51
|
García-Roa M, del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, Sáez I, Seghatchian J, Gutiérrez L. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:222-231. [PMID: 28518049 PMCID: PMC5448828 DOI: 10.2450/2017.0345-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
Abstract
Red blood cells (RBCs) units are the most requested transfusion product worldwide. Indications for transfusion include symptomatic anaemia, acute sickle cell crisis, and acute blood loss of more than 30% of the blood volume, with the aim of restoring tissue oxygen delivery. However, stored RBCs from donors are not a qualitative equal product, and, in many ways, this is a matter of concern in the transfusion practice. Besides donor-to-donor variation, the storage time influences the RBC unit at the qualitative level, as RBCs age in the storage bag and are exposed to the so-called storage lesion. Several studies have shown that the storage lesion leads to post-transfusion enhanced clearance, plasma transferrin saturation, nitric oxide scavenging and/or immunomodulation with potential unwanted transfusion-related clinical outcomes, such as acute lung injury or higher mortality rate. While, to date, several studies have claimed the risk or deleterious effects of "old" vs "young" RBC transfusion regimes, it is still a matter of debate, and consideration should be taken of the clinical context. Transfusion-dependent patients may benefit from transfusion with "young" RBC units, as it assures longer inter-transfusion periods, while transfusion with "old" RBC units is not itself harmful. Unbiased Omics approaches are being applied to the characterisation of RBC through storage, to better understand the (patho)physiological role of microparticles (MPs) that are found naturally, and also on stored RBC units. Perhaps RBC storage time is not an accurate surrogate for RBC quality and there is a need to establish which parameters do indeed reflect optimal efficacy and safety. A better Omics characterisation of components of "young" and "old" RBC units, including MPs, donor and recipient, might lead to the development of new therapies, including the use of engineered RBCs or MPs as cell-based drug delivering tools, or cost-effective personalised transfusion strategies.
Collapse
Affiliation(s)
- María García-Roa
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María del Carmen Vicente-Ayuso
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alejandro M. Bobes
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alexandra C. Pedraza
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Ataúlfo González-Fernández
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María Paz Martín
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Isabel Sáez
- ”Servicio de Hematología y Hemoterapia”, “Hospital Clínico San Carlos”, Madrid, Spain
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement and DDR Strategy, London, United Kingdom
| | - Laura Gutiérrez
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| |
Collapse
|
52
|
Arias CF, Arias CF. How do red blood cells know when to die? ROYAL SOCIETY OPEN SCIENCE 2017; 4:160850. [PMID: 28484605 PMCID: PMC5414242 DOI: 10.1098/rsos.160850] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/01/2017] [Indexed: 05/19/2023]
Abstract
Human red blood cells (RBCs) are normally phagocytized by macrophages of splenic and hepatic sinusoids at 120 days of age. The destruction of RBCs is ultimately controlled by antagonist effects of phosphatidylserine (PS) and CD47 on the phagocytic activity of macrophages. In this work, we introduce a conceptual model that explains RBC lifespan as a consequence of the dynamics of these molecules. Specifically, we suggest that PS and CD47 define a molecular algorithm that sets the timing of RBC phagocytosis. We show that significant changes in RBC lifespan described in the literature can be explained as alternative outcomes of this algorithm when it is executed in different conditions of oxygen availability. The theoretical model introduced here provides a unified framework to understand a variety of empirical observations regarding RBC biology. It also highlights the role of RBC lifespan as a key element of RBC homeostasis.
Collapse
Affiliation(s)
- Clemente Fernandez Arias
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
| | - Cristina Fernandez Arias
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| |
Collapse
|
53
|
Wezena CA, Krafczyk J, Staudacher V, Deponte M. Growth inhibitory effects of standard pro- and antioxidants on the human malaria parasite Plasmodium falciparum. Exp Parasitol 2017; 180:64-70. [PMID: 28242353 DOI: 10.1016/j.exppara.2017.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 01/13/2023]
Abstract
The redox metabolism of the malaria parasite Plasmodium falciparum and its human host has been suggested to play a central role for parasite survival and clearance. A common approach to test hypotheses in redox research is to challenge or rescue cells with pro- and antioxidants. However, quantitative data on the susceptibility of infected erythrocytes towards standard redox agents is surprisingly scarce. Here we determined the IC50 values of P. falciparum strains 3D7 and Dd2 for a set of redox agents using a SYBR green-based growth assay. Parasite killing in this assay required extremely high concentrations of hydrogen peroxide with a millimolar IC50 value, whereas IC50 values for tert-butyl hydroperoxide and diamide were between 67 and 121 μM. Thus, in contrast to tert-butyl hydroperoxide and the disulfide-inducing agent diamide, the host-parasite unit appears to be very robust against challenges with hydrogen peroxide with implications for host defense mechanisms. N-acetylcysteine, ascorbate, and dithiothreitol also had antiproliferative instead of growth-promoting effects with IC50 values around 12, 3 and 0.4 mM, respectively. So-called antioxidants can therefore also inhibit parasite growth with implications for clinical trials and studies on 'oxidative stress'. Furthermore, the addition of reductants to parasite cultures resulted in the gelation of albumin, the formation of methemoglobin and hemolysis. These effects can alter the fluorescence in SYBR green assays and have to be taken into account for the determination of IC50 values. In summary, standard oxidants and reductants both inhibit the growth of P. falciparum with IC50 values differing by three orders of magnitude.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Johannes Krafczyk
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| |
Collapse
|
54
|
Abstract
Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
55
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
56
|
Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med 2017; 103:95-106. [PMID: 28007575 PMCID: PMC5282401 DOI: 10.1016/j.freeradbiomed.2016.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set.
