51
|
Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol 2020; 40:885-900. [PMID: 32160774 DOI: 10.1161/atvbaha.119.313067] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aortic valve stenosis is the most prevalent heart valve disease worldwide. Although interventional treatment options have rapidly improved in recent years, symptomatic aortic valve stenosis is still associated with high morbidity and mortality. Calcific aortic valve stenosis is characterized by a progressive fibro-calcific remodeling and thickening of the aortic valve cusps, which subsequently leads to valve obstruction. The underlying pathophysiology is complex and involves endothelial dysfunction, immune cell infiltration, myofibroblastic and osteoblastic differentiation, and, subsequently, calcification. To date, no pharmacotherapy has been established to prevent aortic valve calcification. However, novel promising therapeutic targets have been recently identified. This review summarizes the current knowledge of pathomechanisms involved in aortic valve calcification and points out novel treatment strategies.
Collapse
Affiliation(s)
- Philip Roger Goody
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Mohammed Rabiul Hosen
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Dominik Christmann
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Sven Thomas Niepmann
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | | | - Matti Adam
- Clinic for Internal Medicine II, University Hospital Cologne, Germany (M.A.)
| | - Florian Bönner
- Clinic for Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Germany (F.B.)
| | - Sebastian Zimmer
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Georg Nickenig
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Felix Jansen
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| |
Collapse
|
52
|
Shar JA, Brown KN, Keswani SG, Grande-Allen J, Sucosky P. Impact of Aortoseptal Angle Abnormalities and Discrete Subaortic Stenosis on Left-Ventricular Outflow Tract Hemodynamics: Preliminary Computational Assessment. Front Bioeng Biotechnol 2020; 8:114. [PMID: 32175314 PMCID: PMC7056880 DOI: 10.3389/fbioe.2020.00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is an obstruction of the left ventricular outflow tract (LVOT) due to the formation of a fibromuscular membrane upstream of the aortic valve. DSS is a major risk factor for aortic regurgitation (AR), which often persists after surgical resection of the membrane. While the etiology of DSS and secondary AR is largely unknown, the frequent association between DSS and aortoseptal angle (AoSA) abnormalities has supported the emergence of a mechanobiological pathway by which hemodynamic stress alterations on the septal wall could trigger a biological cascade leading to fibrosis and membrane formation. The resulting LVOT flow disturbances could activate the valve endothelium and contribute to AR. In an effort to assess this hypothetical mechano-etiology, this study aimed at isolating computationally the effects of AoSA abnormalities on septal wall shear stress (WSS), and the impact of DSS on LVOT hemodynamics. Two-dimensional computational fluid dynamics models featuring a normal AoSA (N-LV), a steep AoSA (S-LV), and a steep AoSA with a DSS lesion (DSS-LV) were designed to compute the flow in patient-specific left ventricles (LVs). Boundary conditions consisted of transient velocity profiles at the mitral inlet and LVOT outlet, and patient-specific LV wall motion. The deformation of the DSS lesion was computed using a two-way fluid-structure interaction modeling strategy. Turbulence was accounted for via implementation of the k-ω turbulence model. While the N-LV and S-LV models generated similar LVOT flow characteristics, the DSS-LV model resulted in an asymmetric LVOT jet-like structure, subaortic stenotic conditions (up to 2.4-fold increase in peak velocity, 45% reduction in effective jet diameter vs. N-LV/S-LV), increased vorticity (2.8-fold increase) and turbulence (5- and 3-order-of-magnitude increase in turbulent kinetic energy and Reynolds shear stress, respectively). The steep AoSA subjected the septal wall to a 23% and 69% overload in temporal shear magnitude and gradient, respectively, without any substantial change in oscillatory shear index. This study reveals the existence of WSS overloads on septal wall regions prone to DSS lesion formation in steep LVOTs, and the development of highly turbulent, stenotic and asymmetric flow in DSS LVOTs, which support a possible mechano etiology for DSS and secondary AR.
Collapse
Affiliation(s)
- Jason A. Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N. Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G. Keswani
- Division of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
53
|
Hayashi H, Akiyama K, Itatani K, DeRoo S, Sanchez J, Ferrari G, Colombo PC, Takeda K, Wu IY, Kainuma A, Takayama H. A novel in vivo assessment of fluid dynamics on aortic valve leaflet using epi-aortic echocardiogram. Echocardiography 2020; 37:323-330. [PMID: 32003907 DOI: 10.1111/echo.14596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mechanical stress caused by blood flow, such as wall shear stress (WSS) and its related parameters, is key moderator of endothelial degeneration. However, an in vivo method to measure WSS on heart valves has not been developed. METHODS We developed a novel approach, based on vector flow mapping using intraoperative epi-aortic echocardiogram, to measure WSS and oscillatory shear index (OSI) on the aortic valve. We prospectively enrolled 15 patients with normal valves, who underwent coronary artery bypass graft. RESULTS Systolic WSS on the ventricularis (2.40 ± 0.44 Pa [1.45-3.00 Pa]) was higher than systolic WSS on the fibrosa (0.33 ± 0.08 Pa [0.14-0.47 Pa], P < .001) and diastolic WSS on the ventricularis (0.18 ± 0.07 Pa [0.04-0.28 Pa], P < .001). Oscillatory shear index on the fibrosa was higher than on the ventricularis (0.29 ± 0.04 [0.24-0.36] vs 0.05 ± 0.03 [0.01-0.12], P < .001). A pilot study involving two patients with severe aortic regurgitation showed significantly different values in fluid dynamics. CONCLUSION Vector flow mapping method using intraoperative epi-aortic echocardiogram is an effective way of measuring WSS and OSI on normal aortic leaflet in vivo, allowing for better understanding of the pathophysiology of aortic valve diseases.
Collapse
Affiliation(s)
- Hideyuki Hayashi
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Koichi Akiyama
- Department of Anesthesiology, Yodogawa Christian Hospital, Osaka, Japan
| | - Keiichi Itatani
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Scott DeRoo
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Joseph Sanchez
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Giovanni Ferrari
- Department of Surgery and Biomedical Engineering, Columbia University Medical, New York, NY, USA
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Koji Takeda
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Isaac Y Wu
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Atsushi Kainuma
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Hiroo Takayama
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
54
|
Liu J, Cornelius K, Graham M, Leonard T, Tipton A, Yorde A, Sucosky P. Design and Computational Validation of a Novel Bioreactor for Conditioning Vascular Tissue to Time-Varying Multidirectional Fluid Shear Stress. Cardiovasc Eng Technol 2019; 10:531-542. [PMID: 31309526 DOI: 10.1007/s13239-019-00426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The cardiovascular endothelium experiences pulsatile and multidirectional fluid wall shear stress (WSS). While the effects of non-physiologic WSS magnitude and pulsatility on cardiovascular function have been studied extensively, the impact of directional abnormalities remains unknown due to the challenge to replicate this characteristic in vitro. To address this gap, this study aimed at designing a bioreactor capable of subjecting cardiovascular tissue to time-varying WSS magnitude and directionality. METHODS The device consisted of a modified cone-and-plate bioreactor. The cone rotation generates a fluid flow subjecting tissue to desired WSS magnitude, while WSS directionality is achieved by altering the alignment of the tissue relative to the flow at each instant of time. Computational fluid dynamics was used to verify the device ability to replicate the native WSS of the proximal aorta. Cone and tissue mount velocities were determined using an iterative optimization procedure. RESULTS Using conditions derived from cone-and-plate theory, the initial simulations yielded root-mean-square errors of 22.8 and 8.4% in WSS magnitude and angle, respectively, between the predicted and the target signals over one cycle, relative to the time-averaged target values. The conditions obtained after two optimization iterations reduced those errors to 3.5 and 0.5%, respectively, and generated 0.2% and 0.01% difference in time-averaged WSS magnitude and angle, respectively, relative to the target waveforms. CONCLUSIONS A bioreactor capable of generating simultaneously desired time-varying WSS magnitude and directionality was designed and validated computationally. The ability to subject tissue to in vivo-like WSS will provide new insights into cardiovascular mechanobiology and disease.
