51
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
52
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
53
|
Salman M, Ismael S, Li L, Ahmed HA, Puchowicz MA, Ishrat T. Endothelial Thioredoxin-Interacting Protein Depletion Reduces Hemorrhagic Transformation in Hyperglycemic Mice after Embolic Stroke and Thrombolytic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14100983. [PMID: 34681207 PMCID: PMC8537904 DOI: 10.3390/ph14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.
Collapse
Affiliation(s)
- Mohd. Salman
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Lexiao Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Michelle A. Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +901-448-2178; Fax:-901-448-7193
| |
Collapse
|
54
|
Xia M, Su Y, Fu J, Xu J, Wang Q, Gao F, Shen Y, Dong Q, Cheng X. The Use of Serum Matrix Metalloproteinases in Cerebral Amyloid Angiopathy-Related Intracerebral Hemorrhage and Cognitive Impairment. J Alzheimers Dis 2021; 82:1159-1170. [PMID: 34151802 DOI: 10.3233/jad-210288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuroimaging has played a primary role in predicting intracerebral hemorrhage (ICH) recurrence of cerebral amyloid angiopathy (CAA); however, the utilities of biomarkers in CAA-related ICH and cognitive impairment remain unexplored. OBJECTIVE To investigate the correlations of serum levels of matrix metalloproteinase-2 (MMP-2), MMP-3, and MMP-9 with CAA-related MRI markers, ICH recurrence, and cognitive status. METHODS 68 cases with first probable CAA-ICH and 69 controls were recruited. Clinical and imaging data were obtained at baseline and serum MMPs in the acute phase were measured by Luminex multiplex assays. Cognitive status was assessed with the Chinese version of Mini-Mental State Examination within 10-14 days after ICH onset. RESULTS Serum MMP-2 level was significantly lower in CAA-ICH patients than controls while MMP-9 was significantly higher. In CAA-ICH patients, MMP-3 level was significantly associated with lobar cerebral microbleeds count after adjusting age, sex, and hypertension (adjusted coefficient 0.368, 95%CI 0.099-0.637, p = 0.008). During a median follow-up of 2.4 years, higher level of MMP-2 predicted lower CAA-ICH recurrence after adjusting age (adjusted HR 0.326, 95%CI 0.122-0.871, p = 0.025), ICH volume (adjusted HR 0.259, 95%CI 0.094-0.715, p = 0.009), total MRI burden of SVD score (adjusted HR 0.350, 95%CI 0.131-0.936, p = 0.037) respectively. Besides, higher level of MMP-2 was significantly associated with decreased risk of cognitive impairment independent of age and ICH volume (adjusted OR 0.054, 95%CI 0.005-0.570, p = 0.015). CONCLUSION Serum MMP-2 in acute phase might be a promising biomarker to predict CAA-ICH recurrence and to evaluate the risk of cognitive impairment.
Collapse
Affiliation(s)
- Mingxu Xia
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajie Xu
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Wang
- Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Neurodegenerative Disorder Research Centre and Institute on Aging and Brain Disorders, University of Science and Technology of China, Hefei, China.,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Centre for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Zou M, Feng Y, Xiu Y, Li Y, Zhang Y, Fan J, Li H, Cao J, He W, Jin WN. Pertussis toxin-induced inflammatory response exacerbates intracerebral haemorrhage and ischaemic stroke in mice. Stroke Vasc Neurol 2021; 7:29-37. [PMID: 34341068 PMCID: PMC8899681 DOI: 10.1136/svn-2021-000987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Stroke is a devastating disease, including intracerebral haemorrhage (ICH) and ischaemic stroke. Emerging evidences indicate that systemic inflammatory cascades after stroke contribute to brain damage. However, the direct effects and features of systemic inflammation on brain injury, especially comparing between ischaemic and haemorrhagic stroke, are still obscure. Methods Pertussis toxin (PT) was used to build a pro-inflammatory milieu after ICH and ischaemic stroke in mouse model. The neurodeficits, stroke lesion, immune response and blood–brain barrier (BBB) destruction were assessed. Results In ICH mouse model, PT-induced systemic inflammation exacerbated neurological deficits, and enlarged haemorrhage lesion and perihaematomal oedema. We also found promoted leucocyte infiltration and inflammatory cytokine release into the brain after PT treatment. Moreover, the integrity of the BBB was further disrupted after receiving PT. Furthermore, we demonstrated that PT enhanced brain inflammation and aggravated stroke severity in middle cerebral artery occlusion mouse model. Conclusions Our results suggest that PT increases inflammatory response that exacerbates brain injury after ICH or ischaemic stroke in mouse model.
Collapse
Affiliation(s)
- Ming Zou
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Feng
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuwhen Xiu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junwan Fan
- China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Beijing, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Beijing, China
| | - Jingli Cao
- China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Beijing, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Beijing, China
| | - Wei-Na Jin
- China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
56
|
Rinaldi C, Donato L, Alibrandi S, Scimone C, D’Angelo R, Sidoti A. Oxidative Stress and the Neurovascular Unit. Life (Basel) 2021; 11:767. [PMID: 34440511 PMCID: PMC8398978 DOI: 10.3390/life11080767] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept that clearly describes the relationship between brain cells and their blood vessels. The components of the NVU, comprising different types of cells, are so interrelated and associated with each other that they are considered as a single functioning unit. For this reason, even slight disturbances in the NVU could severely affect brain homeostasis and health. In this review, we aim to describe the current state of knowledge concerning the role of oxidative stress on the neurovascular unit and the role of a single cell type in the NVU crosstalk.
Collapse
Affiliation(s)
- Carmela Rinaldi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| |
Collapse
|
57
|
Lee B, Shin H, Oh JE, Park J, Park M, Yang SC, Jun JH, Hong SH, Song H, Lim HJ. An autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through deregulated VEGFA, NOS1, and CTNNB1. Autophagy 2021; 17:1649-1666. [PMID: 32579471 PMCID: PMC8354601 DOI: 10.1080/15548627.2020.1778292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
The uterus undergoes vascular changes during the reproductive cycle and pregnancy. Steroid hormone deprivation induces macroautophagy/autophagy in major uterine cell types. Herein, we explored the functions of uterine autophagy using the Amhr2-Cre-driven atg7 deletion model. Deletion of Atg7 was confirmed by functional deficit of autophagy in uterine stromal, myometrial, and vascular smooth muscle cells, but not in endothelial cells. atg7d/d uteri exhibited enhanced stromal edema accompanied by dilation of blood vessels. Ovariectomized atg7d/d uteri showed decreased expression of endothelial junction-related proteins, such as CTNNB1/beta-catenin, with increased vascular permeability, and increased expression of VEGFA and NOS1. Nitric oxide (NO) was shown to mediate VEGFA-induced vascular permeability by targeting CTNNB1. NO involvement in maintaining endothelial junctional stability in atg7d/d uteri was confirmed by the reduction in extravasation following treatment with a NOS inhibitor. We also showed that atg7d/d uterine phenotype improved the fetal weight:placental weight ratio, which is one of the indicators of assessing the status of preeclampsia. We showed that autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through the deregulation of VEGFA, NOS1, and CTNNB1.Abbreviations: ACTA2: actin, alpha 2, smooth muscle, aortic; Amhr2: anti-Mullerian hormone type 2 receptor; ANGPT1: angiopoietin 1; ATG: autophagy-related; CDH5: cadherin 5; CLDN5: claudin 5; COL1A1: collagen, type I, alpha 1; CSPG4/NG2: chondroitin sulfate proteoglycan 4; CTNNB1: catenin (cadherin associated protein), beta 1; DES: desmin; EDN1: endothelin 1; EDNRB: endothelin receptor type B; F3: coagulation factor III; KDR/FLK1/VEGFR2: kinase insert domain protein receptor; LYVE1: lymphatic vessel endothelial hyaluronan receptor 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCAM/CD146: melanoma cell adhesion molecule; MYL2: myosin, light polypeptide 2, regulatory, cardiac, slow; MYLK: myosin, light polypeptide kinase; NOS1/nNOS: nitric oxide synthase 1, neuronal; NOS2/iNOS: nitric oxide synthase 2, inducible; NOS3/eNOS: nitric oxide synthase 3, endothelial cell; OVX: ovariectomy; PECAM1/CD31: platelet/endothelial cell adhesion molecule 1; POSTN: periostin, osteoblast specific factor; SQSTM1: sequestosome 1; TEK/Tie2: TEK receptor tyrosine kinase; TJP1/ZO-1: tight junction protein 1; TUBB1, tubulin, beta 1 class VI; USC: uterine stromal cell; VEGFA: vascular endothelial growth factor A; VSMC: vascular smooth muscle cell.