Collapse
Affiliation(s)
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Ashril Yusof
- Dept. of Exercise Science, Sports Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Chris E Cooper
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
57
|
Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia. Cell Host Microbe 2016; 19:194-203. [PMID: 26867178 DOI: 10.1016/j.chom.2016.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia.
Collapse
|
58
|
Spector J, Kodippili GC, Ritchie K, Low PS. Single Molecule Studies of the Diffusion of Band 3 in Sickle Cell Erythrocytes. PLoS One 2016; 11:e0162514. [PMID: 27598991 PMCID: PMC5012561 DOI: 10.1371/journal.pone.0162514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/24/2016] [Indexed: 01/29/2023] Open
Abstract
Sickle cell disease (SCD) is caused by an inherited mutation in hemoglobin that leads to sickle hemoglobin (HbS) polymerization and premature HbS denaturation. Previous publications have shown that HbS denaturation is followed by binding of denatured HbS (a.k.a. hemichromes) to band 3, the consequent clustering of band 3 in the plane of the erythrocyte membrane that in turn promotes binding of autologous antibodies to the clustered band 3, and removal of the antibody-coated erythrocytes from circulation. Although each step of the above process has been individually demonstrated, the fraction of band 3 that is altered by association with denatured HbS has never been determined. For this purpose, we evaluated the lateral diffusion of band 3 in normal cells, reversibly sickled cells (RSC), irreversibly sickled cells (ISC), and hemoglobin SC erythrocytes (HbSC) in order to estimate the fraction of band 3 that was diffusing more slowly due to hemichrome-induced clustering. We labeled fewer than ten band 3 molecules per intact erythrocyte with a quantum dot to avoid perturbing membrane structure and we then monitored band 3 lateral diffusion by single particle tracking. We report here that the size of the slowly diffusing population of band 3 increases in the sequence: normal cells<HbSC<RSC<ISC. We also demonstrate that the size of the compartment in which band 3 is free to diffuse decreases roughly in the same order, with band 3 diffusing in two compartments of sizes 35 and 71 nm in normal cells, but only a single compartment in HbSC cells (58 nm), RSC (45 nm) and ISC (36 nm). These data suggest that the mobility of band 3 is increasingly constrained during SCD progression, suggesting a global impact of the mutated hemoglobin on erythrocyte membrane properties.
Collapse
MESH Headings
- Anemia, Sickle Cell/blood
- Anemia, Sickle Cell/pathology
- Anion Exchange Protein 1, Erythrocyte/chemistry
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Cells, Cultured
- Diffusion
- Erythrocyte Membrane/chemistry
- Erythrocyte Membrane/metabolism
- Erythrocyte Membrane/ultrastructure
- Erythrocytes, Abnormal/chemistry
- Erythrocytes, Abnormal/metabolism
- Erythrocytes, Abnormal/ultrastructure
- Hemeproteins/chemistry
- Hemeproteins/metabolism
- Hemoglobin, Sickle/chemistry
- Hemoglobin, Sickle/metabolism
- Humans
- Molecular Probes/chemistry
- Quantum Dots/chemistry
- Single Molecule Imaging/methods
- Staining and Labeling/methods
Collapse
Affiliation(s)
- Jeff Spector
- Department of Physics, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Gayani C. Kodippili
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States of America
- * E-mail:
| |
Collapse
|
59
|
Rizzello CG, Losito I, Facchini L, Katina K, Palmisano F, Gobbetti M, Coda R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci Rep 2016; 6:32452. [PMID: 27578427 PMCID: PMC5006014 DOI: 10.1038/srep32452] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
In spite of its positive repercussions on nutrition and environment, faba bean still remains an underutilized crop due to the presence of some undesired compounds. The pyrimidine glycosides vicine and convicine are precursors of the aglycones divicine and isouramil, the main factors of favism, a genetic condition which may lead to severe hemolysis after faba bean ingestion. The reduction of vicine and convicine has been targeted in several studies but little is known about their degradation. In this study, the hydrolysis kinetics of vicine and convicine and their derivatives during fermentation with L. plantarum DPPMAB24W was investigated. In particular, a specific HPLC method coupled to ESI-MS and MS/MS analysis, including the evaluation procedure of the results, was set up as the analytical approach to monitor the compounds. The degradation of the pyrimidine glycosides in the fermented flour was complete after 48 h of incubation and the aglycone derivatives could not be detected in any of the samples. The toxicity of the fermented faba bean was established through ex-vivo assays on human blood, confirming the experimental findings. Results indicate that mild and cost effective bioprocessing techniques can be applied to detoxify faba bean also for industrial applications.
Collapse
Affiliation(s)
- Carlo Giuseppe Rizzello
- University of Bari “Aldo Moro”, Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy
| | - Ilario Losito
- University of Bari “Aldo Moro”, Department of Chemistry, Via E. Orabona 4, 70125 Bari, Italy
- University of Bari “Aldo Moro”, SMART Inter-department Research Center, Via E. Orabona 4, 70125 Bari, Italy
| | - Laura Facchini
- University of Bari “Aldo Moro”, Department of Chemistry, Via E. Orabona 4, 70125 Bari, Italy
| | - Kati Katina
- University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
| | - Francesco Palmisano
- University of Bari “Aldo Moro”, Department of Chemistry, Via E. Orabona 4, 70125 Bari, Italy
- University of Bari “Aldo Moro”, SMART Inter-department Research Center, Via E. Orabona 4, 70125 Bari, Italy
| | - Marco Gobbetti
- University of Bari “Aldo Moro”, Department of Soil, Plant, and Food Science, Via Amendola 165/a, 70125 Bari, Italy
| | - Rossana Coda
- University of Helsinki, Department of Food and Environmental Sciences, Agnes Sjioberginkatu 2, Helsinki, Finland
| |
Collapse
|
60
|
The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5146-58. [PMID: 27297478 DOI: 10.1128/aac.02975-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/27/2016] [Indexed: 01/16/2023] Open
Abstract
Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents.
