51
|
The Impact of Sleep Disturbance on Gut Microbiota, Atrial Substrate, and Atrial Fibrillation Inducibility in Mice: A Multi-Omics Analysis. Metabolites 2022; 12:metabo12111144. [PMID: 36422284 PMCID: PMC9694206 DOI: 10.3390/metabo12111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
This study examined the effect of sleep disturbance on gut microbiota (GM), atrial substrate, and atrial fibrillation (AF) inducibility. C57BL/6 mice were subjected to six weeks of sleep deprivation (SD) using the method of modified multiple-platform. Transesophageal burst pacing was performed to evaluate AF inducibility. Feces, plasma, and an atrium were collected and analyzed by 16s rRNA sequencing, liquid chromatography−mass spectrometry (LC-MS)-based metabolome, histological studies, and transcriptome. Higher AF inducibility (2/30 of control vs. 15/30 of SD, p = 0.001) and longer AF duration (p < 0.001), concomitant with aggravated fibrosis, collagen, and lipid accumulation, were seen in the SD mice compared to control mice. Meanwhile, elevated alpha diversity, higher abundance of Flavonifractor, Ruminococcus, and Alloprevotella, as well as imbalanced functional pathways, were observed in the gut of SD mice. Moreover, the global patterns for the plasma metabolome were altered, e.g., the decreased butanoate metabolism intermediates in SD mice. In addition, disrupted metabolic homeostasis in the SD atrium, such as fatty acid metabolism, was analyzed by the transcriptome. These results demonstrated that the crosstalk between GM and atrial metabolism might be a promising target for SD-mediated AF susceptibility.
Collapse
|
52
|
Schwartz B, Gjini P, Gopal DM, Fetterman JL. Inefficient Batteries in Heart Failure: Metabolic Bottlenecks Disrupting the Mitochondrial Ecosystem. JACC Basic Transl Sci 2022; 7:1161-1179. [PMID: 36687274 PMCID: PMC9849281 DOI: 10.1016/j.jacbts.2022.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Mitochondrial abnormalities have long been described in the setting of cardiomyopathies and heart failure (HF), yet the mechanisms of mitochondrial dysfunction in cardiac pathophysiology remain poorly understood. Many studies have described HF as an energy-deprived state characterized by a decline in adenosine triphosphate production, largely driven by impaired oxidative phosphorylation. However, impairments in oxidative phosphorylation extend beyond a simple decline in adenosine triphosphate production and, in fact, reflect pervasive metabolic aberrations that cannot be fully appreciated from the isolated, often siloed, interrogation of individual aspects of mitochondrial function. With the application of broader and deeper examinations into mitochondrial and metabolic systems, recent data suggest that HF with preserved ejection fraction is likely metabolically disparate from HF with reduced ejection fraction. In our review, we introduce the concept of the mitochondrial ecosystem, comprising intricate systems of metabolic pathways and dynamic changes in mitochondrial networks and subcellular locations. The mitochondrial ecosystem exists in a delicate balance, and perturbations in one component often have a ripple effect, influencing both upstream and downstream cellular pathways with effects enhanced by mitochondrial genetic variation. Expanding and deepening our vantage of the mitochondrial ecosystem in HF is critical to identifying consistent metabolic perturbations to develop therapeutics aimed at preventing and improving outcomes in HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ANT1, adenine translocator 1
- ATP, adenosine triphosphate
- CVD, cardiovascular disease
- DCM, dilated cardiomyopathy
- DRP-1, dynamin-related protein 1
- EET, epoxyeicosatrienoic acid
- FADH2/FAD, flavin adenine dinucleotide
- HETE, hydroxyeicosatetraenoic acid
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HIF1α, hypoxia-inducible factor 1α
- LV, left ventricle
- LVAD, left ventricular assist device
- LVEF, left ventricular ejection fraction
- NADH/NAD+, nicotinamide adenine dinucleotide
- OPA1, optic atrophy protein 1
- OXPHOS, oxidative phosphorylation
- PGC1-α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- SIRT1-7, sirtuins 1-7
- cardiomyopathy
- heart failure
- iPLA2γ, Ca2+-independent mitochondrial phospholipase
- mPTP, mitochondrial permeability transition pore
- metabolism
- mitochondria
- mitochondrial ecosystem
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brian Schwartz
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Petro Gjini
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Deepa M Gopal
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Yang M, Fu JD, Zou J, Sridharan D, Zhao MT, Singh H, Krigman J, Khan M, Xin G, Sun N. Assessment of mitophagy in human iPSC-derived cardiomyocytes. Autophagy 2022; 18:2481-2494. [PMID: 35220905 PMCID: PMC9542630 DOI: 10.1080/15548627.2022.2037920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/β-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mingchong Yang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ji-Dong Fu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Divya Sridharan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Judith Krigman
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nuo Sun
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,CONTACT Nuo Sun Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Gang Xin Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus43210, OH, USA
| |
Collapse
|
54
|
Selvaraj S, Fu Z, Jones P, Kwee LC, Windsor SL, Ilkayeva O, Newgard CB, Margulies KB, Husain M, Inzucchi SE, McGuire DK, Pitt B, Scirica BM, Lanfear DE, Nassif ME, Javaheri A, Mentz RJ, Kosiborod MN, Shah SH. Metabolomic Profiling of the Effects of Dapagliflozin in Heart Failure With Reduced Ejection Fraction: DEFINE-HF. Circulation 2022; 146:808-818. [PMID: 35603596 PMCID: PMC9474658 DOI: 10.1161/circulationaha.122.060402] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors are foundational therapy in patients with heart failure with reduced ejection fraction (HFrEF), but underlying mechanisms of benefit are not well defined. We sought to investigate the relationships between sodium-glucose cotransporter-2 inhibitor treatment, changes in metabolic pathways, and outcomes using targeted metabolomics. METHODS DEFINE-HF (Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients With HF With Reduced Ejection Fraction) was a placebo-controlled trial of dapagliflozin in HFrEF. We performed targeted mass spectrometry profiling of 63 metabolites (45 acylcarnitines [markers of fatty acid oxidation], 15 amino acids, and 3 conventional metabolites) in plasma samples at randomization and 12 weeks. Using mixed models, we identified principal components analysis-defined metabolite clusters that changed differentially with treatment and examined the relationship between change in metabolite clusters and change in Kansas City Cardiomyopathy Questionnaire scores and NT-proBNP (N-terminal probrain natriuretic peptide). Models were adjusted for relevant clinical covariates and nominal P<0.05 with false discovery rate-adjusted P<0.10 was used to determine statistical significance. RESULTS Among the 234 DEFINE-HF participants with targeted metabolomic data, the mean age was 62.0±11.1 years, 25% were women, 38% were Black, and mean ejection fraction was 27±8%. Dapagliflozin increased ketone-related and short-chain acylcarnitine as well as medium-chain acylcarnitine principal components analysis-defined metabolite clusters compared with placebo (nominal P=0.01, false discovery rate-adjusted P=0.08 for both clusters). However, ketosis (β-hydroxybutyrate levels >500 μmol/L) was achieved infrequently (3 [2.5%] in dapagliflozin arm versus 1 [0.9%] in placebo arm) and supraphysiologic levels were not observed. Increases in long-chain acylcarnitine, long-chain dicarboxylacylcarnitine, and aromatic amino acid metabolite clusters were associated with decreases in Kansas City Cardiomyopathy Questionnaire scores (ie, worse quality of life) and increases in NT-proBNP levels, without interaction by treatment group. CONCLUSIONS In this study of targeted metabolomics in a placebo-controlled trial of sodium-glucose cotransporter-2 inhibitors in HFrEF, we observed effects of dapagliflozin on key metabolic pathways, supporting a role for altered ketone and fatty acid biology with sodium-glucose cotransporter-2 inhibitors in patients with HFrEF. Only physiologic levels of ketosis were observed. In addition, we identified several metabolic biomarkers associated with adverse HFrEF outcomes. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02653482.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Zhuxuan Fu
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
| | - Philip Jones
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
| | - Lydia C. Kwee
- Duke Molecular Physiology Institute, Durham, North Carolina
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Durham, North Carolina
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Kenneth B. Margulies
- Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, University of Toronto, Canada
| | | | - Darren K. McGuire
- University of Texas Southwestern Medical Center and Parkland Health and Hospital System, Dallas, TX
| | - Bertram Pitt
- University of Michigan School of Medicine, Ann Arbor, MI
| | - Benjamin M. Scirica
- Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - David E. Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, Michigan; Heart and Vascular Institute, Henry Ford Hospital, Detroit, Michigan
