51
|
Merz V, Gaule M, Zecchetto C, Cavaliere A, Casalino S, Pesoni C, Contarelli S, Sabbadini F, Bertolini M, Mangiameli D, Milella M, Fedele V, Melisi D. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front Oncol 2021; 11:638360. [PMID: 33777798 PMCID: PMC7991835 DOI: 10.3389/fonc.2021.638360] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although historically considered to be undruggable, a particular KRAS mutation, the G12C variant, has recently emerged as an actionable alteration especially in non-small cell lung cancer (NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other approaches are being explored. The inhibition of target upstream activators or downstream effectors of KRAS pathway has shown to be moderately effective given the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of KRAS have recently being identified and the inhibition of some of those might prove to be successful in the future. The study of escape mechanisms to KRAS inhibition could support the utility of combination strategies in overcoming intrinsic and adaptive resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of the microenvironment in influencing tumor initiation and promotion, the immune tumor niche of KRAS mutant tumors has been deeply explored and characterized for its unique immunosuppressive skewing. However, a number of aspects remains to be fully understood, and modulating this tumor niche might revert the immunoresistance of KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint inhibitors are being tested.
Collapse
Affiliation(s)
- Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Marina Gaule
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Cavaliere
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Simona Casalino
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Camilla Pesoni
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| | - Vita Fedele
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
- Section of Medical Oncology, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
52
|
Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li L, Wei Q, Seehra K, Jiang H, Grierson PM, Wang-Gillam A, Lim KH. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest 2021; 130:4771-4790. [PMID: 32573499 DOI: 10.1172/jci137660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.
Collapse
Affiliation(s)
- Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Cheng
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qing Wei
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
53
|
Salgia R, Pharaon R, Mambetsariev I, Nam A, Sattler M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med 2021; 2:100186. [PMID: 33521700 PMCID: PMC7817862 DOI: 10.1016/j.xcrm.2020.100186] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is a frequent oncogenic driver in solid tumors, including non-small cell lung cancer (NSCLC). It was previously thought to be an "undruggable" target due to the lack of deep binding pockets for specific small-molecule inhibitors. A better understanding of the mechanisms that drive KRAS transformation, improved KRAS-targeted drugs, and immunological approaches that aim at yielding immune responses against KRAS neoantigens have sparked a race for approved therapies. Few treatments are available for KRAS mutant NSCLC patients, and several approaches are being tested in clinicals trials to fill this void. Here, we review promising therapeutics tested for KRAS mutant NSCLC.
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
54
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
55
|
Hamarsheh S, Groß O, Brummer T, Zeiser R. Immune modulatory effects of oncogenic KRAS in cancer. Nat Commun 2020; 11:5439. [PMID: 33116132 PMCID: PMC7595113 DOI: 10.1038/s41467-020-19288-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Oncogenic KRAS mutations are the most frequent mutations in human cancer, but most difficult to target. While sustained proliferation caused by oncogenic KRAS-downstream signalling is a main driver of carcinogenesis, there is increasing evidence that it also mediates autocrine effects and crosstalk with the tumour microenvironment (TME). Here, we discuss recent reports connecting KRAS mutations with tumour-promoting inflammation and immune modulation caused by KRAS that leads to immune escape in the TME. We discuss the preclinical work on KRAS-induced inflammation and immune modulation in the context of currently ongoing clinical trials targeting cancer entities that carry KRAS mutations and strategies to overcome the oncogene-induced effects on the immune system.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
56
|
STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12051107. [PMID: 32365499 PMCID: PMC7281271 DOI: 10.3390/cancers12051107] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
Collapse
|
57
|
Saad MI, Alhayyani S, McLeod L, Yu L, Alanazi M, Deswaerte V, Tang K, Jarde T, Smith JA, Prodanovic Z, Tate MD, Balic JJ, Watkins DN, Cain JE, Bozinovski S, Algar E, Kohmoto T, Ebi H, Ferlin W, Garbers C, Ruwanpura S, Sagi I, Rose-John S, Jenkins BJ. ADAM17 selectively activates the IL-6 trans-signaling/ERK MAPK axis in KRAS-addicted lung cancer. EMBO Mol Med 2020; 11:emmm.201809976. [PMID: 30833304 PMCID: PMC6460353 DOI: 10.15252/emmm.201809976] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS mutations are major drivers of lung adenocarcinoma (LAC), yet the direct therapeutic targeting of KRAS has been problematic. Here, we reveal an obligate requirement by oncogenic KRAS for the ADAM17 protease in LAC In genetically engineered and xenograft (human cell line and patient-derived) Kras G12D-driven LAC models, the specific blockade of ADAM17, including with a non-toxic prodomain inhibitor, suppressed tumor burden by reducing cellular proliferation. The pro-tumorigenic activity of ADAM17 was dependent upon its threonine phosphorylation by p38 MAPK, along with the preferential shedding of the ADAM17 substrate, IL-6R, to release soluble IL-6R that drives IL-6 trans-signaling via the ERK1/2 MAPK pathway. The requirement for ADAM17 in Kras G12D-driven LAC was independent of bone marrow-derived immune cells. Furthermore, in KRAS mutant human LAC, there was a significant positive correlation between augmented phospho-ADAM17 levels, observed primarily in epithelial rather than immune cells, and activation of ERK and p38 MAPK pathways. Collectively, these findings identify ADAM17 as a druggable target for oncogenic KRAS-driven LAC and provide the rationale to employ ADAM17-based therapeutic strategies for targeting KRAS mutant cancers.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Sultan Alhayyani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Mohammad Alanazi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Ke Tang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Thierry Jarde
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Julian A Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, Vic., Australia.,Department of Cardiothoracic Surgery, Monash Health, Clayton, Vic., Australia
| | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jason E Cain
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Vic., Australia
| | - Elizabeth Algar
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Genetics and Molecular Pathology Laboratory, Monash Health, Clayton, Vic., Australia
| | - Tomohiro Kohmoto
- Department of Human Genetics, Tokushima University Graduate School of Medicine, Tokushima, Japan.,Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Saleela Ruwanpura
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia .,Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
58
|
Tumor Milieu Controlled by RB Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21072450. [PMID: 32244804 PMCID: PMC7177274 DOI: 10.3390/ijms21072450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.
Collapse
|
59
|
Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, Liu XB, Zheng L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med 2020; 6:6-17. [PMID: 32226930 PMCID: PMC7096327 DOI: 10.1016/j.cdtm.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is non-immunogenic, which consists of the stellate cells, fibroblasts, immune cells, extracellular matrix, and some other immune suppressive molecules. This low tumor perfusion microenvironment with physical dense fibrotic stroma shields PDAC from traditional antitumor therapies like chemotherapy and various strategies that have been proven successful in other types of cancer. Immunotherapy has the potential to treat minimal and residual diseases and prevent recurrence with minimal toxicity, and studies in patients with metastatic and nonresectable disease have shown some efficacy. In this review, we highlighted the main components of the pancreatic tumor microenvironment, and meanwhile, summarized the advances of some promising immunotherapies for PDAC, including checkpoint inhibitors, chimeric antigen receptors T cells, and cancer vaccines. Based on our previous researches, we specifically discussed how granulocyte-macrophage colony stimulating factor based pancreatic cancer vaccine prime the pancreatic tumor microenvironment, and introduced some novel immunoadjuvants, like the stimulator of interferon genes.
