51
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
52
|
Soekojo CY, Chng WJ. Treatment Horizon in Multiple Myeloma. Eur J Haematol Suppl 2022; 109:425-440. [PMID: 35880395 DOI: 10.1111/ejh.13840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This paper reviews current and emerging therapies for MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex, heterogenous condition, and in recent years there has been an expansion in the number and range of treatments. Several new treatment approaches, including enhanced monoclonal antibodies, antibody-drug conjugates (ADC), bispecific T-cell engagers (BiTE) and chimeric antigen-T-cell therapy (CAR-T) are under development. CONCLUSIONS The emergence of new treatments that aim to tackle MM-associated immune dysfunction has led to improvements in overall survival.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
53
|
Rodriguez JE, Naigeon M, Goldschmidt V, Roulleaux Dugage M, Seknazi L, Danlos FX, Champiat S, Marabelle A, Michot JM, Massard C, Besse B, Ferrara R, Chaput N, Baldini C. Immunosenescence, inflammaging, and cancer immunotherapy efficacy. Expert Rev Anticancer Ther 2022; 22:915-926. [PMID: 35815381 DOI: 10.1080/14737140.2022.2098718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immunosenescence is a progressive remodeling of immune functions associated with a decreased ability of the immune system to set up an efficient immune response, both innate and adaptive, with an increase of highly differentiated T cells at the expense of naive T cells. The incidence and prevalence of most cancers increase with age, which can partly be explained by tumor escape mechanisms and decreased immunosurveillance. Aging is also associated with inflammaging, a low-grade proinflammatory state characterized by an increase in inflammatory mediators. Anti-cancer immunotherapy has profoundly changed the landscape of oncology therapy in the last 10 years. Modern T-cell targeted therapies such as bispecific T cell engagers, CAR-T cells, or immune checkpoint blockers may be theoretically affected by immunosenescence or inflammaging. AREAS COVERED A bibliographic review through PubMed and Embase was carried out using the following search terms: 'immunosenescence,' 'immunotherapy,' 'inflammaging,' 'bispecific antibodies,' 'CAR-T cells,' 'immune checkpoint blockers,' and 'older patients.' EXPERT OPINION This review explores the potential impact of immunosenescence and inflammaging on anti-cancer immunotherapy and therapeutic strategies that could counter immune senescence. A more dedicated research on immunosenescence biomarkers in future clinical trials is warranted for the development of new, more effective and safer therapies.
Collapse
Affiliation(s)
- Julieta E Rodriguez
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marie Naigeon
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, Villejuif, France.,School of Medicine, Paris-Saclay university, Kremlin Bicêtre, France.,School of Pharmacy, Paris-Saclay University, Chatenay, France
| | - Vincent Goldschmidt
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Matthieu Roulleaux Dugage
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, Villejuif, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lauren Seknazi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Francois X Danlos
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stephane Champiat
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Marie Michot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Massard
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- School of Medicine, Paris-Saclay university, Kremlin Bicêtre, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Roberto Ferrara
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France.,Department of Medical Oncology, Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Research, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, Villejuif, France.,School of Pharmacy, Paris-Saclay University, Chatenay, France
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
54
|
Stein-Merlob AF, Ganatra S, Yang EH. T-cell Immunotherapy and Cardiovascular Disease: Chimeric Antigen Receptor T-cell and Bispecific T-cell Engager Therapies. Heart Fail Clin 2022; 18:443-454. [PMID: 35718418 DOI: 10.1016/j.hfc.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell and bispecific T-cell engager (BiTE) therapies have revolutionized the treatment of refractory or relapsed leukemia and lymphoma. Increased use of these therapies has revealed signals of significant cardiotoxicity, including cardiomyopathy/heart failure, arrhythmia, myocardial injury, hemodynamic instability, and cardiovascular death mainly in the context of a profound inflammatory response to CAR T-cell antitumor effects known as cytokine release syndrome (CRS). Preexisting cardiovascular risk factors and disease may increase the risk of such cardiotoxicity. High index of suspicion and close monitoring is required for prompt recognition. Supportive hemodynamic care and targeted anti-IL-6 therapy, as well as possibly broader immunosuppression with corticosteroids, are the cornerstones of the management.
Collapse
Affiliation(s)
- Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, UCLA-Cardio-Oncology Program, University of California at Los Angeles, Los Angeles, CA, USA. https://twitter.com/A_SteinMerlob
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA.
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, UCLA-Cardio-Oncology Program, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
55
|
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7:187. [PMID: 35705538 PMCID: PMC9200817 DOI: 10.1038/s41392-022-01013-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Small-cell lung cancer (SCLC) encounters up 15% of all lung cancers, and is characterized by a high rate of proliferation, a tendency for early metastasis and generally poor prognosis. Most of the patients present with distant metastatic disease at the time of clinical diagnosis, and only one-third are eligible for potentially curative treatment. Recently, investigations into the genomic make-up of SCLC show extensive chromosomal rearrangements, high mutational burden and loss-of-function mutations of several tumor suppressor genes. Although the clinical development of new treatments for SCLC has been limited in recent years, a better understanding of oncogenic driver alterations has found potential novel targets that might be suitable for therapeutic approaches. Currently, there are six types of potential treatable signaling pathways in SCLC, including signaling pathways targeting the cell cycle and DNA repair, tumor development, cell metabolism, epigenetic regulation, tumor immunity and angiogenesis. At this point, however, there is still a lack of understanding of their role in SCLC tumor biology and the promotion of cancer growth. Importantly optimizing drug targets, improving drug pharmacology, and identifying potential biomarkers are the main focus and further efforts are required to recognize patients who benefit most from novel therapies in development. This review will focus on the current learning on the signaling pathways, the status of immunotherapy, and targeted therapy in SCLC.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | | | - Tongnei Lao
- Department of Oncology, Centro Medico BO CHI, Macao, SAR, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
56
|
Leick MB, Silva H, Scarfò I, Larson R, Choi BD, Bouffard AA, Gallagher K, Schmidts A, Bailey SR, Kann MC, Jan M, Wehrli M, Grauwet K, Horick N, Frigault MJ, Maus MV. Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia. Cancer Cell 2022; 40:494-508.e5. [PMID: 35452603 PMCID: PMC9107929 DOI: 10.1016/j.ccell.2022.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is effective in lymphoid malignancies, but there has been limited data in myeloid cancers. Here, we start with a CD27-based CAR to target CD70 ("native") in acute myeloid leukemia (AML), and we find modest efficacy in vivo, consistent with prior reports. We then use orthogonal approaches to increase binding on both the tumor and CAR-T cell sides of the immune synapse: a pharmacologic approach (azacitidine) to increase antigen density of CD70 in myeloid tumors, and an engineering approach to stabilize binding of the CAR to CD70. To accomplish the latter, we design a panel of hinge-modified regions to mitigate cleavage of the extracellular portion of CD27. Our CD8 hinge and transmembrane-modified CD70 CAR-T cells are less prone to cleavage, have enhanced binding avidity, and increased expansion, leading to more potent in vivo activity. This enhanced CD70-targeted CAR is a promising candidate for further clinical development.