| | - Michael E. Nassif
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
- University of Missouri-Kansas City, MO
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Robert J. Mentz
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Mikhail N. Kosiborod
- Saint Luke’s Mid America Heart Institute, Kansas City, MO
- University of Missouri-Kansas City, MO
| | - Svati H. Shah
- Duke Molecular Physiology Institute, Durham, North Carolina
| |
Collapse
|
55
|
Metabolomic Profiling of End-Stage Heart Failure Secondary to Chronic Chagas Cardiomyopathy. Int J Mol Sci 2022; 23:ijms231810456. [PMID: 36142367 PMCID: PMC9499603 DOI: 10.3390/ijms231810456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe clinical form of chronic Chagas disease, representing one of the leading causes of morbidity and mortality in Latin America, and a growing global public health problem. There is currently no approved treatment for CCC; however, omics technologies have enabled significant progress to be made in the search for new therapeutic targets. The metabolic alterations associated with pathogenic mechanisms of CCC and their relationship to cellular and immunopathogenic processes in cardiac tissue remain largely unknown. This exploratory study aimed to evaluate the potential underlying pathogenic mechanisms in the failing myocardium of patients with end-stage heart failure (ESHF) secondary to CCC by applying an untargeted metabolomic profiling approach. Cardiac tissue samples from the left ventricle of patients with ESHF of CCC etiology (n = 7) and healthy donors (n = 7) were analyzed using liquid chromatography-mass spectrometry. Metabolite profiles showed altered branched-chain amino acid and acylcarnitine levels, decreased fatty acid uptake and oxidation, increased activity of the pentose phosphate pathway, dysregulation of the TCA cycle, and alterations in critical cellular antioxidant systems. These findings suggest processes of energy deficit, alterations in substrate availability, and enhanced production of reactive oxygen species in the affected myocardium. This profile potentially contributes to the development and maintenance of a chronic inflammatory state that leads to progression and severity of CCC. Further studies involving larger sample sizes and comparisons with heart failure patients without CCC are needed to validate these results, opening an avenue to investigate new therapeutic approaches for the treatment and prevention of progression of this unique and severe cardiomyopathy.
Collapse
|
56
|
Yurista SR, Chen S, Welsh A, Tang WHW, Nguyen CT. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time? Curr Heart Fail Rep 2022; 19:180-190. [PMID: 35567658 PMCID: PMC10950325 DOI: 10.1007/s11897-022-00554-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review the clinical benefits of altering myocardial substrate metabolism in heart failure. RECENT FINDINGS Modulation of cardiac substrates (fatty acid, glucose, or ketone metabolism) offers a wide range of therapeutic possibilities which may be applicable to heart failure. Augmenting ketone oxidation seems to offer great promise as a new therapeutic modality in heart failure. The heart has long been recognized as metabolic omnivore, meaning it can utilize a variety of energy substrates to maintain adequate ATP production. The adult heart uses fatty acid as a major fuel source, but it can also derive energy from other substrates including glucose and ketone, and to some extent pyruvate, lactate, and amino acids. However, cardiomyocytes of the failing heart endure remarkable metabolic remodeling including a shift in substrate utilization and reduced ATP production, which account for cardiac remodeling and dysfunction. Research to understand the implication of myocardial metabolic perturbation in heart failure has grown in recent years, and this has raised interest in targeting myocardial substrate metabolism for heart failure therapy. Due to the interdependency between different pathways, the main therapeutic metabolic approaches include inhibiting fatty acid uptake/fatty acid oxidation, reducing circulating fatty acid levels, increasing glucose oxidation, and augmenting ketone oxidation.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Shi Chen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aidan Welsh
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
57
|
Ferro F, Spelat R, Valente C, Contessotto P. Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction. Biomolecules 2022; 12:biom12070969. [PMID: 35883525 PMCID: PMC9312956 DOI: 10.3390/biom12070969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition defined by structural and functional abnormalities in the heart that gradually result in reduced cardiac output (HFrEF) and/or increased cardiac pressures at rest and under stress (HFpEF). The presence of asymptomatic individuals hampers HF identification, resulting in delays in recognizing patients until heart dysfunction is manifested, thus increasing the chance of poor prognosis. Given the recent advances in metabolomics, in this review we dissect the main alterations occurring in the metabolic pathways behind the decrease in cardiac function caused by HF. Indeed, relevant preclinical and clinical research has been conducted on the metabolite connections and differences between HFpEF and HFrEF. Despite these promising results, it is crucial to note that, in addition to identifying single markers and reliable threshold levels within the healthy population, the introduction of composite panels would strongly help in the identification of those individuals with an increased HF risk. That said, additional research in the field is required to overcome the current drawbacks and shed light on the pathophysiological changes that lead to HF. Finally, greater collaborative data sharing, as well as standardization of procedures and approaches, would enhance this research field to fulfil its potential.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
- Correspondence:
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Camilla Valente
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| | - Paolo Contessotto
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| |
Collapse
|
58
|
Wei S, Binbin L, Yuan W, Zhong Z, Donghai L, Caihua H. β-Hydroxybutyrate in Cardiovascular Diseases : A Minor Metabolite of Great Expectations. Front Mol Biosci 2022; 9:823602. [PMID: 35769904 PMCID: PMC9234267 DOI: 10.3389/fmolb.2022.823602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Despite recent advances in therapies, cardiovascular diseases ( CVDs ) are still the leading cause of mortality worldwide. Previous studies have shown that metabolic perturbations in cardiac energy metabolism are closely associated with the progression of CVDs. As expected, metabolic interventions can be applied to alleviate metabolic impairments and, therefore, can be used to develop therapeutic strategies for CVDs. β-hydroxybutyrate (β-HB) was once known to be a harmful and toxic metabolite leading to ketoacidosis in diabetes. However, the minor metabolite is increasingly recognized as a multifunctional molecular marker in CVDs. Although the protective role of β-HB in cardiovascular disease is controversial, increasing evidence from experimental and clinical research has shown that β-HB can be a “super fuel” and a signaling metabolite with beneficial effects on vascular and cardiac dysfunction. The tremendous potential of β-HB in the treatment of CVDs has attracted many interests of researchers. This study reviews the research progress of β-HB in CVDs and aims to provide a theoretical basis for exploiting the potential of β-HB in cardiovascular therapies.
Collapse
Affiliation(s)
- Shao Wei
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liu Binbin
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Wu Yuan
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Zhang Zhong
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Lin Donghai
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| | - Huang Caihua
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| |
Collapse
|
59
|
Myocardial Viability – An Important Decision Making Factor in the Treatment Protocol for Patients with Ischemic Heart Disease. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Ischemic heart disease (IHD) affects > 110 million individuals worldwide and represents an important contributor to the rise in the prevalence of heart failure and the associated mortality and morbidity. Despite modern therapies, up to one-third of patients with acute myocardial infarction would develop heart failure. IHD is a pathologic condition of the myocardium resulting from the imbalance in a given moment between its oxygen demands and the actual perfusion. Acute and chronic forms of the disease may potentially lead to extensive and permanent damage of the cardiac muscle. From a clinical point of view, determination of the still viable extent of myocardium is crucial for the therapeutic protocol – since ischemia is the underlying cause, then revascularization should provide for a better prognosis. Different methods for evaluation of myocardial viability have been described – each one presenting some advantages over the others, being, in the same time, inferior in some respects. The review offers a relatively comprehensive overview of methods available for determining myocardial viability.
