51
|
|
52
|
Wang X, Ji A, Zhu Y, Liang Z, Wu J, Li S, Meng S, Zheng X, Xie L. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer. Oncotarget 2016. [PMID: 26208480 PMCID: PMC4694814 DOI: 10.18632/oncotarget.4502] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121-1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03-1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further researches should be conducted to confirm our findings and clarify the potential biological mechanisms.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Alin Ji
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jian Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Shiqi Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Shuai Meng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
53
|
Yan L, Silver R. Neuroendocrine underpinnings of sex differences in circadian timing systems. J Steroid Biochem Mol Biol 2016; 160:118-26. [PMID: 26472554 PMCID: PMC4841755 DOI: 10.1016/j.jsbmb.2015.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
There are compelling reasons to study the role of steroids and sex differences in the circadian timing system. A solid history of research demonstrates the ubiquity of circadian changes that impact virtually all behavioral and biological responses. Furthermore, steroid hormones can modulate every attribute of circadian responses including the period, amplitude and phase. Finally, desynchronization of circadian rhythmicity, and either enhancing or damping amplitude of various circadian responses can produce different effects in the sexes. Studies of the neuroendocrine underpinnings of circadian timing systems and underlying sex differences have paralleled the overall development of the field as a whole. Early experimental studies established the ubiquity of circadian rhythms by cataloging daily and seasonal changes in whole organism responses. The next generation of experiments demonstrated that daily changes are not a result of environmental synchronizing cues, and are internally orchestrated, and that these differ in the sexes. This work was followed by the revelation of molecular circadian rhythms within individual cells. At present, there is a proliferation of work on the consequences of these daily oscillations in health and in disease, and awareness that these may differ in the sexes. In the present discourse we describe the paradigms used to examine circadian oscillation, to characterize how these internal timing signals are synchronized to local environmental conditions, and how hormones of gonadal and/or adrenal origin modulate circadian responses. Evidence pointing to endocrinologically and genetically mediated sex differences in circadian timing systems can be seen at many levels of the neuroendocrine and endocrine systems, from the cell, the gland and organ, and to whole animal behavior, including sleep/wake or rest/activity cycles, responses to external stimuli, and responses to drugs. We review evidence indicating that the analysis of the circadian timing system is amenable to experimental analysis at many levels of the neuraxis, and on several different time scales, rendering it especially useful for the exploration of mechanisms associated with sex differences.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Rae Silver
- Psychology Department, Barnard College, New York, NY 10027, USA; Department of Psychology, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY 10032, USA
| |
Collapse
|
54
|
Blattner MS, Mahoney MM. Changes in estrogen receptor signaling alters the timekeeping system in male mice. Behav Brain Res 2015; 294:43-9. [DOI: 10.1016/j.bbr.2015.07.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/25/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
55
|
Belle MDC. Circadian Tick-Talking Across the Neuroendocrine System and Suprachiasmatic Nuclei Circuits: The Enigmatic Communication Between the Molecular and Electrical Membrane Clocks. J Neuroendocrinol 2015; 27:567-76. [PMID: 25845396 PMCID: PMC4973835 DOI: 10.1111/jne.12279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/15/2022]
Abstract
As with many processes in nature, appropriate timing in biological systems is of paramount importance. In the neuroendocrine system, the efficacy of hormonal influence on major bodily functions, such as reproduction, metabolism and growth, relies on timely communication within and across many of the brain's homeostatic systems. The activity of these circuits is tightly orchestrated with the animal's internal physiological demands and external solar cycle by a master circadian clock. In mammals, this master clock is located in the hypothalamic suprachiasmatic nucleus (SCN), where the ensemble activity of thousands of clock neurones generates and communicates circadian time cues to the rest of the brain and body. Many regions of the brain, including areas with neuroendocrine function, also contain local daily clocks that can provide feedback signals to the SCN. Although much is known about the molecular processes underpinning endogenous circadian rhythm generation in SCN neurones and, to a lesser extent, extra-SCN cells, the electrical membrane clock that acts in partnership with the molecular clockwork to communicate circadian timing across the brain is poorly understood. The present review focuses on some circadian aspects of reproductive neuroendocrinology and processes involved in circadian rhythm communication in the SCN, aiming to identify key gaps in our knowledge of cross-talk between our daily master clock and neuroendocrine function. The intention is to highlight our surprisingly limited understanding of their interaction in the hope that this will stimulate future work in these areas.
Collapse
Affiliation(s)
- M. D. C. Belle
- Faculty of Life SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
56
|
|
57
|
Royston SE, Yasui N, Kondilis AG, Lord SV, Katzenellenbogen JA, Mahoney MM. ESR1 and ESR2 differentially regulate daily and circadian activity rhythms in female mice. Endocrinology 2014; 155:2613-23. [PMID: 24735329 PMCID: PMC5393318 DOI: 10.1210/en.2014-1101] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogenic signaling shapes and modifies daily and circadian rhythms, the disruption of which has been implicated in psychiatric, neurologic, cardiovascular, and metabolic disease, among others. However, the activational mechanisms contributing to these effects remain poorly characterized. To determine the activational impact of estrogen on daily behavior patterns and differentiate between the contributions of the estrogen receptors ESR1 and ESR2, ovariectomized adult female mice were administered estradiol, the ESR1 agonist propylpyrazole triol, the ESR2 agonist diarylpropionitrile, or cholesterol (control). Animals were singly housed with running wheels in a 12-hour light, 12-hour dark cycle or total darkness. Estradiol increased total activity and amplitude, consolidated activity to the dark phase, delayed the time of peak activity (acrophase of wheel running), advanced the time of activity onset, and shortened the free running period (τ), but did not alter the duration of activity (α). Importantly, activation of ESR1 or ESR2 differentially impacted daily and circadian rhythms. ESR1 stimulation increased total wheel running and amplitude and reduced the proportion of activity in the light vs the dark. Conversely, ESR2 activation modified the distribution of activity across the day, delayed acrophase of wheel running, and advanced the time of activity onset. Interestingly, τ was shortened by estradiol or either estrogen receptor agonist. Finally, estradiol-treated animals administered a light pulse in the early subjective night, but no other time, had an attenuated response compared with controls. This decreased phase response was mirrored by animals treated with diarylpropionitrile, but not propylpyrazole triol. To conclude, estradiol has strong activational effects on the temporal patterning and expression of daily and circadian behavior, and these effects are due to distinct mechanisms elicited by ESR1 and ESR2 activation.
Collapse
Affiliation(s)
- S E Royston
- Neuroscience Program (S.E.R., M.M.M.), Medical Scholars Program (S.E.R.), and Departments of Chemistry (N.Y., J.A.K.) and Comparative Biosciences (A.G.K., S.V.L., M.M.M.), University of Illinois Urbana-Champaign, Urbana, Illinois 61802
| | | | | | | | | | | |
Collapse
|
58
|
Duarte LL, Menna-Barreto L, Miguel MAL, Louzada F, Araújo J, Alam M, Areas R, Pedrazzoli M. Chronotype ontogeny related to gender. ACTA ACUST UNITED AC 2014; 47:316-20. [PMID: 24714814 PMCID: PMC4075295 DOI: 10.1590/1414-431x20143001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/13/2014] [Indexed: 12/03/2022]
Abstract
Chronotype is an established concept designed to identify distinct phase
relationships between the expression of circadian rhythms and external synchronizers
in humans. Although it has been widely accepted that chronotype is subjected to
ontogenetic modulation, there is no consensus on the interaction between age and
gender. This study aimed to determine the relationship between age- and
gender-related changes in the morningness-eveningness character in a large sample of
people. A total of 14,650 volunteers were asked to complete the Brazilian version of
the Horne and Östberg chronotype questionnaire. The data demonstrated that, on
average, women were more morning-oriented than men until the age of 30 and there were
no significant differences between men and women from 30 to 45 years of age. In
contrast to the situation observed until the age of 30, women older than 45 years
were more evening-oriented than men. These results suggest that the ontogenetic
development of the circadian timekeeping system is more plastic in men, as
represented by the larger amplitude of chronotype changes throughout their aging
process. The phase delay of adolescence and phase advance of the elderly seem to be
phenomena that are more markedly present in men than in women. Thus, our data, for
the first time, provide support that sharply opposes the view that there is a single
path toward morningness as a function of age, regardless of gender.
