51
|
Chassagne C, Adamy C, Ratajczak P, Gingras B, Teiger E, Planus E, Oliviero P, Rappaport L, Samuel JL, Meloche S. Angiotensin II AT(2) receptor inhibits smooth muscle cell migration via fibronectin cell production and binding. Am J Physiol Cell Physiol 2002; 282:C654-64. [PMID: 11880254 DOI: 10.1152/ajpcell.00318.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explore the vascular function of the angiotensin II (ANG II) AT(2) receptor subtype (AT(2)R), we generated a vascular smooth muscle cell (SMC) line expressing the AT(2)R (SMC-vAT(2)). The involvement of AT(2)R in the motility response of SMCs was examined in SMC-vAT(2) cells and their controls (SMC-v) cultured on either laminin or fibronectin matrix proteins with the agarose drop technique. All experiments were conducted in the presence of a saturating concentration of losartan to inactivate the AT(1)R subtype. Under basal conditions, both cell lines migrated outside drops, but on laminin only. Treatment with ANG II significantly inhibited the migration of SMC-vAT(2) but not SMC-v cells, and this effect was prevented by the AT(2)R antagonist CGP-42112A. The decreased migration of SMC-vAT(2) was not associated with changes in cell growth, cytoskeleton stiffness, or smooth muscle actin, desmin, and tenascin expression. However, it was correlated with increased synthesis and binding of fibronectin. Both responses were prevented by incubation with selective AT(2)R antagonists. Addition of GRGDTP peptide, which prevents cell attachment of fibronectin, reversed the AT(2)R inhibitory effect on SMC-vAT(2) migration. These results suggest that activated ANG II AT(2)R inhibits SMC migration via cellular fibronectin synthesis and associated cell binding.
Collapse
Affiliation(s)
- Catherine Chassagne
- Institut National de la Santé et de la Recherche Médicale (INSERM) U127, Hôpital Lariboisière, Université Denis Diderot, 41 boulevard de la Chapelle, 75475 Paris Cedex 10, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Nadal JA, Scicli GM, Carbini LA, Scicli AG. Angiotensin II stimulates migration of retinal microvascular pericytes: involvement of TGF-beta and PDGF-BB. Am J Physiol Heart Circ Physiol 2002; 282:H739-48. [PMID: 11788425 DOI: 10.1152/ajpheart.00656.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the promigratory effect of angiotensin II (ANG II) on cultured bovine retinal microvascular pericytes. ANG II stimulated migration of pericytes by 86% at 10(-8) M, but this effect was lost at 10(-4) M. Migratory responses were inhibited by the ANG II type 1 (AT(1)) receptor antagonist losartan but not by PD-123319, an AT(2) antagonist. Addition of PD-123319 to the 10(-4) M ANG II dose restored migratory responses. The promigratory effect of ANG II (10(-7) M) was reduced by 59% in absence of gradient. Although ANG II augmented the latent matrix metalloproteinase-2 (MMP-2) activity of the pericyte by 35%, it also doubled tissue inhibitors of MMPs. ANG II-induced migration was not altered by a broad-spectrum MMP inhibitor (GM6001); it was inhibited by ~50% by antibodies against transforming growth factor (TGF)-beta(1/2/3) and was abolished by antibodies against platelet-derived growth factor (PDGF)-BB. We conclude that ANG II induces chemotactic responses on retinal microvascular pericytes acting through the AT(1) receptor. This effect is opposed by the AT(2) receptor. ANG II-induced chemotaxis is mediated by PDGF-BB and involves TGF-beta, but it is independent of MMP activity. It is also independent of vascular endothelial growth factor (VEGF) because VEGF did not stimulate pericyte migration. ANG II can contribute to the regulation of retinal neovascularization by stimulating pericyte migration.