Collapse
Affiliation(s)
- Janet Liu
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Kurtis Cornelius
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Mathew Graham
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Tremayne Leonard
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Austin Tipton
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Abram Yorde
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA
| | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, 257 Russ Engineering Center, Dayton, OH, 45435, USA.
| |
Collapse
|
55
|
Sabatino J, Wicik Z, De Rosa S, Eyileten C, Jakubik D, Spaccarotella C, Mongiardo A, Postula M, Indolfi C. MicroRNAs fingerprint of bicuspid aortic valve. J Mol Cell Cardiol 2019; 134:98-106. [DOI: 10.1016/j.yjmcc.2019.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
|
56
|
Meza D, Musmacker B, Steadman E, Stransky T, Rubenstein DA, Yin W. Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain. Cell Mol Bioeng 2019; 12:311-325. [PMID: 31719917 DOI: 10.1007/s12195-019-00585-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The goal of this study was to investigate how concurrent shear stress and tensile strain affect endothelial cell biomechanical responses. Methods Human coronary artery endothelial cells were exposed to concurrent pulsatile shear stress and cyclic tensile strain in a programmable shearing and stretching device. Three shear stress-tensile strain conditions were used: (1) pulsatile shear stress at 1 Pa and cyclic tensile strain at 7%, simulating normal stress/strain conditions in a healthy coronary artery; (2) shear stress at 3.7 Pa and tensile strain at 3%, simulating pathological stress/strain conditions near a stenosis; (3) shear stress at 0.7 Pa and tensile strain at 5%, simulating pathological stress/strain conditions in a recirculation zone. Cell morphology was quantified using immunofluorescence microscopy. Cell surface PECAM-1 phosphorylation, ICAM-1 expression, ERK1/2 and NF-κB activation were measured using ELISA or Western blot. Results Simultaneous stimulation from pulsatile shear stress and cyclic tensile strain induced a significant increase in cell area, compared to that induced by shear stress or tensile strain alone. The combined stimulation caused significant increases in PECAM-1 phosphorylation. The combined stimulation also significantly enhanced EC surface ICAM-1 expression (compared to that under shear stress alone) and transcriptional factor NF-κB activation (compared to that under control conditions). Conclusion Pulsatile shear stress and cyclic tensile strain could induce increased but not synergistic effect on endothelial cell morphology or activation. The combined mechanical stimulation can be relayed from cell membrane to nucleus. Therefore, to better understand how mechanical conditions affect endothelial cell mechanotransduction and cardiovascular disease development, both shear stress and tensile strain need to be considered.
Collapse
Affiliation(s)
- Daphne Meza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Bryan Musmacker
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Thomas Stransky
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
- Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA
| |
Collapse
|
57
|
Simmons CA, Jo H. Editorial: Special Issue on Heart Valve Mechanobiology : New Insights into Mechanical Regulation of Valve Disease and Regeneration. Cardiovasc Eng Technol 2019; 9:121-125. [PMID: 29761407 DOI: 10.1007/s13239-018-0360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. .,Department of Cardiology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
58
|
Oscillating flow promotes inflammation through the TLR2–TAK1–IKK2 signalling pathway in human umbilical vein endothelial cell (HUVECs). Life Sci 2019; 224:212-221. [DOI: 10.1016/j.lfs.2019.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
|
59
|
Esmerats JF, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, Taylor WR, Nerem RM, Yoganathan AP, Jo H. Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:467-481. [PMID: 30602302 PMCID: PMC6393167 DOI: 10.1161/atvbaha.118.312233] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.
Collapse
Affiliation(s)
- Joan Fernandez Esmerats
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Lina Gu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Md Tausif Salim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Michael Ohh
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, CA
| | - W. Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| | - Robert M. Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology. Atlanta, GA, USA
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| |
Collapse
|
60
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
61
|
The relationship between endothelial function and aortic valve calcification: Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2018; 280:155-165. [PMID: 30529828 DOI: 10.1016/j.atherosclerosis.2018.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/19/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Aortic valve calcification (AVC) may be associated with atherogenic processes arising from endothelial dysfunction (ED). Limited data is available about the relationship between ED, defined by flow mediated dilation (FMD%) and biomarkers, and the prevalence and progression of AVC in a multiethnic population. METHODS A sample of 3475 individuals from the Multi-Ethnic Study of Atherosclerosis (MESA), with both initial and repeat CT scans at a mean of 2.65 ± 0.84 years and FMD% and serologic markers of ED [ C-reactive protein (CRP), Von Willebrand factor (vWF), Plasminogen Activator Inhibitor (PAI), fibrinogen, Interleukin 6 (IL6), E-selectin and ICAM-1 (Intercellular Adhesion Molecule 1)], were analyzed. Multivariate modeling evaluated the association between ED and the prevalent AVC and AVC progression. RESULTS The median levels of FMD% was lower and vWF%, fibrinogen, IL6 and ICAM-1 were significantly higher in the AVC prevalence group versus no AVC prevalence (all p < 0.001). In the fully adjusted model for established risk factors, decreasing FMD% or increasing biomarkers was not independently associated with AVC prevalence [OR FMD% 1.028 (0.786, 1.346), CRP 0.981 (0.825, 1.168), vWF 1.132 (0.559, 2.292), PAI 1.124 (0.960, 1.316), fibrinogen 1.116 (0.424, 2.940), IL6 1.065 (0.779, 1.456), E-selectin 0.876 (0.479, 1.602) and ICAM-1 1.766 (0.834, 3.743)]. In the AVC progression group, FMD%, vWF%, fibrinogen and IL6 were significantly different (p < 0.05). After adjusting for cardiac risk factors, AVC progression was not independently associated with decreasing FMD% or increasing biomarkers [OR FMD% 1.105 (0.835, 1.463), CRP 1.014 (0.849, 1.210), vWF% 1.132 (0.559, 2.292), PAI 1.124 (0.960, 1.316), fibrinogen 0.909 (0.338, 2.443), IL6 1.061 (0.772, 1.459), E-selectin 0.794 (0.426, 1.480) and ICAM-1 0.998 (0.476, 2.092)]. CONCLUSIONS Endothelial dysfunction by FMD% and biomarkers is not significantly associated with the prevalence or progression of aortic valve calcification after adjustment for cardiac risk factors.
Collapse
|
62
|
Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018; 5:162. [PMID: 30460247 PMCID: PMC6232166 DOI: 10.3389/fcvm.2018.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention.