Collapse
Affiliation(s)
- Bora Lee
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Hyejin Shin
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Ji-Eun Oh
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jaekyoung Park
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Jin-Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggi-do, Korea
- Department of Senior Healthcare, BK21 Plus Program, Eulji Medi-Bio Research Institute, Graduate School, Eulji University, Daejeon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon-do, Chuncheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
58
|
Hsieh YS, Shin YK, Seol GH. Protection of the neurovascular unit from calcium-related ischemic injury by linalyl acetate. CHINESE J PHYSIOL 2021; 64:88-96. [PMID: 33938819 DOI: 10.4103/cjp.cjp_94_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Calcium-related ischemic injury (CRII) can damage cells of the neurovascular unit (NVU). Here, we investigate the protective effects of linalyl acetate (LA) against CRII-induced NVU damage and evaluate the underlying mechanisms. The protective effects of LA in cell lines representative of NVU components (BEND, SH-SY5Y, BV2, and U373 cells) were evaluated following exposure to oxygen-glucose deprivation/reoxygenation alone (OGD/R-only) or OGD/R in the presence of 5 mM extracellular calcium ([Ca2+]o) to mimic CRII. LA reversed damage under OGD/R-only conditions by blocking p47phox/NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) production, nitric oxide (NO) abnormality, and lactate dehydrogenase (LDH) release only in the BEND cells. However, under CRII-mimicking conditions, LA reversed NO abnormality and matrix metalloproteinase (MMP)-9 activation in the BEND murine brain endothelial cells; inhibited p47phox expression in the human SH-SY5Y neural-like cells; decreased NOX2 expression and ROS generation in the BV2 murine microglial cells; and reduced p47phox expression in the U373 human astrocyte-like cells. Importantly, LA protected against impairment of the neural cells, astrocytes, and microglia, all of which are cellular components of the NVU induced by exposure to CRII-mimicking conditions, by reducing LDH release. We found that LA exerted a protective effect in the BEND cells that may differ from its protective effects in other NVU cell types, following OGD/R-induced damage in the context of elevated [Ca2+]o.
Collapse
Affiliation(s)
- Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea; Department of Nursing, School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing; BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
59
|
Makkiyah F, Sadewo W, Nurrizka R. Comparative Dose of Intracarotid Autologous Bone Marrow Mononuclear Therapy in Chronic Ischemic Stroke in Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Research on chronic ischemic stroke is limited. One of the more promising approaches showing positive effects in the acute stage is mononuclear bone marrow cell therapy. This research may be the first which presents data about the optimum dose of bone marrow mononuclear cells (BM-MNCs) for chronic ischemic stroke in rats and discusses factors influencing recovery in the chronic stage.
We performed temporary middle cerebral artery occlusion (MCAO) procedures on the rats which were then randomly assigned to one of two experimental groups in which they were given either low or high doses of autologous BM-MNCs (5 million or 10 million cells per kg body weight).
Rat brains were fixed for HE, CD31, and doublecortin staining for analysis of the effects. Rat behavior was assessed weekly using the cylinder test and a modified neurological severity score (NSS) test.
In the four weeks prior to administration of BM-MNC, cylinder test scores improved to near normal, and NSS test scores improved moderately. The infarct zone decreased significantly (p <0,01), there was an improvement in angiogenesis (p = 0.1590) and a significant improvement in neurogenesis (p <0,01). Reduction of the infarct zone was associated with a higher dose whereas both higher and lower doses were found to have a similar effect on improving angiogenesis, and neurogenesis. Recovery was superior after twelve weeks compared with the recovery assessment at eight weeks.
In conclusion, a dose of 10 million cells was more effective than a dose of 5 million cells per kg body weight for reducing the infarct zone and ameliorating neurogenesis. There was an improvement of histopathological parameters associated with the longer infarct period.
Collapse
|
60
|
Purohit D, Finkel DA, Malfa A, Liao Y, Ivanova L, Kleinman GM, Hu F, Shah S, Thompson C, Joseph E, Wolin MS, Cairo MS, La Gamma EF, Vinukonda G. Human Cord Blood Derived Unrestricted Somatic Stem Cells Restore Aquaporin Channel Expression, Reduce Inflammation and Inhibit the Development of Hydrocephalus After Experimentally Induced Perinatal Intraventricular Hemorrhage. Front Cell Neurosci 2021; 15:633185. [PMID: 33897371 PMCID: PMC8062878 DOI: 10.3389/fncel.2021.633185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth associated with cerebral palsy, intellectual disability, and commonly, accumulation of cerebrospinal fluid (CSF). Histologically, IVH leads to subependymal gliosis, fibrosis, and disruption of the ependymal wall. Importantly, expression of aquaporin channels 1 and 4 (AQP1 and AQP4) regulating respectively, secretion and absorption of cerebrospinal fluids is altered with IVH and are associated with development of post hemorrhagic hydrocephalus. Human cord blood derived unrestricted somatic stem cells (USSCs), which we previously demonstrated to reduce the magnitude of hydrocephalus, as having anti-inflammatory, and beneficial behavioral effects, were injected into the cerebral ventricles of rabbit pups 18 h after glycerol-induced IVH. USSC treated IVH pups showed a reduction in ventricular size when compared to control pups at 7 and 14 days (both, P < 0.05). Histologically, USSC treatment reduced cellular infiltration and ependymal wall disruption. In the region of the choroid plexus, immuno-reactivity for AQP1 and ependymal wall AQP4 expression were suppressed after IVH but were restored following USSC administration. Effects were confirmed by analysis of mRNA from dissected choroid plexus and ependymal tissue. Transforming growth factor beta (TGF-β) isoforms, connective tissue growth factor (CTGF) and matrix metalloprotease-9 (MMP-9) mRNA, as well as protein levels, were significantly increased following IVH and restored towards normal with USSC treatment (P < 0.05). The anti-inflammatory cytokine Interleukin-10 (IL-10) mRNA was reduced in IVH, but significantly recovered after USSC injection (P < 0.05). In conclusion, USSCs exerted anti-inflammatory effects by suppressing both TGF-β specific isoforms, CTGF and MMP-9, recovered IL-10, restored aquaporins expression towards baseline, and reduced hydrocephalus. These results support the possibility of the use of USSCs to reduce IVH consequences in prematurity.