Collapse
Affiliation(s)
- L L Duarte
- Centro de Ciências da Saúde, Universidade Federal do Recôncavo da Bahia, Santo Antônio de Jesus, BA, Brasil
| | - L Menna-Barreto
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M A L Miguel
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Louzada
- Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - J Araújo
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - M Alam
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - R Areas
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M Pedrazzoli
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
59
|
Zelinski EL, Deibel SH, McDonald RJ. The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 2014; 40:80-101. [PMID: 24468109 DOI: 10.1016/j.neubiorev.2014.01.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
This review consolidates research employing human correlational and experimental work across brain and body with experimental animal models to provide a more complete representation of how circadian rhythms influence almost all aspects of life. In doing so, we will cover the morphological and biochemical pathways responsible for rhythm generation as well as interactions between these systems and others (e.g., stress, feeding, reproduction). The effects of circadian disruption on the health of humans, including time of day effects, cognitive sequelae, dementia, Alzheimer's disease, diet, obesity, food preferences, mood disorders, and cancer will also be discussed. Subsequently, experimental support for these largely correlational human studies conducted in non-human animal models will be described.
Collapse
Affiliation(s)
- Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
60
|
Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 2014; 35:111-39. [PMID: 24287074 PMCID: PMC4041593 DOI: 10.1016/j.yfrne.2013.11.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/17/2013] [Indexed: 12/22/2022]
Abstract
Virtually every eukaryotic cell has an endogenous circadian clock and a biological sex. These cell-based clocks have been conceptualized as oscillators whose phase can be reset by internal signals such as hormones, and external cues such as light. The present review highlights the inter-relationship between circadian clocks and sex differences. In mammals, the suprachiasmatic nucleus (SCN) serves as a master clock synchronizing the phase of clocks throughout the body. Gonadal steroid receptors are expressed in almost every site that receives direct SCN input. Here we review sex differences in the circadian timing system in the hypothalamic-pituitary-gonadal axis (HPG), the hypothalamic-adrenal-pituitary (HPA) axis, and sleep-arousal systems. We also point to ways in which disruption of circadian rhythms within these systems differs in the sexes and is associated with dysfunction and disease. Understanding sex differentiated circadian timing systems can lead to improved treatment strategies for these conditions.
Collapse
Affiliation(s)
- Matthew Bailey
- Department of Psychology, Columbia University, United States.
| | - Rae Silver
- Department of Psychology, Columbia University, United States; Department of Psychology, Barnard College, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, United States.
| |
Collapse
|
61
|
Blattner MS, Mahoney MM. Photic Phase-Response Curve in 2 Strains of Mice with Impaired Responsiveness to Estrogens. J Biol Rhythms 2013; 28:291-300. [DOI: 10.1177/0748730413497190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Steroid hormones including estrogens modulate the expression of daily activity and circadian rhythms, including free-running period, phase angle of activity onset, and response to light. The mechanisms underlying these effects, however, are not fully understood. We tested the hypothesis that estrogen signaling is required for photic responsiveness of the circadian timing system. We used estrogen receptor subtype 1 (ESR1) knock-out mice (ERKO) and nonclassic estrogen receptor knock-in mice (NERKI). ERKO animals are unable to respond to estrogen at ESR1, and NERKI animals lack the ability to respond to estrogens via estrogen response element-mediated transcription but still respond via nonclassical mechanisms. We analyzed behavioral shifts in activity onset in response to 1-h light pulses given across the subjective 24-h day in gonadally intact male and female NERKI, ERKO, and wild-type (WT) littermates. We also examined Fos protein expression in the suprachiasmatic nucleus, the site of the master circadian pacemaker, at 2 times of day. We found a significant effect of genotype on phase shifts in response to light pulses given in the subjective night. Female WT mice had a significantly larger phase response than ERKO females during the early subjective night (phase shift of 98 min and 58 min, respectively; p < 0.05). NERKI females were intermediate to WT and ERKO females, suggesting a contribution of nonclassical estrogen signaling on circadian timekeeping functions. This genotype effect is not observed in males; they did not have a difference in phase shifts following a light pulse at any time point. WT males, however, shifted an average of 47 min less than did females at zeitgeber time (ZT) 16 (ZT 0 lights-on and ZT 12 lights-off). These data indicate that estrogens modify the response of the circadian timekeeping system to light via classical and nonclassical signaling pathways.
Collapse
Affiliation(s)
- Margaret S. Blattner
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| | - Megan M. Mahoney
- Neuroscience Program and Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
62
|
Toffol E, Merikanto I, Lahti T, Luoto R, Heikinheimo O, Partonen T. Evidence for a relationship between chronotype and reproductive function in women. Chronobiol Int 2013; 30:756-65. [DOI: 10.3109/07420528.2012.763043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Sellix MT, Murphy ZC, Menaker M. Excess androgen during puberty disrupts circadian organization in female rats. Endocrinology 2013; 154:1636-47. [PMID: 23417420 PMCID: PMC3602624 DOI: 10.1210/en.2012-2066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian clocks have been described in each tissue of the hypothalamo-pituitary-ovarian axis. Although a role for the clock in the timing of ovulation is indicated, the impact of diseases that disrupt fertility on clock function or the clocks' role in the etiology of these pathologies has yet to be fully appreciated. Polycystic ovary syndrome (PCOS) is a particularly devastating endocrinopathy, affecting approximately 10% of women at childbearing age. Common features of PCOS are a polycystic ovary, amenorrhea, and excess serum androgen. Approximately 40% of these women have metabolic syndrome, including hyperinsulinemia, dyslipidemia, and hyperleptinemia. It has been suggested that excess androgen is a critical factor in the etiology of PCOS. We have examined the effects of androgen excess during puberty on the phase of circadian clocks in tissues of the metabolic and hypothalamo-pituitary-ovarian axes. Female period1-luciferase (per1-luc) rats were exposed to androgen (5α-dihydrotestosterone [DHT]) or placebo for 4-6 weeks (short term) or 9-15 weeks (long term). As expected, DHT-treated animals gained more weight than controls and had disrupted estrous cycles. At the end of treatment, tissues, including the liver, lung, kidney, white adipose, cornea, pituitary, oviduct, and ovarian follicles, were cultured, and per1-luc expression in each was recorded. Analysis of per1-luc expression revealed that DHT exposure increased phase distribution of multiple oscillators, including ovarian follicles, liver, and adipose, and altered phase synchrony between animals. These data suggest that excess androgen during puberty, a common feature of PCOS, negatively affects internal circadian organization in both the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Michael T Sellix
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
64
|
Shechter A, Lespérance P, Ng Ying Kin NMK, Boivin DB. Pilot investigation of the circadian plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. PLoS One 2012; 7:e51929. [PMID: 23284821 PMCID: PMC3526531 DOI: 10.1371/journal.pone.0051929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Women with premenstrual dysphoric disorder (PMDD) experience mood deterioration and altered circadian rhythms during the luteal phase (LP) of their menstrual cycles. Disturbed circadian rhythms may be involved in the development of clinical mood states, though this relationship is not fully characterized in PMDD. We therefore conducted an extensive chronobiological characterization of the melatonin rhythm in a small group of PMDD women and female controls. In this pilot study, participants included five women with PMDD and five age-matched controls with no evidence of menstrual-related mood disorders. Participants underwent two 24-hour laboratory visits, during the follicular phase (FP) and LP of the menstrual cycle, consisting of intensive physiological monitoring under “unmasked”, time-isolation conditions. Measures included visual analogue scale for mood, ovarian hormones, and 24-hour plasma melatonin. Mood significantly (P≤.03) worsened during LP in PMDD compared to FP and controls. Progesterone was significantly (P = .025) increased during LP compared to FP, with no between-group differences. Compared to controls, PMDD women had significantly (P<.05) decreased melatonin at circadian phases spanning the biological night during both menstrual phases and reduced amplitude of its circadian rhythm during LP. PMDD women also had reduced area under the curve of melatonin during LP compared to FP. PMDD women showed affected circadian melatonin rhythms, with reduced nocturnal secretion and amplitude during the symptomatic phase compared to controls. Despite our small sample size, these pilot findings support a role for disturbed circadian rhythms in affective disorders. Possible associations with disrupted serotonergic transmission are proposed.