Collapse
Affiliation(s)
- Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Kathleen Gallagher
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Korneel Grauwet
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Nora Horick
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
57
|
Martens AWJ, Rietveld JM, de Boer R, Peters FS, Ngo A, van Mil LWHG, de Heer K, Spaargaren M, Verkleij CPM, van de Donk NWCJ, Adams HC, Eldering E, van Noesel CJM, Verona R, Kater AP. Redirecting T-cell Activity with Anti-BCMA/Anti-CD3 Bispecific Antibodies in Chronic Lymphocytic Leukemia and Other B-cell Lymphomas. CANCER RESEARCH COMMUNICATIONS 2022; 2:330-341. [PMID: 36875718 PMCID: PMC9981202 DOI: 10.1158/2767-9764.crc-22-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
T-cell redirecting bispecific antibodies hold high promise for treatment of B-cell malignancies. B-cell maturation antigen (BCMA) exhibits high expression on normal and malignant mature B cells including plasma cells, which can be enhanced by inhibition of γ-secretase. BCMA is considered a validated target in multiple myeloma but whether mature B-cell lymphomas can be targeted by the BCMAxCD3 T-cell redirector teclistamab is currently unknown. BCMA expression on B-cell non-Hodgkin lymphoma and primary chronic lymphocytic leukemia (CLL) cells was assessed by flow cytometry and/or IHC. To assess teclistamab efficacy, cells were treated with teclistamab in presence of effector cells with/without γ-secretase inhibition. BCMA could be detected on all tested mature B-cell malignancy cell lines, while expression levels varied per tumor type. γ-secretase inhibition universally increased BCMA surface expression. These data were corroborated in primary samples from patients with Waldenstrom's macroglobulinemia, CLL, and diffuse large B-cell lymphoma. Functional studies with the B-cell lymphoma cell lines revealed teclistamab-mediated T-cell activation, proliferation, and cytotoxicity. This was independent of the level of BCMA expression, but generally lower in mature B-cell malignancies compared with multiple myeloma. Despite low BCMA levels, healthy donor T cells and CLL-derived T cells induced lysis of (autologous) CLL cells upon addition of teclistamab. These data show that BCMA is expressed on various B-cell malignancies and that lymphoma cell lines and primary CLL can be targeted using teclistamab. Further studies to understand the determinants of response to teclistamab are required to identify which other diseases might be suitable for teclistamab targeting. Significance Besides reported BCMA expression on multiple myeloma, we demonstrate BCMA can be detected and enhanced using γ-secretase inhibition on cell lines and primary material of various B-cell malignancies. Furthermore, using CLL we demonstrate that low BCMA-expressing tumors can be targeted efficiently using the BCMAxCD3 DuoBody teclistamab.
Collapse
Affiliation(s)
- Anne W J Martens
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Joanne M Rietveld
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Fleur S Peters
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - An Ngo
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lotte W H G van Mil
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Koen de Heer
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Flevoziekenhuis, Almere, the Netherlands
| | - Marcel Spaargaren
- Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, University of Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, the Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Homer C Adams
- Janssen Pharmaceutical Companies of Johnson & Johnson, Philadelphia, Pennsylvania
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, University of Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, the Netherlands
| | - Raluca Verona
- Janssen Pharmaceutical Companies of Johnson & Johnson, Philadelphia, Pennsylvania
| | - Arnon P Kater
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, the Netherlands
| |
Collapse
|
58
|
Belluomini L, Calvetti L, Inno A, Pasello G, Roca E, Vattemi E, Veccia A, Menis J, Pilotto S. SCLC Treatment in the Immuno-Oncology Era: Current Evidence and Unmet Needs. Front Oncol 2022; 12:840783. [PMID: 35494084 PMCID: PMC9047718 DOI: 10.3389/fonc.2022.840783] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Small cell lung cancer (SCLC) represents about 13%-15% of all lung cancers. It has a particularly unfavorable prognosis and in about 70% of cases occurs in the advanced stage (extended disease). Three phase III studies tested the combination of immunotherapy (atezolizumab, durvalumab with or without tremelimumab, and pembrolizumab) with double platinum chemotherapy, with practice-changing results. However, despite the high tumor mutational load and the chronic pro-inflammatory state induced by prolonged exposure to cigarette smoke, the benefit observed with immunotherapy is very modest and most patients experience disease recurrence. Unfortunately, biological, clinical, or molecular factors that can predict this risk have not yet been identified. Thanks to these clinically meaningful steps forward, SCLC is no longer considered an "orphan" disease. Innovative treatment strategies and combinations are currently under investigation to further improve the expected prognosis of patients with SCLC. Following the recent therapeutic innovations, we have reviewed the available literature data about SCLC management, with a focus on current unmet needs and potential predictive factors. In detail, the role of radiotherapy; fragile populations, such as elderly or low-performance status patients (ECOG PS 2), usually excluded from randomized studies; predictive factors of response useful to optimize and guide therapeutic choices; and new molecular targets and future combinations have been explored and revised.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Alessandro Inno
- Medical Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padua, Italy
| | - Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera del Garda, Italy
| | - Emanuela Vattemi
- Medical Oncology, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy
| | | | - Jessica Menis
- Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| | - Sara Pilotto
- Medical Oncology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
59
|
You R, Artichoker J, Ray A, Gonzalez Velozo H, Rock DA, Conner KP, Krummel MF. Visualizing Spatial and Stoichiometric Barriers to Bispecific T-cell Engager Efficacy. Cancer Immunol Res 2022; 10:698-712. [PMID: 35413104 DOI: 10.1158/2326-6066.cir-21-0594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/09/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Bispecific T-cell engager (BiTE) molecules are biologic T cell-directing immunotherapies. Blinatumomab is approved for treatment of B-cell malignancies, but BiTE molecule development in solid tumors has been more challenging. Here, we employed intravital imaging to characterize exposure and pharmacodynamic response of an anti-muCD3/anti-huEGFRvIII mouse surrogate BiTE molecule in epidermal growth factor receptor variant III (EGFRvIII)-positive breast tumors implanted within immunocompetent mice. Our study revealed heterogeneous temporal and spatial dynamics of BiTE molecule extravasation into solid tumors, highlighting physical barriers to BiTE molecule function. We also discovered that high, homogeneous EGFRvIII expression on cancer cells was necessary for a BiTE molecule to efficiently clear tumors. Additionally, we found that resident tumor-infiltrating lymphocytes (TILs) were sufficient for optimal tumor killing only at high BiTE molecule dosage, whereas inclusion of peripheral T-cell recruitment was synergistic at moderate to low dosages. We report that deletion of stimulatory conventional type I DCs (cDC1) diminished BiTE molecule-induced T-cell activation and tumor clearance, suggesting that in situ antigen-presenting cell (APC) engagements modulate the extent of BiTE molecule efficacy. In summary, our work identified multiple requirements for optimal BiTE molecule efficacy in solid tumors, providing insights that could be harnessed for solid cancer immunotherapy development.
Collapse
Affiliation(s)
- Ran You
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | - Jordan Artichoker
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
- Biological Imaging Development CoLab, University of California San Francisco, San Francisco, California
| | - Arja Ray
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | - Hugo Gonzalez Velozo
- Department of Anatomy, University of California San Francisco, San Francisco, California
| | - Dan A Rock
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California
| | - Kip P Conner
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
- Biological Imaging Development CoLab, University of California San Francisco, San Francisco, California
| |
Collapse
|
60
|
Lombardi A, Saydere A, Ungaro R, Bozzi G, Viero G, Bandera A, Gori A, Mondelli MU. Infectious events in patients treated with immune checkpoint inhibitors, chimeric antigen receptor T cells and Bi-specific T-cell engagers: a review of registration studies. Int J Infect Dis 2022; 120:77-82. [DOI: 10.1016/j.ijid.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
|
61
|
Selvaggio G, Parolo S, Bora P, Leonardelli L, Harrold J, Mehta K, Rock DA, Marchetti L. Computational Analysis of Cytokine Release Following Bispecific T-Cell Engager Therapy: Applications of a Logic-Based Model. Front Oncol 2022; 12:818641. [PMID: 35350575 PMCID: PMC8957948 DOI: 10.3389/fonc.2022.818641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bispecific T-cell engaging therapies harness the immune system to elicit an effective anticancer response. Modulating the immune activation avoiding potential adverse effects such as cytokine release syndrome (CRS) is a critical aspect to realizing the full potential of this therapy. The use of suitable exogenous intervention strategies to mitigate the CRS risk without compromising the antitumoral capability of bispecific antibody treatment is crucial. To this end, computational approaches can be instrumental to systematically exploring the effects of combining bispecific antibodies with CRS intervention strategies. Here, we employ a logical model to describe the action of bispecific antibodies and the complex interplay of various immune system components and use it to perform simulation experiments to improve the understanding of the factors affecting CRS. We performed a sensitivity analysis to identify the comedications that could ameliorate CRS without impairing tumor clearance. Our results agree with publicly available experimental data suggesting anti-TNF and anti-IL6 as possible co-treatments. Furthermore, we suggest anti-IFNγ as a suitable candidate for clinical studies.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Silvia Parolo
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Pranami Bora
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Lorena Leonardelli
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - John Harrold
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA, United States.,Quantitative Pharmacology & Disposition, Seattle Genetics, San Francisco, CA, United States
| | - Khamir Mehta
- Clinical Pharmacology, Modeling and Simulation, Amgen Inc., South San Francisco, CA, United States
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, CA, United States.,ADME and Discovery Toxicology, Merck, San Francisco, CA, United States
| | - Luca Marchetti
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
62
|
Antitumor activity of T cells secreting αCD133-αCD3 bispecific T-cell engager against cholangiocarcinoma. PLoS One 2022; 17:e0265773. [PMID: 35312724 PMCID: PMC8936442 DOI: 10.1371/journal.pone.0265773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.