Collapse
|
60
|
Aiyasiding X, Liao HH, Feng H, Zhang N, Lin Z, Ding W, Yan H, Zhou ZY, Tang QZ. Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Front Pharmacol 2022; 13:870699. [PMID: 35592411 PMCID: PMC9110825 DOI: 10.3389/fphar.2022.870699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2−/−) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2−/− mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
61
|
Zhao M, Wei H, Li C, Zhan R, Liu C, Gao J, Yi Y, Cui X, Shan W, Ji L, Pan B, Cheng S, Song M, Sun H, Jiang H, Cai J, Garcia-Barrio MT, Chen YE, Meng X, Dong E, Wang DW, Zheng L. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat Commun 2022; 13:1757. [PMID: 35365608 PMCID: PMC8976029 DOI: 10.1038/s41467-022-29060-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Intestinal microbiota alterations may affect heart function through the production of gut-derived metabolites. Here the authors found that gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent fatty acid oxidation.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Si Cheng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Cai
- Fuwai Hospital, State Key Laboratory of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minerva T Garcia-Barrio
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.,The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China. .,Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
62
|
Murugasamy K, Munjal A, Sundaresan NR. Emerging Roles of SIRT3 in Cardiac Metabolism. Front Cardiovasc Med 2022; 9:850340. [PMID: 35369299 PMCID: PMC8971545 DOI: 10.3389/fcvm.2022.850340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
Collapse
|
63
|
Heart Failure and Drug Therapies: A Metabolic Review. Int J Mol Sci 2022; 23:ijms23062960. [PMID: 35328390 PMCID: PMC8950643 DOI: 10.3390/ijms23062960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality globally with at least 26 million people worldwide living with heart failure (HF). Metabolism has been an active area of investigation in the setting of HF since the heart demands a high rate of ATP turnover to maintain homeostasis. With the advent of -omic technologies, specifically metabolomics and lipidomics, HF pathologies have been better characterized with unbiased and holistic approaches. These techniques have identified novel pathways in our understanding of progression of HF and potential points of intervention. Furthermore, sodium-glucose transport protein 2 inhibitors, a drug that has changed the dogma of HF treatment, has one of the strongest types of evidence for a potential metabolic mechanism of action. This review will highlight cardiac metabolism in both the healthy and failing heart and then discuss the metabolic effects of heart failure drugs.
Collapse
|
64
|
Short-Chain Carbon Sources. JACC Basic Transl Sci 2022; 7:730-742. [PMID: 35958686 PMCID: PMC9357564 DOI: 10.1016/j.jacbts.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Heart failure (HF) remains the leading cause of morbidity and mortality in the developed world, highlighting the urgent need for novel, effective therapeutics. Recent studies support the proposition that improved myocardial energetics as a result of ketone body (KB) oxidation may account for the intriguing beneficial effects of sodium-glucose cotransporter-2 inhibitors in patients with HF. Similar small molecules, short-chain fatty acids (SCFAs) are now realized to be preferentially oxidized over KBs in failing hearts, contradicting the notion of KBs as a rescue "superfuel." In addition to KBs and SCFAs being alternative fuels, both exert a wide array of nonmetabolic functions, including molecular signaling and epigenetics and as effectors of inflammation and immunity, blood pressure regulation, and oxidative stress. In this review, the authors present a perspective supported by new evidence that the metabolic and unique nonmetabolic activities of KBs and SCFAs hold promise for treatment of patients with HF with reduced ejection fraction and those with HF with preserved ejection fraction.
Collapse
|
65
|
Spyropoulos F, Sorrentino A, van der Reest J, Yang P, Waldeck-Weiermair M, Steinhorn B, Eroglu E, Saeedi Saravi SS, Yu P, Haigis M, Christou H, Michel T. Metabolomic and transcriptomic signatures of chemogenetic heart failure. Am J Physiol Heart Circ Physiol 2022; 322:H451-H465. [PMID: 35089810 PMCID: PMC8896991 DOI: 10.1152/ajpheart.00628.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The failing heart is characterized by elevated levels of reactive oxygen species. We have developed an animal model of heart failure induced by chemogenetic production of oxidative stress in the heart using a recombinant adeno-associated virus (AAV9) expressing yeast d-amino acid oxidase (DAAO) targeted to cardiac myocytes. When DAAO-infected animals are fed the DAAO substrate d-alanine, the enzyme generates hydrogen peroxide (H2O2) in the cardiac myocytes, leading to dilated cardiomyopathy. However, the underlying mechanisms of oxidative stress-induced heart failure remain incompletely understood. Therefore, we investigated the effects of chronic oxidative stress on the cardiac transcriptome and metabolome. Rats infected with recombinant cardiotropic AAV9 expressing DAAO or control AAV9 were treated for 7 wk with d-alanine to stimulate chemogenetic H2O2 production by DAAO and generate dilated cardiomyopathy. After hemodynamic assessment, left and right ventricular tissues were processed for RNA sequencing and metabolomic profiling. DAAO-induced dilated cardiomyopathy was characterized by marked changes in the cardiac transcriptome and metabolome both in the left and right ventricle. Downregulated transcripts are related to energy metabolism and mitochondrial function, accompanied by striking alterations in metabolites involved in cardiac energetics, redox homeostasis, and amino acid metabolism. Upregulated transcripts are involved in cytoskeletal organization and extracellular matrix. Finally, we noted increased metabolite levels of antioxidants glutathione and ascorbate. These findings provide evidence that chemogenetic generation of oxidative stress leads to a robust heart failure model with distinct transcriptomic and metabolomic signatures and set the basis for understanding the underlying pathophysiology of chronic oxidative stress in the heart.NEW & NOTEWORTHY We have developed a "chemogenetic" heart failure animal model that recapitulates a central feature of human heart failure: increased cardiac redox stress. We used a recombinant DAAO enzyme to generate H2O2 in cardiomyocytes, leading to cardiomyopathy. Here we report striking changes in the cardiac metabolome and transcriptome following chemogenetic heart failure, similar to changes observed in human heart failure. Our findings help validate chemogenetic approaches for the discovery of novel therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Sorrentino
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Peiran Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Markus Waldeck-Weiermair
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emrah Eroglu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seyed Soheil Saeedi Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul Yu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcia Haigis
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
66
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
67
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
68
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
69
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
70
|
Chaanine AH. Metabolic Remodeling and Implicated Calcium and Signal Transduction Pathways in the Pathogenesis of Heart Failure. Int J Mol Sci 2021; 22:ijms221910579. [PMID: 34638917 PMCID: PMC8508915 DOI: 10.3390/ijms221910579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The heart is an organ with high-energy demands in which the mitochondria are most abundant. They are considered the powerhouse of the cell and occupy a central role in cellular metabolism. The intermyofibrillar mitochondria constitute the majority of the three-mitochondrial subpopulations in the heart. They are also considered to be the most important in terms of their ability to participate in calcium and cellular signaling, which are critical for the regulation of mitochondrial function and adenosine triphosphate (ATP) production. This is because they are located in very close proximity with the endoplasmic reticulum (ER), and for the presence of tethering complexes enabling interorganelle crosstalk via calcium signaling. Calcium is an important second messenger that regulates mitochondrial function. It promotes ATP production and cellular survival under physiological changes in cardiac energetic demand. This is accomplished in concert with signaling pathways that regulate both calcium cycling and mitochondrial function. Perturbations in mitochondrial homeostasis and metabolic remodeling occupy a central role in the pathogenesis of heart failure. In this review we will discuss perturbations in ER-mitochondrial crosstalk and touch on important signaling pathways and molecular mechanisms involved in the dysregulation of calcium homeostasis and mitochondrial function in heart failure.
Collapse
Affiliation(s)
- Antoine H. Chaanine
- Department of Medicine, Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; ; Tel.: +1-(504)-988-1612
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
71
|
Issa J, Ma I, Blasco H, Labarthe F, Lefort B. Heart failure is associated with accumulation of long chain acylcarnitines in children suffering from cardiomyopathy. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2021. [DOI: 10.1016/j.acvdsp.2021.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Ketema EB, Lopaschuk GD. Post-translational Acetylation Control of Cardiac Energy Metabolism. Front Cardiovasc Med 2021; 8:723996. [PMID: 34409084 PMCID: PMC8365027 DOI: 10.3389/fcvm.2021.723996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Perturbations in myocardial energy substrate metabolism are key contributors to the pathogenesis of heart diseases. However, the underlying causes of these metabolic alterations remain poorly understood. Recently, post-translational acetylation-mediated modification of metabolic enzymes has emerged as one of the important regulatory mechanisms for these metabolic changes. Nevertheless, despite the growing reports of a large number of acetylated cardiac mitochondrial proteins involved in energy metabolism, the functional consequences of these acetylation changes and how they correlate to metabolic alterations and myocardial dysfunction are not clearly defined. This review summarizes the evidence for a role of cardiac mitochondrial protein acetylation in altering the function of major metabolic enzymes and myocardial energy metabolism in various cardiovascular disease conditions.