Collapse
Affiliation(s)
- Vinal Menon
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
63
|
Xu H, Sui F, Sun M, Guo G. Downregulated microRNA‐224 aggravates vulnerable atherosclerotic plaques and vascular remodeling in acute coronary syndrome through activation of the TGF‐β/Smad pathway. J Cell Physiol 2018; 234:2537-2551. [DOI: 10.1002/jcp.26945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hai‐Ming Xu
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| | - Feng‐Hua Sui
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| | - Mei‐Hua Sun
- Department of PediatricsThe First Hospital of Jilin UniversityChangchun China
| | - Gong‐Liang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| |
Collapse
|
64
|
Lee SH, Choi JH. Involvement of inflammatory responses in the early development of calcific aortic valve disease: lessons from statin therapy. Anim Cells Syst (Seoul) 2018; 22:390-399. [PMID: 30533261 PMCID: PMC6282465 DOI: 10.1080/19768354.2018.1528175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common degenerative heart valve disease. Among the many risk factors for this disease are age, hypercholesterolemia, hypertension, smoking, type-2 diabetes, rheumatic fever, and chronic kidney disease. Since many of these overlap with risk factors for atherosclerosis, the molecular and cellular mechanisms of CAVD development have been presumed to be similar to those for atherogenesis. Thus, attempts have been made to evaluate the therapeutic efficacy of statins, representative anti-atherosclerosis drugs with lipid-lowering and anti-inflammatory effects, against CAVD. Unfortunately, statins have shown little or no effect on CAVD development. But some reports suggest that statins may prevent or reduce the development of early stage CAVD in which having calcification is absent or minimal. These results suggest that therapeutic approaches should differ according to the stage of disease, and that a precise understanding of the mechanism of aortic valve calcification is required to identify novel therapeutic targets for advanced CAVD. Given the involvement of inflammatory processes in the development and progression of CAVD, current therapeutic approaches for chronic inflammatory cardiovascular disease like atherosclerosis may help to prevent or minimize the early development of CAVD. In this review, we focus on several inflammatory cellular and molecular components involved in CAVD that might be considered drug targets for preventing CAVD.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
65
|
Lee J, Estlack Z, Somaweera H, Wang X, Lacerda CMR, Kim J. A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells. LAB ON A CHIP 2018; 18:2946-2954. [PMID: 30123895 DOI: 10.1039/c8lc00545a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To precisely investigate the mechanobiological responses of valvular endothelial cells, we developed a microfluidic flow profile generator using a pneumatically-actuated micropump consisting of microvalves of various sizes. By controlling the closing pressures and the actuation times of these microvalves, we modulated the magnitude and frequency of the shear stress to mimic mitral and aortic inflow profiles with frequencies in the range of 0.8-2 Hz and shear stresses up to 20 dyn cm-2. To demonstrate this flow profile generator, aortic inflow with an average of 5.9 dyn cm-2 shear stress at a frequency of 1.2 Hz with a Reynolds number of 2.75, a Womersley number of 0.27, and an oscillatory shear index (OSI) value of 0.2 was applied to porcine aortic valvular endothelial cells (PAVECs) for mechanobiological studies. The cell alignment, cell elongation, and alpha-smooth muscle actin (αSMA) expression of PAVECs under perfusion, steady flow, and aortic inflow conditions were analyzed to determine their shear-induced cell migration and trans-differentiation. In this morphological and immunocytochemical study, we found that the PAVECs elongated and aligned themselves perpendicular to the directions of the steady flow and the aortic inflow. In contrast, under perfusion with a fluidic shear stress of 0.47 dyn cm-2, the PAVECs elongated and aligned themselves parallel to the direction of flow. The PAVECs exposed to the aortic inflow upregulated their αSMA-protein expression to a greater degree than those exposed to perfusion and steady flow. By comparing these results to those of previous studies of pulsatile flow, we also found that the ratio of positive to negative shear stress plays an important role in determining PAVECs' trans-differentiation and adaptation to flow. This microfluidic cardiac flow profile generator will enable future valvular mechanobiological studies to determine the roles of magnitude and frequency of shear stresses.
Collapse
Affiliation(s)
- Joohyung Lee
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
67
|
Von Willebrand factor and the aortic valve: Concepts that are important in the transcatheter aortic valve replacement era. Thromb Res 2018; 170:20-27. [PMID: 30092557 DOI: 10.1016/j.thromres.2018.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
Abstract
Since the approval of the first transcatheter aortic valve replacement (TAVR) device in 2011, this technology has undergone substantial enhancements and exponential growth. However, valve thrombosis and residual paravalvular leaks (PVL) are among the challenges that require further investigation. Recently, monitoring von Willebrand factor (vWF) multimers has emerged as a tool to help evaluate the severity of PVL after TAVR. Following TAVR, vWF large multimers recovery have been documented. The role of large vWF multimers recovery and their interactions with platelets, and the endothelium have not been entirely elucidated. In this review, we discuss vWF synthesis and its role in aortic stenosis. We further provide an overview of the studies that investigated changes affecting vWF multimers following TAVR and the role of HMW vWF multimers monitoring in the determination of PVL severity. We also offer potential future directions for what will be fertile ground for research in this field.
Collapse
|
68
|
Jung JJ, Jadbabaie F, Sadeghi MM. Molecular imaging of calcific aortic valve disease. J Nucl Cardiol 2018; 25:1148-1155. [PMID: 29359271 PMCID: PMC6054901 DOI: 10.1007/s12350-017-1158-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Calcific aortic valve disease (CAVD) can progress to symptomatic aortic stenosis in a subset of patients. The severity of aortic stenosis and the extent of valvular calcification can be evaluated readily by echocardiography, CT, and MRI using well-established imaging protocols. However, these techniques fail to address optimally other important aspects of CAVD, including the propensity for disease progression, risk of complications in asymptomatic patients, and the effect of therapeutic interventions on valvular biology. These gaps may be addressed by molecular imaging targeted at key biological processes such as inflammation, remodeling, and calcification that mediate the development and progression of CAVD. In this review, recent advances in valvular molecular imaging, including 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) PET, and matrix metalloproteinase-targeted SPECT imaging in the preclinical and clinical settings are presented and discussed.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA
| | - Farid Jadbabaie
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Yale Cardiovascular Research Center, 300 George Street, #770G, New Haven, CT, 06511, USA.
| |
Collapse
|
69
|
Thondapu V, Bourantas CV, Foin N, Jang IK, Serruys PW, Barlis P. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 2018; 38:81-92. [PMID: 28158723 DOI: 10.1093/eurheartj/ehv689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/07/2015] [Accepted: 11/27/2015] [Indexed: 01/13/2023] Open
Abstract
Coronary plaque rupture is the most common cause of vessel thrombosis and acute coronary syndrome. The accurate early detection of plaques prone to rupture may allow prospective, preventative treatment; however, current diagnostic methods remain inadequate to detect these lesions. Established imaging features indicating vulnerability do not confer adequate specificity for symptomatic rupture. Similarly, even though experimental and computational studies have underscored the importance of endothelial shear stress in progressive atherosclerosis, the ability of shear stress to predict plaque progression remains incremental. This review examines recent advances in image-based computational modelling that have elucidated possible mechanisms of plaque progression and rupture, and potentially novel features of plaques most prone to symptomatic rupture. With further study and clinical validation, these markers and techniques may improve the specificity of future culprit plaque detection.