Collapse
|
63
|
Ooki A, Yamaguchi K. The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221083049. [PMID: 35281349 PMCID: PMC8908406 DOI: 10.1177/17588359221083049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The histology- and morphology-based Lauren classification of GC has been widely used for over 50 years in clinical practice. The Lauren classification divides GC into intestinal and diffuse types, which have distinct etiology, molecular profiles, and clinicopathological features. Diffuse-type GC (DGC) accounts for approximately 30% of GCs. Tumor cells lack adhesion and infiltrate the stroma as single cells or small subgroups, leading to easy dissemination in the abdominal cavity. Clinically, DGC has aggressive traits with a high risk of recurrence and metastasis, which results in unfavorable prognosis. Although systemic chemotherapy is the main therapeutic approach for recurrent or metastatic GC patients, clinical benefits are limited for patients with DGC. Therefore, it is urgent to develop effective therapeutic strategies for DGC patients. Considerable research studies have characterized the molecular and genomic landscape of DGC, of which tight junction protein claudin-18 isoform 2 (CLDN18.2) and fibroblast growing factors receptor-2 isoform IIIb (FGFR2-IIIb) are the most attractive targets because of their close association with DGC. Recently, the impressive results of two phase II FAST and FIGHT trials demonstrate proof-of-concept, suggesting that anti-CLDN18.2 antibody (zolbetuximab) and FGFR2-IIIb antibody (bemarituzumab) are promising approaches for patients with CLDN18.2-positive and FGFR2-IIIb-positive GC, respectively. In this review, we summarize the clinicopathological features and molecular profiles of DGC and highlight a potential therapeutic target based on the findings of pivotal clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
64
|
Cheng WJ, Chuang KH, Lo YJ, Chen M, Chen YJ, Roffler SR, Ho HO, Lin SY, Sheu MT. Bispecific T-cell engagers non-covalently decorated drug-loaded PEGylated nanocarriers for cancer immunochemotherapy. J Control Release 2022; 344:235-248. [DOI: 10.1016/j.jconrel.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
|
65
|
Li G, Reid KM, Spitler K, Beatty N, Boucher J, Davila ML. CD3 engagement as a new strategy for allogeneic “off-the-shelf” T cell therapy. Mol Ther Oncolytics 2022; 24:887-896. [PMID: 35317526 PMCID: PMC8919219 DOI: 10.1016/j.omto.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic “off-the-shelf” (OTS) chimeric antigen receptor T cells (CAR-T cells) hold promise for more accessible CAR-T therapy. Here, we report a novel and simple way to make allogeneic OTS T cells targeting cancer. By engineering T cells with a bispecific T cell engager (BiTE), both TCRαβ and CD3ε expression on the T cell surface are dramatically reduced. BiTE-engineered T (BiTE-T) cells show reduced reaction to TCR stimulation in vitro and have low risk of graft-versus-host disease (GvHD) in vivo. BiTE-T cells down-regulated CD3ε/TCRαβ on bystander T cells by releasing BiTEs. BiTE-T cells produce much fewer cytokines and are comparable to CAR-T cells on anti-cancer efficacy in xenograft mouse models with pre-existing HLA-mismatched T cells. Co-expressing co-stimulatory factors or T cell-promoting cytokines enhanced BiTE-T cells. Our study suggests CD3ε engagement could be a new strategy for allogeneic T cell therapy worthy of further evaluation.
Collapse
Affiliation(s)
- Gongbo Li
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Gongbo Li, Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kayla M. Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristen Spitler
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nolan Beatty
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Justin Boucher
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Corresponding author Marco L. Davila, Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
66
|
Zhang C, Shi Y, Wu L, Wang C, Liao N, Wang F, Zhao B, Wang Y, Liu X. Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application. ACS Synth Biol 2022; 11:888-899. [PMID: 35113526 DOI: 10.1021/acssynbio.1c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
Collapse
Affiliation(s)
- Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Lingjie Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Chenyi Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| |
Collapse
|
67
|
Dorff TB, Narayan V, Forman SJ, Zang PD, Fraietta JA, June CH, Haas NB, Priceman SJ. Novel Redirected T-Cell Immunotherapies for Advanced Prostate Cancer. Clin Cancer Res 2022; 28:576-584. [PMID: 34675084 PMCID: PMC8866199 DOI: 10.1158/1078-0432.ccr-21-1483] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Immunotherapy has failed to achieve durable remissions in advanced prostate cancer patients. More potent T-cell-redirecting strategies may be needed to overcome the immunologically exclusive and suppressive tumor microenvironment. Clinical trials are underway, seeking to define the optimal target for T-cell redirection, such as PSMA, PSCA, or STEAP-1, as well as the optimal strategy, with CAR or bispecific antibodies. As results continue to emerge from these trials, understanding differential toxicity and efficacy of these therapies based on their targets and functional modifications will be key to advancing these promising therapies toward clinical practice. This review provides a unique depth and breadth of perspective regarding the diverse immunotherapy strategies currently under clinical investigation for men with advanced prostate cancer.
Collapse
Affiliation(s)
- Tanya B. Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Vivek Narayan
- Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Peter D. Zang
- University of Southern California, Los Angeles, California
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Naomi B. Haas
- Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
68
|
A cell-based phenotypic library selection and screening approach for the de novo discovery of novel functional chimeric antigen receptors. Sci Rep 2022; 12:1136. [PMID: 35064152 PMCID: PMC8782825 DOI: 10.1038/s41598-022-05058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-tumor therapies that seek to exploit and redirect the cytotoxic killing and effector potential of autologous or syngeneic T cells have shown extraordinary promise and efficacy in certain clinical settings. Such cells, when engineered to express synthetic chimeric antigen receptors (CARs) acquire novel targeting and activation properties which are governed and orchestrated by, typically, antibody fragments specific for a tumor antigen of interest. However, it is becoming increasingly apparent that not all antibodies are equal in this regard, with a growing appreciation that ‘optimal’ CAR performance requires a consideration of multiple structural and contextual parameters. Thus, antibodies raised by classical approaches and intended for other applications often perform poorly or not at all when repurposed as CARs. With this in mind, we have explored the potential of an in vitro phenotypic CAR library discovery approach that tightly associates antibody-driven bridging of tumor and effector T cells with an informative and functionally relevant CAR activation reporter signal. Critically, we demonstrate the utility of this enrichment methodology for ‘real world’ de novo discovery by isolating several novel anti-mesothelin CAR-active scFv candidates.