Collapse
|
61
|
Al-Quraishy SA, Dkhil MA, Abdel-Baki AAA, Delic D, Wunderlich F. Protective Vaccination against Blood-Stage Malaria of Plasmodium chabaudi: Differential Gene Expression in the Liver of Balb/c Mice toward the End of Crisis Phase. Front Microbiol 2016; 7:1087. [PMID: 27471498 PMCID: PMC4943960 DOI: 10.3389/fmicb.2016.01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023] Open
Abstract
Protective vaccination induces self-healing of otherwise fatal blood-stage malaria of Plasmodium chabaudi in female Balb/c mice. To trace processes critically involved in self-healing, the liver, an effector against blood-stage malaria, is analyzed for possible changes of its transcriptome in vaccination-protected in comparison to non-protected mice toward the end of the crisis phase. Gene expression microarray analyses reveal that vaccination does not affect constitutive expression of mRNA and lincRNA. However, malaria induces significant (p < 0.01) differences in hepatic gene and lincRNA expression in vaccination-protected vs. non-vaccinated mice toward the end of crisis phase. In vaccination-protected mice, infections induce up-regulations of 276 genes and 40 lincRNAs and down-regulations of 200 genes and 43 lincRNAs, respectively, by >3-fold as compared to the corresponding constitutive expressions. Massive up-regulations, partly by >100-fold, are found for genes as RhD, Add2, Ank1, Ermap, and Slc4a, which encode proteins of erythrocytic surface membranes, and as Gata1 and Gfi1b, which encode transcription factors involved in erythrocytic development. Also, Cldn13 previously predicted to be expressed on erythroblast surfaces is up-regulated by >200-fold, though claudins are known as main constituents of tight junctions acting as paracellular barriers between epithelial cells. Other genes are up-regulated by <100- and >10-fold, which can be subgrouped in genes encoding proteins known to be involved in mitosis, in cell cycle regulation, and in DNA repair. Our data suggest that protective vaccination enables the liver to respond to P. chabaudi infections with accelerated regeneration and extramedullary erythropoiesis during crisis, which contributes to survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Saleh A Al-Quraishy
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan UniversityCairo, Egypt
| | - Abdel-Azeem A Abdel-Baki
- Department of Zoology, College of Science, King Saud UniversityRiyadh, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef, Egypt
| | - Denis Delic
- Boehringer-Ingelheim Pharma Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University Duesseldorf, Germany
| |
Collapse
|
62
|
Bokori-Brown M, Petrov PG, Khafaji MA, Mughal MK, Naylor CE, Shore AC, Gooding KM, Casanova F, Mitchell TJ, Titball RW, Winlove CP. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. J Biol Chem 2016; 291:10210-27. [PMID: 26984406 DOI: 10.1074/jbc.m115.691899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Peter G Petrov
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Mawya A Khafaji
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Muhammad K Mughal
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire E Naylor
- the Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Angela C Shore
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Kim M Gooding
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Francesco Casanova
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Tim J Mitchell
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard W Titball
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - C Peter Winlove
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|
63
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
64
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
65
|
Rommelaere S, Millet V, Rihet P, Atwell S, Helfer E, Chasson L, Beaumont C, Chimini G, Sambo MDR, Viallat A, Penha-Gonçalves C, Galland F, Naquet P. Serum pantetheinase/vanin levels regulate erythrocyte homeostasis and severity of malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3039-52. [PMID: 26343328 DOI: 10.1016/j.ajpath.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/18/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
Abstract
Tissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.
Collapse
Affiliation(s)
- Samuel Rommelaere
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Virginie Millet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Pascal Rihet
- Technological Advances for Genomics and Clinics (TAGC), Aix-Marseille Université, UMR_S 1090, INSERM U1090, Marseille, France
| | - Scott Atwell
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Emmanuèle Helfer
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Lionel Chasson
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Carole Beaumont
- Biomedical Research Center Bichat-Beaujon, Université Paris Diderot, INSERM U773, Paris, France
| | - Giovanna Chimini
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | | | - Annie Viallat
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | | | - Franck Galland
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| | - Philippe Naquet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| |
Collapse
|
66
|
Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, Rahlfs S, Haeussler K, Downton MT, McConville MJ, Becker K, Ralph SA. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J 2015. [PMID: 26198663 DOI: 10.1111/febs.13380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.
Collapse
Affiliation(s)
- Stacey M Allen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Hwa Huat Chua
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - James I MacRae
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | | | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| |
Collapse
|
67
|
Lelliott PM, McMorran BJ, Foote SJ, Burgio G. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential? Malar J 2015. [PMID: 26215182 PMCID: PMC4517643 DOI: 10.1186/s12936-015-0809-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.