Collapse
Affiliation(s)
- Ke-Yu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jia-Long Yuan
- School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Diego Trafton
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jian-Xin Wang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Hepatic-biliary-pancreatic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Nan Niu
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Chun-Hui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xu-Bao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| |
Collapse
|
60
|
Challa S, Husain K, Kim R, Coppola D, Batra SK, Cheng JQ, Malafa MP. Targeting the IκB Kinase Enhancer and Its Feedback Circuit in Pancreatic Cancer. Transl Oncol 2020; 13:481-489. [PMID: 32004866 PMCID: PMC6994835 DOI: 10.1016/j.tranon.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with an overall median 5-year survival rate of 8%. This poor prognosis is because of the development of resistance to chemotherapy and radiation therapy and lack of effective targeted therapies. IκB kinase enhancer (IKBKE) overexpression was previously implicated in chemoresistance. Because IKBKE is frequently elevated in PDAC and IKBKE inhibitors are currently in clinical trials, we evaluated IKBKE as a therapeutic target in this disease. Depletion of IKBKE was found to significantly reduce PDAC cell survival, growth, cancer stem cell renewal, and cell migration and invasion. Notably, IKBKE inhibitor CYT387 and IKBKE knockdown dramatically activated the MAPK pathway. Phospho-RTK array analyses showed that IKBKE inhibition leads to rapid upregulation of ErbB3 and IGF-1R expression, which results in MAPK-ERK pathway activation-thereby limiting the efficacy of IKBKE inhibitors. Furthermore, IKBKE inhibition leads to stabilization of FOXO3a, which is required for RTK upregulation on IKBKE inhibition. Finally, we demonstrated that the IKBKE inhibitors synergize with the MEK inhibitor trametinib to significantly induce cell death and inhibit tumor growth and liver metastasis in an orthotopic PDAC mouse model.
Collapse
Affiliation(s)
| | | | | | - Domenico Coppola
- Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jin Q Cheng
- Departments of Molecular Oncology, Tampa, FL, USA
| | | |
Collapse
|
61
|
Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat Struct Mol Biol 2020; 27:92-104. [PMID: 31925410 DOI: 10.1038/s41594-019-0358-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Kinases are involved in disease development and modulation of their activity can be therapeutically beneficial. Drug-resistant mutant kinases are valuable tools in drug discovery efforts, but the prediction of mutants across the kinome is challenging. Here, we generate deep mutational scanning data to identify mutant mammalian kinases that drive resistance to clinically relevant inhibitors. We aggregate these data with subsaturation mutagenesis data and use it to develop, test and validate a framework to prospectively identify residues that mediate kinase activity and drug resistance across the kinome. We validate predicted resistance mutations in CDK4, CDK6, ERK2, EGFR and HER2. Capitalizing on a highly predictable residue, we generate resistance mutations in TBK1, CSNK2A1 and BRAF. Unexpectedly, we uncover a potentially generalizable activation site that mediates drug resistance and confirm its impact in BRAF, EGFR, HER2 and MEK1. We anticipate that the identification of these residues will enable the broad interrogation of the kinome and its inhibitors.
Collapse
|
62
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
63
|
Yin M, Wang X, Lu J. Advances in IKBKE as a potential target for cancer therapy. Cancer Med 2020; 9:247-258. [PMID: 31733040 PMCID: PMC6943080 DOI: 10.1002/cam4.2678] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon), a member of the nonclassical IKK family, plays an important role in the regulation of inflammatory reactions, activation and proliferation of immune cells, and metabolic diseases. Recent studies have demonstrated that IKBKE plays a crucial regulatory role in malignant tumor development. In recent years, IKBKE, an important oncoprotein in several kinds of tumors, has been widely found to regulate a variety of cytokines and signaling pathways. IKBKE promotes the growth, proliferation, invasion, and drug resistance of various cancers. This paper makes a detailed review that focuses on the recent discoveries of IKBKE in the malignant tumors, and puts forward that IKBKE is becoming an important therapeutic target for clinical treatment, which has been more and more realized.
Collapse
Affiliation(s)
- Min Yin
- Department of OncologyJinan Fifth People's HospitalJinanPR China
| | - Xin Wang
- Department of OncologyRenmin Hospital of Wuhan UniversityHubei ProvinceWuhanPR China
- Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong UniversityShandong Academy of Medical ScienceJinanPR China
| | - Jie Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanPR China
| |
Collapse
|
64
|
Lefranc J, Schulze VK, Hillig RC, Briem H, Prinz F, Mengel A, Heinrich T, Balint J, Rengachari S, Irlbacher H, Stöckigt D, Bömer U, Bader B, Gradl SN, Nising CF, von Nussbaum F, Mumberg D, Panne D, Wengner AM. Discovery of BAY-985, a Highly Selective TBK1/IKKε Inhibitor. J Med Chem 2019; 63:601-612. [DOI: 10.1021/acs.jmedchem.9b01460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Julien Lefranc
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | | | | | - Hans Briem
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Florian Prinz
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Anne Mengel
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Tobias Heinrich
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Jozsef Balint
- ASCA GmbH (Angewandte Synthesechemie Adlershof), 12489 Berlin, Germany
| | - Srinivasan Rengachari
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7RH Leicester, U.K
| | - Horst Irlbacher
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Detlef Stöckigt
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Ulf Bömer
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Benjamin Bader
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | | | | | - Franz von Nussbaum
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Dominik Mumberg
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, LE1 7RH Leicester, U.K
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | | |
Collapse
|
65
|
Mohrherr J, Haber M, Breitenecker K, Aigner P, Moritsch S, Voronin V, Eferl R, Moriggl R, Stoiber D, Győrffy B, Brcic L, László V, Döme B, Moldvay J, Dezső K, Bilban M, Popper H, Moll HP, Casanova E. JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression. Int J Cancer 2019; 145:3376-3388. [PMID: 31407334 PMCID: PMC6856680 DOI: 10.1002/ijc.32624] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Oncogenic K-RAS has been difficult to target and currently there is no K-RAS-based targeted therapy available for patients suffering from K-RAS-driven lung adenocarcinoma (AC). Alternatively, targeting K-RAS-downstream effectors, K-RAS-cooperating signaling pathways or cancer hallmarks, such as tumor-promoting inflammation, has been shown to be a promising therapeutic strategy. Since the JAK-STAT pathway is considered to be a central player in inflammation-mediated tumorigenesis, we investigated here the implication of JAK-STAT signaling and the therapeutic potential of JAK1/2 inhibition in K-RAS-driven lung AC. Our data showed that JAK1 and JAK2 are activated in human lung AC and that increased activation of JAK-STAT signaling correlated with disease progression and K-RAS activity in human lung AC. Accordingly, administration of the JAK1/2 selective tyrosine kinase inhibitor ruxolitinib reduced proliferation of tumor cells and effectively reduced tumor progression in immunodeficient and immunocompetent mouse models of K-RAS-driven lung AC. Notably, JAK1/2 inhibition led to the establishment of an antitumorigenic tumor microenvironment, characterized by decreased levels of tumor-promoting chemokines and cytokines and reduced numbers of infiltrating myeloid derived suppressor cells, thereby impairing tumor growth. Taken together, we identified JAK1/2 inhibition as promising therapy for K-RAS-driven lung AC.
