51
|
Yang C, Wang H, Li C, Niu H, Luo S, Guo X. Association between clusterin concentration and dementia: a systematic review and meta-analysis. Metab Brain Dis 2019; 34:129-140. [PMID: 30291488 DOI: 10.1007/s11011-018-0325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Studies have showed that high clusterin (CLU) concentration was associated with increased risk of dementia. However, the results based on small samples remained controversial. The aim of our study was to determine the relationship between CLU concentration and the late-life cognitive outcomes including mild cognitive impairment (MCI), Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease related dementia (PDD), Lewy body dementia (DLB) and frontotemporal dementia (FTD). A comprehensive search was conducted to screen the eligible studies in online database PubMed, Web of Science and Embase from 1950 to January 2017 according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist. The CLU concentration data in brain tissue, cerebrospinal fluid (CSF), serum and plasma was collected to determine the strength of this association. The results were presented with standard difference of the mean (SDM) with 95% confidence intervals (CIs). A total of 28 studies were identified to calculate the association between CLU concentration and dementia. The results showed that the CLU concentration in the plasma (SDM = 0.73, 95% CI 0.26-1.19, P = 0.002) and brain tissue (SDM = 0.71, 95% CI 0.10-1.32, P = 0.022) was increased in dementia compared to normal control. Subgroup analysis showed that the plasma CLU concentration was significantly increased only in the AD group (SDM = 1.85, 95% CI 0.84-2.85, P < 0.001), but not in MCI or other dementias. No association was found between serum and CSF clusterin concentration and dementia. This meta-analysis indicates that high CLU concentration in the plasma and brain is associated with dementia, especially in AD.
Collapse
Affiliation(s)
- Caiping Yang
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Hai Wang
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Chaojiu Li
- The Middle School Attached to Northwestern Polytechnical University, Xi'an, 710068, China
| | - Huiyan Niu
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Shunkui Luo
- Department of Endocrinology and Metabolism, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xingzhi Guo
- Department of Endocrinology and Metabolism, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
52
|
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179:51-59. [PMID: 30659860 DOI: 10.1016/j.mad.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the most effective intervention to improve health span and extend lifespan in preclinical models. This anti-aging effect of CR is related to attenuation of oxidative damage in various tissues, with divergent results in the brain. We addressed how brain oxidoreductive balance would be modulated in male Sprague-Dawley (SD) rats submitted to a 40% CR from 8 to 19 months of age, by reference to ad libitum-fed (AL) rats at 2 and 19 months of age. Four brain structures were compared: hippocampus, striatum, parietal cortex, cerebellum. Our CR diet elicits significant prevention of oxidative damages with the upregulation of antioxidant defenses (levels of glutathione [GSH], mRNAs of clusterin and of three key antioxidant enzymes) as compared to age-matched AL controls, in a strikingly region-specific pattern. CR also prevented a drastic rise of the glial fibrillary acidic protein in the hippocampus of old AL rats. Besides, the CR effects at age 19 months mainly consist in improving endogenous defenses before the onset of age-related redox alterations. These effects are more prominent in the hippocampus.
Collapse
Affiliation(s)
- Emmanuel Moyse
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Physiology of Reproduction and Behaviour Unit (PRC), University of Tours, INRA Centre of Tours, F-37380, Nouzilly, France
| | - Madeleine Arsenault
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, H4J 1C5, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H1T 1C8, Canada
| | - Charles Ramassamy
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, G1V 4L3, Canada.
| |
Collapse
|
53
|
Pereira RM, Mekary RA, da Cruz Rodrigues KC, Anaruma CP, Ropelle ER, da Silva ASR, Cintra DE, Pauli JR, de Moura LP. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 2019; 23:123-129. [PMID: 28948410 DOI: 10.1007/s10741-017-9654-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cardiomyocytes occurs with aging and contributes to cardiovascular complications. In the present study, we highlighted the role of clusterin, a protein that has recently been associated with the protection of cardiomyocytes from apoptosis. Clusterin protects cardiac cells against damage from myocardial infarction, transplant, or myocarditis. Clusterin can act directly or indirectly on apoptosis by regulating several intracellular pathways. These pathways include (1) the oxidant and inflammatory program, (2) insulin growth factor 1 (IGF-1) pathway, (3) KU70 / BCL-2-associated X protein (BAX) pathway, (4) tumor necrosis factor alpha (TNF-α) pathway, (5) BCL-2 antagonist of cell death (BAD) pathway, and (6) mitogen-activated protein kinase (MAPK) pathway. Given the key role of clusterin in preventing loss of cardiac tissue, modulating the expression and function of this protein carries the potential of improving cardiovascular care in the future.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rania A Mekary
- Department of Pharmaceutical Business and Administrative Sciences, MCPHS University, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Cristina da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil. .,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
54
|
Perrotte M, Le Page A, Fournet M, Le Sayec M, Rassart É, Fulop T, Ramassamy C. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients. Free Radic Biol Med 2019; 130:499-511. [PMID: 30445127 DOI: 10.1016/j.freeradbiomed.2018.10.452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays a pivotal and early role in the pathophysiology of Alzheimer's disease (AD). There is convincing evidence that oxidative alterations in AD and in mild cognitive impairment (MCI) patients are not limited to the brain but are extended to the blood compartment. However, the oxidative pattern in plasma is still inconclusive. Moreover, their potential association with the clinical scores MMSE (Mini-Mental State Examination) and MoCA (Montreal Cognitive Assessment) is poorly investigated. The aim of our study was to establish a pattern of blood-based redox alterations in prodromal AD and their evolution during the progression of the disease. Our results showed a reduction in the total antioxidant capacity (TAC) and an increase of the stress-response proteins apolipoprotein J (ApoJ) and Klotho in MCI subjects. For the first time, we evidenced circulating-proteasome activity. We found that the alteration of the circulating-proteasome activity is associated with the accumulation of oxidized proteins in plasma form early AD. Interestingly, the TAC, the levels of vitamin D and the activity of proteasome were positively associated to the clinical scores MMSE and MoCA. The levels of protein carbonyls and of ApoJ were negatively associated to the MMSE and MoCA scores. The levels of apolipoprotein D (ApoD) were not different between groups. Interestingly, the receiver operating characteristic (ROC) curves analysis indicated that these redox markers provide a fair classification of different groups with high accuracy. Overall, our results strengthen the notion that some specific oxidative markers could be considered as non-invasive blood-based biomarkers for an early MCI diagnosis and AD progression.
Collapse
Affiliation(s)
- Morgane Perrotte
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | | | | | - Éric Rassart
- Université Québec à Montréal, Dept. Sciences biologiques, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | - Charles Ramassamy
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada.
| |
Collapse
|
55
|
Pontremoli M, Brioschi M, Baetta R, Ghilardi S, Banfi C. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8:16671. [PMID: 30420710 PMCID: PMC6232108 DOI: 10.1038/s41598-018-35119-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
This study shows that DKK-1, a member of the Dickkopf family and a regulator of the Wnt pathways, represents a novel target of statins which, through the inhibition of HMG-CoA reductase and of non-steroidal isoprenoid intermediates, exert extra-beneficial effect in preventing atherosclerosis beyond their effect on the lipid profile. We found that atorvastatin downregulates DKK-1 protein (−88.3 ± 4.1%) and mRNA expression (−90 ± 4.2%) through the inhibition of Cdc42, Rho and Rac geranylgeranylated proteins. Further, a combined approach based on the integration of label-free quantitative mass spectrometry based-proteomics and gene silencing allowed us to demonstrate that DKK-1 itself mediates, at least in part, statin effects on human endothelial cells. Indeed, DKK-1 is responsible for the regulation of the 21% of the statin-modulated proteins, which include, among others, clusterin/apoJ, plasminogen activator inhibitor type 1 (PAI-1), myristoylated alanine-rich C-kinase substrate (MARCKS), and pentraxin 3 (PTX3). The Gene Ontology enrichment annotation revealed that DKK-1 is also a potential mediator of the extracellular matrix organization, platelet activation and response to wounding processes induced by statin. Finally, we found that plasma level of DKK-1 from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) was lower (−42 ± 23%) than that of control animals. Thus, DKK-1 is not only a target of statin but it directly regulates the expression of molecules involved in a plethora of biological functions, thus expanding its role, which has been so far restricted mainly to cancer.
