51
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
52
|
Yoshikawa Y, Hirata N, Kawaguchi R, Tokinaga Y, Yamakage M. Dexmedetomidine Maintains Its Direct Cardioprotective Effect Against Ischemia/Reperfusion Injury in Hypertensive Hypertrophied Myocardium. Anesth Analg 2018; 126:443-452. [DOI: 10.1213/ane.0000000000002452] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
53
|
Ciocci Pardo A, Díaz RG, González Arbeláez LF, Pérez NG, Swenson ER, Mosca SM, Alvarez BV. Benzolamide perpetuates acidic conditions during reperfusion and reduces myocardial ischemia-reperfusion injury. J Appl Physiol (1985) 2017; 125:340-352. [PMID: 29357509 DOI: 10.1152/japplphysiol.00957.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During ischemia, increased anaerobic glycolysis results in intracellular acidosis. Activation of alkalinizing transport mechanisms associated with carbonic anhydrases (CAs) leads to myocardial intracellular Ca2+ increase. We characterize the effects of inhibition of CA with benzolamide (BZ) during cardiac ischemia-reperfusion (I/R). Langendorff-perfused isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Other hearts were treated with BZ (5 μM) during the initial 10 min of reperfusion or perfused with acid solution (AR, pH 6.4) during the first 3 min of reperfusion. p38MAPK, a kinase linked to membrane transporters and involved in cardioprotection, was examined in hearts treated with BZ in presence of the p38MAPK inhibitor SB202190 (10 μM). Infarct size (IZ) and myocardial function were assessed, and phosphorylated forms of p38MAPK, Akt, and PKCε were evaluated by immunoblotting. We determined the rate of intracellular pH (pHi) normalization after transient acid loading in the absence and presence of BZ or BZ + SB202190 in heart papillary muscles (HPMs). Mitochondrial membrane potential (ΔΨm), Ca2+ retention capacity and Ca2+-mediated swelling after I/R were also measured. BZ, similarly to AR, reduced IZ, improved postischemic recovery of myocardial contractility, increased phosphorylation of Akt, PKCε, and p38MAPK, and normalized ΔΨm and Ca2+ homeostasis, effects abolished after p38MAPK inhibition. In HPMs, BZ slowed pHi recovery, an effect that was restored after p38MAPK inhibition. We conclude that prolongation of acidic conditions during reperfusion by BZ could be responsible for the cardioprotective benefits of reduced infarction and better myocontractile function, through p38MAPK-dependent pathways. NEW & NOTEWORTHY Carbonic anhydrase inhibition by benzolamide (BZ) maintains acidity, decreases infarct size, and improves postischemic myocardial dysfunction in ischemia-reperfusion (I/R) hearts. Protection afforded by BZ mimicked the beneficial effects elicited by an acidic solution (AR). Increased phosphorylation of p38MAPK occurs in I/R hearts reperfused with BZ or with AR. Mitochondria from I/R hearts possess abnormal Ca2+ handling and a more depolarized membrane potential compared with control hearts, and these changes were restored by treatment with BZ or AR.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Erik R Swenson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Department of Veterans Affairs Puget Sound Health Care System , Seattle, Washington
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Bernardo V Alvarez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
54
|
|
55
|
Xu MJ, Cai Y, Qu A, Shyy JYJ, Li W, Wang X. Immediate Early Response Gene X-1 (IEX-1) Mediates Ischemic Preconditioning-Induced Cardioprotection in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6109061. [PMID: 29213350 PMCID: PMC5682079 DOI: 10.1155/2017/6109061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/24/2017] [Indexed: 11/18/2022]
Abstract
Reversible myocardial ischemia/reperfusion (I/R) or ischemic preconditioning (IPC) is associated with an immediate genomic response; IPC-induced immediate early genes are associated with reduced infarct size. Because the immediate early response gene X-1 (IEX-1) plays a central role in cell apoptosis, we examine whether IEX-1 exerts protective effects against I/R injury. We found that the IEX-1 mRNA level was increased in the IPC-imposed rat heart. However, it was downregulated in the I/R rat heart, which was prevented by in situ IPC. When IEX-1 was knocked down, the protective effects imposed by IPC were lessened. Local gene delivery of Ad-IEX-1 to the left ventricle greatly diminished cardiac infarct size and improved systolic functions of I/R hearts in rats. In contrast, knocking down IEX-1 expression exacerbates myocardial infarction. Overexpression of IEX-1 in neonatal rat cardiomyocytes significantly reduced hypoxia-reoxygenation-induced intracellular and mitochondrial ROS accumulation and cell apoptosis. Furthermore, IPC-induced phosphorylation and particle translocation of PKCε were impaired by knocking down IEX-1 in vivo, and overexpressing IEX-1 showed similar cardioprotection imposed by IPC. Our results demonstrate that IPC increases IEX-1 expression, which may promote phosphorylation and particle translocation of PKCε and thus reduce intracellular ROS accumulation. These beneficial effects reduce cardiomyocyte apoptosis and necrosis to alleviate cardiac infarction.