Collapse
Affiliation(s)
- Deepti Purohit
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Dina A Finkel
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Ana Malfa
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - George M Kleinman
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Furong Hu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Shetal Shah
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Carl Thompson
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Etlinger Joseph
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Departments of Medicine, Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Edmund F La Gamma
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, United States.,Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
61
|
Rajagopal S, Yang C, DeMars KM, Poddar R, Candelario-Jalil E, Paul S. Regulation of post-ischemic inflammatory response: A novel function of the neuronal tyrosine phosphatase STEP. Brain Behav Immun 2021; 93:141-155. [PMID: 33422638 PMCID: PMC7979508 DOI: 10.1016/j.bbi.2020.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
The neuron-specific tyrosine phosphatase STEP is emerging as a key neuroprotectant against acute ischemic stroke. However, it remains unclear how STEP impacts the outcome of stroke. We find that the exacerbation of ischemic brain injury in STEP deficient mice involves an early onset and sustained activation of neuronal p38 mitogen activated protein kinase, a substrate of STEP. This leads to rapid increase in the expression of neuronal cyclooxygenase-2 and synthesis of prostaglandin E2, causing change in microglial morphology to an amoeboid activated state, activation of matrix metalloproteinase-9, cleavage of tight junction proteins and extravasation of IgG into the ischemic brain. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the post-ischemic inflammatory response and attenuates brain injury. The findings identify a unique role of STEP in regulating post-ischemic neuroinflammation and further emphasizes the therapeutic potential of the STEP-mimetic in neurological disorders where inflammation contributes to brain damage.
Collapse
Affiliation(s)
| | - Changjun Yang
- University of Florida, Department of Neuroscience, USA
| | | | - Ranjana Poddar
- University of New Mexico Health Sciences Center, Department of Neurology, USA
| | | | - Surojit Paul
- University of New Mexico Health Sciences Center, Department of Neurology, USA; University of New Mexico Health Sciences Center, Department of Neuroscience, USA.
| |
Collapse
|
62
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
63
|
Wang H, Wang Z, Wu Q, Yuan Y, Cao W, Zhang X. Regulatory T cells in ischemic stroke. CNS Neurosci Ther 2021; 27:643-651. [PMID: 33470530 PMCID: PMC8111493 DOI: 10.1111/cns.13611] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of neuroinflammation, angiogenesis, and neuroplasticity are currently the hotspots of researches in ischemic stroke. Regulatory T cells (Tregs), a subset of T cells that control inflammatory and immune responses in the body, are closely related to the pathogenesis of ischemic stroke. They participate in the inflammatory response and neuroplasticity process of ischemic stroke by various mechanisms, such as secretion of anti‐inflammatory factors, inhibition of pro‐inflammatory factors, induction of cell lysis, production of the factors that promote neural regeneration, and modulation of microglial and macrophage polarization. However, it remains unclear whether Tregs play a beneficial or deleterious role in ischemic stroke and the effect of Tregs in different stages of ischemic stroke. Here, we discuss the dynamic changes of Tregs at various stages of experimental and clinical stroke, the potential mechanisms under Tregs in regulating stroke and the preclinical studies of Tregs‐related treatments, in order to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, PR China.,Hebei Vascular Homeostasis Key Laboratory, Shijiazhuang, Hebei, PR China
| |
Collapse
|
64
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
65
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
66
|
The Poststroke Peripheral Immune Response Is Differentially Regulated by Leukemia Inhibitory Factor in Aged Male and Female Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8880244. [PMID: 33376583 PMCID: PMC7746465 DOI: 10.1155/2020/8880244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
Abstract
Background The goal of this study was to determine whether leukemia inhibitory factor (LIF) promotes anti-inflammatory activity after stroke in a sex-dependent manner. Methods Aged (18-month-old) Sprague-Dawley rats of both sexes underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals received three doses of intravenous LIF (125 μg/kg) or PBS at 6, 24, and 48 h before euthanization at 72 h. Spleen weights were measured immediately following euthanization. Western blot was used to measure protein levels of CCL8, CD11b, CXCL9, CXCL10, IL-12 p40, IL-3, and the LIF receptor (LIFR) in spleen tissue. ELISA was used to measure IL-1β, IL-6, TNFα, and IFNγ in spleen tissue. A Griess Assay was used to indirectly quantify NO levels via measurement of nitrite. Levels of cellular markers and inflammatory mediators were normalized to the baseline (sham) group from each sex. Statistical analysis was performed using two-way ANOVA and followed by Fisher's LSD post hoc test. Results Aged female rats showed a significantly lower spleen weight after MCAO, but showed a significant increase in spleen size after LIF treatment. This effect was observed in aged male rats, but not to as great of an extent. CD11b levels were significantly higher in the spleens of MCAO+PBS males compared to their female counterparts, but there was no significant difference in CD11b levels between MCAO+LIF males and females. LIF significantly increased CXCL9 after LIF treatment in aged male and female rats. LIFR and IL-3 were upregulated after LIF treatment in aged females. Splenic nitrate increased after MCAO but decreased after LIF treatment in aged females. Splenic nitrate levels did not increase after MCAO but did increase after LIF treatment in aged males. The following cytokines/chemokines were not altered by sex or treatment: TNFα, IL-6, IL-12 p40, CCL8, IFNγ, and CXCL10. Conclusions LIF treatment after permanent MCAO induces sex-dependent effects on the poststroke splenic response and the production of proinflammatory cytokines among aged rats.
Collapse
|
67
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
68
|
Douglas AS, Shearer JA, Okolo A, Pandit A, Gilvarry M, Doyle KM. The Relationship Between Cerebral Reperfusion And Regional Expression Of Matrix Metalloproteinase-9 In Rat Brain Following Focal Cerebral Ischemia. Neuroscience 2020; 453:256-265. [PMID: 33220187 DOI: 10.1016/j.neuroscience.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
We investigated the effect of full and partial mechanical reperfusion on MMP-9 expression in rat brain following middle cerebral artery occlusion, mimicking mechanical thrombectomy. Using percentage hemispheric lesion volume and oedema as measures, partial reperfusion reduced extent of brain damage caused by MCA occlusion, but the protective effect was less pronounced than with complete reperfusion. Using ELISA quantification in fresh frozen tissue, confirmed by immunofluorescence in perfusion fixed tissue, increased MMP-9 expression was observed in infarcted tissue. MMP-9 was increased in lesioned tissue of the anterior and posterior temporal cortex and underlying striatal tissue, but also the normal appearing frontal cortex. No significant increase in MMP-9 in the hippocampus was observed, nor in the unlesioned contralateral hemisphere. Both partial reperfusion and full reperfusion reduced the regional MMP expression significantly. The highest levels of MMP-9 were observed in lesioned brain regions in the non-reperfused group. MMP-9 expression was evident in microvessels and in neuronal cell bodies of affected tissue. This study shows that MMP-9 brain levels are reduced relative to the extent of reperfusion. These observations suggest targeting early increases in MMP-9 expression as a possible neuroprotective therapeutic strategy and highlight the rat MCA occlusion model as an ideal model in which to study candidate therapeutics.
Collapse
Affiliation(s)
- A S Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland; CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - J A Shearer
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland; CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - A Okolo
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland; CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - A Pandit
- CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | - K M Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland; CÚRAM-Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
69
|
Tsuji K, Tsuji A, Yoshimura Y, Ogawa N, Nakazawa T, Nozaki K. Rupture of Anterior Communicating Artery Aneurysm after Intravenous Thrombolysis for Acute Ischemic Stroke: A Case Report. JOURNAL OF NEUROENDOVASCULAR THERAPY 2020; 15:240-245. [PMID: 37501693 PMCID: PMC10370924 DOI: 10.5797/jnet.cr.2020-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/08/2020] [Indexed: 07/29/2023]
Abstract
Objective Rupture of intracranial aneurysms after tissue plasminogen activator (t-PA) administration for acute ischemic stroke with an unruptured cerebral aneurysm is rare. We report a case of ruptured cerebral aneurysm after t-PA administration. Case Presentation A 74-year-old woman with dysarthria and left hemiparesis was admitted to our hospital, and acute lacunar infarction was found in the right corona radiata. One hour after t-PA administration, she complained of sudden headache and nausea, and her consciousness level deteriorated. Subarachnoid hemorrhage due to rupture of the anterior communicating aneurysm was confirmed and coil embolization was performed. Conclusion T-PA administration for acute ischemic stroke with an unruptured cerebral aneurysm risks rupture of the cerebral aneurysm, and careful judgment is needed in each case.