Collapse
Affiliation(s)
- Julian Mohrherr
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Marcel Haber
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Kristina Breitenecker
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Petra Aigner
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Stefan Moritsch
- Institute of Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Viktor Voronin
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Robert Eferl
- Institute of Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Medical University of ViennaViennaAustria
| | - Dagmar Stoiber
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Balázs Győrffy
- MTA TK Lendület Cancer Biomarker Research Group, Institute of Enzymology, and Second Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Luka Brcic
- Diagnostic & Research Institute of PathologyMedical University of GrazGrazAustria
| | - Viktória László
- Division of Thoracic Surgery, Department of Surgery & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
| | - Balázs Döme
- Division of Thoracic Surgery, Department of Surgery & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐guided Therapy, Division of Molecular and Gender ImagingMedical University of ViennaViennaAustria
- Department of Tumor Biology, National Korányi Institute of PulmonologySemmelweis UniversityBudapestHungary
- Department of Thoracic SurgeryNational Institute of Oncology and Semmelweis UniversityBudapestHungary
| | - Judit Moldvay
- Department of Tumor Biology, National Korányi Institute of PulmonologySemmelweis UniversityBudapestHungary
- SE‐NAP Brain Metastasis Research Group, 2nd Department of PathologySemmelweis UniversityBudapestHungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Martin Bilban
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Core FacilitiesMedical University of ViennaViennaAustria
| | - Helmut Popper
- Diagnostic & Research Institute of PathologyMedical University of GrazGrazAustria
| | - Herwig P. Moll
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC)Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| |
Collapse
|
66
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
67
|
Ritter JL, Zhu Z, Thai TC, Mahadevan NR, Mertins P, Knelson EH, Piel BP, Han S, Jaffe JD, Carr SA, Barbie DA, Barbie TU. Phosphorylation of RAB7 by TBK1/IKKε Regulates Innate Immune Signaling in Triple-Negative Breast Cancer. Cancer Res 2019; 80:44-56. [PMID: 31662325 DOI: 10.1158/0008-5472.can-19-1310] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease enriched for mutations in PTEN and dysregulation of innate immune signaling. Here, we demonstrate that Rab7, a recently identified substrate of PTEN phosphatase activity, is also a substrate of the innate immune signaling kinases TANK-binding kinase 1 (TBK1)/IκB kinase ε (IKKε) on the same serine-72 (S72) site. An unbiased search for novel TBK1/IKKε substrates using stable isotope labeling with amino acids in cell culture phosphoproteomic analysis identified Rab7-S72 as a top hit. PTEN-null TNBC cells expressing a phosphomimetic version of Rab7-S72 exhibited diffuse cytosolic Rab7 localization and enhanced innate immune signaling, in contrast to a kinase-resistant version, which localized to active puncta that promote lysosomal-mediated stimulator of interferon genes (STING) degradation. Thus, convergence of PTEN loss and TBK1/IKKε activation on Rab7-S72 phosphorylation limited STING turnover and increased downstream production of IRF3 targets including CXCL10, CCL5, and IFNβ. Consistent with this data, PTEN-null TNBC tumors expressed higher levels of STING, and PTEN-null TNBC cell lines were hyperresponsive to STING agonists. Together, these findings begin to uncover how innate immune signaling is dysregulated downstream of TBK1/IKKε in a subset of TNBCs and reveals previously unrecognized cross-talk with STING recycling that may have implications for STING agonism in the clinic. SIGNIFICANCE: These findings identify Rab7 as a substrate for TBK1 for regulation of innate immune signaling, thereby providing important insight for strategies aimed at manipulating the immune response to enhance therapeutic efficacy in TNBC.
Collapse
Affiliation(s)
- Jessica L Ritter
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Zehua Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Philipp Mertins
- Broad Institute of Harvard and MIT, Cambridge, MA.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Brandon P Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Saemi Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Thanh U Barbie
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA. .,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
68
|
JAKs to STATs: A tantalizing therapeutic target in acute myeloid leukemia. Blood Rev 2019; 40:100634. [PMID: 31677846 DOI: 10.1016/j.blre.2019.100634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Abstract
The Janus Associated Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathway plays a pivotal role in hematopoietic growth factor signaling. Hyperactive JAK-STAT signaling is implicated in the pathogenesis of myeloid malignancies, including acute myeloid leukemia (AML). The significant headway in understanding the biology of AML has led to an explosion of novel therapeutics with mechanistic rationale for the treatment of newly diagnosed and relapsed/refractory (R/R) AML. Most importantly, selective targeting of the JAK-STAT pathway has proven to be an effective therapeutic strategy in myeloproliferative neoplasms and is also being evaluated in related myeloid malignancies, including AML. This comprehensive review will focus on the apparent and evolving potential of JAK-STAT pathway inhibition in AML with emphasis on JAK inhibitors, highlighting both success and failure with this experimental approach in the clinic, and identifying rationally based combinatorial approaches.