Collapse
Affiliation(s)
- Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Yan Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - John Y.-J. Shyy
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Wenjing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
56
|
Gedik N, Kottenberg E, Thielmann M, Frey UH, Jakob H, Peters J, Heusch G, Kleinbongard P. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 2017; 7:12660. [PMID: 28978919 PMCID: PMC5627278 DOI: 10.1038/s41598-017-12833-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion may reduce myocardial ischemia/reperfusion injury and improve patients‘ prognosis after elective coronary artery bypass graft (CABG) surgery. The signal transducer and activator of transcription (STAT)5 activation in left ventricular myocardium is associated with RIPC´s cardioprotection. Cytokines and growth hormones typically activate STATs and could therefore act as humoral transfer factors of RIPC´s cardioprotection. We here determined arterial plasma concentrations of 25 different cytokines, growth hormones, and other factors which have previously been associated with cardioprotection, before (baseline)/after RIPC or placebo (n = 23/23), respectively, and before/after ischemic cardioplegic arrest in CABG patients. RIPC-induced protection was reflected by a 35% reduction of serum troponin I release. With the exception of interleukin-1α, none of the humoral factors changed in their concentrations after RIPC or placebo, respectively. Interleukin-1α, when normalized to baseline, increased after RIPC (280 ± 56%) but not with placebo (97 ± 15%). The interleukin-1α concentration remained increased until after ischemic cardioplegic arrest and was also higher than with placebo in absolute concentrations (25 ± 6 versus 16 ± 3 pg/mL). Only interleukin-1α possibly fulfills the criteria which would be expected from a substance to be released in response to RIPC and to protect the myocardium during ischemic cardioplegic arrest.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany.
| |
Collapse
|
57
|
Li TP, Guo Z, Liu CJ, Sun T, Chen L, Zhao X. Association of down-regulation of calcitonin gene-related peptide and substance P with increase of myocardial vulnerability in diabetic neuropathic rats. Peptides 2017; 96:1-7. [PMID: 28851567 DOI: 10.1016/j.peptides.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
Abstract
Diabetic patients present high co-morbidities of neuropathy and severer consequences of coronary heart disease. But the pathological mechanism is still unclear. Here we investigated a potential association of diabetic impairment of sensory nerves with increase of vulnerability of myocardium in acute myocardial ischemia/reperfusion. A rat model of diabetes mellitus was induced by high fat and sugar diet plus a small dose of streptozotocin. Impairment of sensory nerves was evaluated by measurement of changes in tail flick latency to noxious thermal stimulation and calcitonin gene-related peptide (CGRP) and substance P (SP) in the dorsal root ganglia (DRG) and the myocardium of the heart were examined. The myocardial injury was examined by infarct size, apoptosis ratio of cardiomyocytes and cardiac troponin I in the animals underwent acute myocardial ischemia (for 30min) and reperfusion (for 120min). The effects of CGRP and SP on cardiomyocyte injury induced by high glucose and hypoxia/reoxygenation were tested in cultured myocytes. The diabetic animals presented significant elevation of noxious thermal threshold with obvious reduction of the contents of CGRP and SP in the DRG and the myocardium. Importantly, the diabetic animals showed significant increases of infarct size, myocyte apoptosis and serum cardiac troponin I after acute myocardial ischemia/reperfusion, compared to the non-diabetic control. Furthermore, exogenously administered CGRP and SP attenuated the myocyte injury induced by the high concentration of glucose and hypoxia/reoxygenation. These findings suggested that impairment of sensory nerves with significant reduction of CGRP and SP in DRG, ventricular myocardium and serum may be associated with increase of myocardial vulnerability in acute myocardial ischemia/reperfusion in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Tu-Ping Li
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Zheng Guo
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China; Department of Anesthesiology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, National Education Commission, Taiyuan, China.