Collapse
Affiliation(s)
- Patrick M Lelliott
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Brendan J McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Simon J Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
68
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
69
|
Shimo H, Arjunan SNV, Machiyama H, Nishino T, Suematsu M, Fujita H, Tomita M, Takahashi K. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes. PLoS Comput Biol 2015; 11:e1004210. [PMID: 26046580 PMCID: PMC4457884 DOI: 10.1371/journal.pcbi.1004210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs. In order to maintain a steady internal environment, our bodies must be able to specifically recognize old and damaged red blood cells (RBCs), and remove them from the circulation in a timely manner. Clusters of membrane protein band 3, which form in response to elevated oxidative damage, serve as essential molecular markers that initiate this cell removal process. However, little is known about the details of how these clusters are formed and how their properties change under different conditions. To understand these mechanisms in detail, we developed a computational model that enables the prediction of the time course profiles of metabolic intermediates, as well as the visualization of the resulting band 3 distribution during oxidative treatment. Our model predictions were in good agreement with previous published experimental data, and provided predictive insights on the key factors of cluster formation. Furthermore, simulation experiments of the effects of multiple oxidative pulses and cytoskeletal defect using the model also suggested that clustering is enhanced under such conditions. Analyses using our model can provide hypotheses and suggest experiments to aid the understanding of the physiology of anemia-associated RBC disorders, and optimization of quality control of RBCs in stored blood.
Collapse
Affiliation(s)
- Hanae Shimo
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | | | - Hiroaki Machiyama
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taiko Nishino
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hideaki Fujita
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Koichi Takahashi
- Laboratory for Biochemical Simulation, RIKEN Quantitative Biology Center, Osaka, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- * E-mail:
| |
Collapse
|
70
|
Bielitza M, Belorgey D, Ehrhardt K, Johann L, Lanfranchi DA, Gallo V, Schwarzer E, Mohring F, Jortzik E, Williams DL, Becker K, Arese P, Elhabiri M, Davioud-Charvet E. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats. Antioxid Redox Signal 2015; 22:1337-51. [PMID: 25714942 PMCID: PMC4410756 DOI: 10.1089/ars.2014.6047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/28/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
AIMS Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. RESULTS We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. INNOVATION The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. CONCLUSION This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.
Collapse
Affiliation(s)
- Max Bielitza
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Didier Belorgey
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
- Department of Infectiology, University of Heidelberg, Heidelberg, Germany
| | - Laure Johann
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Don Antoine Lanfranchi
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Valentina Gallo
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Evelin Schwarzer
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Paolo Arese
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| |
Collapse
|
71
|
Hilhorst M, Kok HM, Broekhuizen R, van Paassen P, van Breda Vriesman P, Goldschmeding R, Nguyen TQ, Cohen Tervaert JW. Connective tissue growth factor and the cicatrization of cellular crescents in ANCA-associated glomerulonephritis. Nephrol Dial Transplant 2015; 30:1291-9. [DOI: 10.1093/ndt/gfv088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
|
72
|
Rocha S, Gomes D, Lima M, Bronze-da-Rocha E, Santos-Silva A. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radic Res 2015; 49:990-1003. [PMID: 25786472 DOI: 10.3109/10715762.2015.1028402] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Erythrocytes are continuously exposed to risk of oxidative injury due to oxidant oxygen species. To prevent damage, they have antioxidant agents namely, catalase (Cat), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2). Our aim was to contribute to a better understanding of the interplay between Prx2, Cat, and GPx under H2O2-induced oxidative stress, by studying their changes in the red blood cell cytosol and membrane, in different conditions. These three enzymes were quantified by immunoblotting. Malondialdehyde, that is, lipoperoxidation (LPO) in the erythrocyte membrane, and membrane-bound hemoglobin (MBH) were evaluated, as markers of oxidative stress. We also studied the erythrocyte membrane protein profile, to estimate how oxidative stress affects the membrane protein structure. We showed that under increasing H2O2 concentrations, inhibition of the three enzymes with or without metHb formation lead to the binding of Prx2 and GPx (but not Cat) to the erythrocyte membrane. Prx2 was detected mainly in its oxidized form and the linkage of metHb to the membrane seems to compete with the binding of Prx2. Catalase played a major role in protecting erythrocytes from high exogenous flux of H2O2, since whenever Cat was active there were no significant changes in any of the studied parameters. When only Cat was inhibited, Prx2 and GPx were unable to prevent H2O2-induced oxidative stress resulting in increasing MBH and membrane LPO. Additionally, the inhibition of one or more of these enzymes induced changes in the anchor/linker proteins of the junctional complexes of the membrane cytoskeleton-lipid bilayer, which might lead to membrane destabilization.
Collapse
Affiliation(s)
- S Rocha
- UCIBIO, REQUIMTE, Biochemistry Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| | | | | | | | | |
Collapse
|
73
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
74
|
Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 2015; 43:2466-85. [PMID: 25628363 PMCID: PMC4344498 DOI: 10.1093/nar/gkv047] [Citation(s) in RCA: 589] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/21/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022] Open
Abstract
Nucleotides are required for a wide variety of biological processes and are constantly synthesized de novo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer.