Collapse
|
56
|
Vange P, Bruland T, Munkvold B, Røyset ES, Gleave M, Bakke I. Subtle Protective Roles of Clusterin in Gastric Metaplasia After Acute Oxyntic Atrophy. Cell Mol Gastroenterol Hepatol 2018; 7:246-250.e1. [PMID: 30585162 PMCID: PMC6305871 DOI: 10.1016/j.jcmgh.2018.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Pål Vange
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn Munkvold
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, Trondheim, Norway
| | - Elin Synnøve Røyset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, Trondheim, Norway,Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | | | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU–Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway,Correspondence author
| |
Collapse
|
57
|
Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. Biosci Rep 2018; 38:BSR20171003. [PMID: 29273675 PMCID: PMC6066653 DOI: 10.1042/bsr20171003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common antioxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two antioxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, was detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK, c-Jun) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis.
Collapse
|
58
|
Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T. Gradual and Acute Temperature Rise Induces Crossing Endocrine, Metabolic, and Immunological Pathways in Maraena Whitefish ( Coregonus maraena). Front Genet 2018; 9:241. [PMID: 30073015 PMCID: PMC6060367 DOI: 10.3389/fgene.2018.00241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
The complex and still poorly understood nature of thermoregulation in various fish species complicates the determination of the physiological status on the basis of diagnostic marker genes and indicative molecular pathways. The present study aimed to compare the physiological impacts of both gradual and acute temperature rise from 18 to 24°C on maraena whitefish in aquaculture. Microarray-based transcriptome profiles in the liver, spleen and kidney of heat-stressed maraena whitefish revealed the modulation of a significantly higher number of genes in those groups exposed to gradually rising temperatures compared with the acutely stressed groups, which might reflect early adaptation mechanisms. Moreover, we suggest a common set of 11 differentially expressed genes that indicate thermal stress induced by gradual or acute temperature rise in the three selected tissues. Besides the two pathways regulated in both data sets unfolded protein response and aldosterone signaling in epithelial cells, we identified unique tissue- and stress type-specific pathways reflecting the crossroads between signal transduction, metabolic and immunologic pathways to cope with thermal stress. In addition, comparing lists of differentially regulated genes with meta-analyzed published data sets revealed that “acute temperature rise”-responding genes that encode members of the HSP70, HSP90, and HSP40 families; their functional homologs; co-chaperones and stress-signal transducers are well-conserved across different species, tissues and/or cell types and experimental approaches.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Mareen Nipkow
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Simone Altmann
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Born, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
59
|
Maskanakis A, Patelis N, Karaolanis G, Davakis S, Schizas D, Perrea D, Klonaris C, Georgopoulos S, Liakakos T, Bakoyiannis C. Apolipoprotein J as a predictive biomarker for restenosis after carotid endarterectomy: a retrospective study. Acta Pharmacol Sin 2018; 39:1237-1242. [PMID: 29417939 DOI: 10.1038/aps.2017.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Carotid endarterectomy (CEA) is an effective surgical option for stroke prophylaxis in most patients. Restenosis after CEA can lead to re-intervention and adverse events, but the factors predicting restenosis are poorly understood. Apolipoprotein J (ApoJ) is considered to be a novel predictive factor of vascular restenosis and is associated with a large number of processes related to atherosclerosis and cell-cycle phases. The aim of this study was to elucidate the predictive value of Apo J in internal carotid artery (ICA) restenosis following CEA. This retrospective study examined all prospectively collected data for patients who underwent CEA at our surgical department over a 2-year period. The serum ApoJ levels of 100 patients were examined; 56 patients who underwent CEA comprised the vascular group (VG), and 44 patients who underwent minor surgery comprised the control group (CG). ApoJ samples were obtained preoperatively, 24 h after the surgical procedure and at 1, 6 and 12 months thereafter during the follow-up. The preoperative difference in ApoJ levels between the CG and VG was statistically signifcant; the mean values were 39.11±14.16 and 83.03±35.35 μg/mL, respectively. In the VG, the serum ApoJ levels were 112.09±54.40, 71.20±23.70, 69.92±25.76 and 62.25±19.17 μg/mL at postoperative day 1 and at 1, 6 and 12 months post-operatively, respectively, while the ApoJ concentrations of patients in the CG remained unchanged. Further subdivision of the VG into patients with or without restenosis revealed that restenosis patients presented signifcantly higher mean ApoJ values than non-restenosis VG patients. In summary, ApoJ seems to be an important predictor for carotid restenosis at 6 and 12 months postoperatively.
Collapse
|
60
|
Wiggs JL, Kang JH, Fan B, Levkovitch-Verbin H, Pasquale LR. A Role for Clusterin in Exfoliation Syndrome and Exfoliation Glaucoma? J Glaucoma 2018; 27 Suppl 1:S61-S66. [PMID: 29965900 PMCID: PMC8035929 DOI: 10.1097/ijg.0000000000000916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multifunctional protein clusterin (CLU) is a secreted glycoprotein ubiquitously expressed throughout the body, including in the eye. Its primary function is to act as an extracellular molecular chaperone, preventing the precipitation and aggregation of misfolded extracellular proteins. Clusterin is commonly identified at fluid-tissue interfaces, and has been identified in most body fluids. It is a component of exfoliation material, and CLU mRNA is reduced in eyes with exfoliation syndrome compared with controls. SNPs located in the CLU genomic region have been associated with Alzheimer disease (AD) at the genome-wide level and several CLU SNPs located in an apparent regulatory region have been nominally associated with XFS/XFG in Caucasians with European ancestry and in south Indians. Interestingly, clusterin associates with altered elastic fibers in human photoaged skin and prevents UV-induced elastin aggregation in vitro. In light of the known geographic risk factors for XFS/XFG, which could include UV light, investigations of CLU-geographic interactions could be of interest. Future studies investigating rare CLU variation and other complex interactions including gene-gene interactions in XFS/XFG cases and controls may also be fruitful. Although CLU has been considered as a therapeutic target in AD, cancer and dry eye, a role for clusterin in XFS/XFG needs to be better defined before therapeutic approaches involving CLU can be entertained.