| | - Chao-Jie Liu
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Tao Sun
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Lu Chen
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Xin Zhao
- Department of Anesthesiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
58
|
Lavi S, Lavi R. Ischemic postconditioning during primary percutaneous coronary interventions-not ready for prime time. J Thorac Dis 2017; 9:2752-2755. [PMID: 29221232 DOI: 10.21037/jtd.2017.07.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shahar Lavi
- Western University, London, Ontario, Canada.,London Health Sciences Centre, London, Ontario, Canada
| | - Ronit Lavi
- Western University, London, Ontario, Canada.,London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
59
|
Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - Current knowledge and potential future applications after 30 years of experience. Adv Med Sci 2017; 62:307-316. [PMID: 28511069 DOI: 10.1016/j.advms.2016.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Ischaemic preconditioning (IPC) phenomenon has been known for thirty years. During that time several studies showed that IPC provided by brief ischaemic and reperfusion episodes prior to longer ischaemia can bestow a protective effect to both preconditioned and also remote organs. IPC affecting remote organs is called remote ischaemic preconditioning. Initially, most IPC studies were focused on enhancing myocardial resistance to subsequent ischaemia and reperfusion injury. However, preconditioning was found to be a universal phenomenon and was observed in various organs and tissues including the heart, liver, brain, retina, kidney, skeletal muscles and intestine. Currently, there are a lot of simultaneous studies are underway aiming at finding out whether IPC can be helpful in protecting these organs. The mechanism of local and remote IPC is complex and not well known. Several triggers, intracellular pathways and effectors, humoral, neural and induced by genetic changes may be considered potential pathways in the protective activity of local and remote IPC. Local and remote IPC mechanism may potentially serve as heart protection during cardiac surgery and may limit the infarct size of the myocardium, can be a strategy for preventing the development of acute kidney injury development and liver damage during transplantation, may protect the brain against ischaemic injury. In addition, the method is safe, non-invasive, cheap and easily applicable. The main purpose of this review article is to present new advances which would help to understand the potential mechanism of IPC. It also discusses both its potential applications and utility in clinical settings.
Collapse
Affiliation(s)
- Karolina Stokfisz
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland.
| | - Anna Ledakowicz-Polak
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| | - Maciej Zagorski
- Cardiosurgery Clinic, Department of Cardiology and Cardiosurgery, Medical University, Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| |
Collapse
|
60
|
Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 2017; 7:7629. [PMID: 28794502 PMCID: PMC5550488 DOI: 10.1038/s41598-017-07883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion reduces myocardial ischemia/reperfusion injury. In left ventricular (LV) biopsies from patients undergoing coronary artery bypass grafting (CABG), only the activation of signal transducer and activator of transcription 5 was associated with RIPC’s cardioprotection. We have now used an unbiased, non-hypothesis-driven proteomics and phosphoproteomics approach to analyze LV biopsies from patients undergoing CABG and from pigs undergoing coronary occlusion/reperfusion without (sham) and with RIPC. False discovery rate-based statistics identified a higher prostaglandin reductase 2 expression at early reperfusion with RIPC than with sham in patients. In pigs, the phosphorylation of 116 proteins was different between baseline and early reperfusion with RIPC and/or with sham. The identified proteins were not identical for patients and pigs, but in-silico pathway analysis of proteins with ≥2-fold higher expression/phosphorylation at early reperfusion with RIPC in comparison to sham revealed a relation to mitochondria and cytoskeleton in both species. Apart from limitations of the proteomics analysis per se, the small cohorts, the sampling/sample processing and the number of uncharacterized/unverifiable porcine proteins may have contributed to this largely unsatisfactory result.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
61
|
Abstract
Part I of this review discussed the similarities between embryogenesis, mammalian adaptions to hypoxia (primarily driven by hypoxia-inducible factor-1 [HIF-1]), ischemia-reperfusion injury (and its relationship with reactive oxygen species), hibernation, diving animals, cancer, and sepsis, and it focused on the common characteristics that allow cells and organisms to survive in these states. Part II of this review describes techniques by which researchers gain insight into subcellular energetics and identify potential future tools for clinicians. In particular, P nuclear magnetic resonance to measure high-energy phosphates, serum lactate measurements, the use of near-infrared spectroscopy to measure the oxidation state of cytochrome aa3, and the ability of the protoporphyrin IX-triplet state lifetime technique to measure mitochondrial oxygen tension are discussed. In addition, this review discusses novel treatment strategies such as hyperbaric oxygen, preconditioning, exercise training, therapeutic gases, as well as inhibitors of HIF-1, HIF prolyl hydroxylase, and peroxisome proliferator-activated receptors.