Collapse
|
69
|
Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics 2021; 23:571-581. [PMID: 34938857 DOI: 10.1016/j.omto.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses are well characterized and thus easily modified to generate oncolytic vectors that directly lyse tumor cells and can be "armed" with transgenes to promote lysis, antigen presentation, and immunostimulation. Oncolytic adenoviruses (OAds) are safe, versatile, and potent immunostimulants in patients. Since transgene expression is restricted to the tumor, adenoviral transgenes overcome the toxicities and short half-life of systemically administered cytokines, immune checkpoint blockade molecules, and bispecific T cell engagers. While OAds expressing immunostimulatory molecules ("armed" OAds) have demonstrated anti-tumor potential in preclinical solid tumor models, the efficacy has not translated into significant clinical outcomes as a monotherapy. However, OAds synergize with established standards of care and novel immunotherapeutic agents, providing a multifaceted means to address complexities associated with solid tumors. Critically, armed OAds revitalize endogenous and adoptively transferred immune cells while simultaneously enhancing their anti-tumor function. To properly evaluate these novel vectors and reduce the gap in the cycle between bench-to-bedside and back, improving model systems must be a priority. The future of OAds will involve a multidimensional approach that provides immunostimulatory molecules, immune checkpoint blockade, and/or immune engagers in concert with endogenous and exogenous immune cells to initiate durable and comprehensive anti-tumor responses.
Collapse
Affiliation(s)
- Greyson Willis Grossman Biegert
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
70
|
Indirect comparison of tisagenlecleucel and blinatumomab in pediatric relapsed/refractory acute lymphoblastic leukemia. Blood Adv 2021; 5:5387-5395. [PMID: 34597381 PMCID: PMC9152996 DOI: 10.1182/bloodadvances.2020004045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
This study provides the first patient-level data indirect comparison of tisagenlecleucel vs blinatumomab in R/R ALL. Tisagenlecleucel was associated with a comparatively higher likelihood of achieving CR and a lower hazard of death than blinatumomab.
In the absence of head-to-head trials, an indirect-treatment comparison can estimate the treatment effect of tisagenlecleucel in comparison with blinatumomab on rates of complete remission (CR) and overall survival (OS) in patients with relapsed or primary refractory (R/R) acute lymphoblastic leukemia (ALL). Patient-level data from two pivotal trials, ELIANA (tisagenlecleucel; n = 79) and MT103-205 (blinatumomab; n = 70), were used in comparisons of CR and OS, controlling for cross-trial difference in available patient characteristics. Five different adjustment approaches were implemented: stabilized inverse probability of treatment weight (sIPTW); trimmed sIPTW; stratification by propensity score quintiles; adjustment for prognostic factors; and adjustment for both prognostic factors and propensity score. Comparative analyses indicate that treatment with tisagenlecleucel was associated with a statistically significant higher likelihood of achieving CR and lower hazard of death than treatment with blinatumomab. The tisagenlecleucel group exhibited a higher likelihood of CR than the blinatumomab group in every analysis regardless of adjustment approach (odds ratios: 6.71-9.76). Tisagenlecleucel was also associated with a lower hazard of death than blinatumomab in every analysis, ranging from 68% to 74% lower hazard of death than with blinatumomab, determined using multiple adjustment approaches (hazard ratios: 0.26-0.32). These findings support the growing body of clinical trials and real-world evidence demonstrating that tisagenlecleucel is an important treatment option for children and young adults with R/R ALL.
Collapse
|
71
|
Cai W, Dong J, Gallolu Kankanamalage S, Titong A, Shi J, Jia Z, Wang B, Huang C, Zhang J, Lin J, Kan SZ, Han S, Zhou J, Liu Y. Biological activity validation of a computationally designed Rituximab/CD3 T cell engager targeting CD20+ cancers with multiple mechanisms of action. Antib Ther 2021; 4:228-241. [PMID: 34805746 PMCID: PMC8597964 DOI: 10.1093/abt/tbab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bispecific T cell engaging antibodies (TEAs) with one arm targeting a cancer antigen and another arm binding to CD3 have demonstrated impressive efficacy in multiple clinical studies. However, establishing a safety/efficacy balance remains challenging. For instance, some TEAs have severe safety issues. Additionally, not all patients or all cancer cells of one patient respond equally to TEAs. Methods Here, we developed a next-generation bispecific TEA with better safety/efficacy balance and expanded mechanisms of action. Using the computer-aided antibody design strategy, we replaced heavy chain complementarity-determining regions (HCDRs) in one Rituximab arm with HCDRs from a CD3 antibody and generated a novel CD20/CD3 bispecific antibody. Results After series of computer-aided sequence optimization, the lead molecule, GB261, showed great safety/efficacy balance both in vitro and in animal studies. GB261 exhibited high affinity to CD20 and ultra-low affinity to CD3. It showed comparable T cell activation and reduced cytokine secretion compared with a benchmark antibody (BM). ADCC and CDC caused by GB261 only killed CD20+ cells but not CD3+ cells. It exhibited better RRCL cell killing than the BM in a PBMC-engrafted, therapeutic treatment mouse model and good safety in cynomolgus monkeys. Conclusions Thus, GB261 is a promising novel TEA against CD20+ cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Wang
- Ab Studio Inc., Hayward, CA 94545, USA
| | - Cai Huang
- Ab Therapeutics Inc., Hayward, CA 94545, USA
| | - Jing Zhang
- Genor Biopharma Co. Ltd., Shanghai 201203, P.R.C
| | - Jun Lin
- Genor Biopharma Co. Ltd., Shanghai 201203, P.R.C
| | - Steven Z Kan
- Genor Biopharma Co. Ltd., Shanghai 201203, P.R.C
| | - Shuhua Han
- Genor Biopharma Co. Ltd., Shanghai 201203, P.R.C
| | - Joe Zhou
- Genor Biopharma Co. Ltd., Shanghai 201203, P.R.C
| | - Yue Liu
- Ab Studio Inc., Hayward, CA 94545, USA.,Ab Therapeutics Inc., Hayward, CA 94545, USA
| |
Collapse
|
72
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
73
|
Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother Cancer 2021; 9:e003679. [PMID: 34795007 PMCID: PMC8603282 DOI: 10.1136/jitc-2021-003679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma is the the most common primary brain tumor in adults. Onset of disease is followed by a uniformly lethal prognosis and dismal overall survival. While immunotherapies have revolutionized treatment in other difficult-to-treat cancers, these have failed to demonstrate significant clinical benefit in patients with glioblastoma. Obstacles to success include the heterogeneous tumor microenvironment (TME), the immune-privileged intracranial space, the blood-brain barrier (BBB) and local and systemic immunosuppressions. Monoclonal antibody-based therapies have failed at least in part due to their inability to access the intracranial compartment. Bispecific T-cell engagers are promising antibody fragment-based therapies which can bring T cells close to their target and capture them with a high binding affinity. They can redirect the entire repertoire of T cells against tumor, independent of T-cell receptor specificity. However, the multiple challenges posed by the TME, immune privilege and the BBB suggest that a single agent approach may be insufficient to yield durable, long-lasting antitumor efficacy. In this review, we discuss the mechanism of action of T-cell engagers, their preclinical and clinical developments to date. We also draw comparisons with other classes of multispecific antibodies and potential combinations using these antibody fragment therapies.