Collapse
Affiliation(s)
- Janey L. Wiggs
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jae Hee Kang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - BaoJian Fan
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hani Levkovitch-Verbin
- Goldschleger Eye Institute, Tel Hashomer, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Louis R. Pasquale
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
61
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
62
|
Role of clusterin/progranulin in toluene diisocyanate-induced occupational asthma. Exp Mol Med 2018; 50:1-10. [PMID: 29717106 PMCID: PMC5938014 DOI: 10.1038/s12276-018-0085-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022] Open
Abstract
Toluene diisocyanate (TDI) exposure induces oxidative stress and epithelial cell-derived inflammation, which affect the pathogenesis of TDI-induced occupational asthma (TDI-OA). Recent studies suggested a role for clusterin (CLU) and progranulin (PGRN) in oxidative stress-mediated airway inflammation. To evaluate CLU and PGRN involvement in airway inflammation in TDI-OA, we measured their serum levels in patients with TDI-OA, asymptomatic exposed controls (AECs), and unexposed healthy normal controls (NCs). Serum CLU and PGRN levels were significantly lower in the TDI-OA group than in the AEC and NC groups (P < 0.05). The sensitivity and specificity for predicting the TDI-OA phenotype were 72.4% and 53.4% when either CLU or PGRN levels were below the cutoff values (≤125 μg/mL and ≤68.4 ng/mL, respectively). If both parameters were below the cutoff levels, the sensitivity and specificity were 58.6% and 89.8%, respectively. To investigate CLU and PGRN function, we evaluated their production by human airway epithelial cells (HAECs) in response to TDI exposure and co-culturing with neutrophils. TDI-human serum albumin stimulation induced significant CLU/PGRN release from HAECs in a dose-dependent manner, which positively correlated with IL-8 and folliculin levels. Co-culturing with neutrophils significantly decreased CLU/PGRN production by HAECs. Intracellular ROS production in epithelial cells co-cultured with neutrophils tended to increase initially, but the ROS production decreased gradually at a higher ratio of neutrophils. Our results suggest that CLU and PGRN may be involved in TDI-OA pathogenesis by protecting against TDI-induced oxidative stress-mediated inflammation. The combined CLU/PGRN serum level may be used as a potential serological marker for identifying patients with TDI-OA among TDI-exposed workers.
Collapse
|
63
|
Saewu A, Kadunganattil S, Raghupathy R, Kongmanas K, Diaz-Astudillo P, Hermo L, Tanphaichitr N. Clusterin in the mouse epididymis: possible roles in sperm maturation and capacitation. Reproduction 2017; 154:867-880. [DOI: 10.1530/rep-17-0518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/17/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
Clusterin (CLU) is known as an extracellular chaperone for proteins under stress, thus preventing them from aggregation and precipitation. We showed herein that CLU, expressed by principal cells of the mouse caput epididymis, was present in high amounts in the lumen. In the cauda epididymis, CLU bound tightly to the sperm head surface and its amount on total sperm was similar to that in the bathing luminal fluid. In both immotile and motile caudal epididymal sperm, CLU was localized over the entire sperm head except at the convex ridge, although in the motile sperm population, the CLU immunofluorescence pattern was distinctively mottled with a lower intensity. However, when motile sperm became capacitated, CLU was relocalized to the head hook region, with immunofluorescence intensity being higher than that on the non-capacitated counterparts. Under a slightly acidic pH of the epididymal lumen, CLU may chaperone some luminal proteins and deliver them onto the sperm surface. Immunoprecipitation of epididymal fluid proteins indicated that CLU interacted with SED1, an important egg-binding protein present in a high amount in the epididymal lumen. In a number of non-capacitated sperm, fractions of SED1 and CLU co-localized, but after capacitation, SED1 and CLU dissociated from one another. While CLU moved to the sperm head hook, SED1 translocated to the head convex ridge, the egg-binding site. Overall, CLU localization patterns can serve as biomarkers of immotile sperm, and non-capacitated and capacitated sperm in mice. The chaperone role of CLU may also be important for sperm maturation and capacitation.
Collapse
|
64
|
Gregory JM, Whiten DR, Brown RA, Barros TP, Kumita JR, Yerbury JJ, Satapathy S, McDade K, Smith C, Luheshi LM, Dobson CM, Wilson MR. Clusterin protects neurons against intracellular proteotoxicity. Acta Neuropathol Commun 2017; 5:81. [PMID: 29115989 PMCID: PMC5678579 DOI: 10.1186/s40478-017-0481-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease.
Collapse
Affiliation(s)
- Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, 49 Little France Crescent-Chancellor, Edinburgh, EH16 4SB, UK
| | - Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rebecca A Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Teresa P Barros
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Sandeep Satapathy
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Leila M Luheshi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
65
|
The cytoprotective protein clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and promotes gastric cancer cell survival. PLoS One 2017; 12:e0184514. [PMID: 28902909 PMCID: PMC5597207 DOI: 10.1371/journal.pone.0184514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cytoprotective protein clusterin is often dysregulated during tumorigenesis, and in the stomach, upregulation of clusterin marks emergence of the oxyntic atrophy (loss of acid-producing parietal cells)-associated spasmolytic polypeptide-expressing metaplasia (SPEM). The hormone gastrin is important for normal function and maturation of the gastric oxyntic mucosa and hypergastrinemia might be involved in gastric carcinogenesis. Gastrin induces expression of clusterin in adenocarcinoma cells. In the present study, we examined the expression patterns and gastrin-mediated regulation of clusterin in gastric tissue from: humans; rats treated with proton pump (H+/K+-ATPase) inhibitors and/or a gastrin receptor (CCK2R) antagonist; H+/K+-ATPase β-subunit knockout (H/K-β KO) mice; and Mongolian gerbils infected with Helicobacter pylori and given a CCK2R antagonist. Biological function of secretory clusterin was studied in human gastric cancer cells. Clusterin was highly expressed in neuroendocrine cells in normal oxyntic mucosa of humans and rodents. In response to hypergastrinemia, expression of clusterin increased significantly and its localization shifted to basal groups of proliferative cells in the mucous neck cell-chief cell lineage in all animal models. That shift was partially inhibited by antagonizing the CCK2R in rats and gerbils. The oxyntic mucosa of H/K-β KO mice contained areas with clusterin-positive mucous cells resembling SPEM. In gastric adenocarcinomas, clusterin mRNA expression was higher in diffuse tumors containing signet ring cells compared with diffuse tumors without signet ring cells, and clusterin seemed to be secreted by tumor cells. In gastric cancer cell lines, gastrin increased secretion of clusterin, and both gastrin and secretory clusterin promoted survival after starvation- and chemotherapy-induced stress. Overall, our results indicate that clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and stimulates gastric cancer cell survival.
Collapse
|
66
|
Maser RE, James Lenhard M, Pohlig RT, Babu Balagopal P. Osteopontin and clusterin levels in type 2 diabetes mellitus: differential association with peripheral autonomic nerve function. Neurol Sci 2017; 38:1645-1650. [PMID: 28638999 PMCID: PMC5709198 DOI: 10.1007/s10072-017-3019-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/03/2017] [Indexed: 12/27/2022]
Abstract
Osteopontin (OPN) and clusterin are secreted glycoproteins potentially associated with nerve function. Sudomotor dysfunction is associated with the development of foot ulcerations. The purpose of this study was to investigate the potential relationship of OPN and clusterin with sudomotor function (i.e., autonomic nerves that control sweating) in participants with type 2 diabetes mellitus (T2DM). Sudomotor function was assessed using SUDOSCAN® which measures electrochemical skin conductance (ESC) of the hands and feet. Demographics (e.g., age, gender, race, body mass index (BMI)), HbA1c, 25-hydroxyvitamin D, creatinine, OPN, and clusterin were also determined for the participants. Fifty individuals with T2DM (age = 59±11 years; 23/27 male/female; 13 African Americans) participated in this study. Lower ESC for the hands and feet were observed in African Americans versus Caucasians/Asians (p < 0.05). No significant ESC differences were observed for good [HbA1c <7%] versus poor [HbA1c ≥7%] glycemic control. With regard to gender, ESC values were lower for the hands for females (p < 0.05). In linear regression with ESC for the hands or feet as the dependent variable, increased OPN levels, but not clusterin, were independently associated with reduced sudomotor function while adjusting for age, gender, race, BMI, and glycemic control (ESC hands model R 2 = 0.504, p < 0.001; ESC feet model R 2 = 0.534, p < 0.001). The association between OPN and reduced sudomotor function found in our study warrants further investigation to delineate the underlying mechanisms and determine if OPN is neuroprotective, involved in the pathogenesis of sudomotor dysfunction, or simply a bystander.