Collapse
Affiliation(s)
- Ari Shechter
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Paul Lespérance
- Department of Psychiatry, Centre Hospitalier de l’Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - N. M. K. Ng Ying Kin
- Clinical Research Division, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Diane B. Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
65
|
Medici M, Ikram MA, van der Lijn F, den Heijer T, Vernooij MW, Hofman A, Niessen WJ, Visser TJ, Breteler MM, Peeters RP. The thyroid hormone receptor alpha locus and white matter lesions: a role for the clock gene REV-ERBα. Thyroid 2012; 22:1181-6. [PMID: 23083441 PMCID: PMC3487114 DOI: 10.1089/thy.2012.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Thyroid disorders are associated with an increased risk of cognitive impairment and Alzheimer's disease. Both small vessel disease and neurodegeneration have a role in the pathogenesis of cognitive impairment and Alzheimer's disease. Thyroid hormone receptor alpha (TRα) is the predominant TR in brain. The circadian clock gene REV-ERBα overlaps with the TRα gene and interferes with TRα expression. Limited data are available on the role of the TRα/REV-ERBα locus in small vessel disease and neurodegeneration. We therefore studied genetic variation in the TRα/REV-ERBα locus in relation to brain imaging data, as early markers for small vessel disease and neurodegeneration. METHODS Fifteen polymorphisms, covering the TRα/REV-ERBα locus, were studied in relation to white matter lesion (WML), total brain, and hippocampal volumes in the Rotterdam Study I (RS-I, n=454). Associations that remained significant after multiple testing correction were subsequently studied in an independent population for replication (RS-II, n=607). RESULTS No associations with total brain or hippocampal volumes were detected. A haplotype block in REV-ERBα was associated with WML volumes in RS-I. Absence of this haplotype was associated with larger WML volumes in women (0.38%±0.18% [β±SE], p=0.007), but not in men (0.04%±0.11%, p=0.24), which was replicated in RS-II (women: 0.15%±0.05%, p=0.04; men: 0.05%±0.07%, p=0.80). Meta-analysis of the two populations showed that women lacking this haplotype have a 1.9 times larger WML volume (p=0.001). CONCLUSION Our results suggest a role for REV-ERBα in the pathogenesis of WMLs.
Collapse
Affiliation(s)
- Marco Medici
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fedde van der Lijn
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tom den Heijer
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Sint Franciscus Gasthuis, Rotterdam, The Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology; Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wiro J. Niessen
- Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology; Erasmus Medical Center, Rotterdam, The Netherlands
- Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Robin P. Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
66
|
Randler C, Ebenhöh N, Fischer A, Höchel S, Schroff C, Stoll JC, Vollmer C. Chronotype but not sleep length is related to salivary testosterone in young adult men. Psychoneuroendocrinology 2012; 37:1740-4. [PMID: 22425131 DOI: 10.1016/j.psyneuen.2012.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Sex hormones, including testosterone, are hypothesized to have an influence on the human circadian system. We sampled male students in the period after adolescence. We used the Composite Scale of Morningness (CSM) to assess chronotype and saliva testosterone sampling in 106 University students (23.87±3.56 years; range 19-37) between 26.4.2011 and 6.5.2011, always between 0800h and 0900h. There was a significant negative relationship between CSM scores and saliva testosterone (r(s)=-0.220, p=0.023, two-tailed test) but not between testosterone and average sleep length. Age and testosterone did not correlate with each other nor did age and CSM scores. Our data suggest that chronotype in men might be influenced by testosterone and that high testosterone levels lead to a stronger evening-orientation. Sleep duration was uncorrelated with testosterone, suggesting that timing of sleep - rather than sleep length itself - is influenced by testosterone.
Collapse
Affiliation(s)
- Christoph Randler
- University of Education Heidelberg, Im Neuenheimer Feld 561-2, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
67
|
Blattner MS, Mahoney MM. Circadian parameters are altered in two strains of mice with transgenic modifications of estrogen receptor subtype 1. GENES BRAIN AND BEHAVIOR 2012; 11:828-36. [DOI: 10.1111/j.1601-183x.2012.00831.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 07/27/2012] [Indexed: 11/28/2022]
Affiliation(s)
- M. S. Blattner
- Department of Neuroscience; University of Illinois at Urbana-Champaign; Champaign; IL; USA
| | | |
Collapse
|
68
|
Hummer DL, Peckham EM, Lee TM. Estradiol acts during a post-pubertal sensitive period to shorten free-running circadian period in maleOctodon degus. Eur J Neurosci 2012; 36:3051-8. [DOI: 10.1111/j.1460-9568.2012.08228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 2012; 349:3-12. [PMID: 21787834 PMCID: PMC3242828 DOI: 10.1016/j.mce.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | | |
Collapse
|
70
|
Abstract
While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.
Collapse
|
71
|
Williams WP, Kriegsfeld LJ. Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne) 2012; 3:60. [PMID: 22661968 PMCID: PMC3356853 DOI: 10.3389/fendo.2012.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/13/2012] [Indexed: 01/14/2023] Open
Abstract
Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary-gonadal (HPG) axis functioning. In mammals, the master circadian pacemaker in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus coordinates reproductively relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene) lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the gonadotropin-releasing hormone (GnRH) system in control of the preovulatory luteinizing hormone (LH) surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.