Collapse
Affiliation(s)
- Ezra B Ketema
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
73
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
74
|
Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in Three Cohorts of European Gymnasts. J Hum Kinet 2021; 79:77-85. [PMID: 34400988 PMCID: PMC8336554 DOI: 10.2478/hukin-2020-0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Athletic ability is influenced by several exogenous and endogenous factors including genetic component. Hundreds of gene variants have been proposed as potential genetic markers associated with fitness-related phenotypes as well as elite-level athletic performance. Among others, variants within the PPARA gene that code for the peroxisome proliferator activated receptor α are of potential interest. The main goal of the present study was to determine PPARA (G/C, rs4253778) genotype distribution among a group of Polish, Lithuanian and Italian international level male gymnasts and to compare our findings with those of previous research on the frequency of the PPARA intron 7 C allele/CC genotype in power/strength-oriented athletes. A total of 464 male subjects (147 gymnasts and 317 controls) from Poland (n = 203), Italy (n = 146) and Lithuania (n = 107) participated in the study. No statistically significant differences were found in any of the analyzed cohorts. However, a significantly higher frequency of the CC genotype of the PPARA rs4253778 polymorphism was observed when all gymnasts were pooled and compared with pooled control using a recessive model of inheritance (OR = 3.33, 95% CI = 1.18-10, p = 0.022). It is important to know that we investigated a relatively small sample of male European gymnasts and our results are limited only to male participants. Thus, it is necessary to validate our results in larger cohorts of athletes of different ethnicities and also in female gymnasts to find out whether there is a gender effect.
Collapse
|
75
|
Azimzadeh O, von Toerne C, Subramanian V, Sievert W, Multhoff G, Atkinson MJ, Tapio S. Data-Independent Acquisition Proteomics Reveals Long-Term Biomarkers in the Serum of C57BL/6J Mice Following Local High-Dose Heart Irradiation. Front Public Health 2021; 9:678856. [PMID: 34277544 PMCID: PMC8283568 DOI: 10.3389/fpubh.2021.678856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation, and cholesterol metabolism. We found significantly enhanced expression of proinflammatory cytokines (TNF-α, TGF-β, IL-1, and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low-density lipoprotein (LDL), and oxidized LDL was increased, whereas that of high-density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Section Radiation Biology, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Center for Translational Cancer Research (TranslaTUM), Campus Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Radiation Biology, Technical University of Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Biological and Medical Imaging, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
76
|
Abstract
Legumes are an essential food source worldwide. Their high-quality proteins, complex carbohydrates, dietary fiber, and relatively low-fat content make these an important functional food. Known to possess a multitude of health benefits, legume consumption is associated with the prevention and treatment of cardiovascular diseases (CVD). Legume crude protein isolates and purified peptides possess many cardiopreventive properties. Here, we review selected economically valued legumes, their taxonomy and distribution, biochemical composition, and their protein components and the mechanism(s) of action associated with cardiovascular health. Most of the legume protein studies had shown upregulation of low-density lipoprotein (LDL) receptor leading to increased binding and uptake, in effect significantly reducing total lipid levels in the blood serum and liver. This is followed by decreased biosynthesis of cholesterol and fatty acids. To understand the relationship of identified genes from legume studies, we performed gene network analysis, pathway, and gene ontology (GO) enrichment. Results showed that the genes were functionally interrelated while enrichment and pathway analysis revealed involvement in lipid transport, fatty acid and triglyceride metabolic processes, and regulatory processes. This review is the first attempt to collate all known mechanisms of action of legume proteins associated with cardiovascular health. This also provides a snapshot of possible targets leading to systems-level approaches to further investigate the cardiometabolic potentials of legumes.
Collapse
|
77
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
78
|
Morciano G, Vitto VAM, Bouhamida E, Giorgi C, Pinton P. Mitochondrial Bioenergetics and Dynamism in the Failing Heart. Life (Basel) 2021; 11:436. [PMID: 34066065 PMCID: PMC8151847 DOI: 10.3390/life11050436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The heart is responsible for pumping blood, nutrients, and oxygen from its cavities to the whole body through rhythmic and vigorous contractions. Heart function relies on a delicate balance between continuous energy consumption and generation that changes from birth to adulthood and depends on a very efficient oxidative metabolism and the ability to adapt to different conditions. In recent years, mitochondrial dysfunctions were recognized as the hallmark of the onset and development of manifold heart diseases (HDs), including heart failure (HF). HF is a severe condition for which there is currently no cure. In this condition, the failing heart is characterized by a disequilibrium in mitochondrial bioenergetics, which compromises the basal functions and includes the loss of oxygen and substrate availability, an altered metabolism, and inefficient energy production and utilization. This review concisely summarizes the bioenergetics and some other mitochondrial features in the heart with a focus on the features that become impaired in the failing heart.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care&Research, 48033 Cotignola, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (E.B.); (C.G.)
| |
Collapse
|
79
|
Silva Pedroza AA, Bernardo EM, Pereira AR, Andrade Silva SC, Lima TA, de Moura Freitas C, da Silva Junior JC, Gomes DA, Ferreira DS, Lagranha CJ. Moderate offspring exercise offsets the harmful effects of maternal protein deprivation on mitochondrial function and oxidative balance by modulating sirtuins. Nutr Metab Cardiovasc Dis 2021; 31:1622-1634. [PMID: 33810953 DOI: 10.1016/j.numecd.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS It has been demonstrated that maternal low protein during development induces mitochondrial dysfunction and oxidative stress in the heart. Moderate-intensity exercise in early life, conversely, increases the overall cardiac health. Thus, we hypothesize that moderate-intensity exercise performed during young age could ameliorate the deleterious effect of maternal protein deprivation on cardiac bioenergetics. METHODS AND RESULTS We used a rat model of maternal protein restriction during gestational and lactation period followed by an offspring treadmill moderate physical training. Pregnant rats were divided into two groups: normal nutrition receiving 17% of casein in the diet and undernutrition receiving a low-protein diet (8% casein). At 30 days of age, the male offspring were further subdivided into sedentary (NS and LS) or exercised (NT and LT) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. Our results showed that a low-protein diet decreases oxidative metabolism and mitochondrial function associated with higher oxidative stress. In contrast, exercise rescues mitochondrial capacity and promotes a cellular resilience to oxidative stress. Up-regulation of cardiac sirtuin 1 and 3 decreased acetylation levels, redeeming from the deleterious effect of protein restriction. CONCLUSION Our findings show that moderate daily exercise during a young age acts as a therapeutical intervention opposing the harmful effects of a maternal diet restricted in protein.