Collapse
Affiliation(s)
- Jose A Nadal
- Eye Care Services Research, Henry Ford Health System, Detroit, Michigan 48202-3450, USA
| | | | | | | |
Collapse
|
53
|
Brown C, Lin Y, Hassid A. Requirement of protein tyrosine phosphatase SHP2 for NO-stimulated vascular smooth muscle cell motility. Am J Physiol Heart Circ Physiol 2001; 281:H1598-605. [PMID: 11557549 DOI: 10.1152/ajpheart.2001.281.4.h1598] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that nitric oxide (NO) increases the motility of differentiated cultured primary aortic smooth muscle cells from adult rats. There is little information on the role of protein tyrosine phosphatases in vascular biology. One such phosphatase, Src homology 2 phosphatase 2 (SHP2), is essential for motility. We tested the hypothesis that NO increases SHP2 levels via a cGMP-mediated mechanism and that this effect is necessary for NO-stimulated cell motility. Here we report that two different NO donors increased SHP2 protein levels and enzyme activity. This effect was mimicked by several cGMP agonists and blocked by an inhibitor of guanylyl cyclase. Specific decrease of SHP2 protein levels via the use of antisense oligodeoxynucleotides (ODNs), but not several control ODNs attenuated the motogenic effect of NO, which indicates the involvement of SHP2 in NO-elicited motogenesis. S-nitroso-N-acetylpenicillamine failed to increase SHP2 protein levels in subcultured aortic smooth muscle cells. This provides a potential explanation for the lack of effect of NO on cell motility in dedifferentiated subcultured cells. These results support the hypothesis that NO-elicited upregulation of SHP2 via a cGMP-mediated pathway is necessary for NO-induced motogenesis in differentiated aortic smooth muscle cells.
Collapse
Affiliation(s)
- C Brown
- Department of Physiology and Vascular Biology Center, University of Tennessee, Memphis, Tennessee 38163-0001, USA
| | | | | |
Collapse
|
54
|
Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB. The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 2001; 276:22742-7. [PMID: 11279012 DOI: 10.1074/jbc.m100123200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila Sprouty (SPRY) protein has been shown to inhibit the actions of epidermal growth factor and fibroblast growth factor. However, the role of mammalian SPRY proteins has not been clearly elucidated. We postulated that human Sprouty2 (hSPRY2) is an inhibitor of cellular migration and proliferation. Indeed, using stably transfected HeLa cells, which expressed hemagglutinin (HA)-tagged hSPRY2 or hSPRY2 tagged at the C terminus with red fluorescent protein, we demonstrated that hSPRY2 inhibits the migration of cells in response to serum, epidermal growth factor, fibroblast growth factor, and platelet-derived growth factor. Additionally, hSPRY2 also inhibited the growth of HeLa cells in response to serum. Previously, two C-terminal domains on hSPRY2, which are necessary for its colocalization with microtubules (residues 123-177) or translocation to membrane ruffles (residues 178-194), have been identified (Lim, J., Wong, E. S., Ong, S. H., Yusoff, P., Low, B. C., and Guy, G. R. (2000) J. Biol. Chem. 275, 32837-32845). Therefore, using TAT-tagged hSPRY2 and its mutants, we determined the role of these two C-terminal domains in the inhibition of cell migration and proliferation. Our data show that the deletion of either of these two regions in hSPRY2 abrogates its ability to modulate cell migration in response to different growth factors and proliferation in response to serum. Therefore, we conclude that hSPRY2 inhibits the actions of a number of growth factors, and its C terminus, which is homologous among various SPRY isoforms, is important in mediating its biological activity.
Collapse
Affiliation(s)
- Y Yigzaw
- Department of Pharmacology and the Vascular Biology Center of Excellence, The Health Science Center University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
55
|
Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil Steril 2001; 75:1163-71. [PMID: 11384644 DOI: 10.1016/s0015-0282(01)01780-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the mechanisms of nitric oxide (NO) in the development and apoptosis of preimplantation mouse embryos. DESIGN Prospective, controlled study. SETTING Medical college laboratory. SUBJECT(S) Two-cell embryos from outbred ICR mice. INTERVENTION(S) Hyperstimulation protocol, two-cell embryos were collected, then treated with or without an NO synthase inhibitor (L-NAME) or an NO donor (SNP) and combined with a cGMP analogue (8-Br-cGMP) or a selective inhibitor of NO-sensitive soluble guanylyl cyclase (ODQ). MAIN OUTCOME MEASURE(S) The development of ICR mouse embryo from two cells to blastocyst stages in vitro. RESULT(S) The development of blastocyst was inhibited by L-NAME in a concentration-dependent manner (0.1-10 microM) and 0.1 microM SNP reversed this effect (80.5% of control). Annexin-V/propidium iodide and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling techniques demonstrated that excessive NO (> or =10 microM) might induce apoptosis in the mouse embryos. 8-Br-cGMP reversed the inhibitory effect of L-NAME and rescued the embryo growth. ODQ inhibited the embryo development in a dose-responsive fashion (0.1--100 microM) but had no effect in the NO-induced embryo apoptosis. P53 and Bax were found to be up-regulated during the embryo fragmentation. CONCLUSION(S) These results indicate that the cGMP pathway might be involved in the NO-regulated embryonic development, but not in NO-induced apoptosis, for which P53/Bax pathway might be involved.