Collapse
Affiliation(s)
- Wilbur P. Williams
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Lance J. Kriegsfeld, Neurobiology Laboratory, Department of Psychology, Helen Wills Neuroscience Institute, University of California, 3210 Tolman Hall, #1650, Berkeley, CA 94720-1650, USA. e-mail:
| |
Collapse
|
72
|
Randler C. Age and Gender Differences in Morningness–Eveningness During Adolescence. The Journal of Genetic Psychology 2011; 172:302-8. [DOI: 10.1080/00221325.2010.535225] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
73
|
|
74
|
Sanchez-Alavez M, Alboni S, Conti B. Sex- and age-specific differences in core body temperature of C57Bl/6 mice. AGE (DORDRECHT, NETHERLANDS) 2011; 33:89-99. [PMID: 20635153 PMCID: PMC3063645 DOI: 10.1007/s11357-010-9164-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Gender-specific differences in longevity are reported across species and are mediated by mechanisms not entirely understood. In C57Bl/6 mice, commonly used in aging research, males typically outlive females. Since in these animals modest but prolonged reduction of core body (Tc) increased life span, we hypothesized that differential Tc may contribute to sex-specific longevity. Here, we compared the circadian profiles of Tc and locomotor activity (LMA) of male and female C57Bl/6 mice. Since Tc and LMA normally change with age, measurements were carried out in young (3 months) as well as in old (24 months) mice. In young females, Tc was influenced by estrous but was overall higher than in males. This difference was larger in old animals after age eliminated the variations associated with estrous. Although temperature homeostasis is regulated centrally by the sexually dimorphic hypothalamic preoptic area, these differences were uniquely dependent on the gonads. In fact, bilateral gonadectomy abolished the effects of estrous and increased resting Tc in males eliminating all sex-specific differences in Tc and LMA. These effects were only partially mimicked by hormonal replacement as Tc was affected by progesterone and to a lesser extent by estrogen but not by testosterone. Thus, gonadal-dependent modulation of Tc may be one of the physiological parameters contributing to gender-specific differences in longevity.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Silvia Alboni
- Biomedical Sciences Department, University of Modena and Reggio Emilia, via G Campi 287, 41100 Modena, Italy
| | - Bruno Conti
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
75
|
Formby B, Schmidt F. Efficacy of biorhythmic transdermal combined hormone treatment in relieving climacteric symptoms: a pilot study. Int J Gen Med 2011; 4:159-63. [PMID: 21475623 PMCID: PMC3068872 DOI: 10.2147/ijgm.s16139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of a combination of bioidentical combined 17β-estradiol and progesterone transdermal delivery system (lipophilic emulsion-type base) to relieve climacteric symptoms. The hormonal replacement was given during a period of 6 months at four different cyclic doses to mimic the normal ovary secretory pattern. DESIGN An open, randomized, comparative, between-patient trial conducted over 6 months in 29 menopausal women with climacteric symptoms assessed with the Kupperman index at baseline and during treatments. Saliva and serum values of 17β-estradiol and progesterone were quantitated before treatment and after 3 and 6 months. Pharmacokinetic data following transdermal administration of 17β-estradiol (0.3 mg, daily) and progesterone (100 mg, daily) were calculated from saliva levels using high-performance liquid chromatography analysis. RESULTS Improvement in climacteric symptoms was reported in 93% of women evaluated before and after 3 and 6 months of treatment. Values of saliva 17β-estradiol increased after 6 months from 0.6 ± 0.3 pg/mL to 14.1 ± 3.3 pg/mL, and the values of serum 17β-estradiol increased from 3.3 ± 2.8 pg/mL to 80.6 ± 21.9 pg/mL. Of responders, 88% characterized symptom relief as complete. No adverse health-related events were attributed to the bioidentical hormone therapy. Time to maximum saliva concentrations (Tmax), in all experimental cases, was observed after 6 hours. Baseline values were reached within 24 hours, indicating a diurnal rhythm of 17β-estradiol seen in normally cyclic women over the 24-hour period, ie, its daily biological rhythm. CONCLUSION Percutaneous absorption of 17β-estradiol, as well as the absorption of progesterone, was associated with relief of climacteric symptoms. The cyclical transdermal delivery of combined bioidentical hormones may be advantageous because it mimics the secretory profiles of 17β-estradiol and progesterone in normally cyclic women over a 28-day period. Larger studies are needed to determine the long-term effects of our therapy.
Collapse
Affiliation(s)
- B Formby
- The Rasmus Institute for Medical Research, Program in Reproductive Endocrinology, Santa Barbara, CA, USA
| | - F Schmidt
- The Rasmus Institute for Medical Research, Program in Reproductive Endocrinology, Santa Barbara, CA, USA
| |
Collapse
|
76
|
Williams WP, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 2011; 152:595-606. [PMID: 21190958 PMCID: PMC3037169 DOI: 10.1210/en.2010-0943] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In spontaneously ovulating rodents, the preovulatory LH surge is initiated on the day of proestrus by a timed, stimulatory signal originating from the circadian clock in the suprachiasmatic nucleus (SCN). The present studies explored whether kisspeptin is part of the essential neural circuit linking the SCN to the GnRH system to stimulate ovulation in Syrian hamsters (Mesocricetus auratus). Kisspeptin neurons exhibit an estrogen-dependent, daily pattern of cellular activity consistent with a role in the circadian control of the LH surge. The SCN targets kisspeptin neurons via vasopressinergic (AVP), but not vasoactive intestinal polypeptide-ergic, projections. Because AVP administration can only stimulate the LH surge during a restricted time of day, we examined the possibility that the response to AVP is gated at the level of kisspeptin and/or GnRH neurons. Kisspeptin and GnRH activation were assessed after the administration of AVP during the morning (when AVP is incapable of initiating the LH surge) and the afternoon (when AVP injections stimulate the LH surge). Kisspeptin, but not GnRH, cellular activity was up-regulated after morning injections of AVP, suggesting that time-dependent sensitivity to SCN signaling is gated within GnRH but not kisspeptin neurons. In support of this possibility, we found that the GnRH system exhibits pronounced daily changes in sensitivity to kisspeptin stimulation, with maximal sensitivity in the afternoon. Together these studies reveal a novel mechanism of ovulatory control with interactions among the circadian system, kisspeptin signaling, and a GnRH gating mechanism of control.
Collapse
Affiliation(s)
- Wilbur P Williams
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720-1650, USA
| | | | | | | |
Collapse
|
77
|
Randler C, Bausback V. Morningness-eveningness in women around the transition through menopause and its relationship with climacteric complaints. BIOL RHYTHM RES 2010. [DOI: 10.1080/09291010903407631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
78
|
Tranah GJ, Parimi N, Blackwell T, Ancoli-Israel S, Ensrud KE, Cauley JA, Redline S, Lane N, Paudel ML, Hillier TA, Yaffe K, Cummings SR, Stone KL. Postmenopausal hormones and sleep quality in the elderly: a population based study. BMC WOMENS HEALTH 2010; 10:15. [PMID: 20441593 PMCID: PMC2876067 DOI: 10.1186/1472-6874-10-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 05/04/2010] [Indexed: 11/10/2022]
Abstract
Background Sleep disturbance and insomnia are commonly reported by postmenopausal women. However, the relationship between hormone therapy (HT) and sleep disturbances in postmenopausal community-dwelling adults is understudied. Using data from the multicenter Study of Osteoporotic Fractures (SOF), we tested the relationship between HT and sleep-wake estimated from actigraphy. Methods Sleep-wake was ascertained by wrist actigraphy in 3,123 women aged 84 ± 4 years (range 77-99) from the Study of Osteoporotic Fractures (SOF). This sample represents 30% of the original SOF study and 64% of participants seen at this visit. Data were collected for a mean of 4 consecutive 24-hour periods. Sleep parameters measured objectively included total sleep time, sleep efficiency (SE), sleep latency, wake after sleep onset (WASO), and nap time. All analyses were adjusted for potential confounders (age, clinic site, race, BMI, cognitive function, physical activity, depression, anxiety, education, marital status, age at menopause, alcohol use, prior hysterectomy, and medical conditions). Results Actigraphy measurements were available for 424 current, 1,289 past, and 1,410 never users of HT. Women currently using HT had a shorter WASO time (76 vs. 82 minutes, P = 0.03) and fewer long-wake (≥ 5 minutes) episodes (6.5 vs. 7.1, P = 0.004) than never users. Past HT users had longer total sleep time than never users (413 vs. 403 minutes, P = 0.002). Women who never used HT had elevated odds of SE <70% (OR,1.37;95%CI,0.98-1.92) and significantly higher odds of WASO ≥ 90 minutes (OR,1.37;95%CI,1.02-1.83) and ≥ 8 long-wake episodes (OR,1.58;95%CI,1.18-2.12) when compared to current HT users. Conclusions Postmenopausal women currently using HT had improved sleep quality for two out of five objective measures: shorter WASO and fewer long-wake episodes. The mechanism behind these associations is not clear. For postmenopausal women, starting HT use should be considered carefully in balance with other risks since the vascular side-effects of hormone replacement may exceed its beneficial effects on sleep.