Collapse
Affiliation(s)
- Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yayoi Yoshimura
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Neurology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takuya Nakazawa
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
70
|
Roadmap for Stroke: Challenging the Role of the Neuronal Extracellular Matrix. Int J Mol Sci 2020; 21:ijms21207554. [PMID: 33066304 PMCID: PMC7589675 DOI: 10.3390/ijms21207554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.
Collapse
|
71
|
Chen J, Zhu Z, Li Q, Lin Y, Dang E, Meng H, Sha N, Bai H, Wang G, An S, Shao S. Neutrophils Enhance Cutaneous Vascular Dilation and Permeability to Aggravate Psoriasis by Releasing Matrix Metallopeptidase 9. J Invest Dermatol 2020; 141:787-799. [PMID: 32888954 DOI: 10.1016/j.jid.2020.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Neutrophil infiltration and papillary vessel dilation are hallmarks of the initiation phase of psoriatic lesions. However, how neutrophils aggravate psoriasis development during transendothelial migration and the interaction between neutrophils and cutaneous vascular endothelial cells are less well-understood. In this study, we reported that neutrophils and cutaneous vascular endothelial cells activated each other when neutrophils migrated through the cutaneous endothelial barrier. In addition, neutrophil infiltration into skin lesions caused vascular remodeling including cutaneous vasodilation and enhanced vascular permeability in vivo and in vitro. Microarray gene profile data showed that matrix metallopeptidase (MMP)-9 was overexpressed in psoriatic neutrophils, and zymography assay further validated the bioactivity of MMP-9 secreted by psoriatic neutrophils. Moreover, MMP-9 activated vascular endothelial cells through the extracellular signal‒regulated kinase 1/2 and p38-MAPK signaling pathways, enhancing CD4+ T-cell transmigration in vitro. Correspondingly, an MMP-9 inhibitor significantly reduced cutaneous vasodilation, vascular permeability, and psoriatic symptoms in an imiquimod- or IL-23‒induced psoriasiform mouse model. Overall, our study demonstrates that neutrophil-derived MMP-9 induces cutaneous vasodilation and hyperpermeability by activating cutaneous vascular endothelial cells, thus facilitating psoriatic lesion development, which increases our knowledge on the role of neutrophils in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingyang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Meng
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Nanxi Sha
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Bai
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shujie An
- Department of General Diagnosis and Treatment, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
72
|
Pan R, Tang X, Wang H, Huang Y, Huang K, Ling S, Zhou M, Cai J, Chen H, Huang Y. The Combination of Astragalus membranaceus and Ligustrazine Protects Against Thrombolysis-Induced Hemorrhagic Transformation Through PKCδ/Marcks Pathway in Cerebral Ischemia Rats. Cell Transplant 2020; 29:963689720946020. [PMID: 32749163 PMCID: PMC7563031 DOI: 10.1177/0963689720946020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astragalus membranaceus (Ast) and ligustrazine (Lig) have a
protective effect on lower hemorrhagic transformation induced by pharmaceutical
thrombolysis. The cerebral ischemia rat model was induced with autologous blood
clot injections. A combination of Ast and Lig, or a protein kinase C delta
(PKCδ) inhibitor—rottlerin, or a combination of Ast, Lig, and rottlerin was
administered immediately after recombinant tissue plasminogen activator
injection. The cerebral infarct area, neurological deficits, cerebral hemorrhage
status, neuronal damage and tight junctions’ changes in cerebral vessels, and
the messenger RNA and protein levels of PKCδ, myristoylated alanine-rich C
kinase substrate (Marcks), and matrix metallopeptidase 9 (MMP9) were determined
after 3 h and 24 h of thrombolysis. The ultrastructure of the neuronal damage
and tight junctions was examined under a transmission electron microscope. The
expression levels of PKCδ, Marcks, and MMP9 were assessed by
immunohistochemistry, western blot, and quantitative real-time polymerase chain
reaction . Administration of Ast and Lig not only significantly decreased
neurological deficit scores, infarct volumes, and cerebral hemorrhage but also
inhibited the disruption due to neuronal dysfunction and the tight junction
integrity in the cerebral vessel. Treatment with a combination of Ast and Lig
effectively protected ischemia-induced microhemorrhage transformation through
PKCδ/Marcks pathway suppression.
Collapse
Affiliation(s)
- Ruihuan Pan
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Both the authors contributed equally to this article
| | - Xialin Tang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Both the authors contributed equally to this article
| | - Huajun Wang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Huang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Huang
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Ling
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingchao Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Cai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hongxia Chen
- Department of Rehabilitation, The 2nd affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Huang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
73
|
Jäkel L, Kuiperij HB, Gerding LP, Custers EEM, van den Berg E, Jolink WMT, Schreuder FHBM, Küsters B, Klijn CJM, Verbeek MM. Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol Commun 2020; 8:99. [PMID: 32631441 PMCID: PMC7336459 DOI: 10.1186/s40478-020-00972-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid β (Aβ) protein in the cerebral vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the degradation of various components of the extracellular matrix as well as of Aβ and increased MMP9 expression has been previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-ICH cases (n = 11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH (CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without CAA, and that TIMP3 expression is reduced in a subset of CAA-ICH cases compared to CAA-NH cases. In conclusion, in patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.