Collapse
Affiliation(s)
- Vikas Thondapu
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Victoria, Australia,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria, Australia
| | - Christos V Bourantas
- University College London Hospitals, National Health Service Foundation Trust, London, UK
| | - Nicolas Foin
- National Heart Centre, Singapore, Singapore,Duke-National University Singapore Medical School, Singapore
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Peter Barlis
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Victoria, Australia,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Halevi R, Hamdan A, Marom G, Lavon K, Ben-Zekry S, Raanani E, Haj-Ali R. A New Growth Model for Aortic Valve Calcification. J Biomech Eng 2018; 140:2682794. [DOI: 10.1115/1.4040338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/08/2022]
Abstract
Calcific aortic valve disease (CAVD) is a progressive disease in which minerals accumulate in the tissue of the aortic valve cusps, stiffening them and preventing valve opening and closing. The process of valve calcification was found to be similar to that of bone formation including cell differentiation to osteoblast-like cells. Studies have shown the contribution of high strains to calcification initiation and growth process acceleration. In this paper, a new strain-based calcification growth model is proposed. The model aims to explain the unique shape of the calcification and other disease characteristics. The calcification process was divided into two stages: Calcification initiation and calcification growth. The initiation locations were based on previously published findings and a reverse calcification technique (RCT), which uses computed tomography (CT) scans of patients to reveal the calcification initiation point. The calcification growth process was simulated by a finite element model of one aortic valve cusp loaded with cyclic loading. Similar to Wolff's law, describing bone response to stress, our model uses strains to drive calcification formation. The simulation grows calcification from its initiation point to its full typical stenotic shape. Study results showed that the model was able to reproduce the typical calcification growth pattern and shape, suggesting that strain is the main driving force behind calcification progression. The simulation also sheds light on other disease characteristics, such as calcification growth acceleration as the disease progresses, as well as sensitivity to hypertension.
Collapse
Affiliation(s)
- Rotem Halevi
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Gil Marom
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Karin Lavon
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Sagit Ben-Zekry
- Echocardiography Laboratory, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ehud Raanani
- Cardiothoracic Surgery Department, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Nathan Cummings Chair in Mechanics, The Fleischman Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel e-mail:
| |
Collapse
|
71
|
Sigüenza J, Pott D, Mendez S, Sonntag SJ, Kaufmann TAS, Steinseifer U, Nicoud F. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2945. [PMID: 29181891 DOI: 10.1002/cnm.2945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method.
Collapse
Affiliation(s)
- Julien Sigüenza
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- Sim&Cure, Cap Gamma, 1682 rue de la Valsière, 34790, Grabels, France
| | - Desiree Pott
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Simon Mendez
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | - Simon J Sonntag
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim A S Kaufmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
72
|
Hulin A, Hego A, Lancellotti P, Oury C. Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets. Front Cardiovasc Med 2018; 5:21. [PMID: 29594151 PMCID: PMC5862098 DOI: 10.3389/fcvm.2018.00021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 01/17/2023] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular events leading to leaflets calcification are complex. Upon endothelium cell damage, oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways driving and connecting lipid metabolism, inflammation and osteogenesis. This review draws a summary of the recent advances and discusses their exploitation as promising therapeutic targets to treat CAVD and reduce valve replacement.
Collapse
Affiliation(s)
- Alexia Hulin
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Alexandre Hego
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium.,GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège Hospital, Heart Valve Clinic, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
73
|
Alicic RZ, Johnson EJ, Tuttle KR. Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:181-191. [PMID: 29580582 DOI: 10.1053/j.ackd.2017.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of CKD and end-stage kidney disease (ESKD) worldwide. Approximately 30-40% of people with diabetes develop this microvascular complication, placing them at high risk of losing kidney function as well as of cardiovascular events, infections, and death. Current therapies are ineffective for arresting kidney disease progression and mitigating risks of comorbidities and death among patients with DKD. As the global count of people with diabetes will soon exceed 400 million, the need for effective and safe treatment options for complications such as DKD becomes ever more urgent. Recently, the understanding of DKD pathogenesis has evolved to recognize inflammation as a major underlying mechanism of kidney damage. In turn, inflammatory mediators have emerged as potential biomarkers and therapeutic targets for DKD. Phase 2 clinical trials testing inhibitors of monocyte-chemotactic protein-1 chemokine C-C motif-ligand 2 and the Janus kinase/signal transducer and activator of transcription pathway, in particular, have produced promising results.
Collapse
|
74
|
In vitro 3D model and miRNA drug delivery to target calcific aortic valve disease. Clin Sci (Lond) 2017; 131:181-195. [PMID: 28057890 DOI: 10.1042/cs20160378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/27/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the Western population, claiming 17000 deaths per year in the United States and affecting 25% of people older than 65 years of age. Contrary to traditional belief, CAVD is not a passive, degenerative disease but rather a dynamic disease, where initial cellular changes in the valve leaflets progress into fibrotic lesions that induce valve thickening and calcification. Advanced thickening and calcification impair valve function and lead to aortic stenosis (AS). Without intervention, progressive ventricular hypertrophy ensues, which ultimately results in heart failure and death. Currently, aortic valve replacement (AVR), surgical or transcatheter, is the only effective therapy to treat CAVD. However, these costly interventions are often delayed until the late stages of the disease. Nonetheless, 275000 are performed per year worldwide, and this is expected to triple by 2050. Given the current landscape, next-generation therapies for CAVD are needed to improve patient outcome and quality of life. Here, we first provide a background on the aortic valve (AV) and the pathobiology of CAVD as well as highlight current directions and future outlook on the development of functional 3D models of CAVD in vitro We then consider an often-overlooked aspect contributing to CAVD: miRNA (mis)regulation. Therapeutics could potentially normalize miRNA levels in the early stages of the disease and may slow its progression or even reverse calcification. We close with a discussion of strategies that would enable the use of miRNA as a therapeutic for CAVD. This focuses on an overview of controlled delivery technologies for nucleic acid therapeutics to the valve or other target tissues.
Collapse
|
75
|
Perrucci GL, Zanobini M, Gripari P, Songia P, Alshaikh B, Tremoli E, Poggio P. Pathophysiology of Aortic Stenosis and Mitral Regurgitation. Compr Physiol 2017. [PMID: 28640443 DOI: 10.1002/cphy.c160020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global impact of the spectrum of valve diseases is a crucial, fast-growing, and underrecognized health problem. The most prevalent valve diseases, requiring surgical intervention, are represented by calcific and degenerative processes occurring in heart valves, in particular, aortic and mitral valve. Due to the increasing elderly population, these pathologies will gain weight in the global health burden. The two most common valve diseases are aortic valve stenosis (AVS) and mitral valve regurgitation (MR). AVS is the most commonly encountered valve disease nowadays and affects almost 5% of elderly population. In particular, AVS poses a great challenge due to the multiple comorbidities and frailty of this patient subset. MR is also a common valve pathology and has an estimated prevalence of 3% in the general population, affecting more than 176 million people worldwide. This review will focus on pathophysiological changes in both these valve diseases, starting from the description of the anatomical aspects of normal valve, highlighting all the main cellular and molecular features involved in the pathological progression and cardiac consequences. This review also evaluates the main approaches in clinical management of these valve diseases, taking into account of the main published clinical guidelines. © 2017 American Physiological Society. Compr Physiol 7:799-818, 2017.
Collapse
Affiliation(s)
- Gianluca L Perrucci
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Paola Songia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
76
|
Szilágyi SM, Popovici MM, Szilágyi L. Review. Automatic Segmentation Techniques of the Coronary Artery Using CT Images in Acute Coronary Syndromes. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2017. [DOI: 10.1515/jce-2017-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Coronary artery disease represents one of the leading reasons of death worldwide, and acute coronary syndromes are their most devastating consequences. It is extremely important to identify the patients at risk for developing an acute myocardial infarction, and this goal can be achieved using noninvasive imaging techniques. Coronary computed tomography angiography (CCTA) is currently one of the most reliable methods used for assessing the coronary arteries; however, its use in emergency settings is sometimes limited due to time constraints. This paper presents the main characteristics of plaque vulnerability, the role of CCTA in the assessment of vulnerable plaques, and automatic segmentation techniques of the coronary artery tree based on CT angiography images. A detailed inventory of existing methods is given, representing the state-of-the-art of computational methods applied in vascular system segmentation, focusing on the current applications in acute coronary syndromes.