Collapse
|
79
|
Shechter A, Varin F, Boivin DB. Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. Sleep 2010; 33:647-56. [PMID: 20469807 PMCID: PMC2864880 DOI: 10.1093/sleep/33.5.647] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Women experience insomnia more frequently than men. Menstrual cycle changes in reproductive hormones and circadian rhythms may contribute to sleep disruptions. Our aim, therefore, was to clarify the interaction between menstrual and circadian processes as it affects sleep. DESIGN Participants entered the laboratory during the mid-follicular (MF) and mid-luteal (ML) phases of their menstrual cycle for an ultra-rapid sleep-wake cycle (URSW) procedure, consisting of 36 cycles of 60-min wake episodes alternating with 60-min nap opportunities. This procedure concluded with an ad libitum nap episode. SETTING Time-isolation suite. PARTICIPANTS Eight unmedicated, physically and mentally healthy females with regular ovulatory menstrual cycles. INTERVENTIONS N/A. MEASUREMENTS Polysomnographic sleep from nocturnal sleep episodes and 60-min naps; subjective alertness; core body temperature (CBT); salivary melatonin; urinary estradiol; and urinary progesterone. RESULTS Increased CBT values at night and decreased CBT amplitude were observed during ML compared to MF. Circadian phase of CBT and the circadian melatonin profile were unaffected by menstrual phase. All analyzed sleep parameters showed a circadian variation throughout the URSW procedure, with no menstrual phase differences observed for most, including slow wave sleep (SWS). The circadian variation of REM sleep duration, however, was sensitive to menstrual phase, with reduced REM sleep during ML at circadian phase 0 degrees and 30 degrees. CONCLUSIONS Moderate but significant changes in REM sleep across the menstrual and circadian cycles were observed. These results support an interaction between circadian and menstrual processes in the regulation of REM sleep.
Collapse
Affiliation(s)
- Ari Shechter
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - France Varin
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada
| | - Diane B. Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
80
|
Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 2010; 22:362-72. [PMID: 20088910 DOI: 10.1111/j.1365-2826.2010.01956.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological effects of vasopressin as a peripheral hormone were first reported more than 100 years ago. However, it was not until the first immunocytochemical studies were carried out in the early 1970s, using vasopressin antibodies, and the discovery of an extensive distribution of vasopressin-containing fibres outside the hypothalamus, that a neurotransmitter role for vasopressin could be hypothesised. These studies revealed four additional vasopressin systems next to the classical magnocellular vasopressin system in the paraventricular and supraoptic nuclei: a sexually dimorphic system originating from the bed nucleus of the stria terminalis and the medial amygdala, an autonomic and endocrine system originating from the medial part of the paraventricular nucleus, and the circadian system originating from the hypothalamic suprachiasmatic nuclei (SCN). At about the same time as the discovery of the neurotransmitter function of vasopressin, it also became clear that the SCN contain the main component of the mammalian biological clock system (i.e. the endogenous pacemaker). This review will concentrate on the significance of the vasopressin neurones in the SCN for the functional output of the biological clock that is contained within it. The vasopressin-containing subpopulation is a characteristic feature of the SCN in many species, including humans. The activity of the vasopressin neurones in the SCN shows a pronounced daily variation in its activity that has also been demonstrated in human post-mortem brains. Animal experiments show an important role for SCN-derived vasopressin in the control of neuroendocrine day/night rhythms such as that of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes. The remarkable correlation between a diminished presence of vasopressin in the SCN and a deterioration of sleep-wake rhythms during ageing and depression make it likely that, also in humans, the vasopressin neurones contribute considerably to the rhythmic output of the SCN.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
81
|
Hisasue SI, Seney ML, Immerman E, Forger NG. Control of cell number in the bed nucleus of the stria terminalis of mice: role of testosterone metabolites and estrogen receptor subtypes. J Sex Med 2010; 7:1401-9. [PMID: 20102443 DOI: 10.1111/j.1743-6109.2009.01669.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The bed nucleus of the stria terminalis (BNST) exhibits several sex differences that may be related to male sexual behavior and gender identity. In mice and rats, sex differences in the principal nucleus of the BNST (BNSTp) are due to sexually dimorphic cell death during perinatal life. Although testosterone treatment of newborn female rats increases BNSTp cell number, the relevant hormone metabolite(s) are not known, and the effect of testosterone on the development of BNSTp cell number in mice has not been examined. AIM To identify the sex hormone metabolites and receptors controlling cell number, volume, and cell size in the BNSTp of mice. METHODS In the first experiment, C57BL/6J male mice were injected on the day of birth with peanut oil; females were injected with testosterone propionate (TP), estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), or oil alone, and the BNSTp of all animals was examined in adulthood. In the second experiment, to compare effects of EB to the effects of estrogen receptor subtype specific agonists, newborn female mice were injected with EB, propyl-pyrazole-triol (PPT, a selective estrogen receptor alpha [ERalpha] agonist), or diarylpropionitrile (DPN, a selective estrogen receptor beta [ERbeta] agonist). MAIN OUTCOME MEASURES Nuclear volume measurements and stereological cell counts in the BNSTp in adulthood. RESULTS TP treatment of newborn females completely masculinized both BNSTp volume and cell number. EB masculinized neuron number, whereas DHTP had no effect on volume or cell number. In the second experiment, EB again fully masculinized neuron number in the BNSTp and in this study also masculinized BNSTp volume. PPT and DPN each significantly increased cell number, but neither completely mimicked the effects of EB. CONCLUSIONS We conclude that estrogenic metabolites of testosterone control sexually dimorphic cell survival in the BNSTp and that activation of both ERalpha and ERbeta may be required for complete masculinization of this brain region.
Collapse
Affiliation(s)
- Shin-ichi Hisasue
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA.
| | | | | | | |
Collapse
|
82
|
Shechter A, Boivin DB. Sleep, Hormones, and Circadian Rhythms throughout the Menstrual Cycle in Healthy Women and Women with Premenstrual Dysphoric Disorder. Int J Endocrinol 2010; 2010:259345. [PMID: 20145718 PMCID: PMC2817387 DOI: 10.1155/2010/259345] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/16/2009] [Indexed: 11/17/2022] Open
Abstract
A relationship exists between the sleep-wake cycle and hormone secretion, which, in women, is further modulated by the menstrual cycle. This interaction can influence sleep across the menstrual cycle in healthy women and in women with premenstrual dysphoric disorder (PMDD), who experience specific alterations of circadian rhythms during their symptomatic luteal phase along with sleep disturbances during this time. This review will address the variation of sleep at different menstrual phases in healthy and PMDD women, as well as changes in circadian rhythms, with an emphasis on their relationship with female sex hormones. It will conclude with a brief discussion on nonpharmacological treatments of PMDD which use chronotherapeutic methods to realign circadian rhythms as a means of improving sleep and mood in these women.