Collapse
|
74
|
Silencing matrix metalloproteinase 9 exerts a protective effect on astrocytes after oxygen-glucose deprivation and is correlated with suppression of aquaporin-4. Neurosci Lett 2020; 731:135047. [DOI: 10.1016/j.neulet.2020.135047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
|
75
|
Mechtouff L, Bochaton T, Paccalet A, Crola Da Silva C, Buisson M, Amaz C, Bouin M, Derex L, Ong E, Berthezene Y, Eker OF, Dufay N, Mewton N, Ovize M, Nighoghossian N, Cho TH. Matrix Metalloproteinase-9 Relationship With Infarct Growth and Hemorrhagic Transformation in the Era of Thrombectomy. Front Neurol 2020; 11:473. [PMID: 32582006 PMCID: PMC7296118 DOI: 10.3389/fneur.2020.00473] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: To assess the relationship between matrix metalloproteinase 9 (MMP-9), a proteolytic enzyme involved in the breakdown of the blood-brain barrier, and infarct growth and hemorrhagic transformation in acute ischemic stroke (AIS) with large vessel occlusion (LVO) in the era of mechanical thrombectomy (MT) using the kinetics of MMP-9 and sequential magnetic resonance imaging (MRI). Methods: HIBISCUS-STROKE is a cohort study including AIS patients with LVO treated with MT following admission MRI. Patients underwent sequential assessment of MMP-9, follow-up CT at day 1, and MRI at day 6. The CT scan at day 1 classified any hemorrhagic transformation according to the European Co-operative Acute Stroke Study-II (ECASS II) classification. Infarct growth was defined as the difference between final Fluid-Attenuated Inversion Recovery volume and baseline diffusion-weighted imaging volume. Conditional logistic regression analyses were adjusted for main confounding variables including reperfusion status. Results: One hundred and forty-eight patients represent the study population. A high MMP-9 level at 6 h from admission (H6) (p = 0.02), a high glucose level (p = 0.01), a high temperature (p = 0.04), and lack of reperfusion (p = 0.02) were associated with infarct growth. A high MMP-9 level at H6 (p = 0.03), a high glucose level (p = 0.03) and a long delay from symptom onset to groin puncture (p = 0.01) were associated with hemorrhagic transformation. Conclusions: In this MT cohort study, MMP-9 level at H6 predicts infarct growth and hemorrhagic transformation.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France.,CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| | - Thomas Bochaton
- CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France.,Cardiac Intensive Care Unit, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Alexandre Paccalet
- CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| | - Claire Crola Da Silva
- CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| | - Marielle Buisson
- Clinical Investigation Center, INSERM 1407, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Camille Amaz
- Clinical Investigation Center, INSERM 1407, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Morgane Bouin
- Cellule Recherche Imagerie, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Laurent Derex
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Elodie Ong
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France.,CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| | - Yves Berthezene
- Neuroradiology Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France.,CREATIS, CNRS UMR 5220, INSERM U1044, University Lyon 1, Lyon, France
| | - Omer Faruk Eker
- Neuroradiology Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Nathalie Dufay
- NeuroBioTec, CRB, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France
| | - Nathan Mewton
- Clinical Investigation Center, INSERM 1407, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Michel Ovize
- CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France.,Clinical Investigation Center, INSERM 1407, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Norbert Nighoghossian
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France.,CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| | - Tae-Hee Cho
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Bron, France.,CarMeN, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
76
|
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
77
|
Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics 2020; 17:484-496. [PMID: 31975152 PMCID: PMC7283398 DOI: 10.1007/s13311-020-00839-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-30% of all strokes and affects more than one million people every year worldwide, and it is the stroke subtype associated with the highest rates of mortality and residual disability. So far, clinical trials have mainly targeted primary cerebral injury and have substantially failed to improve clinical outcomes. The understanding of the pathophysiology of early and delayed injury after ICH is, hence, of paramount importance to identify potential targets of intervention and develop effective therapeutic strategies. Matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases able to degrade any component of the extracellular matrix. They are upregulated after ICH, in which different cell types, including leukocytes, activated microglia, neurons, and endothelial cells, are involved in their synthesis and secretion. The aim of this review is to summarize the available experimental and clinical evidence about the role of MMPs in brain injury following spontaneous ICH and provide critical insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Silvia Ricci
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
78
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Vasudeva K, Munshi A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur J Neurosci 2020; 52:3610-3627. [PMID: 32022336 DOI: 10.1111/ejn.14695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
Stroke is one of the leading causes of death and disability in both developing and developed countries. Biomarkers for stroke and its outcome can greatly facilitate early detection and management of the disease. miRNAs have been explored for their potential as biomarkers for diagnosis, prognosis and brain injury in ischaemic stroke. A substantial body of evidence suggests that miRNAs play key roles in numerous cellular changes following ischaemic stroke including mitochondrial dysfunction, energy failure, cytokine-mediated cytotoxicity, oxidative stress, activation of glial cells, increased intracellular calcium levels inflammatory responses and disruption of the blood-brain barrier (BBB). In addition, targeting specific miRNAs, therapeutic modulation of brain injury and apoptosis can also be achieved. Therefore, the current review has been compiled within an aim to give an overview of the developments exploiting miRNAs at different stages of stroke as prognostic, diagnostic, protective and therapeutic biomarkers.
Collapse
Affiliation(s)
- Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
80
|
Che B, Zhong C, Ge J, Li R, Zhu Z, Bu X, Xu T, Ju Z, Liu J, Zhang J, Chen J, Zhang Y, He J. Serum Matrix Metalloproteinase-9 Is Associated With Depression After Acute Ischemic Stroke. Circ J 2019; 83:2303-2311. [PMID: 31564697 DOI: 10.1253/circj.cj-19-0376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Matrix metalloproteinase-9 (MMP-9), a key determinant of extracellular matrix degradation, might cause cerebral damage after stroke and be involved in the development of depressive symptoms. This study aimed to evaluate the association of serum MMP-9 levels and post-stroke depression (PSD). METHODS AND RESULTS Serum MMP-9 levels were determined in 558 acute ischemic stroke patients from 7 hospitals comprising the China Antihypertensive Trial in Acute Ischemic Stroke. We assessed depression status using the 24-item Hamilton Depression Rating Scale and defined PSD as a cutoff score of 8. Logistic regression was performed to estimate the risk of PSD associated with serum MMP-9. Discrimination and reclassification for PSD by MMP-9 were analyzed. A total of 222 (39.8%) stroke patients were categorized as PSD within 3 months. Serum MMP-9 concentrations were higher among PSD patients than those without PSD (658.8 vs. 485.7 ng/mL; P<0.001). The multiple-adjusted odds ratio (95% confidence interval) for the highest MMP-9 quartile compared with the lowest quartile was 4.36 (2.49-7.65) for PSD, and 1 standard deviation higher log-MMP-9 was associated with 68% (37-106%) increased odds of PSD. Adding MMP-9 to the conventional risk factors model substantially improved discrimination and reclassification for PSD (all P<0.05). CONCLUSIONS Elevated serum MMP-9 levels in the acute phase of ischemic stroke were associated with increased risk of PSD, suggesting an important prognostic role of MMP-9 for PSD.