Collapse
Affiliation(s)
- Raelene E Maser
- Department of Medical Laboratory Sciences, University of Delaware, 305F Willard Hall Education Building, Newark, DE, 19716, USA.
- Diabetes and Metabolic Research Center, Christiana Care Health System, Newark, DE, 19713, USA.
| | - M James Lenhard
- Diabetes and Metabolic Research Center, Christiana Care Health System, Newark, DE, 19713, USA
- Diabetes and Metabolic Diseases Center, Christiana Care Health System, Wilmington, DE, 19801, USA
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE, 19716, USA
| | - P Babu Balagopal
- Biomedical Research & Analysis Laboratory, Nemours Children's Specialty Care & Mayo Clinic College of Medicine, Jacksonville, FL, 32207, USA
| |
Collapse
|
67
|
Lee S, Shin JO, Sagong B, Kim UK, Bok J. Spatiotemporal expression patterns of clusterin in the mouse inner ear. Cell Tissue Res 2017; 370:89-97. [PMID: 28687930 DOI: 10.1007/s00441-017-2650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Clusterin (CLU) is an extracellular chaperone protein that is implicated in diverse physiological and pathophysiological cellular processes. CLU expression is upregulated in response to cellular stress and under certain conditions, such as neurodegenerative disease and cancer. CLU primarily functions as a chaperone that exerts cytoprotective effects by removing cellular debris and misfolded proteins and also acts as a signaling molecule that regulates pro-survival pathways. Deafness is caused by genetic factors and various extrinsic insults, including ototoxic drugs, exposure to loud sounds and aging. Considering its cytoprotectivity, CLU may also mediate cellular defense mechanisms against hearing loss due to cellular stresses. To understand the function of CLU in the inner ear, we analyze CLU expression patterns in the mouse inner ear during development and in the adult stage. Results of quantitative real-time polymerase chain reaction analysis showed that Clu mRNA levels in the inner ear were increased during embryogenesis and were constantly expressed in the adult. Detailed spatial expression patterns of Clu both in the mRNA and protein levels were analyzed throughout various developmental stages via in situ hybridization and immunofluorescence staining. Clu expression was found in specific domains of developing inner ear starting from the otocyst stage, mainly adjacent to the prosensory domain of the cochlear epithelium. In the mature inner ear, Clu expression was observed in Deiter's cells and pillar cells of the organ of Corti, outer sulcus and in basal cells of the stria vascularis in the cochlea. These specific spatiotemporal expression patterns suggest the possible roles of CLU in inner ear development and in maintaining proper hearing function.
Collapse
Affiliation(s)
- Seokwon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinwoong Bok
- Department of Anatomy, Department of Otorhinolaryngology, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
68
|
Müller WEG, Wang S, Neufurth M, Kokkinopoulou M, Feng Q, Schröder HC, Wang X. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. J Cell Sci 2017; 130:2747-2756. [PMID: 28687622 DOI: 10.1242/jcs.204941] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023] Open
Abstract
Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular space occurs after enzymatic ATP synthesis. After exposure to polyP, a significant increase of the ADP level was observed, which is likely to be been catalyzed by ALP. This increase is not due to an intensified ATP release via exocytosis. The ATP level in the extracellular space of SaOS-2 cells is strongly increased in response to polyP, very likely mediated by the AK. We propose that the ALP and AK enzymes are involved in the extracellular ADP and ATP synthesis.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
69
|
Balena-Borneman J, Ambalavanan N, Tiwari HK, Griffin RL, Halloran B, Askenazi D. Biomarkers associated with bronchopulmonary dysplasia/mortality in premature infants. Pediatr Res 2017; 81:519-525. [PMID: 27893721 PMCID: PMC5373977 DOI: 10.1038/pr.2016.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) portends lifelong organ impairment and death. Our ability to predict BPD in first days of life is limited, but could be enhanced using novel biomarkers. METHODS Using an available clinical and urine biomarker database obtained from a prospective 113 infant cohort (birth weight ≤1,200 g and/or gestational age ≤31 wk), we evaluated the independent association of 14 urine biomarkers with BPD/mortality. RESULTS Two of the 14 urine biomarkers were independently associated with BPD/mortality after controlling for gestational age (GA), small for gestational age (SGA), and intubation status. The best performing protein was clusterin, a ubiquitously expressed protein and potential sensor of oxidative stress associated with lung function in asthma patients. When modeling for BPD/mortality, the independent odds ratio for maximum adjusted urine clusterin was 9.2 (95% CI: 3.3-32.8, P < 0.0001). In this model, clinical variables (GA, intubation status, and SGA) explained 38.3% of variance; clusterin explained an additional 9.2%, while albumin explained an additional 3.4%. The area under the curve incorporating clinical factors and biomarkers was 0.941. CONCLUSION Urine clusterin and albumin may improve our ability to predict BPD/mortality. Future studies are needed to validate these findings and determine their clinical usefulness.
Collapse
Affiliation(s)
| | | | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - Russell L. Griffin
- Department of Epidemiology, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - David Askenazi
- Department of Pediatrics, University of Alabama at Birmingham,
Birmingham, AL, USA,Corresponding author: David Askenazi MD, MSPH,
Department of Pediatrics, Division of Pediatric Nephrology, University of
Alabama at Birmingham, ACC 516, 1600 7th Avenue South, Birmingham, AL 35233,
United States. Phone: (+1) 205-638-9781. Fax: (+1) 205-975-7051.
| |
Collapse
|
70
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
71
|
Toll-like receptor 4 signaling is required for clusterin-induced tumor necrosis factor-α secretion in macrophage. Biochem Biophys Res Commun 2017; 482:1407-1412. [DOI: 10.1016/j.bbrc.2016.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
|
72
|
White CR, Datta G, Giordano S. High-Density Lipoprotein Regulation of Mitochondrial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:407-429. [PMID: 28551800 DOI: 10.1007/978-3-319-55330-6_22] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoproteins play a key role in regulating plasma and tissue levels of cholesterol. Apolipoprotein B (apoB)-containing lipoproteins, including chylomicrons, very-low density lipoprotein (VLDL) and low-density lipoprotein (LDL), serve as carriers of triglycerides and cholesterol and deliver these metabolites to peripheral tissues. In contrast, high-density lipoprotein (HDL) mediates Reverse Cholesterol Transport (RCT), a process by which excess cholesterol is removed from the periphery and taken up by hepatocytes where it is metabolized and excreted. Anti-atherogenic properties of HDL have been largely ascribed to apoA-I, the major protein component of the lipoprotein particle. The inflammatory response associated with atherosclerosis and ischemia-reperfusion (I-R) injury has been linked to the development of mitochondrial dysfunction. Under these conditions, an increase in reactive oxygen species (ROS) formation induces damage to mitochondrial structural elements, leading to a reduction in ATP synthesis and initiation of the apoptotic program. Recent studies suggest that HDL-associated apoA-I and lysosphingolipids attenuate mitochondrial injury by multiple mechanisms, including the suppression of ROS formation and induction of autophagy. Other apolipoproteins, however, present in lower abundance in HDL particles may exert opposing effects on mitochondrial function. This chapter examines the role of HDL-associated apolipoproteins and lipids in the regulation of mitochondrial function and bioenergetics.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geeta Datta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
73
|
Yamamoto Y, Ihara M. Disruption of transforming growth factor-β superfamily signaling: A shared mechanism underlying hereditary cerebral small vessel disease. Neurochem Int 2016; 107:211-218. [PMID: 28034724 DOI: 10.1016/j.neuint.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022]
Abstract
Cerebral small vessel disease (SVD) is not only one of the leading causes of cognitive impairment but also an important contributory factor in Alzheimer's disease. SVD and related white matter changes are common in the elderly, but the underlying pathogenic mechanism remains unclear. The end-stage pathology of SVD often involves replacement of vascular smooth muscle cells with collagenous or other nontensile fibrillary material. Recent studies on hereditary SVD have revealed a close relationship between small vessel pathology and disruption of transforming growth factor-β (TGF-β) superfamily signaling. TGF-β superfamily members, such as TGF-β and bone morphogenetic proteins, are multifunctional proteins that regulate production of extracellular matrix proteins, which in turn control the bioavailability of TGF-β superfamily members and modulate their signaling activities. This article reviews hereditary disorders with small vessel pathology and their relation to TGF-β superfamily signaling.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
74
|
LaClair KD, Donde A, Ling JP, Jeong YH, Chhabra R, Martin LJ, Wong PC. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol 2016; 132:859-873. [PMID: 27785573 PMCID: PMC5131701 DOI: 10.1007/s00401-016-1637-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
TDP-43 proteinopathy, initially associated with ALS and FTD, is also found in 30-60% of Alzheimer's disease (AD) cases and correlates with worsened cognition and neurodegeneration. A major component of this proteinopathy is depletion of this RNA-binding protein from the nucleus, which compromises repression of non-conserved cryptic exons in neurodegenerative diseases. To test whether nuclear depletion of TDP-43 may contribute to the pathogenesis of AD cases with TDP-43 proteinopathy, we examined the impact of depletion of TDP-43 in populations of neurons vulnerable in AD, and on neurodegeneration in an AD-linked context. Here, we show that some populations of pyramidal neurons that are selectively vulnerable in AD are also vulnerable to TDP-43 depletion in mice, while other forebrain neurons appear spared. Moreover, TDP-43 depletion in forebrain neurons of an AD mouse model exacerbates neurodegeneration, and correlates with increased prefibrillar oligomeric Aβ and decreased Aβ plaque burden. These findings support a role for nuclear depletion of TDP-43 in the pathogenesis of AD and provide strong rationale for developing novel therapeutics to alleviate the depletion of TDP-43 and functional antemortem biomarkers associated with its nuclear loss.