Collapse
Affiliation(s)
- Ari Shechter
- Centre for Study and Treatment of Circadian Rhythms, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
| | - Diane B. Boivin
- Centre for Study and Treatment of Circadian Rhythms, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada H4H 1R3
| |
Collapse
|
83
|
|
84
|
Savic I, Garcia-Falgueras A, Swaab DF. Sexual differentiation of the human brain in relation to gender identity and sexual orientation. PROGRESS IN BRAIN RESEARCH 2010; 186:41-62. [DOI: 10.1016/b978-0-444-53630-3.00004-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Mahoney MM. Shift work, jet lag, and female reproduction. Int J Endocrinol 2010; 2010:813764. [PMID: 20224815 PMCID: PMC2834958 DOI: 10.1155/2010/813764] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/02/2010] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms and "clock gene" expression are involved in successful reproductive cycles, mating, and pregnancy. Alterations or disruptions of biological rhythms, as commonly occurs in shift work, jet lag, sleep deprivation, or clock gene knock out models, are linked to significant disruptions in reproductive function. These impairments include altered hormonal secretion patterns, reduced conception rates, increased miscarriage rates and an increased risk of breast cancer. Female health may be particularly susceptible to the impact of desynchronizing work schedules as perturbed hormonal rhythms can further influence the expression patterns of clock genes. Estrogen modifies clock gene expression in the uterus, ovaries, and suprachiasmatic nucleus, the site of the primary circadian clock mechanism. Further work investigating clock genes, light exposure, ovarian hormones, and reproductive function will be critical for indentifying how these factors interact to impact health and susceptibility to disease.
Collapse
Affiliation(s)
- Megan M. Mahoney
- Veterinary Biosciences and Neuroscience Program, University of Illinois, 3639 VMBSB MC-002, 2001 S Lincoln Avenue, Urbana, IL 61802, USA
- *Megan M. Mahoney:
| |
Collapse
|
86
|
Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2009; 2009:165013. [PMID: 19936126 PMCID: PMC2778831 DOI: 10.1155/2009/165013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/06/2009] [Indexed: 01/19/2023]
Abstract
We tested which environmental, social, lifestyle, and health related factors of the individual contribute to the seasonal variations in mood and behavior and whether these influence the risks of the metabolic syndrome and major depressive disorder, both conditions having a high prevalence in industrialized populations. 5480 individuals, representative of the general population aged 30 and over in Finland, were assessed for metabolic syndrome using the ATP-III criteria, gave a self-report of seasonal variations in mood and behavior, and were interviewed for mood, anxiety, and alcohol use disorders using the DSM-IV criteria. The seasonal variations in mood and behavior have a metabolic factor composed of weight and appetite, and greater loadings on this factor increased the risk of metabolic syndrome (odds ratio of 1.18, 95% confidence interval of 1.10 to 1.26). Self-reports of lighting experienced as poor at home contributed to scores on the metabolic factor (t = 4.20, P < .0001). Lighting conditions and their dynamics may serve as a measure for intervention in order to influence the seasonal metabolic signals and in the end to prevent the metabolic syndrome.
Collapse
|
87
|
Pluchino N, Cubeddu A, Begliuomini S, Merlini S, Giannini A, Bucci F, Casarosa E, Luisi M, Cela V, Genazzani A. Daily variation of brain-derived neurotrophic factor and cortisol in women with normal menstrual cycles, undergoing oral contraception and in postmenopause. Hum Reprod 2009; 24:2303-9. [DOI: 10.1093/humrep/dep119] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
88
|
Zuloaga DG, McGivern RF, Handa RJ. Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats. Brain Res 2009; 1268:68-75. [PMID: 19272357 DOI: 10.1016/j.brainres.2009.02.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 02/11/2009] [Accepted: 02/14/2009] [Indexed: 10/21/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates physiological and behavioral circadian rhythms such as activity, body temperature, and hormone secretion. Circadian rhythms coordinated by the SCN often show sex differences arising from both organizational and activational effects of gonadal hormones. In males, little is known about the organizational role of testosterone on the circadian regulation of core body temperature (CBT) in adulthood. To explore this, we castrated or sham-operated male rats on the day of birth, and at 4 months of age, implanted them with transmitters that measured CBT rhythms under a 12:12 light/dark cycle. This study revealed a significantly earlier rise in CBT during the light phase in neonatally castrated males. Subsequently, we found that treating neonatally castrated males with testosterone propionate (TP) in adulthood did not reverse the effect of neonatal castration, thus indicating an organizational role for testosterone. In contrast, a single injection of TP at the time of neonatal surgery, to mimic the postnatal surge of testosterone, coupled with TP treatment in adulthood, normalized the circadian rise in CBT. In a final study we examined CBT circadian rhythms in intact adult male and female rats and detected no differences in the rise of CBT during the light phase, although there was a greater overall elevation in female CBT. Together, results of these studies reveal an early organizational role of testosterone in males on the timing of the circadian rise of CBT, a difference that does not appear to reflect "defeminization".
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA.
| | - Robert F McGivern
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State Univ., Fort Collins, CO 80523, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
89
|
Lahti TA, Partonen T, Kyyrönen P, Kauppinen T, Pukkala E. Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer 2008; 123:2148-51. [PMID: 18697199 DOI: 10.1002/ijc.23566] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our aim was to find out whether non-Hodgkin lymphoma (NHL) was more common than expected among night-time shift workers. The Finnish job-exposure matrix (FINJEM) provided estimates of the proportion of exposed persons and the mean level of exposure among the exposed in each occupation. The probability of night-time work in each occupation was assessed, the observed and expected numbers of cancer cases in a cohort of persons born in 1906-1945 during the years of 1971-1995 were calculated, and the cumulative index of night-time work was scored. The cohort compromised of 1,669,272 persons of whom 6,307 (3,813 men and 2,494 women) had NHL during the follow-up. Night-time work increased significantly (p = 0.01) the risk of NHL in men, the overall relative risk being 1.10 (95% confidence interval of 1.03-1.19). Using the lag period of 10 years, the risk ratio was 1.28 (1.03-1.59) for men who worked in night-time shifts to a high degree as compared with those who had not been exposed to night-time work. Night-time workers are cancer prone and have a greater risk of NHL than population on average.
Collapse
Affiliation(s)
- Tuuli A Lahti
- Department of Mental Health and Alcohol Research, National Public Health Institute, Mannerheimintie 166, Helsinki, Finland
| | | | | | | | | |
Collapse
|
90
|
Pilorz V, Steinlechner S, Oster H. Age and oestrus cycle-related changes in glucocorticoid excretion and wheel-running activity in female mice carrying mutations in the circadian clock genes Per1 and Per2. Physiol Behav 2008; 96:57-63. [PMID: 18786554 DOI: 10.1016/j.physbeh.2008.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
In mammals, numerous physiological and behavioural functions are controlled by an endogenous circadian clock located in the suprachiasmatic nuclei (SCN). Within the SCN neurons, clock genes such as Per1 and Per2 interact in a molecular clockwork regulating the expression of hundreds of output genes. Through the timed release of humoral and neuronal signals, the rhythmicity of numerous biological processes, including reproductive behaviour, the oestrus cycle and endocrine parameters is controlled by the SCN. Mutations in Per genes in mice affect a wide array of physiological functions. Interestingly, most of these studies use only male animals, thus neglecting potential gender-specificities in clock function. In an attempt to broaden this perspective we have investigated the impact of Per1 and Per2 mutations on both glucocorticoid (GC) metabolite excretion and locomotor activity in relation to age and oestrus cycle stage of female mice. We show that the Per2 mutation dampens daily GC rhythms in young adult females. While locomotor activity does not vary along the different oestrus stages in Per2 mutant females, oestrus effects on GC excretion and locomotor activity are largely comparable between Per1 mutants and wild-type animals. 20 month-old, acyclic Per1 and wild-type females show reduced GC levels when compared to young adults while aged Per2 mutants retain their normal GC rhythmicity. Correlating with this, onsets of locomotor activity do not change with age in Per2 mutant females. Together, our data highlight specific roles for Per1 and Per2 in both the regulation of locomotor activity and endocrine functions in the female organism.