Collapse
Affiliation(s)
- Robert H Thiele
- From the Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
62
|
Nitrite-Nitric Oxide Signaling and Cardioprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:335-346. [DOI: 10.1007/978-3-319-55330-6_18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
63
|
Tratsiakovich Y, Kiss A, Gonon AT, Yang J, Sjöquist PO, Pernow J. Inhibition of Rho kinase protects from ischaemia-reperfusion injury via regulation of arginase activity and nitric oxide synthase in type 1 diabetes. Diab Vasc Dis Res 2017; 14:236-245. [PMID: 28183205 DOI: 10.1177/1479164116687935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM RhoA/Rho-associated kinase and arginase are implicated in vascular complications in diabetes. This study investigated whether RhoA/Rho-associated kinase and arginase inhibition protect from myocardial ischaemia-reperfusion injury in type 1 diabetes and the mechanisms behind these effects. METHODS Rats with streptozotocin-induced type 1 diabetes and non-diabetic rats were subjected to 30 min myocardial ischaemia and 2 h reperfusion after being randomized to treatment with (1) saline, (2) RhoA/Rho-associated kinase inhibitor hydroxyfasudil, (3) nitric oxide synthase inhibitor NG-monomethyl-l-arginine monoacetate followed by hydroxyfasudil, (4) arginase inhibitor N-omega-hydroxy-nor-l-arginine, (5) NG-monomethyl-l-arginine monoacetate followed by N-omega-hydroxy-nor-l-arginine or (6) NG-monomethyl-l-arginine monoacetate given intravenous before ischaemia. RESULTS Myocardial arginase activity, arginase 2 expression and RhoA/Rho-associated kinase activity were increased in type 1 diabetes ( p < 0.05). RhoA/Rho-associated kinase inhibition and arginase inhibition significantly reduced infarct size in diabetic and non-diabetic rats ( p < 0.001). The cardioprotective effects of hydroxyfasudil and N-omega-hydroxy-nor-l-arginine in diabetes were abolished by nitric oxide synthase inhibition. RhoA/Rho-associated kinase inhibition attenuated myocardial arginase activity in diabetic rats via a nitric oxide synthase-dependent mechanism. CONCLUSION Inhibition of either RhoA/Rho-associated kinase or arginase protects from ischaemia-reperfusion injury in rats with type 1 diabetes via a nitric oxide synthase-dependent pathway. These results suggest that inhibition of RhoA/Rho-associated kinase and arginase constitutes a potential therapeutic strategy to protect the diabetic heart against ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Yahor Tratsiakovich
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Attila Kiss
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- 3 Department of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Adrian T Gonon
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Ove Sjöquist
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- 1 Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- 2 Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
64
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
65
|
Ravingerova T, Farkasova V, Griecsova L, Carnicka S, Murarikova M, Barlaka E, Kolar F, Bartekova M, Lonek L, Slezak J, Lazou A. Remote preconditioning as a novel "conditioning" approach to repair the broken heart: potential mechanisms and clinical applications. Physiol Res 2017; 65 Suppl 1:S55-64. [PMID: 27643940 DOI: 10.33549/physiolres.933392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) is a novel strategy of protection against ischemia-reperfusion (IR) injury in the heart (and/or other organs) by brief episodes of non-lethal IR in a distant organ/tissue. Importantly, RIPC can be induced noninvasively by limitation of blood flow in the extremity implying the applicability of this method in clinical situations. RIPC (and its delayed phase) is a form of relatively short-term adaptation to ischemia, similar to ischemic PC, and likely they both share triggering mechanisms, whereas mediators and end-effectors may differ. It is hypothesized that communication between the signals triggered in the remote organs and protection in the target organ may be mediated through substances released from the preconditioned organ and transported via the circulation (humoral pathways), by neural pathways and/or via systemic anti-inflammatory and antiapoptotic response to short ischemic bouts. Identification of molecules involved in RIPC cascades may have therapeutic and diagnostic implications in the management of myocardial ischemia. Elucidation of the mechanisms of endogenous cardioprotection triggered in the remote organ could lead to the development of diverse pharmacological RIPC mimetics. In the present article, the authors provide a short overview of RIPC-induced protection, proposed underlying mechanisms and factors modulating RIPC as a promising cardioprotective strategy.