Collapse
|
69
|
Fraser J, Simpson J, Fontana R, Kishi‐Itakura C, Ktistakis NT, Gammoh N. Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep 2019; 20:e47734. [PMID: 31448519 PMCID: PMC6776898 DOI: 10.15252/embr.201947734] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Despite recently uncovered connections between autophagy and the endocytic pathway, the role of autophagy in regulating endosomal function remains incompletely understood. Here, we find that the ablation of autophagy-essential players disrupts EGF-induced endocytic trafficking of EGFR. Cells lacking ATG7 or ATG16L1 exhibit increased levels of phosphatidylinositol-3-phosphate (PI(3)P), a key determinant of early endosome maturation. Increased PI(3)P levels are associated with an accumulation of EEA1-positive endosomes where EGFR trafficking is stalled. Aberrant early endosomes are recognised by the autophagy machinery in a TBK1- and Gal8-dependent manner and are delivered to LAMP2-positive lysosomes. Preventing this homeostatic regulation of early endosomes by autophagy reduces EGFR recycling to the plasma membrane and compromises downstream signalling and cell survival. Our findings uncover a novel role for the autophagy machinery in maintaining early endosome function and growth factor sensing.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Joanne Simpson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Rosa Fontana
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | | | | | - Noor Gammoh
- Cancer Research UK Edinburgh CentreInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
70
|
Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol 2019; 9:965. [PMID: 31681559 PMCID: PMC6798062 DOI: 10.3389/fonc.2019.00965] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is a devastating disease process that touches the lives of millions worldwide. Despite advances in our understanding of the genomic architecture of cancers and the mechanisms that underlie cancer development, a great therapeutic challenge remains. Here, we revisit the birthplace of cancer biology and review how one of the first discovered oncogenes, RAS, drives cancers in new and unexpected ways. As our understanding of oncogenic signaling has evolved, it is clear that RAS signaling is not homogenous, but activates distinct downstream effectors in different cancer types and grades. RAS signaling is tightly controlled through a series of post-transcriptional mechanisms, which are frequently distorted in the context of cancer, and establish key metabolic and immunologic states that support cancer growth, migration, survival, metastasis, and plasticity. While targeting RAS has been fiercely pursued for decades, new strategies have recently emerged with the potential for therapeutic efficacy. Thus, understanding the complexities of RAS biology may translate into improved therapies for patients with RAS-driven cancers.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, Case Western University, Cleveland, OH, United States
| | - Xiuxing Wang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
The kinases IKBKE and TBK1 regulate MYC-dependent survival pathways through YB-1 in AML and are targets for therapy. Blood Adv 2019; 2:3428-3442. [PMID: 30504235 DOI: 10.1182/bloodadvances.2018016733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
To identify novel therapeutic targets in acute myeloid leukemia (AML), we examined kinase expression patterns in primary AML samples. We found that the serine/threonine kinase IKBKE, a noncanonical IkB kinase, is expressed at higher levels in myeloid leukemia cells compared with normal hematopoietic cells. Inhibiting IKBKE, or its close homolog TANK-binding kinase 1 (TBK1), by either short hairpin RNA knockdown or pharmacological compounds, induces apoptosis and reduces the viability of AML cells. Using gene expression profiling and gene set enrichment analysis, we found that IKBKE/TBK1-sensitive AML cells typically possess an MYC oncogenic signature. Consistent with this finding, the MYC oncoprotein was significantly downregulated upon IKBKE/TBK1 inhibition. Using proteomic analysis, we found that the oncogenic gene regulator YB-1 was activated by IKBKE/TBK1 through phosphorylation, and that YB-1 binds to the MYC promoter to enhance MYC gene transcription. Momelotinib (CYT387), a pharmacological inhibitor of IKBKE/TBK1, inhibits MYC expression, reduces viability and clonogenicity of primary AML cells, and demonstrates efficacy in a murine model of AML. Together, these data identify IKBKE/TBK1 as a promising therapeutic target in AML.
Collapse
|
72
|
Hofland T, de Weerdt I, ter Burg H, de Boer R, Tannheimer S, Tonino SH, Kater AP, Eldering E. Dissection of the Effects of JAK and BTK Inhibitors on the Functionality of Healthy and Malignant Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 203:2100-2109. [DOI: 10.4049/jimmunol.1900321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
|
73
|
Fisher DAC, Miner CA, Engle EK, Hu H, Collins TB, Zhou A, Allen MJ, Malkova ON, Oh ST. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia 2019; 33:1978-1995. [PMID: 30718771 PMCID: PMC6813809 DOI: 10.1038/s41375-019-0379-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The distinct clinical features of myelofibrosis (MF) have been attributed in part to dysregulated inflammatory cytokine production. Circulating cytokine levels are elevated in MF patients; a subset of which have been shown to be poor prognostic indicators. In this study, cytokine overproduction was examined in MF patient plasma and in MF blood cells ex vivo using mass cytometry. Plasma cytokines measured following treatment with ruxolitinib remained markedly abnormal, indicating that aberrant cytokine production persists despite therapeutic JAK2 inhibition. In MF patient samples, 14/15 cytokines measured by mass cytometry were found to be constitutively overproduced, with the principal cellular source for most cytokines being monocytes, implicating a non-cell-autonomous role for monocyte-derived cytokines impacting disease-propagating stem/progenitor cells in MF. The majority of cytokines elevated in MF exhibited ex vivo hypersensitivity to thrombopoietin (TPO), toll-like receptor (TLR) ligands, and/or tumor necrosis factor (TNF). A subset of this group (including TNF, IL-6, IL-8, IL-10) was minimally sensitive to ruxolitinib. All TPO/TLR/TNF-sensitive cytokines, however, were sensitive to pharmacologic inhibition of NFκB and/or MAP kinase signaling. These results indicate that NFκB and MAP kinase signaling maintain cytokine overproduction in MF, and that inhibition of these pathways may provide optimal control of inflammatory pathophysiology in MF.
Collapse
Affiliation(s)
- Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathrine A Miner
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth K Engle
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hengrui Hu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Program in Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor B Collins
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Zhou
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie J Allen
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga N Malkova
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
74
|
Saliani M, Jalal R, Ahmadian MR. From basic researches to new achievements in therapeutic strategies of KRAS-driven cancers. Cancer Biol Med 2019; 16:435-461. [PMID: 31565476 PMCID: PMC6743616 DOI: 10.20892/j.issn.2095-3941.2018.0530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Among the numerous oncogenes involved in human cancers, KRAS represents the most studied and best characterized cancer-related genes. Several therapeutic strategies targeting oncogenic KRAS (KRAS onc ) signaling pathways have been suggested, including the inhibition of synthetic lethal interactions, direct inhibition of KRAS onc itself, blockade of downstream KRAS onc effectors, prevention of post-translational KRAS onc modifications, inhibition of the induced stem cell-like program, targeting of metabolic peculiarities, stimulation of the immune system, inhibition of inflammation, blockade of upstream signaling pathways, targeted RNA replacement, and oncogene-induced senescence. Despite intensive and continuous efforts, KRAS onc remains an elusive target for cancer therapy. To highlight the progress to date, this review covers a collection of studies on therapeutic strategies for KRAS published from 1995 to date. An overview of the path of progress from earlier to more recent insights highlight novel opportunities for clinical development towards KRASonc-signaling targeted therapeutics.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Research Cell and Molecular Biology, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
75
|
Lee SJ, Gharbi A, You JS, Han HD, Kang TH, Hong SH, Park WS, Jung ID, Park YM. Drug repositioning of TANK-binding kinase 1 inhibitor CYT387 as an alternative for the treatment of Gram-negative bacterial sepsis. Int Immunopharmacol 2019; 73:482-490. [DOI: 10.1016/j.intimp.2019.05.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
|
76
|
Xie M, Zheng H, Madan-Lala R, Dai W, Gimbrone NT, Chen Z, Kinose F, Blackstone SA, Smalley KSM, Cress WD, Haura EB, Rix U, Beg AA. MEK Inhibition Modulates Cytokine Response to Mediate Therapeutic Efficacy in Lung Cancer. Cancer Res 2019; 79:5812-5825. [PMID: 31362929 DOI: 10.1158/0008-5472.can-19-0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Activating mutations in BRAF, a key mediator of RAS signaling, are present in approximately 50% of melanoma patients. Pharmacologic inhibition of BRAF or the downstream MAP kinase MEK is highly effective in treating BRAF-mutant melanoma. In contrast, RAS pathway inhibitors have been less effective in treating epithelial malignancies, such as lung cancer. Here, we show that treatment of melanoma patients with BRAF and MEK inhibitors (MEKi) activated tumor NF-κB activity. MEKi potentiated the response to TNFα, a potent activator of NF-κB. In both melanoma and lung cancer cells, MEKi increased cell-surface expression of TNFα receptor 1 (TNFR1), which enhanced NF-κB activation and augmented expression of genes regulated by TNFα and IFNγ. Screening of 289 targeted agents for the ability to increase TNFα and IFNγ target gene expression demonstrated that this was a general activity of inhibitors of MEK and ERK kinases. Treatment with MEKi led to acquisition of a novel vulnerability to TNFα and IFNγ-induced apoptosis in lung cancer cells that were refractory to MEKi killing and augmented cell-cycle arrest. Abolishing the expression of TNFR1 on lung cancer cells impaired the antitumor efficacy of MEKi, whereas the administration of TNFα and IFNγ in MEKi-treated mice enhanced the antitumor response. Furthermore, immunotherapeutics known to induce expression of these cytokines synergized with MEKi in eradicating tumors. These findings define a novel cytokine response modulatory function of MEKi that can be therapeutically exploited. SIGNIFICANCE: Lung cancer cells are rendered sensitive to MEK inhibitors by TNFα and IFNγ, providing a strong mechanistic rationale for combining immunotherapeutics, such as checkpoint blockers, with MEK inhibitor therapy for lung cancer.See related commentary by Havel, p. 5699.