Collapse
Affiliation(s)
| | - Monica Marton Popovici
- Swedish Medical Center, Department of Internal Medicine and Critical Care, 21601, 76th Ave W, Edmonds, Washington , 98026, USA
| | - László Szilágyi
- Department of Electrical Engineering, Sapientia University, Tîrgu Mureș , Romania
| |
Collapse
|
77
|
Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 2017; 312:F716-F731. [PMID: 27558558 PMCID: PMC6109808 DOI: 10.1152/ajprenal.00314.2016] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/16/2016] [Indexed: 01/10/2023] Open
Abstract
Increasing incidences of obesity and diabetes have made diabetic kidney disease (DKD) the leading cause of chronic kidney disease and end-stage renal disease worldwide. Despite current pharmacological treatments, including strategies for optimizing glycemic control and inhibitors of the renin-angiotensin system, DKD still makes up almost one-half of all cases of end-stage renal disease in the United States. Compelling and mounting evidence has clearly demonstrated that immunity and inflammation play a paramount role in the pathogenesis of DKD. This article reviews the involvement of the immune system in DKD and identifies important roles of key immune and inflammatory mediators. One of the most recently identified biomarkers is serum amyloid A, which appears to be relatively specific for DKD. Novel and evolving treatment approaches target protein kinases, transcription factors, chemokines, adhesion molecules, growth factors, advanced glycation end-products, and other inflammatory molecules. This is the beginning of a new era in the understanding and treatment of DKD, and we may have finally reached a tipping point in our fight against the growing burden of DKD.
Collapse
Affiliation(s)
- Raimund Pichler
- Division of Nephrology, University of Washington, Seattle, Washington;
| | - Maryam Afkarian
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
| | - Brad P Dieter
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| | - Katherine R Tuttle
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington; and
- Providence Health Care, Spokane, Washington
| |
Collapse
|
78
|
Abstract
Hypertension, the most common preventable risk factor for cardiovascular disease and death, is a growing health burden. Serious cardiovascular complications result from target organ damage including cerebrovascular disease, heart failure, ischaemic heart disease and renal failure. While many systems contribute to blood pressure (BP) elevation, the vascular system is particularly important because vascular dysfunction is a cause and consequence of hypertension. Hypertension is characterised by a vascular phenotype of endothelial dysfunction, arterial remodelling, vascular inflammation and increased stiffness. Antihypertensive drugs that influence vascular changes associated with high BP have greater efficacy for reducing cardiovascular risk than drugs that reduce BP, but have little or no effect on the adverse vascular phenotype. Angiotensin converting enzyme ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) improve endothelial function and prevent vascular remodelling. Calcium channel blockers also improve endothelial function, although to a lesser extent than ACEIs and ARBs. Mineralocorticoid receptor blockers improve endothelial function and reduce arterial stiffness, and have recently become more established as antihypertensive drugs. Lifestyle factors are essential in preventing the adverse vascular changes associated with high BP and reducing associated cardiovascular risk. Clinicians and scientists should incorporate these factors into treatment decisions for patients with high BP, as well as in the development of new antihypertensive drugs that promote vascular health.
Collapse
Affiliation(s)
- Alan C Cameron
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
79
|
Cao K, Sucosky P. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02798. [PMID: 27138991 DOI: 10.1002/cnm.2798] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/22/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
The bicuspid aortic valve (BAV) is the most common congenital valvular defect and a major risk factor for secondary calcific aortic valve disease. While hemodynamics is presumed to be a potential contributor to this complication, the validation of this theory has been hampered by the limited knowledge of the mechanical stress abnormalities experienced by BAV leaflets and their dependence on the heterogeneous BAV fusion patterns. The objective of this study was to compare computationally the regional and temporal fluid wall shear stress (WSS) and structural deformation characteristics in tricuspid aortic valve (TAV), type-0, and type-I BAV leaflets. Arbitrary Lagrangian-Eulerian fluid-structure interaction models were designed to simulate the flow and leaflet dynamics in idealized TAV, type-0, and type-I BAV geometries subjected to physiologic transvalvular pressure. The regional leaflet mechanics was quantified in terms of temporal shear magnitude (TSM), oscillatory shear index (OSI), temporal shear gradient (TSG), and stretch. The simulations identified regions of WSS overloads and increased WSS bidirectionality (174% increase in temporal shear magnitude, 0.10 increase in OSI on type-0 leaflets) in BAV leaflets relative to TAV leaflets. BAV leaflets also experienced larger radial deformations than TAV leaflets (4% increase in type-0 BAV leaflets). Type-I BAV leaflets exhibited contrasted WSS environments marked by WSS overloads on the non-coronary leaflet and sub-physiologic WSS levels on the fused leaflet. This study provides important insights into the mechanical characteristics of BAV leaflets, which may further our understanding of the role played by hemodynamic forces in BAV disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- K Cao
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| | - P Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| |
Collapse
|
80
|
Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovasc Eng Technol 2017; 9:141-150. [PMID: 28236165 DOI: 10.1007/s13239-017-0296-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD) is a major cause of morbidity in the aging population, but the underlying mechanisms of its progression remain poorly understood. Aortic valve calcification preferentially occurs on the fibrosa, which is subjected to disturbed flow. The side-specific progression of the disease is characterized by inflammation, calcific lesions, and extracellular matrix (ECM) degradation. Here, we explored the role of mechanosensitive microRNA-181b and its downstream targets in human aortic valve endothelial cells (HAVECs). Mechanistically, miR-181b is upregulated in OS and fibrosa, and it targets TIMP3, SIRT1, and GATA6, correlated with increased gelatinase/MMP activity. Overexpression of miR-181b led to decreased TIMP3 and exacerbated MMP activity as shown by gelatinase assay, and miR-181b inhibition decreased gelatinase activity through the repression of TIMP3 levels. Luciferase assay showed specific binding of miR-181b to the TIMP3 gene. Overexpression of miR-181b in HAVECs subjected to either LS or OS increased MMP activity, and miR-181b inhibition abrogated shear-sensitive MMP activity. These studies suggest that targeting this shear-dependent miRNA may provide a novel noninvasive treatment for CAVD.