Collapse
Affiliation(s)
- Violetta Pilorz
- Department of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | | | | |
Collapse
|
91
|
Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas. Pancreas 2008; 37:165-9. [PMID: 18665078 DOI: 10.1097/mpa.0b013e318168dd8c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the expression of the 4 gene transcripts, steroidogenic factors 1 (SF-1) and 2 (SF-2), steroidogenic acute regulatory (StAR), and cytochrome P450 11A1, involved in the synthesis of steroid hormones in normal human pancreas. METHODS Total RNA was extracted from normal male (n = 5) and female (n = 5) samples, obtained from the organ donor program. The expression levels of SF-1, SF-2, StAR protein, and P450scc were assessed by reverse transcription-polymerase chain reaction and complemented with immunohistochemistry analysis. RESULTS Polymerase chain reaction products amplification for all genes was present in both male and female samples, although differential expression was observed. The signals detected were much more evident in male than in female messenger RNA isolates for SF-1, SF-2, and StAR protein. The expression for P450scc was more intense in female samples. A similar pattern was observed in the immunohistochemical studies. CONCLUSIONS Normal human pancreas expresses 4 gene transcripts involved in steroid synthesis similarly to steroidogenic organs. A distinctive characteristic is the sexually dimorphic expression of these factors. These data provide further evidence to support that the pancreas is a truly steroidogenic tissue, highlighting the presence of sex- and location-related differences in the expression of steroidogenic factors.
Collapse
|
92
|
Wilson ME, Westberry JM, Prewitt AK. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: a role for promoter methylation? Front Neuroendocrinol 2008; 29:375-85. [PMID: 18439661 PMCID: PMC2460564 DOI: 10.1016/j.yfrne.2008.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 12/31/2022]
Abstract
Estrogen has long been known to play an important role in coordinating the neuroendocrine events that control sexual development, sexual behavior and reproduction. Estrogen actions in other, non-reproductive areas of the brain have also been described. It is now known that estrogen can also influence learning, memory, and emotion and has neurotrophic and neuroprotective properties. The actions of estrogen are largely mediated through at least two intracellular estrogen receptors. Both estrogen receptor-alpha and estrogen receptor-beta are expressed in a wide variety of brain regions. Estrogen receptor-alpha (ERalpha), however, undergoes developmental and brain region-specific changes in expression. The precise molecular mechanisms that regulate its expression at the level of gene transcription are not well understood. Adding to the complexity of its regulation, the estrogen receptor gene contains multiple promoters that drive its expression. In the cortex in particular, the ERalpha mRNA expression is dynamically regulated during postnatal development and again following neuronal injury. Epigenetic modification of chromatin is increasingly being understood as a mechanism of neuronal gene regulation. This review examines the potential regulation of the ERalpha gene by such epigenetic mechanisms.
Collapse
Affiliation(s)
- Melinda E Wilson
- Department of Physiology, College of Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
93
|
Christian CA, Moenter SM. Vasoactive intestinal polypeptide can excite gonadotropin-releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology 2008; 149:3130-6. [PMID: 18326000 PMCID: PMC2408801 DOI: 10.1210/en.2007-1098] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A surge of GnRH release signals the LH surge that triggers ovulation. The GnRH surge is dependent on a switch in estradiol feedback from negative to positive and, in rodents, a daily neural signal, likely from the suprachiasmatic nuclei. Vasoactive intestinal polypeptide (VIP) may be involved in suprachiasmatic nuclei-GnRH neuron communication. Here we assessed the effects of acute VIP (5 min treatment) on GnRH neuron function using targeted extracellular recordings of firing activity of GnRH neurons in brain slices. We examined the effect of VIP on firing rate at different times of day using an established ovariectomized, estradiol-treated (OVX+E) mouse model that exhibits daily LH surges timed to the late afternoon. Cells from OVX animals (no estradiol) did not respond to VIP, regardless of time of day. With estradiol, the effect of VIP on GnRH neurons was dependent on the time of recording. During negative feedback, OVX+E cells did not respond. VIP increased firing in cells recorded during surge onset, but this excitatory response was reduced at surge peak. Acute treatment of OVX+E cells during surge peak with a VIP receptor antagonist decreased GnRH neuron firing. This suggests endogenous VIP may both increase GnRH neuron firing during the surge and occlude response to exogenous VIP. These data provide functional evidence for VIP effects on GnRH neurons and indicate that both estradiol and time of day gate the GnRH neuron response to this peptide. VIP may provide an excitatory signal from the circadian clock that helps time the GnRH surge.
Collapse
Affiliation(s)
- Catherine A Christian
- Neuroscience Graduate Program, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
94
|
Fatehi M, Fatehi-Hassanabad Z. Effects of 17beta-estradiol on neuronal cell excitability and neurotransmission in the suprachiasmatic nucleus of rat. Neuropsychopharmacology 2008; 33:1354-64. [PMID: 17687263 DOI: 10.1038/sj.npp.1301523] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
17beta-Estradiol receptors have been found in several brain nuclei including the suprachiasmatic nucleus (SCN) of mammalian species. The SCN is believed to act as brain clock regulating circadian and circannual biological rhythms, such as body temperature, sleep, and mood. Here, we examined whether 17beta-estradiol (E2) could affect cell excitability and synaptic transmission in the SCN. Bath application of E2 (0.03-3 microM) increased the spontaneous firing frequency and depolarized cell membrane of the SCN neurons significantly. Furthermore, E2 (0.03-3 microM) increased (by about 25-150% of control) frequency of the miniature excitatory postsynaptic currents. Amplitude of the evoked excitatory postsynaptic currents was enhanced (by about 32% of control) after exposure to 1 microM E2. The paired-pulse ratio was reduced by E2. These effects were prevented by the estrogen receptor antagonist, ICI 182780. Exposure to the biologically inactive 17alpha-estradiol did not cause any significant changes in the parameters mentioned above. These findings are in favor of an implication of estrogen in modulation of neuronal activity in SCN and possibly regulating circadian rhythms.
Collapse
Affiliation(s)
- Mohammad Fatehi
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.
| | | |
Collapse
|
95
|
Caba M, Tovar A, Silver R, Mogado E, Meza E, Zavaleta Y, Juárez C. Nature's food anticipatory experiment: entrainment of locomotor behavior, suprachiasmatic and dorsomedial hypothalamic nuclei by suckling in rabbit pups. Eur J Neurosci 2008; 27:432-43. [PMID: 18215239 DOI: 10.1111/j.1460-9568.2008.06017.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In nature and under laboratory conditions, dams nurse rabbit pups once daily for a duration of fewer than 5 min. The present study explored neural mechanisms mediating the timing of nursing in this natural model of food anticipatory activity, focussing on the suprachiasmatic nucleus (SCN), the locus of the master circadian clock and on the dorsomedial hypothalamic nucleus (DMH), a region implicated in timing of food-entrained behavior. Rabbit pups are born in the dark, with eyelids closed. Nursing visits to the litters also occurs during the dark phase. To explore the effect of the timing of feeding, pups were maintained in constant darkness, while females housed in a light-dark cycle were permitted to nurse their pups either during the night (night-fed group) or day (day-fed group). All pups exhibited anticipatory locomotor activity before daily nursing. In the SCN, PER1 and FOS peaked during the night in both groups, with a longer duration of elevated protein expression in the night-fed group. In contrast, DMH peak PER1 expression occurred 8 h after pups were fed, corresponding to the shift in timing of nursing. Comparison of nursed and 48 h fasted pups indicates that the timing of PER1 expression was similar in the SCN and DMH, with fewer PER1-positive cells in the latter group. The results indicate that rabbit pups show food anticipatory activity, and that timing of nursing differentially affects PER1 expression in the SCN and DMH.