Collapse
Affiliation(s)
- Andrew N Lane
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky, Biopharm Complex, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Teresa W-M Fan
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky, Biopharm Complex, 789 S. Limestone St, Lexington, KY 40536, USA
| |
Collapse
|
75
|
Crosstalk between red blood cells and the immune system and its impact on atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:616834. [PMID: 25722984 PMCID: PMC4334626 DOI: 10.1155/2015/616834] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a chronic multifactorial disease of the arterial wall characterized by inflammation, oxidative stress, and immune system activation. Evidence exists on a pathogenic role of oxidized red blood cells (RBCs) accumulated in the lesion after intraplaque hemorrhage. This review reports current knowledge on the impact of oxidative stress in RBC modifications with the surface appearance of senescent signals characterized by reduced expression of CD47 and glycophorin A and higher externalization of phosphatidylserine. The review summarizes findings indicating that oxidized, senescent, or stored RBCs, due to surface antigen modification and release of prooxidant and proinflammatory molecules, exert an impaired modulatory activity on innate and adaptive immune cells and how this activity contributes to atherosclerotic disease. In particular RBCs from patients with atherosclerosis, unlike those from healthy subjects, fail to control lipopolysaccharide-induced DC maturation and T lymphocyte apoptosis. Stored RBCs, accompanied by shedding of extracellular vesicles, stimulate peripheral blood mononuclear cells to release proinflammatory cytokines, augment mitogen-driven T cell proliferation, and polarize macrophages toward the proinflammatory M1 activation pathway. Collectively, literature data suggest that the crosstalk between RBCs with immune cells represents a novel mechanism by which oxidative stress can contribute to atherosclerotic disease progression and may be exploited for therapeutic interventions.
Collapse
|
76
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
77
|
Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i30-i37. [PMID: 24493868 DOI: 10.1093/ndt/gft430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) β and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | | | | |
Collapse
|
78
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
79
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
80
|
Aguilar R, Marrocco T, Skorokhod OA, Barbosa A, Nhabomba A, Manaca MN, Guinovart C, Quintó L, Arese P, Alonso PL, Dobaño C, Schwarzer E. Blood oxidative stress markers and Plasmodium falciparum malaria in non-immune African children. Br J Haematol 2014; 164:438-50. [PMID: 24422726 DOI: 10.1111/bjh.12636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/23/2013] [Indexed: 01/23/2023]
Abstract
Converging in vitro evidence and clinical data indicate that oxidative stress may play important roles in Plasmodium falciparum malaria, notably in the pathogenesis of severe anaemia. However, oxidative modifications of the red blood cell (RBC)-membrane by 4-hydroxynonenal (4-HNE) and haemoglobin-binding, previously hypothesized to contribute mechanistically to the pathogenesis of clinical malaria, have not yet been tested for clinical significance. In 349 non-immune Mozambican newborns recruited in a double-blind placebo-controlled chemoprophylaxis trial, oxidative markers including 4-HNE-conjugates and membrane-bound haemoglobin were longitudinally assessed from 2·5 to 24 months of age, at first acute malaria episode and in convalescence. During acute malaria, 4-HNE-conjugates were shown to increase significantly in parasitized and non-parasitized RBCs. In parallel, advanced oxidation protein products (AOPP) rose in plasma. 4-HNE-conjugates correlated with AOPP and established plasma but not with RBC oxidative markers. High individual levels of 4-HNE-conjugates were predictive for increased malaria incidence rates in children until 2 years of life and elevated 4-HNE-conjugates in convalescence accompanied sustained anaemia after a malaria episode, indicating 4-HNE-conjugates as a novel patho-mechanistic factor in malaria. A second oxidative marker, haemoglobin binding to RBC-membranes, hypothesized to induce clearing of RBCs from circulation, was predictive for lower malaria incidence rates. Further studies will show whether or not higher membrane-haemoglobin values at the first malaria episode may provide protection against malaria.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Centre for International Health Research (CRESIB), Hospital Clinic-University of Barcelona, Barcelona, Spain; Manhiça Health Research Centre (CISM), Maputo, Mozambique; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014; 48:1028-48. [PMID: 24720642 DOI: 10.3109/10715762.2014.913788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is critical to the maintenance of NADPH pool and redox homeostasis. Conventionally, G6PD deficiency has been associated with hemolytic disorders. Most biochemical variants were identified and characterized at molecular level. Recently, a number of studies have shone light on the roles of G6PD in aspects of physiology other than erythrocytic pathophysiology. G6PD deficiency alters the redox homeostasis, and affects dysfunctional cell growth and signaling, anomalous embryonic development, and altered susceptibility to infection. The present article gives a brief review of basic science and clinical findings about G6PD, and covers the latest development in the field. Moreover, how G6PD status alters the susceptibility of the affected individuals to certain degenerative diseases is also discussed.
Collapse
Affiliation(s)
- H-Y Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Kwei-san, Tao-yuan , Taiwan
| | | | | |
Collapse
|
82
|
Measurement of posttransfusion red cell survival with the biotin label. Transfus Med Rev 2014; 28:114-25. [PMID: 24969019 DOI: 10.1016/j.tmrv.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022]
Abstract
The goal of this review is to summarize and critically assess information concerning the biotin method to label red blood cells (RBC) for use in studies of RBC and transfusion biology-information that will prove useful to a broad audience of clinicians and scientists. A review of RBC biology, with emphasis on RBC senescence and in vivo survival, is included, followed by an analysis of the advantages and disadvantages of biotin-labeled RBC (BioRBC) for measuring circulating RBC volume, posttransfusion RBC recovery, RBC life span, and RBC age-dependent properties. The advantages of BioRBC over (51)Cr RBC labeling, the current reference method, are discussed. Because the biotin method is straightforward and robust, including the ability to follow the entire life spans of multiple RBC populations concurrently in the same subject, BioRBC offers distinct advantages for studying RBC biology and physiology, particularly RBC survival. The method for biotin labeling, validation of the method, and application of BioRBCs to studies of sickle cell disease, diabetes, and anemia of prematurity are reviewed. Studies documenting the safe use of BioRBC are reviewed; unanswered questions requiring future studies, remaining concerns, and regulatory barriers to broader application of BioRBC including adoption as a new reference method are also presented.