Collapse
Affiliation(s)
- Mengyu Xie
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Wenjie Dai
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Nicholas T Gimbrone
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida.,Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Zhihua Chen
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | | | - W Douglas Cress
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Uwe Rix
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida. .,Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
77
|
Kim JW, Abudayyeh OO, Yeerna H, Yeang CH, Stewart M, Jenkins RW, Kitajima S, Konieczkowski DJ, Medetgul-Ernar K, Cavazos T, Mah C, Ting S, Van Allen EM, Cohen O, Mcdermott J, Damato E, Aguirre AJ, Liang J, Liberzon A, Alexe G, Doench J, Ghandi M, Vazquez F, Weir BA, Tsherniak A, Subramanian A, Meneses-Cime K, Park J, Clemons P, Garraway LA, Thomas D, Boehm JS, Barbie DA, Hahn WC, Mesirov JP, Tamayo P. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States. Cell Syst 2019; 5:105-118.e9. [PMID: 28837809 DOI: 10.1016/j.cels.2017.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/01/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms.
Collapse
Affiliation(s)
- Jong Wook Kim
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Omar O Abudayyeh
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Huwate Yeerna
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Chen-Hsiang Yeang
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Michelle Stewart
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Russell W Jenkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David J Konieczkowski
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kate Medetgul-Ernar
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Taylor Cavazos
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Clarence Mah
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Stephanie Ting
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Eliezer M Van Allen
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ofir Cohen
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John Mcdermott
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Emily Damato
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew J Aguirre
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Jonathan Liang
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Arthur Liberzon
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gabriella Alexe
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - John Doench
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mahmoud Ghandi
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Francisca Vazquez
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Barbara A Weir
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviad Tsherniak
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aravind Subramanian
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karina Meneses-Cime
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Jason Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Paul Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Levi A Garraway
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - David Thomas
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jesse S Boehm
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - David A Barbie
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William C Hahn
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jill P Mesirov
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Pablo Tamayo
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
78
|
IL-17C-mediated innate inflammation decreases the response to PD-1 blockade in a model of Kras-driven lung cancer. Sci Rep 2019; 9:10353. [PMID: 31316109 PMCID: PMC6637115 DOI: 10.1038/s41598-019-46759-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with neutrophilic lung inflammation and CD8 T cell exhaustion and is an important risk factor for the development of non-small cell lung cancer (NSCLC). The clinical response to programmed cell death-1 (PD-1) blockade in NSCLC patients is variable and likely affected by a coexisting COPD. The pro-inflammatory cytokine interleukin-17C (IL-17C) promotes lung inflammation and is present in human lung tumors. Here, we used a Kras-driven lung cancer model to examine the function of IL-17C in inflammation-promoted tumor growth. Genetic ablation of Il-17c resulted in a decreased recruitment of inflammatory cells into the tumor microenvironment, a decreased expression of tumor-promoting cytokines (e.g. interleukin-6 (IL-6)), and a reduced tumor proliferation in the presence of Haemophilus influenzae- (NTHi) induced COPD-like lung inflammation. Chronic COPD-like inflammation was associated with the expression of PD-1 in CD8 lymphocytes and the membrane expression of the programmed death ligand (PD-L1) independent of IL-17C. Tumor growth was decreased in Il-17c deficient mice but not in wildtype mice after anti-PD-1 treatment. Our results suggest that strategies targeting innate immune mechanisms, such as blocking of IL-17C, may improve the response to anti-PD-1 treatment in lung cancer patients.
Collapse
|
79
|
Wang X, Teng F, Lu J, Mu D, Zhang J, Yu J. Expression and prognostic role of IKBKE and TBK1 in stage I non-small cell lung cancer. Cancer Manag Res 2019; 11:6593-6602. [PMID: 31406474 PMCID: PMC6642623 DOI: 10.2147/cmar.s204924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The inhibitors of nuclear factor kappa-B kinase subunit epsilon (IKBKE) and TANK-binding kinase 1 (TBK1) are important members of the nonclassical IKK family that share the kinase domain. They are important oncogenes for activation of several signaling pathways in several tumors. This study aims to explore the expression of IKBKE and TBK1 and their prognostic role in stage I non-small cell lung cancer (NSCLC). PATIENTS AND METHODS A total of 142 surgically resected stage I NSCLC patients were enrolled and immunohistochemistry of IKBKE and TBK1 was performed. RESULTS IKBKE and TBK1 were expressed in 121 (85.2%) and 114 (80.3%) of stage I NSCLC patients respectively. IKBKE expression was significantly associated with TBK1 expression (P=0.004). Furthermore, multivariate regression analyses showed there was a significant relationship between patients with risk factors, the recurrence pattern of metastasis and IKBKE+/TBK1+ co-expression (P=0.032 and P=0.022, respectively). In Kaplan-Meier survival curve analyses, the IKBKE+/TBK1+ co-expression subgroup was significantly associated with poor overall survival (P=0.014). CONCLUSIONS This is the first study to investigate the relationship between IKBKE and TBK1 expression and clinicopathologic characteristics in stage I NSCLC patients. IKBKE+/TBK1+ co-expression was significantly obvious in patients with risk factors and with recurrence pattern of distant metastasis. Furthermore, IKBKE+/TBK1+ is also an effective prognostic predictor for poor overall survival.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei430060, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan, Shandong250014, People’s Republic of China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei430060, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| |
Collapse
|
80
|
Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nat Commun 2019; 10:3055. [PMID: 31296870 PMCID: PMC6624260 DOI: 10.1038/s41467-019-11044-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 06/17/2019] [Indexed: 11/09/2022] Open
Abstract
KRAS mutations are present in over 90% of pancreatic ductal adenocarcinomas (PDAC), and drive their poor outcomes and failure to respond to targeted therapies. Here we show that Leukemia Inhibitory Factor (LIF) expression is induced specifically by oncogenic KRAS in PDAC and that LIF depletion by genetic means or by neutralizing antibodies prevents engraftment in pancreatic xenograft models. Moreover, LIF-neutralizing antibodies synergize with gemcitabine to eradicate established pancreatic tumors in a syngeneic, KrasG12D-driven, PDAC mouse model. The related cytokine IL-6 cannot substitute for LIF, suggesting that LIF mediates KRAS-driven malignancies through a non-STAT-signaling pathway. Unlike IL-6, LIF inhibits the activity of the Hippo-signaling pathway in PDACs. Depletion of YAP inhibits the function of LIF in human PDAC cells. Our data suggest a crucial role of LIF in KRAS-driven pancreatic cancer and that blockade of LIF by neutralizing antibodies represents an attractive approach to improving therapeutic outcomes. KRAS mutations are frequent in pancreatic ductal adenocarcinoma, leading to bad prognosis and resistance to targeted therapies. Here, the authors show that LIF expression is specifically induced by KRAS and constitutes a potential target to treat these KRAS-mutated cancers.