Collapse
Affiliation(s)
- T Ravingerova
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Low-Dose Endotoxin Induces Late Preconditioning, Increases Peroxynitrite Formation, and Activates STAT3 in the Rat Heart. Molecules 2017; 22:molecules22030433. [PMID: 28282895 PMCID: PMC6155391 DOI: 10.3390/molecules22030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Administration of low-dose endotoxin (lipopolysaccharide, LPS) 24 h before a lethal ischemia induces pharmacological late preconditioning. The exact mechanism of this phenomenon is not clear. Here we aimed to investigate whether low-dose LPS exerts late effects on peroxynitrite formation and activation of Akt, Erk, and STAT3 in the heart. Male Wistar rats were injected with LPS (S. typhimurium; 0.5 mg/kg i.p.) or saline. Twenty-four hours later, hearts were isolated, perfused for 10 min, and then used for biochemical analyses. LPS pretreatment enhanced cardiac formation of the peroxynitrite marker 3-nitrotyrosine. LPS pretreatment also increased cardiac levels of the peroxynitrite precursor nitric oxide (NO) and superoxide. The activities of Ca2+-independent NO synthase and xanthine oxidoreductase increased in LPS-pretreated hearts. LPS pretreatment resulted in significantly enhanced phosphorylation of STAT3 and non-significantly increased phosphorylation of Akt without affecting the activation of Erk. In separate experiments, isolated working hearts were subjected to 30 min global ischemia and 20 min reperfusion. LPS pretreatment significantly improved ischemia-reperfusion-induced deterioration of cardiac function. We conclude that LPS pretreatment enhances cardiac peroxynitrite formation and activates STAT3 24 h later, which may contribute to LPS-induced late preconditioning.
Collapse
|
67
|
Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci 2017; 13:448-458. [PMID: 28261301 PMCID: PMC5332452 DOI: 10.5114/aoms.2016.61789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Remote ischemic preconditioning (RIPC) reduces myocardial infarct size, and protection can be transferred with plasma to other individuals, even across species. Mitochondria are the end-effectors of cardioprotection by local ischemic conditioning maneuvers. We have now analyzed mitochondrial function in response to RIPC. MATERIAL AND METHODS Plasma from pigs undergoing placebo or RIPC (infarct size reduction by 67% in RIPC pigs compared to placebo) was transferred to isolated perfused rat hearts subjected to 30 min global ischemia followed by 120 min reperfusion for infarct size measurement. Additional experiments were terminated at 10 min reperfusion to isolate mitochondria for functional measurements. Effects of RIPC pig plasma were compared to local ischemic preconditioning (IPC) or to infusion of tumor necrosis factor α (TNF-α). RESULTS Ischemia/reperfusion (I/R) induced an infarct of 41 ±2% of total ventricular mass. Placebo pig plasma did not affect infarct size (38 ±1, p = 0.13). The RIPC pig plasma reduced infarct size (27 ±2, p < 0.001), as did IPC (20 ±1, p < 0.001) and TNF-α (28 ±2, p < 0.001). Associated with cardioprotection, reductions of mitochondrial adenosine diphosphate (ADP)-stimulated respiration, adenosine triphosphate (ATP) production and calcium retention capacity (CRC) by I/R and placebo pig plasma were prevented by RIPC pig plasma, as they were by IPC and TNF-α. Mitochondrial reactive oxygen species production (nmol H2O2/100 µg protein) induced by I/R (272 ±34) was comparable in response to placebo pig plasma (234 ±28, p = 0.37) and was reduced by RIPC pig plasma (83 ±15, p < 0.001) as well as by IPC (78 ±21, p < 0.001) and TNF-α (125 ±42, p = 0.002). CONCLUSIONS In rat myocardium, mitochondria are an intracellular target of protection induced by humoral factors retrieved from pigs undergoing RIPC.