Collapse
|
81
|
Entstehung und Progression der Aortenklappendegeneration. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-016-0086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Duyuler PT, Duyuler S, İleri M, Demir M, Dolu AK, Başyiğit F. Evaluation of Whole Blood Viscosity in Patients with Aortic Sclerosis. J Tehran Heart Cent 2017; 12:6-10. [PMID: 28469685 PMCID: PMC5409952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/10/2016] [Indexed: 11/07/2022] Open
Abstract
Background: Blood viscosity and aortic sclerosis (AS) are strong predictors of cardiovascular events. The effects of blood viscosity on AS have not been studied adequately. We aimed to investigate the potential connection between whole blood viscosity (WBV) and AS. Methods: AS was detected by transthoracic echocardiography. The estimation of WBV was carried out at both high shear rate (HSR) (208/s) and low shear rate (LSR) (0.5/s) by previously validated formulae using hematocrit (HcT) and total protein (TP) in g/L. WBV at HSR (208/s) is: (0.12 × HcT) + 0.17 (TP - 2.07) and WBV at LSR (0.5/s) is: (1.89 × HcT) + 3.76 (TP - 78.42). Comparisons of WBV at both HSR and LSR were made between patients with and without AS. Results: We included 94 patients with AS (male = 30.9%, mean age = 67.5 y) and 97 control subjects without AS (male =26.6%, mean age = 69.1 y). Almost all of the clinical, echocardiographic, and biochemical characteristics were similar, but TP values were significantly higher in the AS group than in the control group (72.9 ± 5 g/L vs. 75.8 ± 6.1 g/L; p value < 0.001). Hemoglobin and HcT levels were similar (p value = 0.604 and p value = 0.431, respectively). In the AS group, WBV at LSR and HSR was higher than that in the control group (p value = 0.001 for both LSR and HSR). In multiple stepwise logistic regression analysis, WBV was an independent predictor of AS (p value < 0.001). Conclusion: We found higher WBV in patients with AS than in patients without AS at both LSR (0.5/s) and HSR (208/s). WBV at both LSR and HSR was independently associated with AS.
Collapse
Affiliation(s)
- Pınar Türker Duyuler
- Department of Cardiology, Ankara Numune Training and Research Hospital, Ankara, Turkey.
| | - Serkan Duyuler
- Department of Cardiology, Acıbadem Ankara Hospital, Ankara, Turkey.
| | - Mehmet İleri
- Department of Cardiology, Ankara Numune Training and Research Hospital, Ankara, Turkey.
| | - Mevlüt Demir
- Department of Cardiology, Ankara Numune Training and Research Hospital, Ankara, Turkey.
| | - Abdullah Kadir Dolu
- Department of Cardiology, Ankara Numune Training and Research Hospital, Ankara, Turkey.
| | - Funda Başyiğit
- Department of Cardiology, Ankara Numune Training and Research Hospital, Ankara, Turkey.
| |
Collapse
|
83
|
Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
84
|
Yang PF, Song XY, Zeng T, Ai QD, Liu DD, Zuo W, Zhang S, Xia CY, He X, Chen NH. IMM-H004, a coumarin derivative, attenuated brain ischemia/reperfusion injuries and subsequent inflammation in spontaneously hypertensive rats through inhibition of VCAM-1. RSC Adv 2017. [DOI: 10.1039/c7ra02154b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the effect of IMM-H004 in treating brain I/R injury in spontaneously hypertensive rats and showed that IMM-H004 could efficiently ameliorate neurological defects and infarct volume in a time and dose dependent manner.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xiu-Yun Song
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ting Zeng
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Qi-Di Ai
- College of Pharmacy
- Hunan University of Chinese Medicine
- Changsha
- China
| | - Dan-Dan Liu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Wei Zuo
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Shuai Zhang
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Cong-Yuan Xia
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Xin He
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- China
| | - Nai-Hong Chen
- Department of State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica & Neuroscience Center
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
85
|
Understanding the structural features of symptomatic calcific aortic valve stenosis: A broad-spectrum clinico-pathologic study in 236 consecutive surgical cases. Int J Cardiol 2016; 228:364-374. [PMID: 27866029 DOI: 10.1016/j.ijcard.2016.11.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND With age, aortic valve cusps undergo varying degrees of sclerosis which, sometimes, can progress to calcific aortic valve stenosis (AVS). To perform a retrospective clinico-pathologic investigation in patients with calcific AVS. METHODS We characterized and graded the structural remodeling in 236 aortic valves (200 tricuspid and 36 bicuspid) from patients with calcific AVS (148 males; average 72years); possible relationships between general/clinical/echocardiographic characteristics and the histopathologic changes were explored. Twenty autopsy aortic valves served as controls. In 40 cases, we also tested the immunohistochemical expression of metalloproteinases and cytokines, and characterized the inflammatory infiltrate. In 5 cases, we cultured cusp stem cells and explored their potential to differentiate into osteoblasts/adipocytes. RESULTS AVS cusps showed structural remodeling as severe fibrosis (100%), calcific nodules (100%), neoangiogenesis (81%), inflammation (71%), bone metaplasia with or without hematopoiesis (6% and 53%, respectively), adipose metaplasia (16%), and cartilaginous metaplasia (7%). At multivariate analysis, AVS degree and interventricular septum thickness were the only predictors of remodeling (barring inflammation). All the tested metalloproteinases (except MMP-13) and cytokines were expressed in AVS cusps. Inflammation mainly consisted of B and T lymphocytes (CD4+/CD8+ cell ratio 3:1) and plasma cells. AVS changes were mostly different from typical atherosclerosis. Cultured mesenchymal cusp stem cells could differentiate into osteoblasts/adipocytes. CONCLUSIONS Structural remodeling in AVS is peculiar and considerable, and is related to the severity of the disease. However, the different newly formed tissues-where "valvular interstitial cells" play a key role-and their well-known slow turnover suggest a reverse structural remodeling improbable.
Collapse
|
86
|
Liu X, Xu Z. Osteogenesis in calcified aortic valve disease: From histopathological observation towards molecular understanding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:156-161. [DOI: 10.1016/j.pbiomolbio.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
|
87
|
Atkins SK, McNally A, Sucosky P. Mechanobiology in Cardiovascular Disease Management: Potential Strategies and Current Needs. Front Bioeng Biotechnol 2016; 4:79. [PMID: 27777927 PMCID: PMC5056184 DOI: 10.3389/fbioe.2016.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/26/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Samantha K Atkins
- Department of Aerospace and Mechanical Engineering, University of Notre Dame , Notre Dame, IN , USA
| | - Andrew McNally
- Department of Aerospace and Mechanical Engineering, University of Notre Dame , Notre Dame, IN , USA
| | - Philippe Sucosky
- Department of Materials and Mechanical Engineering, Wright State University , Dayton, OH , USA
| |
Collapse
|
88
|
Cao K, Sucosky P. Aortic valve leaflet wall shear stress characterization revisited: impact of coronary flow. Comput Methods Biomech Biomed Engin 2016; 20:468-470. [PMID: 27712083 DOI: 10.1080/10255842.2016.1244266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid-structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.
Collapse
Affiliation(s)
- K Cao
- a Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , IN , USA
| | - P Sucosky
- b Department of Mechanical and Materials Engineering , Wright State University , Dayton , OH , USA
| |
Collapse
|
89
|
Mongkoldhumrongkul N, Latif N, Yacoub MH, Chester AH. Effect of Side-Specific Valvular Shear Stress on the Content of Extracellular Matrix in Aortic Valves. Cardiovasc Eng Technol 2016; 9:151-157. [PMID: 27709350 PMCID: PMC5988791 DOI: 10.1007/s13239-016-0280-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Responses of valve endothelial cells (VECs) to shear stresses are important for the regulation of valve durability. However, the effect of flow patterns subjected to VECs on the opposite surfaces of the valves on the production of extracellular matrix (ECM) has not yet been investigated. This study aims to investigate the response of side-specific flow patterns, in terms of ECM synthesis and/or degradation in porcine aortic valves. Aortic and ventricular sides of aortic valve leaflets were exposed to oscillatory and laminar flow generated by a Cone-and-Plate machine for 48 h. The amount of collagen, GAGs and elastin was quantified and compared to samples collected from the same leaflets without exposing to flow. The results demonstrated that flow is important to maintain the amount of GAGs and elastin in the valve, as compared to the effect of static conditions. Particularly, the laminar waveform plays a crucial role on the modulation of elastin in side-independent manner. Furthermore, the ability of oscillatory flow on the aortic surface to increase the amount of collagen and GAGs cannot be replicated by exposure of an identical flow pattern on the ventricular side of the valve. Side-specific responses to the particular patterns of flow are important to the regulation of ECM components. Such understanding is imperative to the creation of tissue-engineered heart valves that must be created from the “appropriate” cells that can replicate the functions of the native VECs to regulate the different constituents of ECM.