Collapse
Affiliation(s)
- H W Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical College, Taipei, Taiwan
| | | | | |
Collapse
|
56
|
Hanada S, Terada Y, Inoshita S, Sasaki S, Lohmann SM, Smolenski A, Marumo F. Overexpression of protein kinase G using adenovirus inhibits cyclin E transcription and mesangial cell cycle. Am J Physiol Renal Physiol 2001; 280:F851-9. [PMID: 11292628 DOI: 10.1152/ajprenal.2001.280.5.f851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cGMP-cGMP-dependent protein kinase (protein kinase G) system plays an important role in the pathogenesis of mesangial proliferative glomerulonephritis. However, the molecular mechanisms of the inhibitory effects of the cGMP-protein kinase G system in the cell cycle progression of mesangial cells are not well known. To determine the inhibitory pathway of cGMP-protein kinase G in cultured mesangial cells, we investigated the effects of cGMP- and adenovirus-mediated overexpression of protein kinase G on the promoter activities of cyclin E, cyclin D1, and cyclin A. 8-Bromo-cGMP (8-BrcGMP) and overexpression of protein kinase G reduced [(3)H]thymidine uptake, reduced the numbers of cells in S and G(2)/M phases, and decreased the phosphorylation of retinoblastoma (Rb) protein. 8-BrcGMP (10(-3) M), protein kinase G adenovirus (Ad-cGKIbeta; 10(10) plaque-forming units/ml), atrial natriuretic peptide (ANP), and C-type natriuretic peptide (CNP) inhibited the promoter activity of cyclin E to 49, 57, 77, and 78%, respectively. On the other hand, the promoter activities of cyclin D1 and cyclin A were not changed significantly. In Western blot analysis, 8-BrcGMP, Ad-cGKIbeta, ANP, and CNP also inhibited cyclin E protein expression dose and time dependently. The p44/p42 mitogen-activated protein kinase (MAPK) kinase 1-p44/p42 MAPK had no effect on cyclin E promoter activities, and the cGMP-protein kinase G pathway did not change MAPK activity. In conclusion, our findings suggest that the reduction of the cyclin E promoter activity that downregulates G(1)/S transition plays a dominant role in the cGMP- and protein kinase G-induced inhibition of mesangial cell proliferation.
Collapse
Affiliation(s)
- S Hanada
- Second Department of Internal Medicine, Tokyo Medical and Dental University, 5-45, Yushima 1-chome, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Stefano GB, Murga J, Benson H, Zhu W, Bilfinger TV, Magazine HI. Nitric oxide inhibits norepinephrine stimulated contraction of human internal thoracic artery and rat aorta. Pharmacol Res 2001; 43:199-203. [PMID: 11243723 DOI: 10.1006/phrs.2000.0765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of nitric oxide (NO) on norepinephrine-induced vascular contraction was evaluated using segments of rat aorta and human internal thoracic artery (ITA) and the NO donor, SNAP. NO levels were measured directly using an amperometric probe. Concentrations of NO greater than 2 nM were required to reduce vascular contraction induced by 100 nM norepinephrine (NE). Exposure of the aortic rings to SNAP prior to, or after NE addition, resulted in a similar attenuation of NE-induced contraction. In contrast, increased relaxation of ITA segments in response to SNAP was observed relative to that of rat aorta and significant development of contractile tone following NE addition was not observed. Evaluation of cytoskeletal actin demonstrated marked loss of F-actin content in smooth muscle cells following NO exposure, suggesting that NO may have direct and indirect effects on contractile tone. These data taken together suggest that vascular responsiveness to contractile agents may be significantly attenuated by prior or subsequent exposure to NO, and mechanisms in addition to vascular relaxation are likely to contribute to this effect.
Collapse
Affiliation(s)
- G B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, Westbury NY, 11568, USA
| | | | | | | | | | | |
Collapse
|
58
|
L'Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J 2001; 15:515-24. [PMID: 11156967 DOI: 10.1096/fj.00-0283com] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our method for producing tissue-engineered blood vessels based exclusively on the use of human cells, i.e., without artificial scaffolding, has previously been described (1). In this report, a tissue-engineered vascular media (TEVM) was specifically produced for pharmacological studies from cultured human vascular smooth muscle cells (VSMC). The VSMC displayed a differentiated phenotype as demonstrated by the re-expression of VSMC-specific markers and actual tissue contraction in response to physiological stimuli. Because of their physiological shape and mechanical strength, rings of human TEVM could be mounted on force transducers in organ baths to perform standard pharmacological experiments. Concentration-response curves to vasoconstrictor agonists (histamine, bradykinin, ATP, and UTP) were established, with or without selective antagonists, allowing pharmacological characterization of receptors (H1, B2, and P2Y1, and pyrimidinoceptors). Sustained agonist-induced contractions were associated with transient increases in cytosolic Ca2+ concentration, suggesting sensitization of the contractile machinery to Ca2+. ATP caused both Ca2+ entry and Ca2+ release from a ryanodine- and caffeine-sensitive store. Increased cyclic AMP or cyclic GMP levels caused relaxation. This human TEVM displays many of functional characters of the normal vessel from which the cells were originally isolated, including contractile/relaxation responses, cyclic nucleotide sensitivity, and Ca2+ handling mechanisms comparable to those of the normal vessel from which the cells were originally isolated. These results demonstrate the potential of this human model as a versatile new tool for pharmacological research.