Collapse
Affiliation(s)
| | - Elenilson M Bernardo
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Allifer R Pereira
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV- Federal University of Pernambuco, Brazil
| | - Severina Cassia Andrade Silva
- Neuropsyquiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Talitta A Lima
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV- Federal University of Pernambuco, Brazil
| | - Cristiane de Moura Freitas
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV- Federal University of Pernambuco, Brazil
| | - Jose Carlos da Silva Junior
- Neuropsyquiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Dayane A Gomes
- Neuropsyquiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Diorginis S Ferreira
- Colegiado de Educação Física, Federal University of São Franscisco Valley, Petrolina, Brazil
| | - Claudia J Lagranha
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV- Federal University of Pernambuco, Brazil; Neuropsyquiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil.
| |
Collapse
|
80
|
Zhang Y, Ji H, Qiao O, Li Z, Pecoraro L, Zhang X, Han X, Wang W, Zhang X, Man S, Wang J, Li X, Liu C, Huang L, Gao W. Nanoparticle conjugation of ginsenoside Rb3 inhibits myocardial fibrosis by regulating PPARα pathway. Biomed Pharmacother 2021; 139:111630. [PMID: 33945912 DOI: 10.1016/j.biopha.2021.111630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac fibrosis occurs in ischemic and non-ischemic heart failure, hereditary cardiomyopathy, diabetes and aging. Energy metabolism, which serves a crucial function in the course and treatment of cardiovascular diseases, might have therapeutic benefits for myocardial fibrosis. Ginsenoside Rb3 (G-Rb3) is one of the main components of Ginseng and exhibits poor oral bioavailability but still exerts regulate energy metabolism effects in some diseases. Therefore, the study investigated the effect of chitosan (CS) @ sodium tripolyphosphate (TPP) nanoparticles conjugation with ginsenoside Rb3 (NpRb3) on myocardial fibrosis and studied its possible mechanisms. The results showed that NpRb3 directly participates in the remodeling of myocardial energy metabolism and the regulation of perixisome proliferation-activated receptor alpha (PPARα), thereby improving the degree of myocardial fibrosis. The study also verifies the protective effect of NpRb3 on energy metabolism and mitochondrial function by targeting the PPARα pathway. Therefore, the prepared nanodrug carrier may be a potential solution for the delivery of G-Rb3, which is a promising platform for oral treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Haixia Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Ou Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Zhi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xueqian Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xiaoying Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Wenzhe Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xinyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Shuli Man
- Tianjin University of Science and Technology, Tianjin, PR China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, PR China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China.
| |
Collapse
|
81
|
Li Q, Larouche-Lebel É, Loughran KA, Huh TP, Suchodolski JS, Oyama MA. Metabolomics Analysis Reveals Deranged Energy Metabolism and Amino Acid Metabolic Reprogramming in Dogs With Myxomatous Mitral Valve Disease. J Am Heart Assoc 2021; 10:e018923. [PMID: 33890477 PMCID: PMC8200728 DOI: 10.1161/jaha.120.018923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Myxomatous mitral valve disease (MMVD), a naturally occurring heart disease, affects 10% to 15% of the canine population. Canine MMVD shares many similarities with human MMVD. Untargeted metabolomics was performed to identify changes in metabolic pathways and biomarkers with potential clinical utilities. Methods and Results Serum samples from 27 healthy, 22 stage B1, 18 stage B2 preclinical MMVD dogs, and 17 MMVD dogs with a history of congestive heart failure (CHF) were analyzed. Linear regression analysis identified 173 known metabolites whose concentrations were different among the 4 groups (adjusted P<0.05), of which 40% belonged to amino acid super pathways, while 30% were lipids. More than 50% of significant metabolites were correlated with left atrial diameter but not left ventricular dimension. Acylcarnitines, tricarboxylic acid cycle intermediates, and creatine accumulated in proportion to MMVD severity. α‐Ketobutyrate and ketone bodies were increased as MMVD advanced. Nicotinamide, a key substrate of the main nicotinamide adenine dinucleotide (NAD+) salvage pathway, was decreased, while quinolinate of the de novo NAD+ biosynthesis was increased in CHF dogs versus healthy dogs. 3‐Methylhistidine, marker for myofibrillar protein degradation, was higher in CHF dogs than non‐CHF dogs. Trimethylamine N‐oxide (TMAO) and TMAO–producing precursors, including carnitine, phosphatidylcholine, betaine, and trimethyllysine, were increased in CHF dogs versus non‐CHF dogs. Elevated levels of uremic toxins, including guanidino compounds, TMAO, and urea, were observed in CHF dogs. Pathway analysis highlighted the importance of bioenergetics and amino acid metabolism in canine MMVD. Conclusions Our study revealed altered energy metabolism, amino acid metabolic programming, and reduced renal function in the development of MMVD and CHF. Complex interplays along the heart‐kidney‐gut axis were implicated.
Collapse
Affiliation(s)
| | - Éva Larouche-Lebel
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Kerry A Loughran
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Terry P Huh
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory Department of Small Animal Clinical Sciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
82
|
Yang N, Parker LE, Yu J, Jones JW, Liu T, Papanicolaou KN, Talbot CC, Margulies KB, O’Rourke B, Kane MA, Foster DB. Cardiac retinoic acid levels decline in heart failure. JCI Insight 2021; 6:137593. [PMID: 33724958 PMCID: PMC8119182 DOI: 10.1172/jci.insight.137593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although low circulating levels of the vitamin A metabolite, all-trans retinoic acid (ATRA), are associated with increased risk of cardiovascular events and all-cause mortality, few studies have addressed whether cardiac retinoid levels are altered in the failing heart. Here, we showed that proteomic analyses of human and guinea pig heart failure (HF) were consistent with a decline in resident cardiac ATRA. Quantitation of the retinoids in ventricular myocardium by mass spectrometry revealed 32% and 39% ATRA decreases in guinea pig HF and in patients with idiopathic dilated cardiomyopathy (IDCM), respectively, despite ample reserves of cardiac vitamin A. ATRA (2 mg/kg/d) was sufficient to mitigate cardiac remodeling and prevent functional decline in guinea pig HF. Although cardiac ATRA declined in guinea pig HF and human IDCM, levels of certain retinoid metabolic enzymes diverged. Specifically, high expression of the ATRA-catabolizing enzyme, CYP26A1, in human IDCM could dampen prospects for an ATRA-based therapy. Pertinently, a pan-CYP26 inhibitor, talarozole, blunted the impact of phenylephrine on ATRA decline and hypertrophy in neonatal rat ventricular myocytes. Taken together, we submit that low cardiac ATRA attenuates the expression of critical ATRA-dependent gene programs in HF and that strategies to normalize ATRA metabolism, like CYP26 inhibition, may have therapeutic potential.
Collapse
Affiliation(s)
- Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren E. Parker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianshi Yu
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W. Jones
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Mass Spectrometry Center and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - D. Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
83
|
Abstract
After almost a century of misunderstanding, it is time to appreciate that lactate shuttling is an important feature of energy flux and metabolic regulation that involves a complex series of metabolic, neuroendocrine, cardiovascular, and cardiac events in vivo. Cell–cell and intracellular lactate shuttles in the heart and between the heart and other tissues fulfill essential purposes of energy substrate production and distribution as well as cell signaling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. One powerful example of cell–cell lactate shuttling was the exchange of carbohydrate energy in the form of lactate between working limb skeletal muscle and the heart. The exchange of mass represented a conservation of mass that required the integration of neuroendocrine, autoregulatory, and cardiovascular systems. Now, with greater scrutiny and recognition of the effect of the cardiac cycle on myocardial blood flow, there brings an appreciation that metabolic fluxes must accommodate to pressure-flow realities within an organ in which they occur. Therefore, the presence of an intra-cardiac lactate shuttle is posited to explain how cardiac mechanics and metabolism are synchronized. Specifically, interruption of blood flow during the isotonic phase of systole is supported by glycolysis and subsequent return of blood flow during diastole allows for recovery sustained by oxidative metabolism.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
84
|
Bo B, Li S, Zhou K, Wei J. The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Front Cell Dev Biol 2021; 9:664527. [PMID: 33937268 PMCID: PMC8083961 DOI: 10.3389/fcell.2021.664527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
During heart failure, the heart is unable to regenerate lost or damaged cardiomyocytes and is therefore unable to generate adequate cardiac output. Previous research has demonstrated that cardiac regeneration can be promoted by a hypoxia-related oxygen metabolic mechanism. Numerous studies have indicated that exercise plays a regulatory role in the activation of regeneration capacity in both healthy and injured adult cardiomyocytes. However, the role of oxygen metabolism in regulating exercise-induced cardiomyocyte regeneration is unclear. This review focuses on the alteration of the oxygen environment and metabolism in the myocardium induced by exercise, including the effects of mild hypoxia, changes in energy metabolism, enhanced elimination of reactive oxygen species, augmentation of antioxidative capacity, and regulation of the oxygen-related metabolic and molecular pathway in the heart. Deciphering the regulatory role of oxygen metabolism and related factors during and after exercise in cardiomyocyte regeneration will provide biological insight into endogenous cardiac repair mechanisms. Furthermore, this work provides strong evidence for exercise as a cost-effective intervention to improve cardiomyocyte regeneration and restore cardiac function in this patient population.