Collapse
Affiliation(s)
- Kirit Singh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Kelly M Hotchkiss
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Aditya A Mohan
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jessica L Reedy
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - John H Sampson
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
- Duke Cancer Institute, Durham, North Carolina, USA
| |
Collapse
|
74
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
75
|
Wei PS, Chen YJ, Lin SY, Chuang KH, Sheu MT, Ho HO. In situ subcutaneously injectable thermosensitive PEG-PLGA diblock and PLGA-PEG-PLGA triblock copolymer composite as sustained delivery of bispecific anti-CD3 scFv T-cell/anti-EGFR Fab Engager (BiTEE). Biomaterials 2021; 278:121166. [PMID: 34634663 DOI: 10.1016/j.biomaterials.2021.121166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
In this study, PEGylated poly (lactide-co-glycolide) (PLGA) thermosensitive composite hydrogels (DTgels) loaded with bispecific anti-cluster of differentiation 3 (CD3) scFv T-cell/anti-epidermal growth factor receptor (EGFR) Fab engager (BiTEE) were subcutaneously (s.c.) injected for the in situ formation of a drug deposit to resolve limitations of the clinical application of the BiTEE of a short half-life and potential side effects. Three kinds of DTgels prepared with different ratios of methoxy poly (ethylene glycol) (mPEG)-PLGA (diblock copolymer, DP) and PLGA-PEG-PLGA (triblock copolymer, TP) were designated DTgel-1, DTgel-2, and DTgel-2S. All three DTgel formulations showed thermosensitive properties with a sol-gel transition temperature at 28-34 °C, which is suitable for an injection. An in vitro release study showed that all DTgel formulations loaded with stabilized BiTEE extended the release of the BiTEE for up to 7 days. In an animal pharmacokinetics study, an s.c. injection of BiTEE/DTgel-1, BiTEE/DTgel-2, or BiTEE/DTgel-2S respectively prolonged the half-life of the BiTEE by 3.5-, 2.0-, and 2.2-fold compared to an intravenous injection of the BiTEE solution. Simultaneously, BiTEE/DTgel formulations showed almost no proinflammatory cytokine release in mice injected with T cells after s.c. administration. Results of an animal antitumor (MDA-MB-231) study indicated that an s.c. injection of the BiTEE/DTgel formulations significantly improved the antitumor efficacy compared to an intravenous (i.v.) or s.c. injection of the BiTEE solution. Moreover, BiTEE/DTgel formulations led to enhanced T-cell recruitment to solid-tumor sites. In conclusion, the in situ formation of injectable PEGylated PLGA thermosensitive hydrogels loaded with the BiTEE was successfully carried out to increase its half-life, maintain a constant blood level within therapeutic windows, and enhance T-cell recruitment to solid-tumor sites resulting in exceptional treatment efficacy.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jou Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan.
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
76
|
Abstract
Multiple myeloma is the second most common hematological malignancy in adults, accounting for 2% of all cancer-related deaths in the UK. Current chemotherapy-based regimes are insufficient, as most patients relapse and develop therapy resistance. This review focuses on current novel antibody- and aptamer-based therapies aiming to overcome current therapy limitations, as well as their respective limitations and areas of improvement. The use of computer modeling methods, as a tool to study and improve ligand-receptor alignments for the use of novel therapy development will also be discussed, as it has become a rapid, reliable and comparatively inexpensive method of investigation.
Collapse
|
77
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
78
|
Kittel-Boselli E, Soto KEG, Loureiro LR, Hoffmann A, Bergmann R, Arndt C, Koristka S, Mitwasi N, Kegler A, Bartsch T, Berndt N, Altmann H, Fasslrinner F, Bornhäuser M, Bachmann MP, Feldmann A. Targeting Acute Myeloid Leukemia Using the RevCAR Platform: A Programmable, Switchable and Combinatorial Strategy. Cancers (Basel) 2021; 13:cancers13194785. [PMID: 34638268 PMCID: PMC8508561 DOI: 10.3390/cancers13194785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood malignancy particularly affecting the myeloid lineage and one of the most common types of leukemia in adults. It is characterized by high heterogeneity among patients leading to immune escape and disease relapse, which challenges the development of immunotherapies such as chimeric antigen receptor (CAR) T-cells. In this way, the aim of our work was to establish the modular RevCAR platform as a combinatorial tumor targeting approach for the treatment of AML. Herein, we demonstrate the preclinical flexibility and efficiency of RevCAR T-cells in targeting patient-derived AML cells expressing CD33 and CD123. Furthermore, AND gate logic targeting these antigens was successfully established using the RevCAR platform. These accomplishments pave the way towards the future clinical translation of such an improved and personalized immunotherapy for AML patients aiming long-lasting anticarcinogenic responses. Abstract Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.
Collapse
Affiliation(s)
- Enrico Kittel-Boselli
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Anja Hoffmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
| | - Frederick Fasslrinner
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (H.A.); (M.B.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Philipp Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (E.K.-B.); (K.E.G.S.); (L.R.L.); (A.H.); (R.B.); (C.A.); (S.K.); (N.M.); (A.K.); (T.B.); (N.B.); (A.F.)
| |
Collapse
|
79
|
Facile Generation of Potent Bispecific Fab via Sortase A and Click Chemistry for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13184540. [PMID: 34572769 PMCID: PMC8467688 DOI: 10.3390/cancers13184540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The formats of bispecific antibody have been investigated for many years to enhance the stability of the structure and anti-tumor efficacy. One of the formats combining two Fabs at their C termini provides unmodified variable region and comparable activity to other fragment-based bispecific antibodies that are usually combined in a head-to-tail manner. However, the current strategy to produce the BiFab molecule is limited to a semisynthetic method that introduces unnatural amino acid to antibodies’ sequences during production. To improve the application of BiFab format in investigational biodrugs, we have applied sortase A-mediated “bio-click” chemistry to generate BiFab, for facile assembly of Fab molecules that have been expressed and stored as BiFab module candidates. The BiFabs made by our method stimulate T cell proliferation and activation with favorable in vitro and in vivo anti-tumor activit. Our results indicate that BiFab made by sortase A-mediated click chemistry could be used to efficiently generate various BiFabs with high potency, which further supports personalized tumor immunotherapy in the future. Abstract Bispecific antibodies (BsAbs) for T cell engagement have shown great promise in cancer immunotherapy, and their clinical applications have been proven in treating hematological malignance. Bispecific antibody binding fragment (BiFab) represents a promising platform for generating non-Fc bispecific antibodies. However, the generation of BiFab is still challenging, especially by means of chemical conjugation. More conjugation strategies, e.g., enzymatic conjugation and modular BiFab preparation, are needed to improve the robustness and flexibility of BiFab preparation. We successfully used chemo-enzymatic conjugation approach to generate bispecific antibody (i.e., BiFab) with Fabs from full-length antibodies. Paired click handles (e.g., N3 and DBCO) was introduced to the C-terminal LPETG tag of Fabs via sortase A mediated transpeptidation, followed by site-specific conjugation between two click handle-modified Fabs for BiFab generation. Both BiFabCD20/CD3 (EC50 = 0.26 ng/mL) and BiFabHer2/CD3 exhibited superior efficacy in mediating T cells, from either PBMC or ATC, to kill target tumor cell lines while spared antigen-negative tumor cells in vitro. The BiFabCD20/CD3 also efficiently inhibited CD20-positive tumor growth in mouse xenograft model. We have established a facile sortase A-mediated click handle installation to generate homogeneous and functional BiFabs. The exemplary BiFabs against different targets showed superior efficacy in redirecting and activating T cells to specifically kill target tumor cells, demonstrating the robustness of sortase A-mediated “bio-click” chemistry in generating various potent BiFabs. This approach also holds promise for further efficient construction of a Fab derivative library for personalized tumor immunotherapy in the future.
Collapse
|
80
|
Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng 2021; 5:1348-1359. [PMID: 34385695 DOI: 10.1038/s41551-021-00781-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.