Collapse
Affiliation(s)
- N L'Heureux
- Laboratoire d'Organogénèse Expérimentale, Hôpital du Saint-Sacrement du CHA, 1050, chemin Sainte-Foy, Québec Canada
| | | | | | | | | | | |
Collapse
|
59
|
Koyama H, Bornfeldt KE, Fukumoto S, Nishizawa Y. Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. J Cell Physiol 2001; 186:1-10. [PMID: 11147803 DOI: 10.1002/1097-4652(200101)186:1<1::aid-jcp1012>3.0.co;2-d] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a wide variety of extracellular stimuli. These signals regulate many biological processes including cell proliferation, differentiation, migration, and apoptosis. Recently, significant progress has been achieved in the molecular basis underlying cyclic nucleotide regulation of cell proliferation. This review summarizes our knowledge of the signaling pathways regulated by cyclic nucleotides in arterial smooth muscle cells.
Collapse
Affiliation(s)
- H Koyama
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | |
Collapse
|
60
|
Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology 2001; 120:190-9. [PMID: 11208728 DOI: 10.1053/gast.2001.20875] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation, a risk factor for the development of bile duct cancer, induces inducible nitric oxide synthase (iNOS) with nitric oxide (NO) generation, which promotes oxidative damage of DNA, a process that probably is important in the initiation and progression of malignancies. Because inhibition of DNA repair is required for accumulation of oxidative DNA lesions, our aim was to determine if NO also inhibits repair of oxidative DNA damage. METHODS A cholangiocarcinoma cell line and a cholangiocyte cell line were transfected with iNOS. RESULTS Extracts from transfected but not untransfected cells were unable to repair 8-oxodeoxyguanine (8-oxodG); this effect was irreversible because addition of dithiothreitol to cell extracts had no effect. NO inhibition of 8-oxodG repair was blocked by NO scavengers but not by peroxynitrite scavengers or inhibitors of the soluble guanylyl cyclase/protein kinase G pathway. NO also potentiated hydrogen peroxide-induced DNA damage. Finally, immunohistochemistry in human liver samples uniformly demonstrated de novo expression of iNOS and the presence of 3-nitrotyrosine and 8-oxodG formation in the biliary epithelia of 30 patients with primary sclerosing cholangitis (a premalignant disease of the biliary tract) compared with controls. CONCLUSIONS Collectively, these data implicate NO-mediated inhibition of 8-oxodG base excision DNA repair processes as a mechanism potentiating DNA damage in human inflammatory diseases involving the biliary tract.