Collapse
Affiliation(s)
- Nilguen Gedik
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Leonardo Maciel
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
- Laboratory of Cardiac Electrophysiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christiane Schulte
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen, Medical School, Essen, Germany
| |
Collapse
|
68
|
Qian J, Chen H, Birnbaum Y, Nanhwan MK, Bajaj M, Ye Y. Aleglitazar, a Balanced Dual PPARα and -γ Agonist, Protects the Heart Against Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2017; 30:129-41. [PMID: 26861490 DOI: 10.1007/s10557-016-6650-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To evaluate whether aleglitazar (Ale), a dual PPARα/γ agonist, has additive effects on myocardial protection against ischemia-reperfusion injury. METHODS Human cardiomyocytes (HCMs), cardiomyocytes from cardiac-specific PPARγ knockout (MCM-PPARγ (CKO) ) or wild type (MCM-WT) mice were incubated with different concentrations of Ale, and subjected to simulated ischemia-reperfusion (SIR) or normoxic conditions (NSIR). Cell viability, apoptosis and caspase-3 activity were determined. HCMs were transfected with siRNA against PPARα (siPPARα) or PPARγ (siPPARγ) followed by incubation with Ale. PPARα/γ DNA binding capacity was measured. Cell viability, apoptosis and levels of P-AKT and P-eNOS were assessed. Infarct size following 30 min coronary artery occlusion and 24 h reperfusion were assessed in WT and db/db diabetic mice following 3-day pretreatment with vehicle, Ale or glimeperide. RESULTS Ale (at concentrations of 150-600 nM) increased cell viability and reduced apoptosis in HCMs, MCM-WT and MCM-PPAR (CKO) exposed to SIR. In HCM, the protective effect was partially blocked by siPPARα alone or siPPARγ alone, and completely blocked by siPPARα+siPPARγ. Ale increased P-Akt/P-eNOS in HCMs. P-Akt or P-eNOS levels were decreased when PPARα alone, PPARγ alone and especially when both were knocked down. Peritoneal GTTs revealed that db/db mice had developed impaired glucose tolerance and insulin sensitivity, which were normalized by Ale or glimepiride treatment. Ale, but not glimepiride, limited infarct size in both WT and diabetic mice after ischemia-reperfusion. CONCLUSIONS Ale protects against myocardial apoptosis caused by hypoxia-reoxygenation in vitro and reduces infarct size in vivo.
Collapse
Affiliation(s)
- Jinqiao Qian
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Hongmei Chen
- Department of Anesthesiology, Kunming Tongren Hospital, Kunming, Yunnan Province, China
| | - Yochai Birnbaum
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, One Baylor Plaza, MS BCM620, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Manjyot K Nanhwan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mandeep Bajaj
- Department of Medicine, Section of Endocrinology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
69
|
Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Res Cardiovasc Med 2017. [DOI: 10.5812/cardiovascmed.34639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
70
|
Impact of remote ischaemic preconditioning on major clinical outcomes in patients undergoing cardiovascular surgery: A meta-analysis with trial sequential analysis of 32 randomised controlled trials. Int J Cardiol 2017; 227:882-891. [DOI: 10.1016/j.ijcard.2016.11.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/05/2023]
|
71
|
Yang Y, Hu W, Di S, Ma Z, Fan C, Wang D, Jiang S, Li Y, Zhou Q, Li T, Luo E. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets 2016; 21:215-228. [PMID: 28001439 DOI: 10.1080/14728222.2017.1275566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an, China
| | - Yue Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
72
|
Ferrari R, Balla C, Malagù M, Guardigli G, Morciano G, Bertini M, Biscaglia S, Campo G. Reperfusion Damage - A Story of Success, Failure, and Hope. Circ J 2016; 81:131-141. [PMID: 27941300 DOI: 10.1253/circj.cj-16-1124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue salvage of severely ischemic myocardium requires timely reperfusion by thrombolysis, angioplasty, or bypass. However, recovery of left ventricular function is rare. It may be absent or, even worse, reperfusion can induce further damage. Laboratory studies have shown convincingly that reperfusion can increase injury over and above that attributable to the pre-existing ischemia, precipitating arrhythmias, suppressing the recovery of contractile function ("stunning") and possibly even causing cell death in potentially salvable ischemic tissue. The mechanisms of reperfusion injury have been widely studied and, in the laboratory, it can be attenuated or prevented. Disappointingly, this is not the case in the clinic, particularly after thrombolysis or primary angioplasty. In contrast, excellent results have been achieved by surgeons by means of cardioplegia and hypothermia. For the interventionist, the issue is more complex as, contrary to cardiac surgery where the cardioplegia can be applied before ischemia and the heart can be stopped, during an angioplasty the heart still has to beat to support the circulation. We analyze in detail all these issues.