Collapse
Affiliation(s)
- Bizhong Che
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
| | - Chongke Zhong
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
| | - Jinzhuo Ge
- School of Public Health, Medical College of Soochow University
| | - Ruyi Li
- School of Public Health, Medical College of Soochow University
| | - Zhengbao Zhu
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Xiaoqing Bu
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
- Department of Epidemiology, School of Public Health, Chongqing Medical University
| | - Tan Xu
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City
| | - Jiale Liu
- Department of Neurology, Jilin Central Hospital
| | - Jintao Zhang
- Department of Neurology, the 88th Hospital of PLA
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| | - Yonghong Zhang
- School of Public Health, Medical College of Soochow University
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
81
|
Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, Zhao Q. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav 2019; 9:e01425. [PMID: 31566928 PMCID: PMC6790318 DOI: 10.1002/brb3.1425] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether irisin could protect against blood-brain barrier (BBB) dysfunction following focal cerebral ischemia/reperfusion in rats. METHODS AND MATERIALS Seventy-two adult male Sprague Dawley rats weighing 280-320 g were randomly divided into three groups: sham operation group (S), focal cerebral ischemia/reperfusion group (FC), and irisin group (IR). Focal cerebral ischemia was induced by improved thread occlusion of right middle cerebral artery (MCAO) for 2 hr followed by reperfusion for 24 hr in rats. After 24 hr of reperfusion, the neurological evaluation was performed by the method of Longa's score. The histopathological changes were observed by HE staining. The brain water content was determined by detecting the wet weight and dry weight. The BBB permeability was assessed by fluorescence spectrophotometer and fluorescence microscopy for Evans blue (EB) extravasation. The activity and expression of matrix metalloproteinase-9 (MMP-9) in different groups were detected by immunohistochemical staining, Western blot, and gel gelatin zymography. RESULTS After MCAO, the neurological deficit scores, the infarct volume, the brain water content, and the EB content were higher in the FC group than those in the S group (p < .05). While after irisin treatment, these indicators mentioned above were lower than those in the IR group (p < .05). Moreover, the protein expression of MMP-9 in the cortex increased significantly after MCAO, while irisin treatment could decrease the protein expression of MMP-9 in the cortex (p < .05). CONCLUSION Our data suggest that irisin can attenuate brain damage both morphologically and functionally and protect BBB from disruption after focal cerebral ischemia/reperfusion, which is highly associated with the inhibition of the expression and activity of MMP-9 in the brain tissue.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
82
|
Plasma levels of matrix metalloproteinase-9: A possible marker for cold-induced stroke risk in hypertensive rats. Neurosci Lett 2019; 709:134399. [PMID: 31349015 DOI: 10.1016/j.neulet.2019.134399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 11/23/2022]
Abstract
The cold weather is associated with an increased occurrence of acute stroke events. However, the underlying mechanisms have not yet been fully elucidated. In the present study, we investigated whether plasma matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels as well as the MMP-9/TIMP-1 ratio could be used as predictor for cold-induced stroke risk in hypertensive rats. A total of 50 male rats were subjected to either control group or 2-kidney, 2-clip (2K - 2C) group (N = 25, each), After blood pressure was stabilized, rats were placed in an intelligent artificial climate chamber and maintained on a 12-h light (22 °C)/dark (4 °C) cycle for 3 days. Plasma levels of MMP-9 and TIMP-1 were measured before and after cold exposure from 50 rats by ELISA. Pretreatment plasma MMP-9 levels were significantly higher in 2K-2C rats than in the controls (P < 0.05), TIMP-1 levels were significantly lower in 2K-2C rats than in the controls (P < 0.05), pretreatment plasma MMP-9 levels were significantly higher in those with cold-induced stroke compared to those without (P < 0.05). Logistic regression analysis showed that only plasma MMP-9 levels remained independently associated with cold-induced stroke after adjusting for potential confounders (OR, 1.17; 95% CI, 1.08 to 1.32; P < 0.007). In contrast, no correlation was observed between systolic blood pressure (SBP), TIMP-1 or MMP-9/TIMP-1 ratio and the cold-induced stroke. Higher plasma MMP-9 levels are significantly correlated with cold-induced stroke in hypertensive rats treated with intermittent cold stress. Plasma MMP-9 may be as a promising biomarker to predict the risk of cold-induced stroke events in hypertensive rats.
Collapse
|
83
|
Giménez-Gómez P, Pérez-Hernández M, O'Shea E, Caso JR, Martín-Hernandez D, Cervera LA, Centelles MLGL, Gutiérrez-Lopez MD, Colado MI. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. FASEB J 2019; 33:12900-12914. [PMID: 31509716 DOI: 10.1096/fj.201900491rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - David Martín-Hernandez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Alou Cervera
- Área de Microbiología, Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - María Dolores Gutiérrez-Lopez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
84
|
Liebeskind DS, Jüttler E, Shapovalov Y, Yegin A, Landen J, Jauch EC. Cerebral Edema Associated With Large Hemispheric Infarction. Stroke 2019; 50:2619-2625. [DOI: 10.1161/strokeaha.118.024766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David S. Liebeskind
- From the Department of Neurology, Neurovascular Imaging Research Core and UCLA Stroke Center, University of California Los Angeles (D.S.L.)
| | - Eric Jüttler
- Department of Neurology, University of Heidelberg, Germany (E.J.)
- Department of Neurology, University of Ulm, University and Rehabilitation Hospitals, Ulm, and the Center for Stroke Research Berlin, Germany (E.J.)
| | | | | | | | - Edward C. Jauch
- Mission Research Institute, Mission Health System, Asheville, NC (E.C.J.)
| |
Collapse
|
85
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
86
|
Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma. Sci Rep 2019; 9:7717. [PMID: 31118451 PMCID: PMC6531444 DOI: 10.1038/s41598-019-44147-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been recognized as the common mode of neurotrauma amongst military and civilian personnel due to an increased insurgent activity domestically and abroad. Previous studies from our laboratory have identified enhanced blood-brain barrier (BBB) permeability as a significant, sub-acute (four hours post-blast) pathological change in bTBI. We also found that NADPH oxidase (NOX)-mediated oxidative stress occurs at the same time post-blast when the BBB permeability changes. We therefore hypothesized that oxidative stress is a major causative factor in the BBB breakdown in the sub-acute stages. This work therefore examined the role of NOX1 and its downstream effects on BBB permeability in the frontal cortex (a region previously shown to be the most vulnerable) immediately and four hours post-blast exposure. Rats were injured by primary blast waves in a compressed gas-driven shock tube at 180 kPa and the BBB integrity was assessed by extravasation of Evans blue and changes in tight junction proteins (TJPs) as well as translocation of macromolecules from blood to brain and vice versa. NOX1 abundance was also assessed in neurovascular endothelial cells. Blast injury resulted in increased extravasation and reduced levels of TJPs in tissues consistent with our previous observations. NOX1 levels were significantly increased in endothelial cells followed by increased superoxide production within 4 hours of blast. Blast injury also increased the levels/activation of matrix metalloproteinase 3 and 9. To test the role of oxidative stress, rats were administered apocynin, which is known to inhibit the assembly of NOX subunits and arrests its function. We found apocynin completely inhibited dye extravasation as well as restored TJP levels to that of controls and reduced matrix metalloproteinase activation in the sub-acute stages following blast. Together these data strongly suggest that NOX-mediated oxidative stress contributes to enhanced BBB permeability in bTBI through a pathway involving increased matrix metalloproteinase activation.
Collapse
|
87
|
Connectivity map identifies luteolin as a treatment option of ischemic stroke by inhibiting MMP9 and activation of the PI3K/Akt signaling pathway. Exp Mol Med 2019; 51:1-11. [PMID: 30911000 PMCID: PMC6434019 DOI: 10.1038/s12276-019-0229-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore potential new drugs in the treatment of ischemic stroke by Connectivity Map (CMap) and to determine the role of luteolin on ischemic stroke according to its effects on matrix metalloproteinase-9 (MMP9) and PI3K/Akt signaling pathway. Based on published gene expression data, differentially expressed genes were obtained by microarray analysis. Potential compounds for ischemic stroke therapy were obtained by CMap analysis. Cytoscape and gene set enrichment analysis (GSEA) were used to discover signaling pathways connected to ischemic stroke. Cell apoptosis and viability were, respectively, evaluated by flow cytometry and an MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were used to test the expression of MMP9 and the PI3K/Akt signaling pathway-related proteins in human brain microvascular endothelial cells (HBMECs) and tissues. Additionally, the infarct volume after middle cerebral artery occlusion (MCAO) was determined by a TTC (2,3,5-triphenyltetrazolium chloride) assay. The microarray and CMap analyses identified luteolin as a promising compound for future therapies for ischemic stroke. Cytoscape and GSEA showed that the PI3K/Akt signaling pathway was crucial in ischemic stroke. Cell experiments revealed that luteolin enhanced cell viability and downregulated apoptosis via inhibiting MMP9 and activating the PI3K/Akt signaling pathway. Experiments performed in vivo also demonstrated that luteolin reduced the infarct volume. These results suggest that luteolin has potential in the treatment of ischemic stroke through inhibiting MMP9 and activating PI3K/Akt signaling pathway.
