in detail the late breaking and phase I data presented for AKIs thereby allowing the reader to compare and contrast individual and classrelated effects of AKIs. EXPERT OPINION: While the successful development and approval of an AKI for anti-cancer therapy remains unresolved, pre-clinical identification of resistant mechanisms would help design better early phase clinical trials where relevant combinations may be evaluated prior to phase II testing. The authors believe that aurora kinases are important anti-cancer targets that operate in collaboration with other oncogenes intimately involved in uncontrolled tumor proliferation and by providing a unique, targeted and complimentary anti-cancer mechanism, expand the available armamentarium against cancer.
Collapse
Affiliation(s)
- Myke R Green
- Section of Hematology/Oncology, Arizona Cancer Center, Tucson, AZ
| | | | | |
Collapse
|
90
|
Fan LC, Chiang WF, Liang CH, Tsai YT, Wong TY, Chen KC, Hong TM, Chen YL. α-Catulin knockdown induces senescence in cancer cells. Oncogene 2011; 30:2610-21. [PMID: 21278790 DOI: 10.1038/onc.2010.637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence functions as a tumor suppressor that protects against cancer progression. α-Catulin, an α-catenin-related protein, is reported to have tumorigenic potential because it regulates the nuclear factor-κB (NF-κB) pathway, but little is known about its clinical relevance and the mechanism through which it regulates cancer progression. Here, we found that α-catulin mRNA levels were significantly upregulated in cancer cell lines and clinical oral squamous cell carcinomas, which positively correlated with tumor size (P=0.001) and American Joint Committee on Cancer (AJCC) stage (P=0.004). α-Catulin knockdown in the OC2 and A549 cancer cell lines dramatically decreased cell proliferation and contributed to cellular senescence, and inhibited OC2 xenograft growth. Mechanistic dissection showed that α-catulin depletion strongly induced the DNA-damage response (DDR) in both cell lines, via a p53/p21-dependent pathway in A549 cells, but a p53/p21-independent pathway in OC2 cells carrying mutant p53. Global gene expression analysis revealed that α-catulin knockdown altered cell-cycle regulation and DDR pathways at the presenescent stage as well as significantly downregulate several crucial genes related to mitotic chromosome condensation, DDR and DNA repair systems, which suggests that its depletion-induced cellular senescence might be caused by chromosome condensation failures, severe DNA damage and impaired DNA repair ability. Our study provides evidence that α-catulin promotes tumor growth by preventing cellular senescence and suggests that downregulating α-catulin may be a promising therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- L-C Fan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst 2010; 102:1536-46. [PMID: 20858887 DOI: 10.1093/jnci/djq364] [Citation(s) in RCA: 595] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is a response to nonlethal stress that results in persistent cytostasis with a distinct morphological and biochemical phenotype. The senescence phenotype, detected in tumors through the expression of mRNA and protein markers, can be generated in cancer cells lacking functional p53 and retinoblastoma protein. Current research suggests that therapy-induced senescence (TIS) represents a novel functional target that may improve cancer therapy. TIS can be induced in immortal and transformed cancer cells by selected anticancer compounds or radiation, and accumulating data indicate that TIS may produce reduced toxicity-related side effects and increased tumor-specific immune activity. This review examines the current status of TIS-regulated mechanisms, agents, and senescence biomarkers with the goal of encouraging further development of this approach to cancer therapy. Remaining hurdles include the lack of efficient senescence-inducing agents and incomplete biological data on tumor response. The identification of additional compounds and other targeted approaches to senescence induction will further the development of TIS in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jonathan A Ewald
- Department of Urology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
| | | | | | | |
Collapse
|
92
|
Katayama H, Sen S. Aurora kinase inhibitors as anticancer molecules. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:829-39. [PMID: 20863917 DOI: 10.1016/j.bbagrm.2010.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/11/2010] [Accepted: 09/15/2010] [Indexed: 02/07/2023]
Abstract
Aurora kinase family of serine/threonine kinases are important regulators of mitosis that are frequently over expressed in human cancers and have been implicated in oncogenic transformation including development of chromosomal instability in cancer cells. In humans, among the three members of the kinase family, Aurora-A, -B and -C, only Aurora-A and -B are expressed at detectable levels in all somatic cells undergoing mitotic cell division and have been characterized in greater detail for their involvement in cellular pathways relevant to the development of cancer associated phenotypes. Aurora-A and -B are being investigated as potential targets for anticancer therapy. Development of inhibitors against Aurora kinases as anticancer molecules gained attention because of the facts that aberrant expression of these kinases leads to chromosomal instability and derangement of multiple tumor suppressor and oncoprotein regulated pathways. Preclinical studies and early phase I and II clinical trials of multiple Aurora kinase inhibitors as targeted anticancer drugs have provided encouraging results. This article discusses functional involvement of Aurora kinase-A and -B in the regulation of cancer relevant cellular phenotypes together with findings on some of the better characterized Aurora kinase inhibitors in modulating the functional interactions of Aurora kinases. Future possibilities about developing next generation Aurora kinase inhibitors and their clinical utility as anticancer therapeutic drugs are also discussed.
Collapse
Affiliation(s)
- Hiroshi Katayama
- Department of Molecular Pathology, Unit 951, The University of Texas M.D. Anderson Cancer Center, 7435 Fannin, Houston, TX 77054, USA
| | | |
Collapse
|
93
|
The centrosomal protein TACC3 controls paclitaxel sensitivity by modulating a premature senescence program. Oncogene 2010; 29:6184-92. [PMID: 20729911 DOI: 10.1038/onc.2010.354] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microtubule-interfering cancer drugs such as paclitaxel (PTX) often cause chemoresistance and severe side effects, including neurotoxicity. To explore potentially novel antineoplastic molecular targets, we investigated the cellular response of breast carcinoma cells to short hairpin(sh)RNA-mediated depletion of the centrosomal protein transforming acidic coiled coil (TACC) 3, an Aurora A kinase target expressed during mitosis. Unlike PTX, knockdown of TACC3 did not trigger a cell death response, but instead resulted in a progressive loss of the pro-apoptotic Bcl-2 protein Bim that links microtubule integrity to spindle poison-induced cell death. Interestingly, TACC3-depleted cells arrested in G₁ through a cellular senescence program characterized by the upregulation of nuclear p21(WAF), downregulation of the retinoblastoma protein and extracellular signal-regulated kinase 1/2, formation of HP1γ (phospho-Ser83)-positive senescence-associated heterochromatic foci and increased senescence-associated β-galactosidase activity. Remarkably, the onset of senescence following TACC3 knockdown was strongly accelerated in the presence of non-toxic PTX concentrations. Thus, we conclude that mitotic spindle stress is a major trigger of premature senescence and propose that the combined targeting of the centrosomal Aurora A-TACC3 axis together with drugs interfering with microtubule dynamics may efficiently improve the chemosensitivity of cancer cells.
Collapse
|
94
|
Abstract
The Aurora are a conserved family of serine/threonine kinases with essential functions in cell division. In mitosis, Aurora kinases are required for chromosome segregation, condensation and orientation in the metaphase plate, spindle assembly, and the completion of cytokinesis. This review presents the Aurora kinases, their partners and how their interactions impact on the different mitotic functions.
Collapse
|