Collapse
Affiliation(s)
- Katherine D LaClair
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aneesh Donde
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
| | - Yun Ha Jeong
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Neural Development and Disease Department, Korea Brain Research Institute, Daegu, 701-300, Korea
| | - Resham Chhabra
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
75
|
Du W, Tan J, Xu W, Chen J, Wang L. Association between clusterin gene polymorphism rs11136000 and late-onset Alzheimer's disease susceptibility: A review and meta-analysis of case-control studies. Exp Ther Med 2016; 12:2915-2927. [PMID: 27882096 PMCID: PMC5103725 DOI: 10.3892/etm.2016.3734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/28/2016] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to evaluate the association between rs11136000 in clusterin (CLU) and late-onset Alzheimer's disease (LOAD) by meta-analysis. Several databases including PubMed, EMbase, CBMdisc and CMCC were searched for relevant case-control studies based on defined selection criteria. Odds ratios (OR) and 95% confidence interval (CI) of the rs11136000 genotype and allele distribution were analyzed with RevMan and Stata software. The control population and heterogeneity between populations were examined in the selected studies using the Hardy-Weinberg equilibrium. Overall OR among the frequencies of the genotype and allele in both patients with AD and controls was estimated using fixed or random effect models. The summary of the OR and 95% CI were then analyzed to obtain the effects across the studies. Publication bias was examined using a funnel plot, Egger's test and Begg's test, and a Fail-safe Number (Nfs). A total of 20 reports were used. The summary OR for studies in the Caucasian population with a frequency of TT+TC/CC genotype and T/C allele at rs11136000 locus in CLU were 0.79 (95% CI, 0.73-0.86; P<0.00001) and 0.87 (95% CI, 0.85-0.90; P<0.00001). The summary OR for the studies conducted in the Asian population were 0.90 (95% CI, 0.81-0.99; P=0.04) and 0.87 (95% CI, 0.81-0.93; P<0.0001). The summary OR in other mixed ethnic groups with regards to the frequency of T/C allele was 0.82 (95% CI, 0.68-0.99; P=0.04). These results demonstrated the presence of a statistically significant difference in LOAD susceptibility between individuals with the T allele CLU rs11136000 polymorphism and those without. The studies conducted in populations of African descent or Hispanics showed no statistically significant difference. Negligible publication bias was present, with Nfs being 750.604. In summary, polymorphism rs11136000 in the CLU gene may contribute to susceptibility to LOAD, and the presence of the T allele may reduce the risk of LOAD in Caucasian and Asian populations. However, no definitive association was found between the presence of the CLU rs11136000 polymorphism and LOAD in populations of African or Hispanic descent.
Collapse
Affiliation(s)
- Wenjin Du
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Jiping Tan
- Department of Geriatric Neurology, Clinical Division of South Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wei Xu
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Jinwen Chen
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Luning Wang
- Department of Geriatric Neurology, Clinical Division of South Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
76
|
Guitart K, Loers G, Buck F, Bork U, Schachner M, Kleene R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 2016; 64:896-910. [PMID: 26992135 DOI: 10.1002/glia.22963] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions.
Collapse
Affiliation(s)
- Kathrin Guitart
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institut Für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Bork
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Ralf Kleene
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
77
|
Clark LF, Kodadek T. The Immune System and Neuroinflammation as Potential Sources of Blood-Based Biomarkers for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. ACS Chem Neurosci 2016; 7:520-7. [PMID: 27046268 DOI: 10.1021/acschemneuro.6b00042] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are characterized by a loss of neurons that leads to cognitive and behavioral dysfunction. Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting millions of people in the United States and worldwide, followed by Parkinson's disease (PD). While some early onset forms of AD and PD are hereditary, the sporadic or late-onset cases are believed to result from lifestyle and environmental factors. On the contrary, Huntington's disease (HD) is a neurodegenerative disease solely caused by mutations in the gene for huntingtin protein. The disease mechanisms at play for all three disorders remain elusive, hampering efforts to develop effective therapeutic interventions. In light of this, the discovery of robust biomarkers is crucial in order to identify people at risk for AD and PD, preferably before symptoms arise. For all three diseases, the identification of biomarkers would not only allow development of treatments but also evaluation and adjustment of these with disease progression. It is now understood that neuroinflammation plays a crucial role in neurodegenerative diseases, along with subsequent immune activation. Therefore, research is actively ongoing to discover and evaluate inflammatory and immune-related biomarkers. Recent progress in this area for AD, PD, and HD is presented here.
Collapse
Affiliation(s)
- Lorraine F. Clark
- Departments
of Chemistry
and Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry
and Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
78
|
Kim JH, Lee HY, Ban GY, Shin YS, Park HS, Ye YM. Serum Clusterin as a Prognostic Marker of Chronic Spontaneous Urticaria. Medicine (Baltimore) 2016; 95:e3688. [PMID: 27175709 PMCID: PMC4902551 DOI: 10.1097/md.0000000000003688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022] Open
Abstract
A substantial proportion of patients with chronic spontaneous urticaria (CSU) are refractory to antihistamines. However, identifying the subpopulation whose urticaria is not completely controlled by antihistamines remains difficult. The response of autologous serum skin test (ASST), a clinical test for the detection of basophil histamine-releasing activity upon autoantibodies or autoreactive stimulation, has been suggested as a potential predictor in the control of urticaria. We sought to identify proteins that were differentially expressed in the sera of patients with positive and negative ASST results and to investigate their association with urticaria control.Proteomics analysis was performed using sera from 3 CSU patients with positive ASST results compared with those showing negative ASST results. Seven upregulated and 5 downregulated proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the ASST-positive group compared with the ASST-negative group.Proteins that were differentially expressed according to the ASST results in CSU patients were classified into 6 groups: apolipoproteins, glycoproteins, modified albumin, haptoglobulin, plectin, and others. Among these, apolipoprotein J or clusterin was validated using an enzyme-linked immunosorbent assay. Clusterin levels in 69 ASST-positive patients were significantly higher than those in 69 ASST-negative patients and in 86 healthy controls (231.2 ± 44.0 vs 210.2 ± 36.1 vs 118.7 ± 71.9 μg/mL, P < 0.001). Furthermore, clusterin levels differed significantly between patients with responsive and refractory responses to antihistamine treatment within 3 months (231.0 ± 39.1 vs 205.1 ± 40.4 μg/mL, P < 0.001). ASST results and serum clusterin levels can predict 92.7% of CSU patients whose urticaria would be refractory to antihistamines. Serum clusterin can be a prognostic marker to determine the responsiveness to antihistamine treatment in patients with CSU.