Collapse
Affiliation(s)
| | - Najma Latif
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | - Magdi H Yacoub
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK
| | - Adrian H Chester
- Imperial College, NHLI, Heart Science Centre, Harefield, Middlesex, UB9 6JH, UK.
| |
Collapse
|
90
|
Tandon I, Razavi A, Ravishankar P, Walker A, Sturdivant NM, Lam NT, Wolchok JC, Balachandran K. Valve interstitial cell shape modulates cell contractility independent of cell phenotype. J Biomech 2016; 49:3289-3297. [DOI: 10.1016/j.jbiomech.2016.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
|
91
|
Abstract
SIGNIFICANCE Currently, calcific aortic valve disease (CAVD) is only treatable through surgical intervention because the specific mechanisms leading to the disease remain unclear. In this review, we explore the forces and structure of the valve, as well as the mechanosensors and downstream signaling in the valve endothelium known to contribute to inflammation and valve dysfunction. RECENT ADVANCES While the valvular structure enables adaptation to dynamic hemodynamic forces, these are impaired during CAVD, resulting in pathological systemic changes. Mechanosensing mechanisms-proteins, sugars, and membrane structures-at the surface of the valve endothelial cell relay mechanical signals to the nucleus. As a result, a large number of mechanosensitive genes are transcribed to alter cellular phenotype and, ultimately, induce inflammation and CAVD. Transforming growth factor-β signaling and Wnt/β-catenin have been widely studied in this context. Importantly, NADPH oxidase and reactive oxygen species/reactive nitrogen species signaling has increasingly been recognized to play a key role in the cellular response to mechanical stimuli. In addition, a number of valvular microRNAs are mechanosensitive and may regulate the progression of CAVD. CRITICAL ISSUES While numerous pathways have been described in the pathology of CAVD, no treatment options are available to avoid surgery for advanced stenosis and calcification of the aortic valve. More work must be focused on this issue to lead to successful therapies for the disease. FUTURE DIRECTIONS Ultimately, a more complete understanding of the mechanisms within the aortic valve endothelium will lead us to future therapies important for treatment of CAVD without the risks involved with valve replacement or repair. Antioxid. Redox Signal. 25, 401-414.
Collapse
Affiliation(s)
- Joan Fernández Esmerats
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Jack Heath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Hanjoong Jo
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
92
|
Hsu JJ, Lim J, Tintut Y, Demer LL. Cell-matrix mechanics and pattern formation in inflammatory cardiovascular calcification. Heart 2016; 102:1710-1715. [PMID: 27406839 DOI: 10.1136/heartjnl-2016-309667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Calcific diseases of the cardiovascular system, such as atherosclerotic calcification and calcific aortic valve disease, are widespread and clinically significant, causing substantial morbidity and mortality. Vascular cells, like bone cells, interact with their matrix substrate through molecular signals, and through biomechanical signals, such as traction forces transmitted from cytoskeleton to matrix. The interaction of contractile vascular cells with their matrix may be one of the most important factors controlling pathological mineralisation of the artery wall and cardiac valves. In many respects, the matricrine and matrix mechanical changes in calcific vasculopathy and valvulopathy resemble those occurring in embryonic bone development and normal bone mineralisation. The matrix proteins provide a microenvironment for propagation of crystal growth and provide mechanical cues to the cells that direct differentiation. Small contractions of the cytoskeleton may tug on integrin links to sites on matrix proteins, and thereby sense the stiffness, possibly through deformation of binding proteins causing release of differentiation factors such as products of the members of the transforming growth factor-β superfamily. Inflammation and matrix characteristics are intertwined: inflammation alters the matrix such as through matrix metalloproteinases, while matrix mechanical properties affect cellular sensitivity to inflammatory cytokines. The adhesive properties of the matrix also regulate self-organisation of vascular cells into patterns through reaction-diffusion phenomena and left-right chirality. In this review, we summarise the roles of extracellular matrix proteins and biomechanics in the development of inflammatory cardiovascular calcification.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Jina Lim
- Department of Pediatrics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
93
|
Sanders LN, Schoenhard JA, Saleh MA, Mukherjee A, Ryzhov S, McMaster WG, Nolan K, Gumina RJ, Thompson TB, Magnuson MA, Harrison DG, Hatzopoulos AK. BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circ Res 2016; 119:434-49. [PMID: 27283840 DOI: 10.1161/circresaha.116.308700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown. OBJECTIVE To investigate the role of Grem2 during cardiac repair and assess its potential to improve ventricular function after injury. METHODS AND RESULTS Our data show that Grem2 is transiently induced after MI in peri-infarct area cardiomyocytes during the inflammatory phase of cardiac tissue repair. By engineering loss- (Grem2(-/-)) and gain- (TG(Grem2)) of-Grem2-function mice, we discovered that Grem2 controls the magnitude of the inflammatory response and limits infiltration of inflammatory cells in peri-infarct ventricular tissue, improving cardiac function. Excessive inflammation in Grem2(-/-) mice after MI was because of overactivation of canonical BMP signaling, as proven by the rescue of the inflammatory phenotype through administration of the canonical BMP inhibitor, DMH1. Furthermore, intraperitoneal administration of Grem2 protein in wild-type mice was sufficient to reduce inflammation after MI. Cellular analyses showed that BMP2 acts with TNFα to induce expression of proinflammatory proteins in endothelial cells and promote adhesion of leukocytes, whereas Grem2 specifically inhibits the BMP2 effect. CONCLUSIONS Our results indicate that Grem2 provides a molecular barrier that controls the magnitude and extent of inflammatory cell infiltration by suppressing canonical BMP signaling, thereby providing a novel mechanism for limiting the adverse effects of excessive inflammation after MI.
Collapse
Affiliation(s)
- Lehanna N Sanders
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - John A Schoenhard
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mohamed A Saleh
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Amrita Mukherjee
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Sergey Ryzhov
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - William G McMaster
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Kristof Nolan
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Richard J Gumina
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Thomas B Thompson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Mark A Magnuson
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - David G Harrison
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.)
| | - Antonis K Hatzopoulos
- From the Division of Cardiovascular Medicine, Department of Medicine (L.N.S., J.A.S., A.M., R.J.G., A.K.H.), Department of Cell and Developmental Biology (L.N.S., A.K.H.), Division of Clinical Pharmacology, Department of Medicine (M.A.S., W.G.M., D.G.H.), and Division of General Surgery, Department of Surgery (W.G.M.), Vanderbilt University Medical Center, Nashville, TN; Maine Medical Center Research Institute, Scarborough (S.R.); Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, OH (K.N., T.B.T.); CentraCare Health, St. Cloud, MN (J.A.S.); Cincinnati Children's Hospital Medical Center, OH (A.M.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN (M.A.M.).
| |
Collapse
|
94
|
Rathan S, Ankeny CJ, Arjunon S, Ferdous Z, Kumar S, Fernandez Esmerats J, Heath JM, Nerem RM, Yoganathan AP, Jo H. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep 2016; 6:25397. [PMID: 27151744 PMCID: PMC4858741 DOI: 10.1038/srep25397] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.