Collapse
|
81
|
Bruxiola G, Cejalvo JM, Gambardella V, Cervantes A. In the literature: April 2019. ESMO Open 2019; 4:e000513. [PMID: 31231563 PMCID: PMC6555608 DOI: 10.1136/esmoopen-2019-000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Gema Bruxiola
- CIBERONC, Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Juan-Miguel Cejalvo
- CIBERONC, Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Valentina Gambardella
- CIBERONC, Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- CIBERONC, Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
82
|
Yang Q, Salim L, Yan C, Gong Z. Rapid Analysis of Effects of Environmental Toxicants on Tumorigenesis and Inflammation Using a Transgenic Zebrafish Model for Liver Cancer. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:396-405. [PMID: 30852708 DOI: 10.1007/s10126-019-09889-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Liver cancer remains to be a major health concern in the world today. Several major risk factors such as hepatitis viral infection and non-alcoholic steatohepatitis have been well established for causing liver cancer, but the contribution of environmental pollutants to liver inflammation and carcinogenesis remains poorly studied. Here, we aimed at the development of a rapid assay to test selected environmental toxicants for their potential roles in induction of inflammation and stimulation of liver tumorigenesis. By using an established kras oncogene transgenic zebrafish model for liver cancer, we tested a total of eight selected chemicals. First, using LPS (lipopolysaccharides) as a positive control, we confirmed its effects on induction of inflammation and stimulation of liver tumorigenesis as indicated by increases of neutrophils and the size of oncogenic livers respectively. Next, we tested two heavy metals (arsenic and chromium) and five organic toxicants (bisphenol A, lindane, N-nitrosodiethylamine, and 3,3',4,4',5-pentachlorobiphenyl [PCB126], and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]). We observed a good correlation on induction of inflammation and their ability for stimulation of liver tumorigenesis. Most toxicants, namely chromium, bisphenol A, lindane, N-nitrosodiethylamine, and PCB126, resulted in increased inflammation and liver tumorigenesis, while arsenic and TCDD had opposite effects. Thus, our study established a screening system to rapidly assess the effects of candidate chemicals on liver tumorigenesis and inflammation.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Lyana Salim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore.
| |
Collapse
|
83
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
84
|
Balachandran VP, Beatty GL, Dougan SK. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019; 156:2056-2072. [PMID: 30660727 PMCID: PMC6486864 DOI: 10.1053/j.gastro.2018.12.038] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer in the United States by 2025, with 5-year survival at less than 10%. In other recalcitrant cancers, immunotherapy has shown unprecedented response rates, including durable remissions after drug discontinuation. However, responses to immunotherapy in PDAC are rare. Accumulating evidence in mice and humans suggests that this remarkable resistance is linked to the complex, dueling role of the immune system in simultaneously promoting and restraining PDAC. In this review, we highlight the rationale that supports pursuing immunotherapy in PDAC, outline the key barriers that limit immunotherapy efficacy, and summarize the primary preclinical and clinical efforts to sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, David M. Rubenstein Center for Pancreatic Cancer Research, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, and Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
85
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
86
|
Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA. Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight 2019; 5:126117. [PMID: 30938713 PMCID: PMC6538328 DOI: 10.1172/jci.insight.126117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/27/2019] [Indexed: 01/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an activating mutation in KRAS. Direct inhibition of KRAS through pharmacological means remains a challenge; however, targeting key KRAS effectors has therapeutic potential. We investigated the contribution of TANK-binding kinase 1 (TBK1), a critical downstream effector of mutant active KRAS, to PDA progression. We report that TBK1 supports the growth and metastasis of KRAS-mutant PDA by driving an epithelial plasticity program in tumor cells that enhances invasive and metastatic capacity. Further, we identify that the receptor tyrosine kinase Axl induces TBK1 activity in a Ras-RalB-dependent manner. These findings demonstrate that TBK1 is central to an Axl-driven epithelial-mesenchymal transition in KRAS-mutant PDA and suggest that interruption of the Axl-TBK1 signaling cascade above or below KRAS has potential therapeutic efficacy in this recalcitrant disease.
Collapse
Affiliation(s)
- Victoria H. Cruz
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | - Emily N. Arner
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | - Wenting Du
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
| | | | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and the Hamon Center for Therapeutic Oncology Research
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
87
|
BTK signaling drives CD1d hiCD5 + regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene 2019; 38:3316-3324. [PMID: 30635655 PMCID: PMC6486434 DOI: 10.1038/s41388-018-0668-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/15/2018] [Accepted: 12/15/2018] [Indexed: 01/05/2023]
Abstract
The immune microenvironment of pancreatic ductal adenocarcinoma (PDAC) is comprised of a heterogeneous population of cells that are critical for disease evolution. Prominent among these are the specialized CD1dhiCD5+ regulatory B (Breg) cells that exert a pro-tumorigenic role by promoting tumor cell proliferation. Dissecting the molecular pathways regulating this immune sub-population can thus be valuable for uncovering potential therapeutic targets. Here, we investigate Bruton’s Tyrosine Kinase (BTK), a key B cell kinase, as a potential regulator of CD1dhiCD5+ Breg differentiation in the pancreatic tumor microenvironment. Treatment of cytokine-induced B cells in vitro with the high specificity BTK inhibitor Tirabrutinib inhibited CD1dhiCD5+ Breg differentiation and production of IL-10 and IL-35, essential mediators of Breg immunosuppressive functions. The BTK signaling pathway was also found to be active in vivo in PanIN-associated regulatory B cells. Tirabrutinib treatment of mice bearing orthotopic KrasG12D-pancreatic lesions severely compromised stromal accumulation of the CD1dhiCD5+ Breg population. This was accompanied by an increase in stromal CD8+IFNγ+ cytotoxic T cells and significant attenuation of tumor cell proliferation and PanIN growth. Our results uncover a novel role for BTK in regulating CD1dhiCD5+ Breg differentiation and emphasize its potential as a therapeutic target for pancreatic cancer.