Collapse
Affiliation(s)
- Ian C Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lee-Kai Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adrian M Harris
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA. .,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA. .,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA. .,Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA. .,Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
81
|
Janssens R, Lang T, Vallejo A, Galinsky J, Plate A, Morgan K, Cabezudo E, Silvennoinen R, Coriu D, Badelita S, Irimia R, Anttonen M, Manninen RL, Schoefs E, Vandebroek M, Vanhellemont A, Delforge M, Stevens H, Simoens S, Huys I. Patient Preferences for Multiple Myeloma Treatments: A Multinational Qualitative Study. Front Med (Lausanne) 2021; 8:686165. [PMID: 34295912 PMCID: PMC8289885 DOI: 10.3389/fmed.2021.686165] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Investigational and marketed drugs for the treatment of multiple myeloma (MM) are associated with a range of characteristics and uncertainties regarding long term side-effects and efficacy. This raises questions about what matters most to patients living with this disease. This study aimed to understand which characteristics MM patients find most important, and hence should be included as attributes and levels in a subsequent quantitative preference survey among MM patients. Methods: This qualitative study involved: (i) a scoping literature review, (ii) discussions with MM patients (n = 24) in Belgium, Finland, Romania, and Spain using Nominal Group Technique, (iii) a qualitative thematic analysis including multi-stakeholder discussions. Results: MM patients voiced significant expectations and hopes that treatments would extend their lives and reduce their cancer signs and symptoms. Participants however raised concerns about life-threatening side-effects that could cause permanent organ damage. Bone fractures and debilitating neuropathic effects (such as chronic tingling sensations) were highlighted as major issues reducing patients' independence and mobility. Patients discussed the negative impact of the following symptoms and side-effects on their daily activities: thinking problems, increased susceptibility to infections, reduced energy, pain, emotional problems, and vision problems. MM patients were concerned with uncertainties regarding the durability of positive treatment outcomes, and the cause, severity, and duration of their symptoms and side-effects. Patients feared short-term positive treatment responses complicated by permanent, severe side-effects and symptoms. Conclusions: This study gained an in-depth understanding of the treatment and disease-related characteristics and types of attribute levels (severity, duration) that are most important to MM patients. Results from this study argue in favor of MM drug development and individual treatment decision-making that focuses not only on extending patients' lives but also on addressing those symptoms and side-effects that significantly impact MM patients' quality of life. This study underscores a need for transparent communication toward MM patients about MM treatment outcomes and uncertainties regarding their long-term efficacy and safety. Finally, this study may help drug developers and decision-makers understand which treatment outcomes and uncertainties are most important to MM patients and therefore should be incorporated in MM drug development, evaluation, and clinical practice.
Collapse
Affiliation(s)
- Rosanne Janssens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | - Elena Cabezudo
- Department of Haematology, H. Moises Broggi/ICO-Hospitalet, Barcelona, Spain
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,University of Helsinki, Helsinki, Finland
| | - Daniel Coriu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Fundeni Clinical Institute, Bucharest, Romania
| | | | - Ruxandra Irimia
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Fundeni Clinical Institute, Bucharest, Romania
| | - Minna Anttonen
- Association of Cancer Patients in Finland, Helsinki, Finland
| | | | - Elise Schoefs
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | - Hilde Stevens
- Institute for Interdisciplinary Innovation in Healthcare (I3h), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Steven Simoens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Isabelle Huys
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
82
|
Enderle L, Shalaby KH, Gorelik M, Weiss A, Blazer LL, Paduch M, Cardarelli L, Kossiakoff A, Adams JJ, Sidhu SS. A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs 2021; 13:1933690. [PMID: 34190031 PMCID: PMC8253144 DOI: 10.1080/19420862.2021.1933690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered “double-DATEs” targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.
Collapse
Affiliation(s)
- Leonie Enderle
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Karim H Shalaby
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Maryna Gorelik
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexander Weiss
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marcin Paduch
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA
| | - Lia Cardarelli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anthony Kossiakoff
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Jarrett J Adams
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
83
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
84
|
Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol 2021; 51:1934-1942. [PMID: 34145579 DOI: 10.1002/eji.202048953] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Immuno-oncology is revolutionizing the treatment of cancers, by inducing the recognition and elimination of tumor cells by the immune system. Recent advances have focused on generating or unleashing tumor antigen-specific T-cell responses, leading to alternative treatment paradigms for many cancers. Despite these successes, the clinical benefit has been limited to a subset of patients and certain tumor types, highlighting the need for alternative strategies. One innovative approach is to broaden and amplify antitumoral immune responses by targeting innate immunity. Particularly, the aim has been to develop new antibody formats capable of stimulating the antitumor activity of innate immune cells, boosting not only their direct role in tumor elimination, but also their function in eliciting multicellular immune responses ultimately resulting in long-lasting tumor control by adaptive immunity. This review covers the development of a new class of synthetic molecules, natural killer cell engagers (NKCEs), which are built from fragments of monoclonal antibodies (mAbs) and are designed to harness the immune functions of NK cells in cancer. As currently shown in preclinical studies and clinical trials, NKCEs are promising candidates for the next generation of tumor immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Eric Vivier
- Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
85
|
Alhallak K, Sun J, Jeske A, Park C, Yavner J, Bash H, Lubben B, Adebayo O, Khaskiah A, Azab AK. Bispecific T Cell Engagers for the Treatment of Multiple Myeloma: Achievements and Challenges. Cancers (Basel) 2021; 13:2853. [PMID: 34201007 PMCID: PMC8228067 DOI: 10.3390/cancers13122853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
MM is the second most common hematological malignancy and represents approximately 20% of deaths from hematopoietic cancers. The advent of novel agents has changed the therapeutic landscape of MM treatment; however, MM remains incurable. T cell-based immunotherapy such as BTCEs is a promising modality for the treatment of MM. This review article discusses the advancements and future directions of BTCE treatments for MM.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| | - Chaelee Park
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Jessica Yavner
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Hannah Bash
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Berit Lubben
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Ola Adebayo
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
| | - Ayah Khaskiah
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit 627, West Bank, Palestine;
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (K.A.); (J.S.); (A.J.); (C.P.); (J.Y.); (H.B.); (B.L.); (O.A.)
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO 63130, USA
| |
Collapse
|
86
|
Baik AH, Oluwole OO, Johnson DB, Shah N, Salem JE, Tsai KK, Moslehi JJ. Mechanisms of Cardiovascular Toxicities Associated With Immunotherapies. Circ Res 2021; 128:1780-1801. [PMID: 33934609 PMCID: PMC8159878 DOI: 10.1161/circresaha.120.315894] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-based therapies have revolutionized cancer treatments. Cardiovascular sequelae from these treatments, however, have emerged as critical complications, representing new challenges in cardio-oncology. Immune therapies include a broad range of novel drugs, from antibodies and other biologics, including immune checkpoint inhibitors and bispecific T-cell engagers, to cell-based therapies, such as chimeric-antigen receptor T-cell therapies. The recognition of immunotherapy-associated cardiovascular side effects has also catapulted new research questions revolving around the interactions between the immune and cardiovascular systems, and the signaling cascades affected by T cell activation, cytokine release, and immune system dysregulation. Here, we review the specific mechanisms of immune activation from immunotherapies and the resulting cardiovascular toxicities associated with immune activation and excess cytokine production.
Collapse
Affiliation(s)
- Alan H Baik
- Division of Cardiovascular Medicine, Department of Medicine, UCSF, San Francisco, CA (A.H.B.)
| | - Olalekan O Oluwole
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Douglas B Johnson
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nina Shah
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Joe-Elie Salem
- Department of Pharmacology, Cardio-oncology Program, CIC-1901, APHP.Sorbonne Université, Paris, France (J.-E.S.)
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| | - Katy K Tsai
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| |
Collapse
|
87
|
Tantalo DG, Oliver AJ, von Scheidt B, Harrison AJ, Mueller SN, Kershaw MH, Slaney CY. Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. J Immunother Cancer 2021; 9:jitc-2021-002555. [PMID: 34035114 PMCID: PMC8154965 DOI: 10.1136/jitc-2021-002555] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in immunotherapy have identified adoptive cell transfer as one of the most promising approaches for the treatment of cancers. Large numbers of cancer reactive T lymphocytes can be generated ex vivo from patient blood by genetic modification to express chimeric antigen receptors (CAR) specific for tumor-associated antigens. CAR T cells can respond strongly against cancer cells, and adoptive transferred CAR T cells can induce dramatic responses against certain types of cancers. The ability of T cells to respond against disease depends on their ability to localize to sites, persist and exert functions, often in an immunosuppressive microenvironment, and these abilities are reflected in their phenotypes. There is currently intense interest in generating CAR T cells possessing the ideal phenotypes to confer optimal antitumor activity. In this article, we review T cell phenotypes for trafficking, persistence and function, and discuss how culture conditions and genetic makeups can be manipulated to achieve the ideal phenotypes for antitumor activities.