Collapse
Affiliation(s)
- Bing Bo
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Shuangshuang Li
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China
| | - Ke Zhou
- Kinesiology Department, School of Physical Education, Henan University, Kaifeng, China.,Sports Reform and Development Research Center, School of Physical Education, Henan University, Kaifeng, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
85
|
Therapeutic Manipulation of Myocardial Metabolism: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2022-2039. [PMID: 33888253 DOI: 10.1016/j.jacc.2021.02.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
The mechanisms responsible for the positive and unexpected cardiovascular effects of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes remain to be defined. It is likely that some of the beneficial cardiac effects of these antidiabetic drugs are mediated, in part, by altered myocardial metabolism. Common cardiometabolic disorders, including the metabolic (insulin resistance) syndrome and type 2 diabetes, are associated with altered substrate utilization and energy transduction by the myocardium, predisposing to the development of heart disease. Thus, the failing heart is characterized by a substrate shift toward glycolysis and ketone oxidation in an attempt to meet the high energetic demand of the constantly contracting heart. This review examines the metabolic pathways and clinical implications of myocardial substrate utilization in the normal heart and in cardiometabolic disorders, and discusses mechanisms by which antidiabetic drugs and metabolic interventions improve cardiac function in the failing heart.
Collapse
|
86
|
Müller J, Bertsch T, Volke J, Schmid A, Klingbeil R, Metodiev Y, Karaca B, Kim SH, Lindner S, Schupp T, Kittel M, Poschet G, Akin I, Behnes M. Narrative review of metabolomics in cardiovascular disease. J Thorac Dis 2021; 13:2532-2550. [PMID: 34012599 PMCID: PMC8107570 DOI: 10.21037/jtd-21-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are accompanied by disorders in the cardiac metabolism. Furthermore, comorbidities often associated with cardiovascular disease can alter systemic and myocardial metabolism contributing to worsening of cardiac performance and health status. Biomarkers such as natriuretic peptides or troponins already support diagnosis, prognosis and treatment of patients with cardiovascular diseases and are represented in international guidelines. However, as cardiovascular diseases affect various pathophysiological pathways, a single biomarker approach cannot be regarded as ideal to reveal optimal clinical application. Emerging metabolomics technology allows the measurement of hundreds of metabolites in biological fluids or biopsies and thus to characterize each patient by its own metabolic fingerprint, improving our understanding of complex diseases, significantly altering the management of cardiovascular diseases and possibly personalizing medicine. This review outlines current knowledge, perspectives as well as limitations of metabolomics for diagnosis, prognosis and treatment of cardiovascular diseases such as heart failure, atherosclerosis, ischemic and non-ischemic cardiomyopathy. Furthermore, an ongoing research project tackling current inconsistencies as well as clinical applications of metabolomics will be discussed. Taken together, the application of metabolomics will enable us to gain more insights into pathophysiological interactions of metabolites and disease states as well as improving therapies of patients with cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Julian Müller
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremburg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Justus Volke
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Schmid
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebecca Klingbeil
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yulian Metodiev
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bican Karaca
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seung-Hyun Kim
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Lindner
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Schupp
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Kittel
- Institute for Clinical Chemistry, Faculty of Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
87
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
88
|
Consolo F, Barberini L, Fattuoni C, Grapov D, Montisci A, Pappalardo F. Metabolomic profile of patients with left ventricular assist devices: a pilot study. Ann Cardiothorac Surg 2021; 10:240-247. [PMID: 33842218 DOI: 10.21037/acs-2020-cfmcs-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Metabolomic profiling has important diagnostic and prognostic value in heart failure (HF). We investigated whether left ventricular assist device (LVAD) support has an impact on the metabolomic profile of chronic HF patients and if specific metabolic patterns are associated with the development of adverse events. Methods We applied untargeted metabolomics to detect and analyze molecules such as amino acids, sugars, fatty acids and other metabolites in plasma samples collected from thirty-three patients implanted with a continuous-flow LVAD. Data were analyzed at baseline, i.e., before implantation of the LVAD, and at long-term follow-up. Results Our results reveal significant changes in the metabolomic profile after LVAD implant compared to baseline. In detail, we observed a pre-implant reduction in amino acid metabolism (aminoacyl-tRNA biosynthesis) and increased galactose metabolism, which reversed over the course of support [median follow-up 187 days (63-334 days)]. These changes were associated with improved patient functional capacity driven by LVAD therapy, according to NYHA functional classification of HF (NYHA class I-II: pre-implant =0% of the patients; post-implant =97% of the patients; P<0.001). Moreover, patients who developed adverse thromboembolic events (n=4, 13%) showed a pre-operative metabolomic fingerprint mainly associated with alterations of fatty acid biosynthesis and mitochondrial beta-oxidation of short-chain saturated fatty acids. Conclusions Our data provide preliminary evidence that LVAD therapy is associated with changes in the metabolomic profile of HF and suggest the potential use of metabolomics as a new tool to stratify LVAD patients in regard to the risk of adverse events.
Collapse
Affiliation(s)
- Filippo Consolo
- Università Vita Salute San Raffaele, Milano, Italy.,Anesthesia and Intensive Care, San Raffaele Scientific Institute, Milano, Italy
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | | | - Andrea Montisci
- Cardiac Anesthesia and Intensive Care, Sant'Ambrogio Cardiothoracic Center, Milano, Italy
| | | |
Collapse
|
89
|
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1660-1669. [PMID: 33637354 DOI: 10.1016/j.jacc.2020.12.065] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Metabolic perturbations underlie a variety of cardiovascular disease states; yet, metabolic interventions to prevent or treat these disorders are sparse. Ketones carry a negative clinical stigma as they are involved in diabetic ketoacidosis. However, evidence from both experimental and clinical research has uncovered a protective role for ketones in cardiovascular disease. Although ketones may provide supplemental fuel for the energy-starved heart, their cardiovascular effects appear to extend far beyond cardiac energetics. Indeed, ketone bodies have been shown to influence a variety of cellular processes including gene transcription, inflammation and oxidative stress, endothelial function, cardiac remodeling, and cardiovascular risk factors. This paper reviews the bioenergetic and pleiotropic effects of ketone bodies that could potentially contribute to its cardiovascular benefits based on evidence from animal and human studies.
Collapse
Affiliation(s)
- Salva R Yurista
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/salvareverentia
| | - Cher-Rin Chong
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Juan J Badimon
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/Rudolf_deboer
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
90
|
Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circ Res 2021; 128:335-357. [PMID: 33539225 PMCID: PMC7870005 DOI: 10.1161/circresaha.120.316738] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.
Collapse
Affiliation(s)
- Ioannis D. Kyriazis
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Matthew Hoffman
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Lea Gaignebet
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
| | - Anna Maria Lucchese
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Eftychia Markopoulou
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Dimitra Palioura
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Chao Wang
- The Scripps Research Institute, Jupiter, FL, 33458m USA
| | | | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Walter J. Koch
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, 10016, USA
| | - Vincent W. Yang
- School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Georgios Kararigas
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10785, Germany
- Department of Physiology, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Konstantinos Drosatos
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| |
Collapse
|
91
|
Monzo L, Sedlacek K, Hromanikova K, Tomanova L, Borlaug BA, Jabor A, Kautzner J, Melenovsky V. Myocardial ketone body utilization in patients with heart failure: The impact of oral ketone ester. Metabolism 2021; 115:154452. [PMID: 33248064 DOI: 10.1016/j.metabol.2020.154452] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
AIMS Upregulation of ketone body (β-hydroxybutyrate, βHB) utilization has been documented in human end-stage heart failure (HF), but is unclear if this is due to intrinsic cardiac metabolic remodeling or a HF-related catabolic state. This study sought to evaluate the maximal ketone body utilization capacity and its determinants in controls and in patients with moderate HF and reduced ejection fraction (HFrEF). METHODS AND RESULTS 19 HFrEF patients and 9 controls underwent sampling from the arterial circulation (A) and coronary sinus (CS) to measure transmyocardial extraction of energy-providing substrates and oxygen. In a separate experiment, measurements were performed 80-min after oral administration of 25 g of ketone ester (KE, (R)-3-hydroxybutyl(R)-3-hydroxybutyrate) drink in 11 HFrEF and 6 control subjects. There were no statistically significant differences in fasting substrate levels and fractional extractions between HF and controls. Administration of KE increased βHB by 12.9-fold, revealing an increased ability to utilize ketones in HFrEF as compared to controls (fractional extraction, FE%: 52 vs 39%, p = 0.035). βHB FE% correlated directly with βHB myocardial delivery (r = 0.90), LV mass (r = 0.56), LV diameter (r = 0.65) and inversely with LV EF (-0.59) (all p < 0.05). βHB FE% positively correlated with lactate FE% (p < 0.01), but not with FFA or glucose FE%, arguing against substrate competition. CONCLUSIONS Acute nutritional ketosis enhances βHB extraction in patients with HFrEF compared to controls, and this enhancement correlates with degree of cardiac dysfunction and remodeling. Data suggest that subclinical metabolic remodeling occurs early in HF progression. Further studies are needed to determine whether exogenous ketones may have a potential therapeutic role.