Collapse
|
88
|
Rosell R, Karachaliou N, Codony-Servat C, Ito M. Inhibition of MEK, a canonical KRAS pathway effector in KRAS mutant NSCLC. Transl Lung Cancer Res 2018; 7:S183-S186. [PMID: 30393596 DOI: 10.21037/tlcr.2018.03.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain
| | - Niki Karachaliou
- Instituto Oncológico Rosell (IOR), Hospital Sagrat Cor, Quironsalud, Barcelona, Spain
| | | | - Masaoki Ito
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain.,Pangaea Oncology, Barcelona, Spain.,Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
89
|
Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat Commun 2018; 9:4589. [PMID: 30389925 PMCID: PMC6214980 DOI: 10.1038/s41467-018-07042-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Lung adenocarcinomas (LUADs) with mutations in the K-ras oncogene display dismal prognosis. Proinflammatory and immunomodulatory events that drive development of K-ras mutant LUAD are poorly understood. Here, we develop a lung epithelial specific K-ras mutant/Stat3 conditional knockout (LR/Stat3Δ/Δ) mouse model. Epithelial Stat3 deletion results in intriguing sex-associated discrepancies; K-ras mutant tumors are decreased in female LR/Stat3Δ/Δ mice whereas tumor burdens are increased in males. RNA-sequencing and tumor microenvironment (TME) analysis demonstrate increased anti-tumor immune responses following Stat3 deletion in females and, conversely, elevated pro-tumor immune pathways in males. While IL-6 blockade in male LR/Stat3Δ/Δ mice reduces lung tumorigenesis, inhibition of estrogen receptor signaling in female mice augments K-ras mutant oncogenesis and reprograms lung TME toward a pro-tumor phenotype. Our data underscore a critical sex-specific role for epithelial Stat3 signaling in K-ras mutant LUAD, thus paving the way for developing personalized (e.g. sex-based) immunotherapeutic strategies for this fatal disease. Proinflammatory and immunomodulatory events that drive development of K-ras mutant lung adenocarcinoma (LUAD) are poorly understood. Here they develop a lung epithelial specific K-ras mutant/Stat3 conditional knockout mouse model and show a sex-specific role for epithelial Stat3 signaling in K-ras-mutant LUAD.
Collapse
|
90
|
Unique dependence on Sos1 in Kras G12D -induced leukemogenesis. Blood 2018; 132:2575-2579. [PMID: 30377195 DOI: 10.1182/blood-2018-09-874107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.
Collapse
|
91
|
Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M, Sundararaman SK, Tange S, Mitsuishi Y, Thai TC, Masuda S, Piel BP, Sholl LM, Kirschmeier PT, Paweletz CP, Watanabe H, Yajima M, Barbie DA. Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer. Cancer Discov 2018; 9:34-45. [PMID: 30297358 DOI: 10.1158/2159-8290.cd-18-0689] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
KRAS-driven lung cancers frequently inactivate TP53 and/or STK11/LKB1, defining tumor subclasses with emerging clinical relevance. Specifically, KRAS-LKB1 (KL)-mutant lung cancers are particularly aggressive, lack PD-L1, and respond poorly to immune checkpoint blockade (ICB). The mechanistic basis for this impaired immunogenicity, despite the overall high mutational load of KRAS-mutant lung cancers, remains obscure. Here, we report that LKB1 loss results in marked silencing of stimulator of interferon genes (STING) expression and insensitivity to cytoplasmic double-strand DNA (dsDNA) sensing. This effect is mediated at least in part by hyperactivation of DNMT1 and EZH2 activity related to elevated S-adenylmethionine levels and reinforced by DNMT1 upregulation. Ectopic expression of STING in KL cells engages IRF3 and STAT1 signaling downstream of TBK1 and impairs cellular fitness, due to the pathologic accumulation of cytoplasmic mitochondrial dsDNA associated with mitochondrial dysfunction. Thus, silencing of STING avoids these negative consequences of LKB1 inactivation, while facilitating immune escape. SIGNIFICANCE: Oncogenic KRAS-mutant lung cancers remain treatment-refractory and are resistant to ICB in the setting of LKB1 loss. These results begin to uncover the key underlying mechanism and identify strategies to restore STING expression, with important therapeutic implications because mitochondrial dysfunction is an obligate component of this tumor subtype.See related commentary by Corte and Byers, p. 16.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elena Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sujuan Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ryohei Yoshida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Shriram K Sundararaman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Shoichiro Tange
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yoichiro Mitsuishi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sayuri Masuda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brandon P Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Paul T Kirschmeier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hideo Watanabe
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
92
|
Rapino F, Close P. Wobble uridine tRNA modification: a new vulnerability of refractory melanoma. Mol Cell Oncol 2018; 5:e1513725. [PMID: 30525092 PMCID: PMC6276846 DOI: 10.1080/23723556.2018.1513725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 10/30/2022]
Abstract
The enzymes catalysing the modification of the wobble uridine (U34) of tRNAs (U34-enzymes) play an important role in tumor development. We have recently demonstrated that the U34-enzymes are crucial in the survival of glycolytic melanoma cultures through a codon-specific regulation of HIF1α mRNA translation. Moreover, depletion of U34-enzymes resensitizes resistant melanoma to targeted therapy. These results indicate that targeting U34-enzymes represents a new therapeutic opportunity for melanoma patients.
Collapse
Affiliation(s)
- Francesca Rapino
- Laboratory of Cancer Signaling, GIGA-Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Liège, Liège, Belgium
| |
Collapse
|
93
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
94
|
Kitajima S, Asahina H, Chen T, Guo S, Quiceno LG, Cavanaugh JD, Merlino AA, Tange S, Terai H, Kim JW, Wang X, Zhou S, Xu M, Wang S, Zhu Z, Thai TC, Takahashi C, Wang Y, Neve R, Stinson S, Tamayo P, Watanabe H, Kirschmeier PT, Wong KK, Barbie DA. Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS. Cancer Cell 2018; 34:439-452.e6. [PMID: 30205046 PMCID: PMC6422029 DOI: 10.1016/j.ccell.2018.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Despite extensive efforts, oncogenic KRAS remains resistant to targeted therapy. Combined downstream RAL-TBK1 and MEK inhibition induces only transient lung tumor shrinkage in KRAS-driven genetically engineered mouse models (GEMMs). Using the sensitive KRAS;LKB1 (KL) mutant background, we identify YAP1 upregulation and a therapy-induced secretome as mediators of acquired resistance. This program is reversible, associated with H3K27 promoter acetylation, and suppressed by BET inhibition, resensitizing resistant KL cells to TBK1/MEK inhibition. Constitutive YAP1 signaling promotes intrinsic resistance in KRAS;TP53 (KP) mutant lung cancer. Intermittent treatment with the BET inhibitor JQ1 thus overcomes resistance to combined pathway inhibition in KL and KP GEMMs. Using potent and selective TBK1 and BET inhibitors we further develop an effective therapeutic strategy with potential translatability to the clinic.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- AMP-Activated Protein Kinases
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- HEK293 Cells
- Humans
- Immunity, Innate/drug effects
- Insulin-Like Growth Factor I/immunology
- Insulin-Like Growth Factor I/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Transcription Factors
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hajime Asahina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; First Department of Medicine, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sujuan Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Laura Gutierrez Quiceno