Collapse
Affiliation(s)
- Ji-Hye Kim
- From the Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
79
|
Konrad L, Hackethal A, Oehmke F, Berkes E, Engel J, Tinneberg HR. Analysis of Clusterin and Clusterin Receptors in the Endometrium and Clusterin Levels in Cervical Mucus of Endometriosis. Reprod Sci 2016; 23:1371-80. [DOI: 10.1177/1933719116641756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lutz Konrad
- Institute of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | | | - Frank Oehmke
- Institute of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Eniko Berkes
- Institute of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Jörg Engel
- Institute of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Hans-Rudolf Tinneberg
- Institute of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
80
|
Zhao L, Mao Z, Woody SK, Brinton RD. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease. Neurobiol Aging 2016; 42:69-79. [PMID: 27143423 DOI: 10.1016/j.neurobiolaging.2016.02.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These findings provide a mechanistic rationale for female susceptibility to AD and suggest a potential window of opportunity for AD prevention and risk reduction in women.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| | - Zisu Mao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
81
|
Přikrylová Vranová H, Hényková E, Mareš J, Kaiserová M, Menšíková K, Vaštík M, Hluštík P, Zapletalová J, Strnad M, Stejskal D, Kaňovský P. Clusterin CSF levels in differential diagnosis of neurodegenerative disorders. J Neurol Sci 2016; 361:117-21. [DOI: 10.1016/j.jns.2015.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
82
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
83
|
Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A, Giralt D, Reverter-Branchat G, Canals F, Hernández-Guillamon M, Montaner J. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics 2015; 133:100-112. [PMID: 26718731 DOI: 10.1016/j.jprot.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED The human immortalized brain endothelial cell line hCMEC/D3 is considered a simple in-vitro model of the blood-brain-barrier. Our aim was to characterize changes in the secretome of hCMEC/D3 subjected to oxygen and glucose deprivation (OGD) to identify new proteins altered after ischemia and that might trigger blood-brain-barrier disruption and test their potential as blood biomarkers for ischemic stroke. Using a quantitative proteomic approach based on SILAC, 19 proteins were found differentially secreted between OGD and normoxia/normoglycemia conditions. Among the OGD-secreted proteins, protein folding was the main molecular function identified and for the main canonical pathways there was an enrichment in epithelial adherens junctions and aldosterone signaling. Western blot was used to verify the MS results in a set of 9 differentially secreted proteins and 5 of these were analyzed in serum samples of 38 ischemic stroke patients, 18 stroke-mimicking conditions and 18 healthy controls. SIGNIFICANCE "We characterized changes in the secretome of hCMEC/D3 cells after an ischemic insult by SILAC and identified proteins associated with ischemia that might be involved in the disruption of the blood-brain barrier. Besides we analyzed the putative potential of the candidate proteins to become biomarkers for the diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Victor Llombart
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Josep Bech-Serra
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Gemma Reverter-Branchat
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
84
|
Athanas K, Mauney SL, Woo TUW. Increased extracellular clusterin in the prefrontal cortex in schizophrenia. Schizophr Res 2015; 169:381-385. [PMID: 26482819 PMCID: PMC4681675 DOI: 10.1016/j.schres.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 11/29/2022]
Abstract
The expression of the gene that encodes clusterin, a glycoprotein that has been implicated in the regulation of many cellular processes, has previously been found in gene expression profiling studies to be among the most significantly differentially expressed genes in pyramidal and parvalbumin-containing inhibitory neurons in the cerebral cortex in subjects with schizophrenia. In this study, we investigated whether clusterin may also be dysregulated at the protein level in schizophrenia subjects. We found that, although the intracellular amount of clusterin may be unchanged, the level of extracellular, secreted clusterin appears to be significantly increased in schizophrenia subjects. It is speculated that this finding may represent a neuroprotective response to pathophysiological events that underlie schizophrenia.
Collapse
Affiliation(s)
- Katina Athanas
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478
| | - Sarah L. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
85
|
The E-box-like sterol regulatory element mediates the insulin-stimulated expression of hepatic clusterin. Biochem Biophys Res Commun 2015; 465:501-6. [DOI: 10.1016/j.bbrc.2015.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023]
|
86
|
Rull A, Martínez-Bujidos M, Pérez-Cuellar M, Pérez A, Ordóñez-Llanos J, Sánchez-Quesada JL. Increased concentration of clusterin/apolipoprotein J (apoJ) in hyperlipemic serum is paradoxically associated with decreased apoJ content in lipoproteins. Atherosclerosis 2015; 241:463-70. [PMID: 26081122 DOI: 10.1016/j.atherosclerosis.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Clusterin/apolipoprotein J (apoJ) circulates in blood in part associated to lipoproteins or in unbound form. When bound to HDL, apoJ is antiatherogenic by inhibiting endothelial cell apoptosis; thus, any factor modifying apoJ association to HDL would decrease its antiatherogenic function. However, the exact distribution of apoJ in each lipoprotein fraction, or in lipoprotein-non bound form has not been specifically investigated either in normolipemia or in dyslipemia. METHODS Basic lipid profile and apoJ concentration were determined in sera from 70 subjects, including a wide range of cholesterol and triglyceride concentrations. Lipoproteins were isolated by ultracentrifugation and their lipid and apolipoprotein composition was assessed. RESULTS In the overall population, serum apoJ positively associated with cholesterol, triglyceride and VLDL-C concentrations, and HDL-C and triglyceride were independent predictors of increased apoJ concentration. Approximately, 20.5% of circulating apoJ was associated with lipoproteins (18.5% HDL, 0.9% LDL and 1.1% VLDL) and 79.5% was not bound to lipoproteins. Serum apoJ concentration was higher in hypercholesterolemic (HC), hypertriglyceridemic (HTG) and combined hyperlipidemic (CHL) sera compared to normolipemic (NL) sera (HC, 98.15 ± 33.6 mg/L; HTG, 103.3 ± 36.8 mg/L; CHL, 131.7 ± 26.8 mg/L; NL, 66.7 ± 33.8 mg/L; P < 0.001). ApoJ distribution was also altered in hyperlipidemia; approximately 30% of circulating apoJ was associated to lipoproteins in the NL group whereas this proportion rounded 15% in hyperlipidemic subjects. CONCLUSIONS Our findings indicate that hyperlipidemia increases the concentration of apoJ in serum but, in turn, the content of lipoprotein-associated apoJ decreases. The redistribution of apoJ in hyperlipidemia could compromise the antiatherogenic properties of HDL.