Collapse
|
88
|
Rudy RF, Charoenvimolphan N, Qian B, Berndt A, Friedlander RM, Weiss ST, Du R. A Genome-Wide Analysis of the Penumbral Volume in Inbred Mice following Middle Cerebral Artery Occlusion. Sci Rep 2019; 9:5070. [PMID: 30911049 PMCID: PMC6433893 DOI: 10.1038/s41598-019-41592-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Following ischemic stroke, the penumbra, at-risk neural tissue surrounding the core infarct, survives for a variable period of time before progressing to infarction. We investigated genetic determinants of the size of penumbra in mice subjected to middle cerebral artery occlusion (MCAO) using a genome-wide approach. 449 male mice from 33 inbred strains underwent MCAO for 6 hours (215 mice) or 24 hours (234 mice). A genome-wide association study using genetic data from the Mouse HapMap project was performed to examine the effects of genetic variants on the penumbra ratio, defined as the ratio of the infarct volume after 6 hours to the infarct volume after 24 hours of MCAO. Efficient mixed model analysis was used to account for strain interrelatedness. Penumbra ratio differed significantly by strain (F = 2.7, P < 0.001) and was associated with 18 significant SNPs, including 6 protein coding genes. We have identified 6 candidate genes for penumbra ratio: Clint1, Nbea, Smtnl2, Rin3, Dclk1, and Slc24a4.
Collapse
Affiliation(s)
- Robert F Rudy
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Baogang Qian
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Annerose Berndt
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott T Weiss
- Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA. .,Harvard Medical School, Boston, Massachusetts, USA. .,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
89
|
Ysrayl BB, Balasubramaniam M, Albert I, Villalta F, Pandhare J, Dash C. A Novel Role of Prolidase in Cocaine-Mediated Breach in the Barrier of Brain Microvascular Endothelial Cells. Sci Rep 2019; 9:2567. [PMID: 30796241 PMCID: PMC6385491 DOI: 10.1038/s41598-018-37495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cocaine use is associated with breach in the blood brain barrier (BBB) and increased HIV-1 neuro-invasion. We show that the cellular enzyme "Prolidase" plays a key role in cocaine-induced disruption of the BBB. We established a barrier model to mimic the BBB by culturing human brain microvascular endothelial cells (HBMECs) in transwell inserts. In this model, cocaine treatment enhanced permeability of FITC-dextran suggesting a breach in the barrier. Interestingly, cocaine treatment increased the activity of matrix metallo-proteinases that initiate degradation of the BBB-associated collagen. Cocaine exposure also induced prolidase expression and activity in HBMECs. Prolidase catalyzes the final and rate-limiting step of collagen degradation during BBB remodeling. Knock-down of prolidase abrogated cocaine-mediated increased permeability suggesting a direct role of prolidase in BBB breach. To decipher the mechanism by which cocaine regulates prolidase, we probed the inducible nitric oxide synthase (iNOS) mediated phosphorylation of prolidase since mRNA levels of the protein were not altered upon cocaine treatment. We observed increased iNOS expression concurrent with increased prolidase phosphorylation in cocaine treated cells. Subsequently, inhibition of iNOS decreased prolidase phosphorylation and reduced cocaine-mediated permeability. Finally, cocaine treatment increased transmigration of monocytic cells through the HBMEC barrier. Knock-down of prolidase reduced cocaine-mediated monocyte transmigration, establishing a key role of prolidase in cocaine-induced breach in endothelial cell barrier.
Collapse
Affiliation(s)
- Binah Baht Ysrayl
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ife Albert
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Fernando Villalta
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
90
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316:C135-C153. [PMID: 30379577 PMCID: PMC6397344 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 507] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
- Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
91
|
Ouk T, Potey C, Maestrini I, Petrault M, Mendyk AM, Leys D, Bordet R, Gautier S. Neutrophils in tPA-induced hemorrhagic transformations: Main culprit, accomplice or innocent bystander? Pharmacol Ther 2019; 194:73-83. [DOI: 10.1016/j.pharmthera.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
92
|
Chen MY, Robinson TM, Suh J. Longer Inactivating Sequence in Peptide Lock Improves Performance of Synthetic Protease-Activatable Adeno-Associated Virus. ACS Synth Biol 2019; 8:91-98. [PMID: 30614703 DOI: 10.1021/acssynbio.8b00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adeno-associated viruses (AAVs) are promising gene therapy vectors but may exhibit off-target delivery due to broad tissue tropism. We recently developed a synthetic protease-activatable AAV vector, named provector, that transduces cells preferentially in environments rich in matrix metalloproteinases (MMPs) which are elevated in a variety of diseases, including various cancers and heart diseases. The provector displays peptide locks made up of MMP recognition sites flanking an inactivating sequence (IS) composed of four aspartic acid residues (D4). When present, the IS prevents AAV from binding cell receptors and no transduction occurs (OFF state). High levels of MMPs cleave the recognition sequences and release the IS from the capsid surface, restoring cell receptor binding (ON state). The AAV9 provector prototype is not optimal as it displays baseline OFF transduction at 5-10% of that of the wild-type capsid, which can lead to off-target delivery. We hypothesized that changes to the IS may decrease OFF state transduction. We created a provector panel with IS of lengths 0 (D0) to 10 (D10) aspartic acid residues and characterized this panel in vitro. Notably, we find that the D10 provector has an OFF transduction of less than 1% of wild-type capsid and an ON/OFF transduction ratio of 27, the best outcome achieved for any provector thus far. In summary, our results enable us to define new design rules for the provector platform, specifically that (1) the IS is necessary for provector locking and (2) increasing the number of aspartic acid residues in this sequence improves locking.
Collapse
Affiliation(s)
- Maria Y. Chen
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | | | | |
Collapse
|
93
|
Yin B, Li DD, Xu SY, Huang H, Lin J, Sheng HS, Fang JH, Song JN, Zhang M. Simvastatin pretreatment ameliorates t-PA-induced hemorrhage transformation and MMP-9/TIMP-1 imbalance in thromboembolic cerebral ischemic rats. Neuropsychiatr Dis Treat 2019; 15:1993-2002. [PMID: 31410004 PMCID: PMC6643059 DOI: 10.2147/ndt.s199371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The use of thrombolysis with tissue-plasminogen activator (t-PA) in patients with acute ischemic stroke (AIS) is limited by increased levels of matrix metalloproteinase-9 (MMP-9) and by the increased risk of hemorrhagic transformation (HT). In this study, we investigated the effects of simvastatin pretreatment on t-PA-induced MMP-9/tissue inhibitor of metalloproteinase-1 (TIMP-1) imbalance and HT aggravation in a rat AIS model. Methods: The rat AIS model was established by autologous blood emboli. Two weeks before surgery, rats were pretreated with simvastatin (60 mg/kg/d), and three hours after surgery, t-PA (10 mg/kg) was administered. MMP-9 and TIMP-1 levels in the infarcted zone and plasma were evaluated by Western blot analysis and ELISA; the level of HT was quantified by determining the hemoglobin content. RhoA activation was determined to clarify the potential effect. Results: The results suggested that pretreatment with simvastatin suppressed the increase in t-PA-induced MMP-9 levels and neutralized the elevated MMP-9/TIMP-1 ratio, but had no effect on TIMP-1 levels. Thrombolysis with t-PA after ischemia improved neurological outcome, but increased intracranial hemorrhage. Moreover, t-PA-induced HT aggravation was reduced by simvastatin pretreatment. In addition, we showed that t-PA-induced activation of RhoA was suppressed by simvastatin, and that t-PA-induced MMP-9/TIMP-1 imbalance and hemorrhage was reduced by Rho kinases (ROCK) inhibitor Y-27632. Conclusion: In this study, we showed that simvastatin pretreatment ameliorated t-PA-induced HT and MMP-9/TIMP-1 imbalance, and demonstrated that the RhoA/ROCK pathway was implicated.