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jillian D Cavanaugh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ashley A Merlino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shoichiro Tange
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xiaoen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Man Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zehua Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yujin Wang
- Gilead Sciences, Foster City, CA 94404, USA
| | | | | | - Pablo Tamayo
- Moores Cancer Center and School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hideo Watanabe
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul T Kirschmeier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
95
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
96
|
Affiliation(s)
- Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 26 Qiuyue Rd, Pudong, Shanghai 201210 China
| | - Nathanael S. Gray
- Department of Cancer Biology; Dana-Farber Cancer Institute; Boston MA 02215 USA
- Department of Biochemistry and Molecular Pharmacology; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
97
|
Barbie DA, Spira A, Kelly K, Humeniuk R, Kawashima J, Kong S, Koczywas M. Phase 1B Study of Momelotinib Combined With Trametinib in Metastatic, Kirsten Rat Sarcoma Viral Oncogene Homolog-Mutated Non-Small-Cell Lung Cancer After Platinum-Based Chemotherapy Treatment Failure. Clin Lung Cancer 2018; 19:e853-e859. [PMID: 30087028 PMCID: PMC6420784 DOI: 10.1016/j.cllc.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Specific treatment options are lacking for Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutated non-small-cell lung cancer (NSCLC) despite treatment advances in other mutation-driven subgroups. PATIENTS AND METHODS In this study we evaluated the multitargeted Janus kinase/TANK-binding kinase 1 (TBK1) inhibitor momelotinib combined with the mitogen/extracellular signal-related kinase (MEK)1/MEK2 inhibitor trametinib in patients with platinum-treated, refractory, metastatic, KRAS-mutated NSCLC. Dose escalations (3 + 3 design) were conducted with momelotinib in combination with trametinib 1.0 mg once daily, then with trametinib in combination with the maximum tolerated dose (MTD) of momelotinib. MTD was determined from dose-limiting toxicity (DLT) during patients' first 28-day cycle. Safety was the primary end point, and efficacy parameters, including disease control rate (DCR) at 8 weeks, were secondary end points. RESULTS Twenty-one patients were enrolled (median age: 68 years; 14 [66.7%] female). The MTD was momelotinib 150 mg twice daily in combination with trametinib 1.0 mg once daily. DLTs that determined the MTD were increased alanine aminotransferase and fatigue. The most common adverse events of any grade were nausea (n = 14 [66.7%]), diarrhea (n = 11 [52.4%]), and fatigue (n = 11 [52.4%]). The most common Grade ≥3 event was hypoxia (n = 3 [14.3%]). No patients achieved objective response. DCR at 8 weeks was 12 patients (57.1%) (90% confidence interval [CI], 37.2%-75.5%). Median progression-free and overall survival were 3.6 months (90% CI, 2.2-5.6 months) and 7.4 months (90% CI, 4.0-15.3 months), respectively. Maximum momelotinib plasma concentrations were reached 1 to 2 hours after dosing, but were insufficient to achieve significant TBK1 inhibition. CONCLUSION The additional use of momelotinib with trametinib does not improve on the activity of single-agent trametinib in KRAS-mutated NSCLC on the basis of historic data.
Collapse
Affiliation(s)
| | | | - Karen Kelly
- Department of Internal Medicine, University of California Davis, Sacramento, CA
| | | | | | | | - Marianna Koczywas
- Department of Medical Oncology & Therapeutics Research, City of Hope Cancer Center, Duarte, CA
| |
Collapse
|
98
|
Aguirre AJ, Hahn WC. Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031518. [PMID: 29101114 DOI: 10.1101/cshperspect.a031518] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
KRAS is the most commonly mutated oncogene in human cancer. Most KRAS-mutant cancers depend on sustained expression and signaling of KRAS, thus making it a high-priority therapeutic target. Unfortunately, development of direct small molecule inhibitors of KRAS function has been challenging. An alternative therapeutic strategy for KRAS-mutant malignancies involves targeting codependent vulnerabilities or synthetic lethal partners that are preferentially essential in the setting of oncogenic KRAS. KRAS activates numerous effector pathways that mediate proliferation and survival signals. Moreover, cancer cells must cope with substantial oncogenic stress conferred by mutant KRAS. These oncogenic signaling pathways and compensatory coping mechanisms of KRAS-mutant cancer cells form the basis for synthetic lethal interactions. Here, we review the compendium of previously identified codependencies in KRAS-mutant cancers, including the results of numerous functional genetic screens aimed at identifying KRAS synthetic lethal targets. Importantly, many of these vulnerabilities may represent tractable therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
99
|
Ng K, Hendifar A, Starodub A, Chaves J, Yang Y, Koh B, Barbie D, Hahn WC, Fuchs CS. Phase 1 dose-escalation study of momelotinib, a Janus kinase 1/2 inhibitor, combined with gemcitabine and nab-paclitaxel in patients with previously untreated metastatic pancreatic ductal adenocarcinoma. Invest New Drugs 2018; 37:159-165. [PMID: 30105668 PMCID: PMC6510909 DOI: 10.1007/s10637-018-0650-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Purpose Preclinical evidence suggests the importance of Janus activating kinase (JAK) and TANK-binding kinase 1 (TBK1) in pancreatic ductal adenocarcinoma (PDAC). We evaluated the safety and efficacy of momelotinib (MMB), a JAK1/2 inhibitor with additional activity against TBK1, plus albumin-bound paclitaxel + gemcitabine (nab-P + G), in patients with previously untreated metastatic PDAC. Experimental Design Patients were enrolled into five cohorts of increasing doses of MMB between 100 and 200 mg administered once or twice daily in combination with nab-P + G in 28-day cycles to determine maximum tolerated dose (MTD). Safety, efficacy, pharmacokinetics, and pharmacodynamics were assessed for all patients. Results Twenty-five patients were enrolled. Dose-limiting toxicities of Grade 3 diarrhea occurred in 1 patient each in the 100 and 200 mg MMB once-daily dose groups. MTD was not reached. The 200 mg MMB twice-daily was the maximum administered dose. Objective response rate was 28% (all partial responses), and 13 (52%) patients had a best response of stable disease. The most common adverse events (AEs) were fatigue (80%), nausea (76%), and anemia (68%). Grade 3 or 4 AEs, most commonly neutropenia (32%), were reported by 88% of patients, of which 44% were considered related to MMB. Pharmacokinetic analyses showed MMB concentrations were too low for TBK1 inhibition. Conclusions MMB was safe and well tolerated in combination with nab-P + G. As no OS or PFS benefit vs nab-P + G was apparent in context of suboptimal engagement of the target TBK1, this study does not support further development of MMB as a first-line therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Kimmie Ng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Andrew Hendifar
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | | | | | | | - Brian Koh
- Gilead Sciences, Foster City, CA, USA
| | - David Barbie
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center/Smilow Cancer Hospital, New Haven, CT, USA
| |
Collapse
|
100
|
Grimster NP, Anderson E, Alimzhanov M, Bebernitz G, Bell K, Chuaqui C, Deegan T, Ferguson AD, Gero T, Harsch A, Huszar D, Kawatkar A, Kettle JG, Lyne P, Read JA, Rivard Costa C, Ruston L, Schroeder P, Shi J, Su Q, Throner S, Toader D, Vasbinder M, Woessner R, Wang H, Wu A, Ye M, Zheng W, Zinda M. Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors. J Med Chem 2018; 61:5235-5244. [DOI: 10.1021/acs.jmedchem.8b00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Linette Ruston
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|