Collapse
Affiliation(s)
- M Jaiswal
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
61
|
Itoh S, Katoh Y, Konishi H, Takaya N, Kimura T, Periasamy M, Yamaguchi H. Nitric oxide regulates smooth-muscle-specific myosin heavy chain gene expression at the transcriptional level-possible role of SRF and YY1 through CArG element. J Mol Cell Cardiol 2001; 33:95-107. [PMID: 11133226 DOI: 10.1006/jmcc.2000.1279] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) plays an important role in vascular regulation through its vasodilatory, antiatherogenic, and antithrombotic properties. NO inhibits platelet adhesion and aggregation and modulates smooth muscle cell (SMC) proliferation and migration. In animals with experimentally induced vascular injury, ec-NOS gene transfection not only restored NO production to normal levels but also increased vascular reactivity of the injured vessels. However, it is unclear whether NO regulates smooth-muscle-specific gene expression. We report here that addition of PDGF-BB to vascular smooth muscle cells suppressed SM-MHC expression but treatment with the NO donors FK409 and SNAP restored SM-MHC mRNA/protein expression. In vitro transfection and subsequent CAT assays demonstrated that exogenous NO can restore PDGF-BB-induced suppression of SM-MHC promoter activity. Promoter deletion analysis revealed that a CArG-3 box located at -1276 bp in the SM-MHC promoter was important for NO-dependent promoter regulation and as well as high level promoter activity. Gel mobility shift assays showed that CArG-3 contained the SRF binding site and a binding site for YY1, a nuclear factor which acts as a negative regulator on muscle-specific promoters. Interestingly, NO donor FK409 reduced YY1 binding to the CArG-3 element but increased SRF binding, suggesting that these two factors bind competitively to the overlapping sites. We also found that mutation to the YY1 binding site in the CArG-3 element resulted in a loss of PDGF-BB-induced suppression of the SM-MHC promoter activity. These findings indicate that NO regulates SM-MHC gene expression at the transcriptional level at least partially through the regulation of transcription factor binding activities on the CArG element. Thus we propose that NO plays a positive role in maintaining the differentiated state of VSMCs.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Becaplermin
- Binding Sites
- Cell Division/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- DNA-Binding Proteins/physiology
- Erythroid-Specific DNA-Binding Factors
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Myosin Heavy Chains/biosynthesis
- Myosin Heavy Chains/genetics
- Nitric Oxide/biosynthesis
- Nitric Oxide/pharmacology
- Nitric Oxide/physiology
- Nitric Oxide Donors/pharmacology
- Nitro Compounds/pharmacology
- Nuclear Proteins/physiology
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-sis
- Rats
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Deletion
- Serum Response Factor
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transfection
- YY1 Transcription Factor
Collapse
Affiliation(s)
- S Itoh
- Department of Cardiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Berven LA, Frew IJ, Crouch MF. Nitric oxide donors selectively potentiate thrombin-stimulated p70(S6k) activity and morphological changes in Swiss 3T3 cells. Biochem Biophys Res Commun 1999; 266:352-60. [PMID: 10600507 DOI: 10.1006/bbrc.1999.1833] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thrombin stimulates both DNA synthesis and cell morphological changes in Swiss 3T3 cells, although the mechanism of signal coordination leading to these responses is unknown. We report here that nitric oxide (NO) donors selectively enhance thrombin-stimulated p70(S6k) activity by 40-60%, an effect that was sustained for 24 h. Potentiation of p70(S6k) also was observed with cGMP analogues indicating that this effect is mediated by cGMP-activated protein kinase. NO donors also induced morphological changes characterized by spindle-shaped cells in confluent, nondividing cells or by extended protrusions from the trailing edge in subconfluent, polarized cells. NO donors had no significant effects on intracellular Ca(2+) mobilization, DNA synthesis, proliferation, or ERKs 1 and 2 and p90RSK activities, indicating that mitogenic responses and cell division are not altered by NO donors. We conclude that NO donors modulate the morphological changes associated with cellular motility in response to thrombin stimulation through selective enhancement of p70(S6k) activity.
Collapse
Affiliation(s)
- L A Berven
- John Curtin School of Medical Research, Australian National University, Canberra City, ACT, 2601, Australia.
| | | | | |
Collapse
|
63
|
Komalavilas P, Shah PK, Jo H, Lincoln TM. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 1999; 274:34301-9. [PMID: 10567406 DOI: 10.1074/jbc.274.48.34301] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC.
Collapse
Affiliation(s)
- P Komalavilas
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA.
| | | | | | | |
Collapse
|
64
|
Hassid A, Yao J, Huang S. NO alters cell shape and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B activation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1014-26. [PMID: 10484424 DOI: 10.1152/ajpheart.1999.277.3.h1014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell motility is an important determinant of vascular disease. We examined mechanisms underlying the effect of nitric oxide (NO) on motility in cultured primary aortic smooth muscle cells from newborn rats. The NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased the activity of protein tyrosine phosphatase 1B (PTP-1B). This effect was mimicked by a cGMP analog and blocked by the guanyl cyclase antagonist 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indicating the involvement of cGMP. Treatment of cells with antisense, but not control oligodeoxynucleotide (ODN), against PTP-1B attenuated the inhibitory effect of NO on cell motility. Cell shape and adhesion are important determinants of cell motility. We report that SNAP induced cell rounding and reduced adhesion and caused dissociation of actin stress fibers. Moreover, SNAP reduced phosphotyrosine levels in focal adhesion proteins, paxillin, and focal adhesion kinase. The PTP inhibitor phenylarsine oxide or decrease of PTP-1B protein levels via the use of antisense ODN prevented NO-induced cell-shape change, altered adhesion, and migration. These results indicate that NO regulates cell shape, adhesion, and migration by dephosphorylation of focal adhesion proteins via a mechanism that requires PTP-1B activity.
Collapse
Affiliation(s)
- A Hassid
- Department of Physiology, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|