Collapse
Affiliation(s)
- Bo Yin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dan-Dong Li
- Department of Neurosurgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shang-Yu Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Han-Song Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun-Hao Fang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
94
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
95
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
96
|
Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orădan A, Nagy EE. Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol 2018; 324:35-42. [DOI: 10.1016/j.jneuroim.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023]
|
97
|
Guo X, Deng G, Liu J, Zou P, Du F, Liu F, Chen AT, Hu R, Li M, Zhang S, Tang Z, Han L, Liu J, Sheth KN, Chen Q, Gou X, Zhou J. Thrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy. ACS NANO 2018; 12:8723-8732. [PMID: 30107729 DOI: 10.1021/acsnano.8b04787] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current treatments for ischemic stroke are insufficient. The lack of effective pharmacological approaches can be mainly attributed to the difficulty in overcoming the blood-brain barrier. Here, we report a simple strategy to synthesize protease-responsive, brain-targeting nanoparticles for the improved treatment of stroke. The resulting nanoparticles respond to proteases enriched in the ischemic microenvironment, including thrombin or matrix metalloproteinase-9, by shrinking or expanding their size. Targeted delivery was achieved using surface conjugation of ligands that bind to proteins that were identified to enrich in the ischemic brain using protein arrays. By screening a variety of formulations, we found that AMD3100-conjugated, size-shrinkable nanoparticles (ASNPs) exhibited the greatest delivery efficiency. The brain targeting effect is mainly mediated by AMD3100, which interacts with CXCR4 that is enriched in the ischemic brain tissue. We showed that ASNPs significantly enhanced the efficacy of glyburide, a promising stroke therapeutic drug whose efficacy is limited by its toxicity. Due to their high efficiency in penetrating the ischemic brain and low toxicity, we anticipate that ASNPs have the potential to be translated into clinical applications for the improved treatment of stroke patients.
Collapse
Affiliation(s)
| | - Gang Deng
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | | | | | | | | | | | | | | | - Shenqi Zhang
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Zhishu Tang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | | - Jie Liu
- Department of Biomedical Engineering, School of Engineering , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | | | - Qianxue Chen
- Department of Neurosurgery , Renmin Hospital of Wuhan University , Wuhan , Hubei 430060 , China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710021 , China
| | | |
Collapse
|
98
|
Wang B, Wang Y, Zhao L. MMP-9 gene rs3918242 polymorphism increases risk of stroke: A meta-analysis. J Cell Biochem 2018; 119:9801-9808. [PMID: 30132967 DOI: 10.1002/jcb.27299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023]
Abstract
The association between matrix metalloproteinase-9 (MMP-9) gene rs3918242 polymorphism and the risk of stroke has been investigated, but the findings have been found to be contradictory. Thus, this association was assessed by meta-analysis. Potential studies were searched throughout PubMed, Embase, and CNKI. Pooled odds ratios and 95% confidence intervals were calculated. Sixteen original studies analyzing this association were included, involving 3647 stroke patients and 3685 unrelated controls. It was confirmed that MMP-9 gene rs3918242 polymorphism increased the risk of stroke. Stratification analysis of ethnicity revealed an increased risk of stroke among Asians, but not among Caucasians. Subgroup analysis by the type of stroke showed that MMP-9 gene rs3918242 polymorphism increased the risk of ischemic stroke. Sensitivity analysis did not draw different findings. In conclusion, MMP-9 gene rs3918242 polymorphism increases the risk of stroke.
Collapse
Affiliation(s)
- Baohua Wang
- Department of Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yinhua Wang
- Department of Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Lei Zhao
- Department of Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
99
|
Association of NF-κB and AP-1 with MMP-9 Overexpression in 2-Chloroethanol Exposed Rat Astrocytes. Cells 2018; 7:cells7080096. [PMID: 30087244 PMCID: PMC6115792 DOI: 10.3390/cells7080096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/18/2023] Open
Abstract
Subacute poisoning of 1,2-dichloroethane (1,2-DCE) has become a serious occupational problem in China, and brain edema is its main pathological consequence, but little is known about the underlying mechanisms. As the metabolite of 1,2-DCE, 2-chloroethanol (2-CE) is more reactive, and might play an important role in the toxic effects of 1,2-DCE. In our previous studies, we found that matrix metalloproteinases-9 (MMP-9) expression was enhanced in mouse brains upon treatment with 1,2-DCE, and in rat astrocytes exposed to 2-CE. In the present study, we analyzed the association of nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1) with MMP-9 overexpression in astrocytes treated with 2-CE. MMP-9, p65, c-Jun, and c-Fos were significantly upregulated by 2-CE treatment, which also enhanced phosphorylation of c-Jun, c-Fos and inhibitor of κBα (IκBα), and nuclear translocation of p65. Furthermore, inhibition of IκBα phosphorylation and AP-1 activity with the specific inhibitors could attenuate MMP-9 overexpression in the cells. On the other hand, inhibition of p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway suppressed the activation of both NF-κB and AP-1 in 2-CE-treated astrocytes. In conclusion, MMP-9 overexpression induced by 2-CE in astrocytes could be mediated at least in part through the p38 signaling pathway via activation of both NF-κB and AP-1. This study might provide novel clues for clarifying the mechanisms underlying 1,2-DCE associated cerebral edema.
Collapse
|
100
|
Navarro-Oviedo M, Roncal C, Salicio A, Belzunce M, Rabal O, Toledo E, Zandio B, Rodríguez JA, Páramo JA, Muñoz R, Orbe J. MMP10 Promotes Efficient Thrombolysis After Ischemic Stroke in Mice with Induced Diabetes. Transl Stroke Res 2018; 10:389-401. [PMID: 30051168 DOI: 10.1007/s12975-018-0652-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023]
Abstract
Diabetes is an important risk factor for ischemic stroke (IS). Tissue-type plasminogen activator (tPA) has been associated with less successful revascularization and poor functional outcome in diabetes. We assessed whether a new thrombolytic strategy based on MMP10 was more effective than tPA in a murine IS model of streptozotocin (STZ)-induced diabetes. Wild-type mice were administered a single dose of streptozotocin (STZ) (180 mg/kg) to develop STZ-induced diabetes mellitus. Two weeks later, IS was induced by thrombin injection into the middle cerebral artery and the effect of recombinant MMP10 (6.5 μg/kg), tPA (10 mg/kg) or tPA/MMP10 on brain damage and functional outcome were analysed. Motor activity was assessed using the open field test. Additionally, we studied plasminogen activator inhibitor-1 (PAI-1) and thrombin-antithrombin complex levels (TAT) by ELISA and oxidative stress and blood-brain barrier (BBB) integrity by immunohistochemistry and western blot. MMP10 treatment was more effective at reducing infarct size and neurodegeneration than tPA 24 h and 3 days after IS in diabetic mice. Locomotor activity was impaired by hyperglycemia and ischemic injury, but not by the thrombolytic treatments. Additionally, TAT, oxidative stress and BBB permeability were reduced by MMP10 treatment, whereas brain bleeding or PAI-1 expression did not differ between treatments. Thrombolytic treatment with MMP10 was more effective than tPA at reducing stroke and neurodegeneration in a diabetic murine model of IS, without increasing haemorrhage. Thus, we propose MMP10 as a potential candidate for the clinical treatment of IS in diabetic patients.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Agustina Salicio
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain
| | - Miriam Belzunce
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estefanía Toledo
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Ministry of Economy and Competitiveness, ISCIII, Pamplona, Spain
| | - Beatriz Zandio
- Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Jose A Rodríguez
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jose A Páramo
- CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Haematology Service, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Roberto Muñoz
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Neurology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josune Orbe
- Atherothrombosis Research Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain. .,CIBER Cardiovascular (CIBERCV), Ministry of Economy and Competitiveness, ISCIII, Madrid, Spain. .,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|