Collapse
|
83
|
van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radic Biol Med 2014; 67:377-86. [PMID: 24316370 DOI: 10.1016/j.freeradbiomed.2013.11.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022]
Abstract
Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and promote senescence, but is without chronic hemolytic complaints. In this review we summarize the often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH is the main source of reduction equivalents in RBCs, used by most of the protective systems. When NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give rise to increased oxidative stress caused by free heme and iron generated from hemoglobin. The beneficial effect of thalassemia minor, sickle-cell trait, and glucose-6-phosphate dehydrogenase deficiency on survival of malaria infection may well be due to the shared feature of enhanced oxidative stress. This may inhibit parasite growth, enhance uptake of infected RBCs by spleen macrophages, and/or cause less cytoadherence of the infected cells to capillary endothelium.
Collapse
Affiliation(s)
- Rob van Zwieten
- Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands.
| | - Arthur J Verhoeven
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
84
|
de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol 2014; 5:9. [PMID: 24523696 PMCID: PMC3906564 DOI: 10.3389/fphys.2014.00009] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/06/2014] [Indexed: 12/13/2022] Open
Abstract
Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 1010 RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
Collapse
Affiliation(s)
- Djuna Z de Back
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Elena B Kostova
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Marian van Kraaij
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Timo K van den Berg
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| | - Robin van Bruggen
- Landsteiner Laboratory, Department of Blood Cell Research, Academic Medical Center, Sanquin Research, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
85
|
Koury MJ. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev 2014; 28:49-66. [PMID: 24560123 DOI: 10.1016/j.blre.2014.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Erythropoiesis, the bone marrow production of erythrocytes by the proliferation and differentiation of hematopoietic cells, replaces the daily loss of 1% of circulating erythrocytes that are senescent. This daily output increases dramatically with hemolysis or hemorrhage. When erythrocyte production rate of erythrocytes is less than the rate of loss, chronic anemia develops. Normal erythropoiesis and specific abnormalities of erythropoiesis that cause chronic anemia are considered during three periods of differentiation: a) multilineage and pre-erythropoietin-dependent hematopoietic progenitors, b) erythropoietin-dependent progenitor cells, and c) terminally differentiating erythroblasts. These erythropoietic abnormalities are discussed in terms of their pathophysiological effects on the bone marrow cells and the resultant changes that can be detected in the peripheral blood using a clinical laboratory test, the complete blood count.
Collapse
Affiliation(s)
- Mark J Koury
- Division of Hematology/Oncology, Vanderbilt University and Veterans Affairs Tennessee Valley Healthcare System, 777 Preston Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
86
|
Fernandez-Arias C, Arias CF, Rodriguez A. Is malarial anaemia homologous to neocytolysis after altitude acclimatisation? Int J Parasitol 2014; 44:19-22. [DOI: 10.1016/j.ijpara.2013.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023]
|
87
|
Silva DGH, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: an overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med 2013; 65:1101-1109. [PMID: 24002011 DOI: 10.1016/j.freeradbiomed.2013.08.181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023]
Abstract
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2(-)) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.
Collapse
Affiliation(s)
- Danilo Grunig Humberto Silva
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil; Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Edis Belini Junior
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Eduardo Alves de Almeida
- Laboratory of Aquatic Contamination Biomarkers, Department of Chemistry and Environmental Sciences, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil
| | - Claudia Regina Bonini-Domingos
- Hemoglobin and Hematologic Genetic Diseases Laboratory, Department of Biology, Sao Paulo State University "Julio de Mesquita Filho," 15054-000 Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
88
|
Gong L, Parikh S, Rosenthal PJ, Greenhouse B. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria. Malar J 2013; 12:317. [PMID: 24025776 PMCID: PMC3847285 DOI: 10.1186/1475-2875-12-317] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/31/2013] [Indexed: 12/18/2022] Open
Abstract
Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria.
Collapse
Affiliation(s)
- Lauren Gong
- University of California, Box 1234, San Francisco 94143, CA, USA.
| | | | | | | |
Collapse
|
89
|
Xiong Y, Li Y, Xiong Y, Zhao Y, Tang F, Wang X. Cluster of erythrocyte band 3: a potential molecular target of exhaustive exercise-induced dysfunction of erythrocyte deformability. Can J Physiol Pharmacol 2013; 91:1127-34. [PMID: 24289085 DOI: 10.1139/cjpp-2013-0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study is to explore the effect of exhaustive exercise on erythrocyte band 3 (SLC4A1; EB3). The association between the alterations of EB3 and red blood cell (RBC) deformability induced by exercise-induced dysfunction has been investigated. Rats were divided among 2 groups: (i) control (C), and (ii) exercise exhausted (E). RBC deformability was investigated in the rats in the exhaustive exercise and control groups. Erythrocytes from the control and exercise-exhausted groups were evaluated for the expression of erythrocyte band 3 through immunoblotting and immunofluorescence studies. Exhaustive exercise led to significant increments in the levels of clustering of erythrocyte band 3 along with the conjugation of membrane proteins to form high-molecular-weight complexes (P < 0.05). Under shear stresses, RBC deformability was found to decline significantly in the exhaustive exercise groups compared with the control group. These data suggest that the RBC dysfunction observed during exercise-induced oxidative stress could be associated with alterations in the structure and function of erythrocyte band 3, which in turn leads to dysfunction in the rheological properties of RBCs. These results provide further insight into erythrocyte damage induced by exhaustive exercise.