Collapse
Affiliation(s)
| | - Amanda J Oliver
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Aaron J Harrison
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael H Kershaw
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Clare Y Slaney
- Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
88
|
Karschnia P, Teske N, Thon N, Subklewe M, Tonn JC, Dietrich J, von Baumgarten L. Chimeric Antigen Receptor T Cells for Glioblastoma: Current Concepts, Challenges, and Future Perspectives. Neurology 2021; 97:218-230. [PMID: 33986138 DOI: 10.1212/wnl.0000000000012193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/02/2021] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor and is associated with a poor prognosis even after multimodal therapy. Chimeric antigen receptor (CAR) T cells have emerged as a promising therapeutic avenue in glioblastoma. CARs incorporate antigen-recognition moieties that endow autologous T cells with specificity against antigens expressed on glioblastoma (e.g., interleukin [IL]-13Rα2, epidermal growth factor receptor variant III [EGFRvIII], and human epidermal growth factor receptor 2 [HER2]). Compelling antitumor effects of such therapy have been shown in murine glioblastoma models. In humans, 5 phase I/II studies on IL-13Rα2-, EGFRvIII-, and HER2-directed CAR T cells for the treatment of glioblastoma have been published suggesting an acceptable safety profile. However, antitumor effects fell short of expectations in these initial clinical studies. Tumor heterogeneity, antigen loss, and the immunosuppressive tumor microenvironment are among the most important factors to limit the efficacy of CAR T-cell therapy in glioblastoma. Novel target antigens, modification of CAR T-cell design, the combination of CAR T-cell therapy with other therapeutic approaches, but also the use of CAR natural killer cells or CAR macrophages may optimize antitumor effects. Numerous clinical trials studying such approaches are ongoing, as well as several preclinical studies. With an increasing understanding of immune-escape mechanisms of glioblastoma and novel manufacturing techniques for CARs, CAR T cells may provide clinically relevant activity in glioblastoma. This review focuses on the use of CAR T cells in glioblastoma, but also introduces the basic structure, mechanisms of action, and relevant side effects of CAR T cells.
Collapse
Affiliation(s)
- Philipp Karschnia
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany.
| | - Nico Teske
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany
| | - Niklas Thon
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany
| | - Marion Subklewe
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany
| | - Joerg-Christian Tonn
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany
| | - Jorg Dietrich
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany
| | - Louisa von Baumgarten
- From the Department of Neurosurgery (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Department of Medicine, Hematology & Oncology Division (M.S.), Cellular Immunotherapy Program (M.S.), and Department of Neurology (L.v.B.), Ludwig-Maximilians-University School of Medicine, Munich, Germany; Department of Neurology (P.K., J.D.), Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and German Cancer Consortium (DKTK) (P.K., N. Teske, N. Thon, J.C.T., L.v.B.), Partner Site Munich, Germany.
| |
Collapse
|
89
|
Choi S, Matta H, Gopalakrishnan R, Natarajan V, Gong S, Jeronimo A, Kuo WY, Bravo B, Chaudhary PM. A novel thermostable beetle luciferase based cytotoxicity assay. Sci Rep 2021; 11:10002. [PMID: 33976304 PMCID: PMC8113442 DOI: 10.1038/s41598-021-89404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Cytotoxicity assays are essential for the testing and development of novel immunotherapies for the treatment of cancer. We recently described a novel cytotoxicity assay, termed the Matador assay, which was based on marine luciferases and their engineered derivatives. In this study, we describe the development of a new cytotoxicity assay termed 'Matador-Glo assay' which takes advantage of a thermostable variant of Click Beetle Luciferase (Luc146-1H2). Matador-Glo assay utilizes Luc146-1H2 and D-luciferin as the luciferase-substrate pair for luminescence detection. The assay involves ectopic over-expression of Luc146-1H2 in the cytosol of target cells of interest. Upon damage to the membrane integrity, the Luc146-1H2 is either released from the dead and dying cells or its activity is preferentially measured in dead and dying cells. We demonstrate that this assay is simple, fast, specific, sensitive, cost-efficient, and not labor-intensive. We further demonstrate that the Matador-Glo assay can be combined with the marine luciferase-based Matador assay to develop a dual luciferase assay for cell death detection. Finally, we demonstrate that the Luc146-1H2 expressing target cells can also be used for in vivo bioluminescence imaging applications.
Collapse
Affiliation(s)
- Sunju Choi
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hittu Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ramakrishnan Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkatesh Natarajan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songjie Gong
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Jeronimo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wei-Ying Kuo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bryant Bravo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Preet M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
90
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
91
|
Susanibar-Adaniya S, Barta SK. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol 2021; 96:617-629. [PMID: 33661537 PMCID: PMC8172085 DOI: 10.1002/ajh.26151] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), comprises a heterogeneous group of diseases with different biology, clinical presentations, and response to treatment. R-CHOP remains the mainstay of therapy and can achieve long-term disease control in nearly 90% of patients presenting with limited-stage and in up to 60% of those presenting with advanced stages. Advances on the understanding of the genetic landscape and molecular features of DLBCL have identified high-risk subsets with poor outcomes to chemo-immunotherapy that are actively being studied in clinical trials. Novel therapies could potentially improve outcomes for patients with high-risk disease. Studies evaluating risk-adapted therapy based on classification by cell of origin (COO) and molecular features are ongoing. Developments in the fields of immunotherapy, mostly with adoptive T-cell therapy, have significantly improved the outcomes of patients with relapsed refractory disease. In this review, we will summarize the recent data and discuss ongoing efforts to improve DLBCL treatment in the frontline and relapsed refractory settings.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocyte Subsets/pathology
- Cell Lineage
- Combined Modality Therapy
- Cyclophosphamide/administration & dosage
- DNA, Neoplasm/blood
- Disease Management
- Doxorubicin/administration & dosage
- Genes, bcl-2
- Genes, myc
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunotherapy, Adoptive
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Neoplasm Staging
- Neoplastic Stem Cells/pathology
- Positron Emission Tomography Computed Tomography
- Prednisone/administration & dosage
- Recurrence
- Risk Assessment
- Rituximab/administration & dosage
- Salvage Therapy
- Treatment Outcome
- Vincristine/administration & dosage
- Exome Sequencing
Collapse
Affiliation(s)
| | - Stefan K Barta
- Department of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
92
|
Dana H, Chalbatani GM, Jalali SA, Mirzaei HR, Grupp SA, Suarez ER, Rapôso C, Webster TJ. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharm Sin B 2021; 11:1129-1147. [PMID: 34094824 PMCID: PMC8144892 DOI: 10.1016/j.apsb.2020.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
Collapse
Affiliation(s)
- Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 13145-158, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717434, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
93
|
Edeline J, Houot R, Marabelle A, Alcantara M. CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J Hematol Oncol 2021; 14:65. [PMID: 33874996 PMCID: PMC8054411 DOI: 10.1186/s13045-021-01067-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.