Collapse
Affiliation(s)
- Luca Monzo
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic; Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Kamil Sedlacek
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | - Lucie Tomanova
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Antonin Jabor
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| |
Collapse
|
92
|
Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol 2021; 20:2. [PMID: 33397369 PMCID: PMC7783984 DOI: 10.1186/s12933-020-01188-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of cardiomyopathy is higher in diabetic patients than those without diabetes. Diabetic cardiomyopathy (DCM) is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as coronary artery disease, hypertension, and significant valvular disease. Multiple molecular events contribute to the development of DCM, which include the alterations in energy metabolism (fatty acid, glucose, ketone and branched chain amino acids) and the abnormalities of subcellular components in the heart, such as impaired insulin signaling, increased oxidative stress, calcium mishandling and inflammation. There are no specific drugs in treating DCM despite of decades of basic and clinical investigations. This is, in part, due to the lack of our understanding as to how heart failure initiates and develops, especially in diabetic patients without an underlying ischemic cause. Some of the traditional anti-diabetic or lipid-lowering agents aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose have been shown inadequately targeting multiple aspects of the conditions. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, plays an important role in mediating DCM-related molecular events. Pharmacological targeting of PPARα activation has been demonstrated to be one of the important strategies for patients with diabetes, metabolic syndrome, and atherosclerotic cardiovascular diseases. The aim of this review is to provide a contemporary view of PPARα in association with the underlying pathophysiological changes in DCM. We discuss the PPARα-related drugs in clinical applications and facts related to the drugs that may be considered as risky (such as fenofibrate, bezafibrate, clofibrate) or safe (pemafibrate, metformin and glucagon-like peptide 1-receptor agonists) or having the potential (sodium-glucose co-transporter 2 inhibitor) in treating DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
93
|
Lu YC, Lee TL, Hsuan CF, Hung WC, Wu CC, Wang CP, Wei CT, Yu TH, Chung FM, Lee YJ, Tsai IT. Elevated plasma fatty acid-binding protein 3 is related to prolonged corrected QT interval and reduced ejection fraction in patients with stable angina. Int J Med Sci 2021; 18:2076-2085. [PMID: 33850478 PMCID: PMC8040394 DOI: 10.7150/ijms.54508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Higher concentrations of plasma fatty acid-binding protein 3 (FABP3) play a role in the development of cardiovascular events, cerebrovascular deaths, and acute heart failure. However, little is known about the relationship between plasma FABP3 level and prolonged QT interval and reduced ejection fraction (EF). This study aimed to investigate the relationship between plasma FABP3 level and prolonged corrected QT (QTc) interval and reduced EF in patients with stable angina. Inflammatory cytokine and adipocytokine levels were also measured to investigate their associations with plasma FABP3. Methods: We evaluated 249 consecutive patients with stable angina. Circulating levels of FABP3 were measured by ELISA. In addition, 12-lead ECG and echocardiography recordings were obtained from each patient. Results: Multiple regression analysis showed that high-density lipoprotein cholesterol, high sensitivity C-reactive protein (hs-CRP), white blood cell (WBC) count, visfatin, adiponectin, FABP4, heart rate, QTc interval, left atrial diameter, left ventricular mass index, end-systolic volume, end-systolic volume index, fractional shortening, and EF were independently associated with FABP3 (all p<0.05). Patients with an abnormal QTc interval had a higher median plasma FABP3 level than those with a borderline and normal QTc interval. With increasing FABP3 tertiles, the patients had higher frequencies of abnormal QTc interval, left ventricular systolic dysfunction, and all-cause mortality, incrementally lower EF, higher WBC count, and higher levels of hs-CRP, visfatin, adiponectin, and FABP4. Conclusion: This study indicates that plasma FABP3 may act as a surrogate parameter of prolonged QTc interval and reduced EF in patients with stable angina, partially through the effects of inflammation or cardiomyocyte injury. Further studies are required to elucidate whether plasma FABP3 plays a role in the pathogenesis of QTc prolongation and reduced EF.
Collapse
Affiliation(s)
- Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan.,Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan.,Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung 82445 Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Ching-Ting Wei
- Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan.,Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan.,Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan
| | | | - I-Ting Tsai
- Department of Emergency, E-Da Hospital, Kaohsiung, 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| |
Collapse
|
94
|
Gropler RJ. Imaging Myocardial Metabolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
95
|
Arkadievich OD. Metabolic markers of myocardium insulin resistance in dogs with heart failure. Open Vet J 2021; 10:363-370. [PMID: 33614430 PMCID: PMC7830177 DOI: 10.4314/ovj.v10i4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Heart failure syndrome is an aspect of primary or secondary heart disease and is associated with decompensation, formation, and activation of pathological interactions between regulation systems. This results in myocardial energy metabolism alteration. This study was carried out to defy some metabolic aspects of myocardial tissue insulin resistance (IRM) development in canine heart failure. Aim To investigate the myocardial tissue concentration of adenosine triphosphate (ATP), glucose transporters 1 and 4, pyruvate dehydrogenase (PDH), hexokinase 2, insulin receptor (InsR), and adropin (ADR) protein and to screen metabolic changes and IRM in canine myocardium with heart failure. Methods We studied 28 dogs of different sexes, ages, and breeds. Groups were formed according to primary pathology: apparently healthy dogs (HD, n = 6); dogs with CDVD (CDVDD, n = 8); dogs with DCM (DCMD, n = 6); and dogs with doxorubicin chemotherapy and doxorubicin-induced cardiomyopathy (DoxCMD, n = 8). Animals in the study were diagnosed for primary disease by standard methods and algorithms. Animals were euthanized due to incurable neurological disease, refractory heart failure, or by owners will. The material was obtained immediately after death, fixed in liquid nitrogen, and stored in -80°C refrigerator. Studied proteins concentrations were analyzed in a specialized research laboratory, using ELISA kits, provided by Cloud-Clone Corp. Results ATP, GLUT1, and GLUT4 concentrations in myocardial tissue from the valvular disease group did not differ from the HD group. In CDVD, we found depression of PDH, hexokinase II (HX2), and ADR concentrations in comparison to HD. InsR was significantly lower in the CDVD and DoxCMD groups in comparison to the HD group, but in the DCM group, it was twofold higher than in the HD group. In the DCMD and DoxCMD groups, all parameters were lower than in the HD group. ATP, HX2, ADR, GLUT1, and GLUT4 were higher in the CDVD group, than in the DCM and DoxCM groups. PDH in the CDVD and DoxCM groups did not differ. PDH was depleted in the DCM to CDVD and DoxCM groups. InsR did not differ between the CDVD and DoxCM groups, but was upregulated in the DCM to CDVD and DoxCM groups. Conclusion Development of myocardial tissue IRM is a part of the structural, functional and metabolic remodeling in dogs with heart failure of different etiology. At the late stages, we found significant changes in energy supply availability and production in the myocardium.
Collapse
|
96
|
Yurista SR, Matsuura TR, Silljé HHW, Nijholt KT, McDaid KS, Shewale SV, Leone TC, Newman JC, Verdin E, van Veldhuisen DJ, de Boer RA, Kelly DP, Westenbrink BD. Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure. Circ Heart Fail 2020; 14:e007684. [PMID: 33356362 PMCID: PMC7819534 DOI: 10.1161/circheartfailure.120.007684] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplemental Digital Content is available in the text. Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models.