Collapse
Affiliation(s)
- Yanlian Xiong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
PURPOSE Melatonin (MEL) is an effective antioxidant in numerous experimental models, both in vitro and in vivo. However, it should be stressed that there are also papers reporting limited antioxidative activity of MEL or even giving evidence for its pro-oxidative properties. In the present paper we investigated the influence of MEL on the oxidative damage of human erythrocytes during prolonged incubation. MATERIAL/METHODS Human erythrocytes suspended in phosphate-buffered saline (PBS), pH 7.4 were incubated at 37ºC either in absence or presence of melatonin at concentration range 0.02 mM-3 mM for up to 96 hrs. The influence of MEL on erythrocyte damage was assessed on the basis of the intensity of intracellular oxidation processes (the oxidation of HbO₂, GSH, fluorescent label DCFH₂) as well as damage to the plasma membrane (lipid peroxidation, the potassium leakage) and the kinetics of hemolysis. RESULTS The prolonged incubation of erythrocytes induced a progressive destruction of erythrocytes. Melatonin prevented lipid peroxidation and hemolysis whereas the oxidation of HbO₂ and DCFH₂ was enhanced by melatonin at concentrations higher than 0.6 mM. In the case of erythrocytes incubated with 3 mM of MEL, the hemolysis rate constant (0.0498±0.0039 H%•h⁻¹) was 50% lower than that of the control while the HbO₂ oxidation rate constants were about 1.4 and 1.5 times higher for 1.5 and 3 mM of MEL, respectively. Melatonin had no influence on the oxidation of GSH and the potassium leakage. CONCLUSIONS Probably, MEL can stabilize the erythrocyte membrane due to interaction with lipids, thus prolonging the existence of cells. On the contrary, in the presence of MEL the accelerated oxidation of HbO₂ and generally, increased oxidative stress was observed in erythrocytes. Pro- and antioxidative properties of melatonin depend on the type of cells, redox state, as well as experimental conditions.
Collapse
|
91
|
Rodrigues C, Rocha S, Nascimento H, Vieira E, Santos R, Santos-Silva A, Costa E, Bronze-da-Rocha E. Bilirubin levels and redox status in a young healthy population. Acta Haematol 2013; 130:57-60. [PMID: 23486163 DOI: 10.1159/000346429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022]
Affiliation(s)
- Carina Rodrigues
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Jiang J, Magilnick N, Tsirulnikov K, Abuladze N, Atanasov I, Ge P, Narla M, Pushkin A, Zhou ZH, Kurtz I. Single particle electron microscopy analysis of the bovine anion exchanger 1 reveals a flexible linker connecting the cytoplasmic and membrane domains. PLoS One 2013; 8:e55408. [PMID: 23393575 PMCID: PMC3564912 DOI: 10.1371/journal.pone.0055408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
Anion exchanger 1 (AE1) is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO₂ transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO). We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D) structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Structural Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathaniel Magilnick
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Kirill Tsirulnikov
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Natalia Abuladze
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ivo Atanasov
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peng Ge
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mohandas Narla
- New York Blood Centre, New York, New York, United States of America
| | - Alexander Pushkin
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Structural Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| | - Ira Kurtz
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| |
Collapse
|
93
|
|
94
|
Gallo V, Skorokhod OA, Schwarzer E, Arese P. Simultaneous determination of phagocytosis of Plasmodium falciparum-parasitized and non-parasitized red blood cells by flow cytometry. Malar J 2012; 11:428. [PMID: 23259636 PMCID: PMC3546840 DOI: 10.1186/1475-2875-11-428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/30/2012] [Indexed: 12/31/2022] Open
Abstract
Background Severe falciparum malaria anaemia (SMA) is a frequent cause of mortality in children and pregnant women. The most important determinant of SMA appears to be the loss of non-parasitized red blood cells (np-RBCs) in excess of loss of parasitized (p-) RBCs at schizogony. Based on data from acute SMA where excretion of haemoglobin in urine and increased plasma haemoglobin represented respectively less than 1% and 0.5% of total Hb loss, phagocytosis appears to be the predominant mechanism of removal of np- and p-RBC. Estimates indicate that np-RBCs are cleared in approximately 10-fold excess compared to p-RBCs. An even larger removal of np-RBCs has been described in vivax malaria anaemia. Estimates were based on two single studies both performed on neurosyphilitic patients who underwent malaria therapy. As the share of np-RBC removal is likely to vary between wide limits, it is important to assess the contribution of both np- and p-RBC populations to overall RBC loss, and disclose the mechanism of such variability. As available methods do not discriminate between the removal of np- vs p-RBCs, the purpose of this study was to set up a system allowing the simultaneous determination of phagocytosis of p- and np-RBC in the same sample. Methods and Results Phagocytosis of p- and np-RBCs was quantified in the same sample using double-labelled target cells and the human phagocytic cell-line THP-1, pre-activated by TNF and IFNγ to enhance their phagocytic activity. Target RBCs were double-labelled with fluorescent carboxyfluorescein-succinimidyl ester (CF-SE) and the DNA label ethidium bromide (EB). EB, a DNA label, allowed to discriminate p-RBCs that contain parasitic DNA from the np-RBCs devoid of DNA. FACS analysis of THP-1 cells fed with double-labelled RBCs showed that p- and np-RBCs were phagocytosed in different proportions in relation to parasitaemia. Conclusions The assay allowed the analysis of phagocytosis rapidly and with low subjective error, and the differentiation between phagocytosed p- and np-RBCs in the same sample. The presented method may help to analyse the factors or conditions that modulate the share of np-RBC removal in vitro and in vivo and lead to a better understanding of the pathogenesis of SMA.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
95
|
Abstract
Abstract
We present herein an approach to diagnosing the cause of chronic anemia based on a patient's history and complete blood cell count (CBC). Four patterns that are encountered frequently in CBCs associated with chronic anemias are considered: (1) anemia with abnormal platelet and/or leukocyte counts, (2) anemia with increased reticulocyte counts, (3) life-long history of chronic anemia, and (4) anemia with inappropriately low reticulocytes. The pathophysiologic bases for some chronic anemias with low reticulocyte production are reviewed in terms of the bone marrow (BM) events that reduce normal rates of erythropoiesis. These events include: apoptosis of erythroid progenitor and precursor cells by intrinsic and extrinsic factors, development of macrocytosis when erythroblast DNA replication is impaired, and development of microcytosis due to heme-regulated eIF2α kinase inhibition of protein synthesis in iron-deficient or thalassemic erythroblasts.