Collapse
Affiliation(s)
- Anna Rull
- Cardiovascular Biochemistry Group, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Maria Martínez-Bujidos
- Cardiovascular Biochemistry Group, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Spain
| | - Montserrat Pérez-Cuellar
- Cardiovascular Biochemistry Group, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Antonio Pérez
- Endocrinology and Nutrition Department, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain.
| |
Collapse
|
87
|
Kültz D, Li J, Sacchi R, Morin D, Buckpitt A, Van Winkle L. Alterations in the proteome of the respiratory tract in response to single and multiple exposures to naphthalene. Proteomics 2015; 15:2655-68. [PMID: 25825134 DOI: 10.1002/pmic.201400445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Protein adduction is considered to be critical to the loss of cellular homeostasis associated with environmental chemicals undergoing metabolic activation. Despite considerable effort, our understanding of the key proteins mediating the pathologic consequences from protein modification by electrophiles is incomplete. This work focused on naphthalene (NA) induced acute injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to define the initial cellular proteomic response and later protective actions related to tolerance. Airways and nasal olfactory epithelium from mice exposed to 15 ppm NA either for 4 h (acute) or for 4 h/day × 7 days (tolerant) were used for label-free protein quantitation by LC/MS/MS. Cytochrome P450 2F2 and secretoglobin 1A1 are decreased dramatically in airways of mice exposed for 4 h, a finding consistent with the fact that CYPs are localized primarily in Clara cells. A number of heat shock proteins and protein disulfide isomerases, which had previously been identified as adduct targets for reactive metabolites from several lung toxicants, were upregulated in airways but not olfactory epithelium of tolerant mice. Protein targets that are upregulated in tolerance may be key players in the pathophysiology associated with reactive metabolite protein adduction. All MS data have been deposited in the ProteomeXchange with identifier PXD000846 (http://proteomecentral.proteomexchange.org/dataset/PXD000846).
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Johnathon Li
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Romina Sacchi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Dexter Morin
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Alan Buckpitt
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
88
|
Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732914. [PMID: 25977747 PMCID: PMC4419258 DOI: 10.1155/2015/732914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Collapse
|
89
|
Grande G, Milardi D, Vincenzoni F, Pompa G, Biscione A, Astorri AL, Fruscella E, De Luca A, Messana I, Castagnola M, Marana R. Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. MOLECULAR BIOSYSTEMS 2015; 11:1717-25. [DOI: 10.1039/c5mb00071h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chemical composition of the cervical mucus (CM), its physical characteristics and the volume of secretion change cyclically throughout the menstrual cycle.
Collapse
Affiliation(s)
- G. Grande
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - D. Milardi
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - F. Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - G. Pompa
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - A. Biscione
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - A. L. Astorri
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - E. Fruscella
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - A. De Luca
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - I. Messana
- Department of Life and Environmental Sciences
- University of Cagliari
- Cagliari
- Italy
| | - M. Castagnola
- Institute of Biochemistry and Clinical Biochemistry
- Università Cattolica del S. Cuore
- Rome
- Italy
| | - R. Marana
- International Scientific Institute “Paolo VI”
- Università Cattolica del S. Cuore
- Rome
- Italy
| |
Collapse
|
90
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
91
|
Bill BR, Korzh V. Choroid plexus in developmental and evolutionary perspective. Front Neurosci 2014; 8:363. [PMID: 25452709 PMCID: PMC4231874 DOI: 10.3389/fnins.2014.00363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023] Open
Abstract
The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
Collapse
Affiliation(s)
- Brent Roy Bill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Vladimir Korzh
- Agency for Science, Technology and Research of Singapore, Institute of Molecular and Cell Biology Singapore, Singapore ; National University of Singapore, Department of Biological Sciences Singapore, Singapore
| |
Collapse
|
92
|
Lin CC, Tsai P, Sun HY, Hsu MC, Lee JC, Wu IC, Tsao CW, Chang TT, Young KC. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol 2014; 61:984-93. [PMID: 24996046 DOI: 10.1016/j.jhep.2014.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection leads to glucose abnormality. HCV depends on lipid droplets (LDs) and very-low density lipoproteins for assembly/releasing; however, the components and locations for this process remain unidentified. Apolipoprotein J (ApoJ), upregulated by glucose, functions as Golgi chaperone of secreted proteins and resides abundantly in very-low density lipoproteins. This study investigates the interplay between glucose, ApoJ and HCV virion production. METHODS The effects of high glucose on ApoJ expression and HCV production were evaluated with cultivated HuH7.5, primary human hepatocytes, and in treatment naive chronic hepatitis C patients. How ApoJ affects HCV lifecycle was assessed using siRNA knockdown strategy in JFH1 infected and subgenomic replicon cells. The interactions and locations of ApoJ with viral and host components were examined by immunoprecipitation, immunofluorescence and subcellular fractionation experiments. RESULTS HCV infection increased ApoJ expression, which in parallel with HCV infectivity was additionally elevated with high glucose treatment. Serum ApoJ correlated positively with fasting blood glucose concentration and HCV-RNA titre in patients. ApoJ silencing reduced intracellular and extracellular HCV infectivity and extracellular HCV-RNA, but accumulated intracellular HCV-RNA in HCV-infected cells. ApoJ interacted with HCV core and NS5A and stabilized the dual protein complex. HCV infection dispersed cytoplasmic ApoJ from the compact zones of the Golgi to encircle LDs, where co-localization of the core, NS5A, HCV-RNA, subcellular markers for LDs, endoplasmic reticulum (ER), Golgi, and membrane contact sites occurred. CONCLUSIONS ApoJ facilitates infectious HCV particle production via stabilization of core/NS5A, which might surround LDs at the ER-Golgi membrane contact site.
Collapse
Affiliation(s)
- Chun-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peiju Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chin Wu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
93
|
Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014; 29:32-58. [DOI: 10.1016/j.rbmo.2014.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
|
94
|
McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril 2014; 102:692-9. [PMID: 24934493 DOI: 10.1016/j.fertnstert.2014.05.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/16/2014] [Accepted: 05/12/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the male gamete proteome and its relation to blastocyst development and reproductive success. DESIGN Experimental study. SETTING Research laboratory. PATIENT(S) Male infertility patients (n=12) with no known male factor infertility, donated motile sperm after intracytoplasmic sperm injection during an oocyte donor in vitro fertilization cycle. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Proteomic profiles of sperm from normozoospermic males. RESULT(S) Patients were grouped based on day-5 embryo development: group A=good blastocyst development (>35%≥grade 3 BB) and group B=poor blastocyst development (<15%≥grade 3 BB). No differences between the groups were observed for sperm concentration, motility, or Kruger morphology. The in vitro fertilization outcome was statistically significantly different with higher viable implantation rates observed for group A (A=80% vs. B=48%). Proteomic analysis of the motile sperm samples revealed 49 proteins with statistically significantly differential abundance in relation to blastocyst development (>1.5-fold). Twenty-nine proteins showed decreased abundance for group B, including several proteins involved in spermatogenesis, and 20 proteins showed increased abundance for group B, including several heat shock proteins. CONCLUSION(S) An altered sperm proteome was observed with respect to poor blastocyst development and in vitro fertilization outcome in donor oocyte cycles despite normal sperm testing parameters. These data could represent a novel subset of male factor infertility. Ongoing investigation into the male factor contribution to idiopathic infertility may result in improved patient care and enhanced outcomes.