Collapse
Affiliation(s)
- Salva R Yurista
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| | - Timothy R Matsuura
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.R.M., K.S.M., S.V.S., T.C.L., D.P.K.)
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| | - Kirsten T Nijholt
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| | - Kendra S McDaid
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.R.M., K.S.M., S.V.S., T.C.L., D.P.K.)
| | - Swapnil V Shewale
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.R.M., K.S.M., S.V.S., T.C.L., D.P.K.)
| | - Teresa C Leone
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.R.M., K.S.M., S.V.S., T.C.L., D.P.K.)
| | - John C Newman
- Division of Geriatrics, Buck Institute for Research on Aging, University of California, San Francisco (J.C.N., E.V.)
| | - Eric Verdin
- Division of Geriatrics, Buck Institute for Research on Aging, University of California, San Francisco (J.C.N., E.V.)
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (T.R.M., K.S.M., S.V.S., T.C.L., D.P.K.)
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (S.R.Y., H.H.W.S., K.T.N., D.J.v.V., R.A.d.B., B.D.W.)
| |
Collapse
|
97
|
Colombano A, Dall'Angelo S, Kingston L, Grönberg G, Correia C, Passannante R, Baz Z, Morcillo MÁ, Elmore CS, Llop J, Zanda M. 4,4,16-Trifluoropalmitate: Design, Synthesis, Tritiation, Radiofluorination and Preclinical PET Imaging Studies on Myocardial Fatty Acid Oxidation. ChemMedChem 2020; 15:2317-2331. [PMID: 32856369 DOI: 10.1002/cmdc.202000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/10/2022]
Abstract
Fatty acid oxidation (FAO) produces most of the ATP used to sustain the cardiac contractile work, although glycolysis is a secondary source of ATP under normal physiological conditions. FAO impairment has been reported in the advanced stages of heart failure (HF) and is strongly linked to disease progression and severity. Thus, from a clinical perspective, FAO dysregulation provides prognostic value for HF progression, the assessment of which could be used to improve patient monitoring and the effectiveness of therapy. Positron emission tomography (PET) imaging represents a powerful tool for the assessment and quantification of metabolic pathways in vivo. Several FAO PET tracers have been reported in the literature, but none of them is in routine clinical use yet. Metabolically trapped tracers are particularly interesting because they undergo FAO to generate a radioactive metabolite that is subsequently trapped in the mitochondria, thus providing a quantitative means of measuring FAO in vivo. Herein, we describe the design, synthesis, tritium labelling and radiofluorination of 4,4,16-trifluoro-palmitate (1) as a novel potential metabolically trapped FAO tracer. Preliminary PET-CT studies on [18 F]1 in rats showed rapid blood clearance, good metabolic stability - confirmed by using [3 H]1 in vitro - and resistance towards defluorination. However, cardiac uptake in rats was modest (0.24±0.04 % ID/g), and kinetic analysis showed reversible uptake, thus indicating that [18 F]1 is not irreversibly trapped.
Collapse
Affiliation(s)
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Lee Kingston
- Early Chemical Development, Pharmaceutical Science R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Gunnar Grönberg
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune BioPharmaceuticals R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Claudia Correia
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Miguel Ángel Morcillo
- Biomedical Applications of Radioisotopes and Pharmacokinetics Unit, CIEMAT, 28040, Madrid, Spain
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science R&D AstraZeneca, 43183, Gothenburg, Sweden
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Matteo Zanda
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,C.N.R.-SCITEC, Via Mancinelli 7, 20131, Milan, Italy.,Current address: School of Science, Centre for Sensing and Imaging Science, Loughborough University Sir David Davies Building, Loughborough, LE11 3TU, UK
| |
Collapse
|
98
|
Guo H, Ma K, Hao W, Jiao Y, Li P, Chen J, Xu C, Xu F, Lau WB, Du J, Ma X, Li Y. mir15a/mir16-1 cluster and its novel targeting molecules negatively regulate cardiac hypertrophy. Clin Transl Med 2020; 10:e242. [PMID: 33377640 PMCID: PMC7737755 DOI: 10.1002/ctm2.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In response to pathological stimuli, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. miRNAs are increasingly recognized as pathogenic factors, clinically relevant biomarkers, and potential therapeutic targets. We identified that mir15a/mir16-1 cluster was negatively correlated with hypertrophic severity in patients with hypertrophic cardiomyopathy. The mir15a/mir16-1 expression was enriched in cardiomyocytes (CMs), decreased in hypertrophic human hearts, and decreased in mouse hearts after transverse aortic constriction (TAC). CM-specific mir15a/mir16-1 knockout promoted cardiac hypertrophy and dysfunction after TAC. CCAAT/enhancer binding protein (C/EBP)β was responsible for the downregulation of mir15a/mir16-1 cluster transcription. Mechanistically, mir15a/mir16-1 cluster attenuated the insulin/IGF1 signal transduction cascade by inhibiting multiple targets, including INSR, IGF-1R, AKT3, and serum/glucocorticoid regulated kinase 1 (SGK1). Pro-hypertrophic response induced by mir15a/mir16-1 inhibition was abolished by knockdown of insulin receptor (INSR), insulin like growth factor 1 receptor (IGF1R), AKT3, or SGK1. In vivo systemic delivery of mir15a/mir16-1 by nanoparticles inhibited the hypertrophic phenotype induced by TAC. Importantly, decreased serum mir15a/mir16-1 levels predicted the occurrence of left ventricular hypertrophy in a cohort of patients with hypertension. Therefore, mir15a/mir16-1 cluster is a promising therapeutic target and biomarker for cardiac hypertrophy.
Collapse
Affiliation(s)
- Hongchang Guo
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Ke Ma
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Wenjing Hao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yao Jiao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Jing Chen
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
| | - Fu‐jian Xu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
| | - Wayne Bond Lau
- Department of Emergency MedicineThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Xin‐liang Ma
- Department of Emergency MedicineThomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| |
Collapse
|
99
|
Fathi E, Farahzadi R, Javanmardi S, Vietor I. L-carnitine Extends the Telomere Length of the Cardiac Differentiated CD117 +- Expressing Stem Cells. Tissue Cell 2020; 67:101429. [PMID: 32861877 DOI: 10.1016/j.tice.2020.101429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy has emerged as an attractive method for regenerating and repairing the lost heart organ. On other hand, poor survival and maintenance of the cells transferred into the damaged heart tissue are broadly accepted as serious barriers to enhance the efficacy of the regenerative therapy. For this reason, external factors, such as antioxidants are used as a favorite strategy by the investigators to improve the cell survival and retention properties. Therefore, the present study was conducted to investigate the In -vitro effect of L-carnitine (LC) on the telomere length and human telomerase reverse transcriptase (hTERT) gene expression in the cardiac differentiated bone marrow resident CD117+ stem cells through Wnt3/β-catenin and ERK1/2 pathways. To do this, bone marrow resident CD117+ stem cells were enriched by the magnetic-activated cell sorting (MACS) method, and were differentiated to the cardiac cells in the absence (-LC) and presence of the LC (+LC). Also, characterization of the enriched c-kit+ cells was performed using the flow cytometry and immunocytochemistry. At the end of the treatment period, the cells were subjected to the real-time PCR technique along with western blotting assay for measurement of the telomere length and assessment of mRNA and protein, respectively. The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the hTERT gene expression in the cardiac differentiated CD117+ stem cells. In addition, a significant increase was observed in the mRNA and protein expression of Wnt3, β-catenin and ERK1/2 as key components of these pathways. It can be concluded that the LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the cardiac differentiated bone marrow resident CD117+ stem cells via Wnt3/β-catenin and ERK1/2 signaling pathway components.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
100
|
Fathi E, Farahzadi R, Vietor I, Javanmardi S. Cardiac differentiation of bone-marrow-resident c-kit+ stem cells by L-carnitine increases through secretion of VEGF, IL6, IGF-1, and TGF-β as clinical agents in cardiac regeneration. J Biosci 2020; 45:92. [DOI: 10.1007/s12038-020-00063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
|