Collapse
Affiliation(s)
- Swetha Rathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Casey J Ankeny
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sivakkumar Arjunon
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zannatul Ferdous
- Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Knoxville, TN, USA
| | - Sandeep Kumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joan Fernandez Esmerats
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jack M Heath
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Robert M Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajit P Yoganathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
95
|
Kim J, Seo M, Kim SK, Bae YS. Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis. Sci Rep 2016; 6:25437. [PMID: 27146088 PMCID: PMC4857127 DOI: 10.1038/srep25437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that bacterial infection-mediated inflammation facilitates development of atherosclerosis by activating toll-like receptor (TLR) signaling system. We reasoned that NADPH oxidases (Nox), required for TLR-mediated inflammatory response, are involved in atherogenesis. Here, we show that the activation of Nox4 through TLR5 regulates the inflammation of the endothelium and in atherogenesis. Flagellin-induced interaction between the COOH region of Nox4 and the TIR domain of TLR5 led to H2O2 generation, which in turn promoted the secretion of pro-inflammatory cytokines including IL-8, as well as the expression of ICAM-1 in human aortic endothelial cells (HAECs). Knockdown of the Nox4 in HAECs resulted in attenuated expressions of IL-8 and ICAM-1 leading to a reduction in the adhesion and trans-endothelial migration of monocytes. Challenge of recombinant FliC (rFliC) to the ApoE KO mice with high-fat diet (HFD) resulted in significantly increased atherosclerotic plaque sizes compared to the saline-injected mice. However, an injection of rFliC into the Nox4ApoE DKO mice with HFDs failed to generate atherosclerotic plaque, suggesting that Nox4 deficiency resulted in significant protections against rFliC-mediated atherogenesis. We conclude that TLR5-dependent Nox4 activation and subsequent H2O2 generation play critical roles for the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Misun Seo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Su Kyung Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
96
|
Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can J Cardiol 2016; 32:659-68. [PMID: 27118293 PMCID: PMC4906153 DOI: 10.1016/j.cjca.2016.02.070] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023] Open
Abstract
Aging is the primary risk factor underlying hypertension and incident cardiovascular disease. With aging, the vasculature undergoes structural and functional changes characterized by endothelial dysfunction, wall thickening, reduced distensibility, and arterial stiffening. Vascular stiffness results from fibrosis and extracellular matrix (ECM) remodelling, processes that are associated with aging and are amplified by hypertension. Some recently characterized molecular mechanisms underlying these processes include increased expression and activation of matrix metalloproteinases, activation of transforming growth factor-β1/SMAD signalling, upregulation of galectin-3, and activation of proinflammatory and profibrotic signalling pathways. These events can be induced by vasoactive agents, such as angiotensin II, endothelin-1, and aldosterone, which are increased in the vasculature during aging and hypertension. Complex interplay between the “aging process” and prohypertensive factors results in accelerated vascular remodelling and fibrosis and increased arterial stiffness, which is typically observed in hypertension. Because the vascular phenotype in a young hypertensive individual resembles that of an elderly otherwise healthy individual, the notion of “early” or “premature” vascular aging is now often used to describe hypertension-associated vascular disease. We review the vascular phenotype in aging and hypertension, focusing on arterial stiffness and vascular remodelling. We also highlight the clinical implications of these processes and discuss some novel molecular mechanisms of fibrosis and ECM reorganization.
Collapse
Affiliation(s)
- Adam Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Rheure Alves Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland.
| |
Collapse
|
97
|
Platt MO, Shockey WA. Endothelial cells and cathepsins: Biochemical and biomechanical regulation. Biochimie 2016; 122:314-23. [PMID: 26458976 PMCID: PMC4747805 DOI: 10.1016/j.biochi.2015.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023]
Abstract
Cathepsins are mechanosensitive proteases that are regulated not only by biochemical factors, but are also responsive to biomechanical forces in the cardiovascular system that regulate their expression and activity to participate in cardiovascular tissue remodeling. Their elastinolytic and collagenolytic activity have been implicated in atherosclerosis, abdominal aortic aneurysms, and in heart valve disease, all of which are lined by endothelial cells that are the mechanosensitive monolayer of cells that sense and respond to fluid shear stress as the blood flows across the surfaces of the arteries and valve leaflets. Inflammatory cytokine signaling is integrated with biomechanical signaling pathways by the endothelial cells to transcribe, translate, and activate either the cysteine cathepsins to remodel the tissue or to express their inhibitors to maintain healthy cardiovascular tissue structure. Other cardiovascular diseases should now be included in the study of the cysteine cathepsin activation because of the additional biochemical cues they provide that merges with the already existing hemodynamics driving cardiovascular disease. Sickle cell disease causes a chronic inflammation including elevated TNFα and increased numbers of circulating monocytes that alter the biochemical stimulation while the more viscous red blood cells due to the sickling of hemoglobin alters the hemodynamics and is associated with accelerated elastin remodeling causing pediatric strokes. HIV-mediated cardiovascular disease also occurs earlier in than the broader population and the influence of HIV-proteins and antiretrovirals on endothelial cells must be considered to understand these accelerated mechanisms in order to identify new therapeutic targets for prevention.
Collapse
Affiliation(s)
- Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332, USA.
| | - W Andrew Shockey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA 30332, USA.
| |
Collapse
|
98
|
Lee SH, Choi JH. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells. Immune Netw 2016; 16:26-32. [PMID: 26937229 PMCID: PMC4770097 DOI: 10.4110/in.2016.16.1.26] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 01/11/2023] Open
Abstract
Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
99
|
Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 2016; 54:1683-1694. [PMID: 26906280 DOI: 10.1007/s11517-016-1458-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by calcification accumulation and thickening of the aortic valve cusps, leading to stenosis. The importance of fluid flow shear stress in the initiation and regulation of CAVD progression is well known and has been studied recently using fluid-structure interaction (FSI) models. While cusp calcifications are three-dimensional (3D) masses, previously published FSI models have represented them as either stiffened or thickened two-dimensional (2D) cusps. This study investigates the hemodynamic effect of these calcifications employing FSI models using 3D patient-specific calcification masses. A new reverse calcification technique (RCT) is used for modeling different stages of calcification growth based on the spatial distribution of calcification density. The RCT is applied to generate the 3D calcification deposits reconstructed from a patient-specific CT scans. Our results showed that consideration of 3D calcification deposits led to both higher fluid shear stresses and unique fluid shear stress distribution on the aortic side of the cusps that may have an impact on the calcification growth rate. However, the flow did not seem to affect the geometry of the calcification during the growth phase.
Collapse
|
100
|
van Geemen D, Soares ALF, Oomen PJA, Driessen-Mol A, Janssen-van den Broek MWJT, van den Bogaerdt AJ, Bogers AJJC, Goumans MJTH, Baaijens FPT, Bouten CVC. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves. PLoS One 2016; 11:e0149020. [PMID: 26867221 PMCID: PMC4750936 DOI: 10.1371/journal.pone.0149020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.
Collapse
Affiliation(s)
- Daphne van Geemen
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ana L. F. Soares
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Pim J. A. Oomen
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anita Driessen-Mol
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Antoon J. van den Bogaerdt
- Heart Valve Bank Rotterdam, Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ad J. J. C. Bogers
- Heart Valve Bank Rotterdam, Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Frank P. T. Baaijens
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|