Collapse
Affiliation(s)
| | | | - John Stevens
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - Kirk C Hansen
- Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Aurora
| | | | - Mandy G Katz-Jaffe
- National Foundation for Fertility Research, Lone Tree, Colorado; Colorado Center for Reproductive Medicine, Lone Tree, Colorado.
| |
Collapse
|
95
|
Afanasyeva MA, Britanova LV, Korneev KV, Mitkin NA, Kuchmiy AA, Kuprash DV. Clusterin is a potential lymphotoxin beta receptor target that is upregulated and accumulates in germinal centers of mouse spleen during immune response. PLoS One 2014; 9:e98349. [PMID: 24865838 PMCID: PMC4035297 DOI: 10.1371/journal.pone.0098349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/01/2014] [Indexed: 12/13/2022] Open
Abstract
Clusterin is a multifunctional protein that participates in tissue remodeling, apoptosis, lipid transport, complement-mediated cell lysis and serves as an extracellular chaperone. The role of clusterin in cancer and neurodegeneration has been extensively studied, however little is known about its functions in the immune system. Using expression profiling we found that clusterin mRNA is considerably down-regulated in mouse spleen stroma upon knock-out of lymphotoxin β receptor which plays pivotal role in secondary lymphoid organ development, maintenance and function. Using immunohistochemistry and western blot we studied clusterin protein level and distribution in mouse spleen and mesenteric lymph nodes in steady state and upon immunization with sheep red blood cells. We showed that clusterin protein, represented mainly by the secreted heterodimeric form, is present in all stromal compartments of secondary lymphoid organs except for marginal reticular cells. Clusterin protein level rose after immunization and accumulated in light zones of germinal centers in spleen--the effect that was not observed in lymph nodes. Regulation of clusterin expression by the lymphotoxin beta signaling pathway and its protein dynamics during immune response suggest a specific role of this enigmatic protein in the immune system that needs further study.
Collapse
Affiliation(s)
- Marina A. Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liudmila V. Britanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita A. Mitkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna A. Kuchmiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
96
|
Kang BH, Shim YJ, Tae YK, Song JA, Choi BK, Park IS, Min BH. Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways. Biochem Biophys Res Commun 2014; 445:645-50. [PMID: 24569077 DOI: 10.1016/j.bbrc.2014.02.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Clusterin induces the expression of various chemotactic cytokines including tumor necrosis factor-α (TNF-α) in macrophages and is involved in the cell migration. According to the results of this study, clusterin induced the directional migration (chemotaxis) of macrophages based on a checkerboard analysis. The chemotactic activity of clusterin was prevented by pretreatment with pertussis toxin (PTX), indicating that the Gαi/o-protein coupled receptor (GPCR) was involved in the chemotactic response of clusterin. Clusterin-stimulated chemotaxis was abrogated in a dose-dependent manner by pretreatment with gallein (a Gβγ inhibitor), indicating the involvement of Gβγ released from the GPCR. In addition, inhibitors of phospholipase C (PLC, U73122) and phosphoinositide 3-kinase (PI3K, LY294002), the key targets of Gβγ binding and activation, suppressed chemotactic migration by clusterin. The phosphorylation of Akt induced by clusterin was blocked by pretreatment with gallein or LY294002 but not with U73122, indicating that Gβγ released from the PTX-sensitive Gi protein complex activated PLC and PI3K/Akt signaling pathways separately. The activation of cellular MAP kinases was essential in that their inhibitors blocked clusterin-induced chemotaxis, and Gβγ was required for the activation of MAP kinases because gallein reduced their phosphorylations induced by clusterin. In addition, the inflammation-induced migration of macrophages was greatly reduced in clusterin-deficient mice based on a thioglycollate-induced peritonitis model system. These results suggest that clusterin stimulates the chemotactic migration of macrophages through a PTX-sensitive GPCR and Gβγ-dependent pathways and describe a novel role of clusterin as a chemoattractant of monocytes/macrophages, suggesting that clusterin may serve as a molecular bridge between inflammation and its remodeling of related tissue by recruiting immune cells.
Collapse
Affiliation(s)
- Byeong-Ho Kang
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Young-Jun Shim
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoo-Keung Tae
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin-A Song
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byong-Kwan Choi
- Department of Internal Medicine, College of Medicine, Dongguk University Ilsan Hospital, Republic of Korea
| | - In-Sun Park
- Department of Anatomy, College of Medicine, Inha University, Republic of Korea
| | - Bon-Hong Min
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
97
|
Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2014; 2:323-32. [PMID: 24563850 PMCID: PMC3926111 DOI: 10.1016/j.redox.2014.01.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/11/2014] [Accepted: 01/18/2014] [Indexed: 02/05/2023] Open
Abstract
Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome) network (PN). PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer). In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones. Free radicals originate from various sources and at physiological concentrations are essential for the modulation of cell signalling pathways. Abnormally high levels of free radicals induce oxidative stress and damage all cellular biomolecules, including proteins. Molecular chaperones facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of damaged proteins. The expression and the activity of chaperones during oxidative stress are regulated at both the transcriptional and post-translational level.
Collapse
Key Words
- AGEs, Advanced Glycation End Products
- ALS, Autophagy Lysosome System
- AP-1, Activator Protein-1
- CLU, apolipoprotein J/Clusterin
- Chaperones
- Diseases
- EPMs, Enzymatic Protein Modifications
- ER, Endoplasmic Reticulum
- ERAD, ER-Associated protein Degradation
- Free radicals
- GPx7, Glutathione Peroxidase 7
- GRP78, Glucose Regulated Protein of 78 kDa
- HSF1, Heat Shock transcription Factor-1
- HSP, Heat Shock Protein
- Hb, Haemoglobin
- Keap1, Kelch-like ECH-associated protein 1
- NADH, Nicotinamide Adenine Dinucleotide
- NEPMs, Non-Enzymatic Protein Modifications
- NOS, Nitric Oxide Synthase
- NOx, NAD(P)H Oxidase
- Nrf2, NF-E2-related factor 2
- Oxidative stress
- PDI, Protein Disulfide Isomerase
- PDR, Proteome Damage Responses
- PN, Proteostasis Network
- Proteome
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- Redox signalling
- UPR, Unfolded Protein Response
- UPS, Ubiquitin Proteasome System
- α(2)M, α(2)-Macroglobulin
Collapse
Affiliation(s)
- Katerina Niforou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Christina Cheimonidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
98
|
Sutkowy P, Woźniak A, Boraczyński T, Mila-Kierzenkowska C, Boraczyński M. The effect of a single Finnish sauna bath after aerobic exercise on the oxidative status in healthy men. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 74:89-94. [PMID: 24304490 DOI: 10.3109/00365513.2013.860616] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study was to determine the effect of Finnish sauna as a regeneration method post-exercise on the oxidant-antioxidant balance in healthy men. MATERIAL 43 men aged 24.0 ± 4.3 years performed a 30-min aerobic exercise on a cycle ergometer and rested for 39 min at a room temperature (Day 1; 20°C) or in a sauna for post-workout recovery (Day 2; 90°C, air humidity 10%). Blood was taken 3 times during both study days: Before the exercise (baseline), 20 and 40 min after the recovery. Methods. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) was determined in the subjects' erythrocytes. The concentration of thiobarbituric acid reactive substances (TBARS) was measured both in plasma (TBARSpl) and in the erythrocytes (TBARSer). RESULTS A 12.7% increase in the TBARSpl concentration versus the baseline was observed 40 min after the Finnish sauna (p < 0.01). The CAT activity observed 20 and 40 min after the sauna was also found higher by 8.1% and 8.9%, respectively, in comparison with the baseline (p < 0.05). In turn, the TBARSer concentration was lower by 17.5% 40 min after the recovery in the sauna, as compared with the TBARSer concentration 40 min after the recovery at the room temperature (p < 0.05). CONCLUSIONS A single Finnish sauna bath as a source of free radicals per se is able to reduce oxidative stress induced by a 30-min aerobic exercise in healthy men.
Collapse
Affiliation(s)
- Paweł Sutkowy
- The Chair of Medical Biology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz , Bydgoszcz , Poland
| | | | | | | | | |
Collapse
|