Collapse
Affiliation(s)
- Julien Edeline
- Medical Oncology, Centre Eugène Marquis, University of Rennes 1, Rennes, France
| | - Roch Houot
- Department of Hematology, CHU Rennes, INSERM U1236, University of Rennes, Rennes, France
| | - Aurélien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), INSERM U1015, INSERM CIC1428, Université Paris Saclay, Gustave Roussy, France
| | - Marion Alcantara
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
94
|
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol 2021; 14:63. [PMID: 33863363 PMCID: PMC8052795 DOI: 10.1186/s13045-021-01075-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
95
|
Schwerdtfeger M, Benmebarek MR, Endres S, Subklewe M, Desiderio V, Kobold S. Chimeric Antigen Receptor-Modified T Cells and T Cell-Engaging Bispecific Antibodies: Different Tools for the Same Job. Curr Hematol Malig Rep 2021; 16:218-233. [PMID: 33939108 PMCID: PMC8154758 DOI: 10.1007/s11899-021-00628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antigens, Neoplasm/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/etiology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
96
|
Shin DH, Nguyen T, Ozpolat B, Lang F, Alonso M, Gomez-Manzano C, Fueyo J. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J Immunother Cancer 2021; 9:jitc-2020-002086. [PMID: 33795384 PMCID: PMC8021759 DOI: 10.1136/jitc-2020-002086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer virotherapy is a paradigm-shifting treatment modality based on virus-mediated oncolysis and subsequent antitumor immune responses. Clinical trials of currently available virotherapies showed that robust antitumor immunity characterizes the remarkable and long-term responses observed in a subset of patients. These data suggest that future therapies should incorporate strategies to maximize the immunotherapeutic potential of oncolytic viruses. In this review, we highlight the recent evidence that the antiviral immunity of the patients may limit the immunotherapeutic potential of oncolytic viruses and summarize the most relevant approaches to strategically redirect the immune response away from the viruses and toward tumors to heighten the clinical impact of viro-immunotherapy platforms.
Collapse
Affiliation(s)
- Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teresa Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Alonso
- Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
97
|
Ambrose C, Su L, Wu L, Dufort FJ, Sanford T, Birt A, Hackel BJ, Hombach A, Abken H, Lobb RR, Rennert PD. Anti-CD19 CAR T cells potently redirected to kill solid tumor cells. PLoS One 2021; 16:e0247701. [PMID: 33735268 PMCID: PMC7971483 DOI: 10.1371/journal.pone.0247701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
Successful CAR T cell therapy for the treatment of solid tumors requires exemplary CAR T cell expansion, persistence and fitness, and the ability to target tumor antigens safely. Here we address this constellation of critical attributes for successful cellular therapy by using integrated technologies that simplify development and derisk clinical translation. We have developed a CAR-CD19 T cell that secretes a CD19-anti-Her2 bridging protein. This cell therapy strategy exploits the ability of CD19-targeting CAR T cells to interact with CD19 on normal B cells to drive expansion, persistence and fitness. The secreted bridging protein potently binds to Her2-positive tumor cells, mediating CAR-CD19 T cell cytotoxicity in vitro and in vivo. Because of its short half-life, the secreted bridging protein will selectively accumulate at the site of highest antigen expression, ie. at the tumor. Bridging proteins that bind to multiple different tumor antigens have been created. Therefore, antigen-bridging CAR-CD19 T cells incorporate critical attributes for successful solid tumor cell therapy. This platform can be exploited to attack tumor antigens on any cancer.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation
- Coculture Techniques
- Cytotoxicity, Immunologic
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- Gene Expression
- Genetic Vectors/immunology
- Genetic Vectors/metabolism
- Humans
- Immunotherapy, Adoptive/methods
- Lentivirus/genetics
- Lentivirus/immunology
- Lymphocyte Activation
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, SCID
- Protein Binding
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Lihe Su
- Aleta Biotherapeutics, Natick, MA, United States of America
| | - Lan Wu
- Aleta Biotherapeutics, Natick, MA, United States of America
| | - Fay J. Dufort
- Aleta Biotherapeutics, Natick, MA, United States of America
| | - Thomas Sanford
- Aleta Biotherapeutics, Natick, MA, United States of America
| | - Alyssa Birt
- Aleta Biotherapeutics, Natick, MA, United States of America
| | | | | | | | - Roy R. Lobb
- Aleta Biotherapeutics, Natick, MA, United States of America
| | - Paul D. Rennert
- Aleta Biotherapeutics, Natick, MA, United States of America
- * E-mail:
| |
Collapse
|
98
|
de Miguel M, Umana P, Gomes de Morais AL, Moreno V, Calvo E. T-cell-engaging Therapy for Solid Tumors. Clin Cancer Res 2021; 27:1595-1603. [PMID: 33082210 DOI: 10.1158/1078-0432.ccr-20-2448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/29/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
T-cell engagers (TCE) are a rapidly evolving novel group of treatments that have in common the concurrent engagement of a T-cell surface molecule and a tumoral cell antigen. Bispecific antibodies and genetically engineered adoptive cell therapies, as chimeric antigen receptors or T-cell receptors, have similarities and differences among their mechanisms of action, toxicity profiles, and resistance pathways. Nevertheless, the success observed in the hematologic field has not been obtained with solid tumors yet, as they are biologically more complex and have few truly tumor-specific cell surface antigens that can be targeted with high avidity T cells. Different strategies are under study to improve their short-term perspective, such as new generations of more active TCEs, multi-target or combination of different treatments approaches, or to improve the manufacturing processes. A comprehensive review of TCEs as a grouped treatment class, their current status, and research directions in their application to solid tumors therapeutics are discussed here.
Collapse
Affiliation(s)
- Maria de Miguel
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Pablo Umana
- Roche Innovation Center Zurich Schlieren, Zurich, Switzerland
| | - Ana Luiza Gomes de Morais
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Victor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Emiliano Calvo
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC) Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain.
| |
Collapse
|
99
|
Rad S. M. AH, Halpin JC, Mollaei M, Smith Bell SWJ, Hirankarn N, McLellan AD. Metabolic and Mitochondrial Functioning in Chimeric Antigen Receptor (CAR)-T Cells. Cancers (Basel) 2021; 13:1229. [PMID: 33799768 PMCID: PMC8002030 DOI: 10.3390/cancers13061229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/02/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.
Collapse
Affiliation(s)
- Ali Hosseini Rad S. M.
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; (J.C.H.); (S.W.J.S.B.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joshua Colin Halpin
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; (J.C.H.); (S.W.J.S.B.)
| | - Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran 14117-13116, Iran;
| | - Samuel W. J. Smith Bell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; (J.C.H.); (S.W.J.S.B.)
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; (J.C.H.); (S.W.J.S.B.)
| |
Collapse
|
100
|
Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K, Van Lint S. mRNA in cancer immunotherapy: beyond a source of antigen. Mol Cancer 2021; 20:48. [PMID: 33658037 PMCID: PMC7926200 DOI: 10.1186/s12943-021-01329-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA therapeutics have become the focus of molecular medicine research. Various mRNA applications have reached major milestones at high speed in the immuno-oncology field. This can be attributed to the knowledge that mRNA is one of nature's core building blocks carrying important information and can be considered as a powerful vector for delivery of therapeutic proteins to the patient.For a long time, the major focus in the use of in vitro transcribed mRNA was on development of cancer vaccines, using mRNA encoding tumor antigens to modify dendritic cells ex vivo. However, the versatility of mRNA and its many advantages have paved the path beyond this application. In addition, due to smart design of both the structural properties of the mRNA molecule as well as pharmaceutical formulations that improve its in vivo stability and selective targeting, the therapeutic potential of mRNA can be considered as endless.As a consequence, many novel immunotherapeutic strategies focus on the use of mRNA beyond its use as the source of tumor antigens. This review aims to summarize the state-of-the-art on these applications and to provide a rationale for their clinical application.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Respiratory Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Corneel Heymanslaan 10 MRB2, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103 Building E, 1090 Brussels, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Respiratory Medicine and Immuno-Oncology Network Ghent, Ghent University Hospital, Corneel Heymanslaan 10 MRB2, 9000 Ghent, Belgium
| |
Collapse
|