Collapse
Affiliation(s)
- Mario Caba
- Lab. Biol. of Reproduction, IIB, Universidad Veracruzana, A.P. # 114, Xalapa 91000, Ver. Mexico.
| | | | | | | | | | | | | |
Collapse
|
96
|
Malyala A, Zhang C, Bryant DN, Kelly MJ, Rønnekleiv OK. PI3K signaling effects in hypothalamic neurons mediated by estrogen. J Comp Neurol 2008; 506:895-911. [PMID: 18085586 DOI: 10.1002/cne.21584] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple mechanisms mediate the effects of estrogen in the central nervous system, including signal transduction pathways such as protein kinase A, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) pathways. Previously we demonstrated that estrogen regulates a number of PI3K-related genes in the hypothalamus, including the PI3K p55gamma regulatory subunit. We hypothesized that PI3K activation is critical for the effects of estrogen and that the p55gamma subunit may be more prevalent than the p85alpha regulatory subunit in the hypothalamus. Therefore, in the present study, we compared the mRNA distribution of the p55gamma and p85alpha regulatory subunits by using in situ hybridization in guinea pig. Expression level of p55gamma mRNA was greater than p85alpha in most hypothalamic nuclei. Twenty-four hours of estrogen treatment increased p55gamma mRNA expression in the paraventricular, suprachiasmatic, arcuate, and ventromedial nuclei, and little or no change was observed for p85alpha mRNA. Quantitative real-time PCR confirmed the in situ hybridization results. Next, we investigated the general role of PI3K signaling in the estrogen-mediated changes of arcuate proopiomelanocortin (POMC) neuronal excitability by using whole-cell recording. One cellular mechanism by which estrogen increases neuronal excitability is to desensitize (uncouple) gamma-aminobutyric acid type B (GABA(B)) receptors from their G-protein-gated inwardly rectifying K(+) channels in hypothalamic neurons. We found that the PI3K inhibitors wortmannin and LY294002 significantly reduced the estrogen-mediated GABA(B) receptor desensitization in POMC arcuate neurons, suggesting that PI3K signaling is a critical downstream mediator of the estrogen-mediated rapid effects. Collectively, these data suggest that the interplay between estrogen and PI3K occurs at multiple levels, including transcriptional and membrane-initiated signaling events that ultimately lead to changes in homeostatic function.
Collapse
Affiliation(s)
- Anna Malyala
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
97
|
Iwahana E, Karatsoreos I, Shibata S, Silver R. Gonadectomy reveals sex differences in circadian rhythms and suprachiasmatic nucleus androgen receptors in mice. Horm Behav 2008; 53:422-30. [PMID: 18164002 PMCID: PMC3266066 DOI: 10.1016/j.yhbeh.2007.11.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/19/2022]
Abstract
In mammals, it is well established that circadian rhythms in physiology and behavior, including the rhythmic secretion of hormones, are regulated by a brain clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. While SCN regulation of gonadal hormone secretion has been amply studied, the mechanisms whereby steroid hormones affect circadian functions are less well known. This is surprising considering substantial evidence that sex hormones affect many aspects of circadian responses, and that there are significant sex differences in rhythmicity. Our previous finding that "core" and "shell" regions of the SCN differ in their expression of clock genes prompted us to examine the possibility that steroid receptors are localized to a specific compartment of the brain clock, with the discovery that the androgen receptor (AR) is concentrated in the SCN core in male mice. In the present study, we compare AR expression in female and male mice using Western blots and immunochemistry. Both of these methods indicate that ARs are more highly expressed in males than in females; gonadectomy eliminates and androgen treatment restores these sex differences. At the behavioral level, gonadectomy produces a dramatic loss of the evening activity onset bout in males, but has no such effect in females. Treatment with testosterone, or with the non-aromatizable androgen dihydrotestosterone, restores male locomotor activity and eliminates sex differences in the behavioral response. The results indicate that androgenic hormones regulate circadian responses, and suggest an SCN site of action.
Collapse
Affiliation(s)
- Eiko Iwahana
- Department of Psychology, Columbia University New York, NY 10027, U.S.A
- Department of Physiology and Pharmacology, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Ilia Karatsoreos
- Department of Psychology, Columbia University New York, NY 10027, U.S.A
| | - Shigenobu Shibata
- Department of Physiology and Pharmacology, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Rae Silver
- Department of Psychology, Columbia University New York, NY 10027, U.S.A
- Department of Psychology, Barnard College, New York, NY 10027, U.S.A
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10027, U.S.A
| |
Collapse
|
98
|
|
99
|
Abstract
A treatment refractory chronic cluster headache patient is presented who became cluster-free on clomiphene citrate. The author has previously reported a SUNCT patient responding to clomiphene citrate. Hypothalamic hormonal modulation therapy with clomiphene citrate may become a new preventive choice for trigeminal autonomic cephalalgias. The possible mechanism of action of clomiphene citrate for cluster headache prevention will be discussed.
Collapse
Affiliation(s)
- Todd Rozen
- Michigan Head Pain and Neurological Institute, Ann Arbor, MI 48104, USA
| |
Collapse
|
100
|
Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med 2007; 8:613-22. [PMID: 17383933 DOI: 10.1016/j.sleep.2006.09.011] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/28/2006] [Accepted: 09/15/2006] [Indexed: 01/24/2023]
Abstract
Women with ovulatory menstrual cycles have a circadian rhythm superimposed on the menstrual-associated rhythm; in turn, menstrual events affect the circadian rhythm. In this paper, we review circadian rhythms in temperature, selected hormone profiles, and sleep-wake behavior in healthy women at different phases of the menstrual cycle. The effects on menstrual cycle rhythmicity of disrupted circadian rhythms, for example, with shiftwork and altered circadian rhythms in women with menstrual-related mood disturbances, are discussed. Compared to the follicular phase, in the post-ovulation luteal phase, body temperature is elevated, but the amplitude of the temperature rhythm is reduced. Evidence indicates that the amplitude of other rhythms, such as melatonin and cortisol, may also be blunted in the luteal phase. Subjective sleep quality is lowest around menses, but the timing and composition of sleep remains relatively stable across the menstrual cycle in healthy women, apart from an increase in spindle frequency activity and a minor decrease in rapid eye movement (REM) sleep during the luteal phase. Disruption of circadian rhythms is associated with disturbances in menstrual function. Female shiftworkers compared to non-shiftworkers are more likely to report menstrual irregularity and longer menstrual cycles. There also is accumulating evidence that circadian disruption increases the risk of breast cancer in women, possibly due to altered light exposure and reduced melatonin secretion. Further investigations into the biological consequences of circadian disruption in women will offer insight into some menstrual-associated disorders, including mood changes, as well as reproductive function and possible links with breast cancer.
Collapse
Affiliation(s)
- Fiona C Baker
- Human Sleep Research Program, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | |
Collapse
|