Collapse
|
96
|
Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s55-62. [PMID: 22890269 DOI: 10.2450/2012.009s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During blood bank storage, red blood cells (RBCs) undergo a number of biological and biochemical alterations collectively referred to as "storage lesions". These injuries include loss and oxidative cross-linking of band 3, the major integral protein of RBC membranes. Denaturation of hemoglobin (Hb) and damage to the amino-terminal of band 3 are recognised as the starting events for immunological recognition mechanisms and phagocytic removal of senescent or impaired RBCs from circulation. Consequently, studies focusing on the Hb-association and oxidative status of the cytoskeleton of stored RBCs intended for transfusion are of extreme interest. In this work, two storage-related fragments of band 3 were documented and biochemically characterised. METHODS Four RBC units were collected from normal volunteers and stored for 21 days under (i) standard blood bank conditions, (ii) anaerobic conditions, or (iii) in the presence of caspase 3-inhibitor. Degradation products of band 3 were followed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis coupled with western blot and mass spectrometry analyses. RESULTS Two different degradation products of the cytoplasmic domain of the erythrocyte band 3 (CDB3) were detected in RBC membranes during storage in saline-adenine-glucosemannitol (SAGM) preservation medium. One of these fragments showed an apparent molecular weight of 34 kDa and was demonstrated to be the product of a free-radical attack on the protein main chain, whereas another fragment of 24 kDa was the result of a caspase 3-mediated cleavage. DISCUSSION Although to different extent, anaerobic conditions reduced the formation of both truncated products indicating an enhanced activity of the pro-apoptotic caspase 3 enzyme following oxidative stress. Interestingly, both CDB3 fragments were tightly associated to the erythrocyte membrane supporting the involvement of Cys-201 and/or Cys-317 in clustering different band 3 monomers.
Collapse
|
97
|
Red blood cell microparticles and blood group antigens: an analysis by flow cytometry. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s39-45. [PMID: 22890266 DOI: 10.2450/2012.007s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Collapse
|
98
|
Abstract
The mechanisms underlying Plasmodium falciparum resistance in persons with sickle trait have been under active investigation for more than a half century. This Perspective reviews progress in solving this challenging problem, including recent studies that have exploited the genomics and proteomics of the parasite. The formation of Hb S polymer in the parasitized AS RBC leads to impaired parasite growth and development along with enhanced clearance from the circulation and reduced deposition in deep postcapillary vascular beds. Enhanced generation of reactive oxygen species in sickled AS RBCs is a pathogenetic feature shared by parasitized thalassemic and G6PD-deficient RBCs, triggering abnormal topology of the RBC plasma membrane with decreased and disordered display of PfEMP-1, a P falciparum adhesion protein critical for endothelial adherence. A mouse model of Hb S confers host tolerance to P berghei, through inhibition of pathogenic CD8(+) T cells and induction of heme oxygenase-1. An additional and apparently independent mode of protection is provided by the selective expression in AS RBCs of 2 species of microRNA that integrate into P falciparum mRNAs and inhibit translation and parasite growth.
Collapse
|
99
|
Abstract
Band 3 oligomers, precociously formed in the membrane of sickle red blood cells (SS RBC) as a result of oxidative damage, induce two significant changes: (1) contribution to the adhesive nature of these cells to endothelial cells; (2) production of recognition sites for natural antiband 3 antibodies (antiband 3 Nabs). The inhibition of the adhesion of SS RBC to endothelial cells by band 3 peptides suggests a participation of antiband 3 Nabs in the etiology and prevention of vaso-occlusive crises (VOC). To address this question, we measured the levels of antiband 3 Nabs in sickle cell anaemia (SCA) patients (45 in steady state, 35 in VOC) and in controls (27 sickle trait, 30 normal AA subjects). A significant decreased of antiband 3 Nabs in the VOC group was demonstrated as compared with the steady state group, the sickle trait and healthy controls. This study provides data suggesting that Antiband 3 Nabs are likely to play a role in the SCA VOC.
Collapse
|
100
|
Arese P, Gallo V, Pantaleo A, Turrini F. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes - Role of Redox Stress and Band 3 Modifications. ACTA ACUST UNITED AC 2012; 39:328-34. [PMID: 23801924 DOI: 10.1159/000343123] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022]
Abstract
SUMMARY G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs.
Collapse
Affiliation(s)
- Paolo Arese
- Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|