Collapse
Affiliation(s)
- Roberto Ferrari
- Cardiovascular and LTTA Centre, Azienda Ospedaliera-Universitaria di Ferrara
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch 2016; 469:159-181. [DOI: 10.1007/s00424-016-1922-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022]
|
74
|
Polshekan M, Jamialahmadi K, Khori V, Alizadeh AM, Saeidi M, Ghayour-Mobarhan M, Jand Y, Ghahremani MH, Yazdani Y. RISK pathway is involved in oxytocin postconditioning in isolated rat heart. Peptides 2016; 86:55-62. [PMID: 27717750 DOI: 10.1016/j.peptides.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
Abstract
The reperfusion injury salvage kinase (RISK) pathway is a fundamental signal transduction cascade in the cardioprotective mechanism of ischemic postconditioning. In the present study, we examined the cardioprotective role of oxytocin as a postconditioning agent via activation of the RISK pathway (PI3K/Akt and ERK1/2). Animals were randomly divided into 6 groups. The hearts were subjected under 30minutes (min) ischemia and 100min reperfusion. OT was perfused 15min at the early phase of reperfusion. RISK pathway inhibitors (Wortmannin; an Akt inhibitor, PD98059; an ERK1/2 inhibitor) and Atosiban (an OT receptor antagonist) were applied either alone 10min before the onset of the ischemia or in the combination with OT during early reperfusion phase. Myocardial infarct size, hemodynamic factors, ventricular arrhythmia, coronary flow and cardiac biochemical marker were measured at the end of reperfusion. OT postconditioning (OTpost), significantly decreased the infarct size, arrhythmia score, incidence of ventricular fibrillation, Lactate dehydrogenase and it increased coronary flow. The cardioprotective effect of OTpos was abrogated by PI3K/Akt, ERK1/2 inhibitors and Atosiban. Our data have shown that OTpost can activate RISK pathway mostly via the PI3K/Akt and ERK1/2 signaling cascades during the early phase of reperfusion.
Collapse
Affiliation(s)
- Mirali Polshekan
- Student Research Committee, Department of Modern Science and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadijeh Jamialahmadi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Khori
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Mohsen Saeidi
- Stem cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Jand
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
75
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
76
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
77
|
Lian ZX, Wang F, Fu JH, Chen ZY, Xin H, Yao RY. ATP-induced cardioprotection against myocardial ischemia/reperfusion injury is mediated through the RISK pathway. Exp Ther Med 2016; 12:2063-2068. [PMID: 27698693 PMCID: PMC5038560 DOI: 10.3892/etm.2016.3563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to examine the post-infarct acute effect of adenosine-5'-triphosphate (ATP) on myocardial infarction (MI) size as well as its precise molecular mechanism. Sixty New Zealand white male rabbits were exposed to 40 min of ischemia followed by 180 min of reperfusion. The rabbits were intravenously administered 3 mg/kg of ATP (ATP group) or saline (control group) immediately after reperfusion and maintained throughout the first 30 min. The wortmannin+ATP, PD-98059+ATP, and 5-hydroxydecanoic acid (5-HD) sodium salt+ATP groups were separately injected with wortmannin (0.6 mg/kg), PD-98059 (0.3 mg/kg), and 5-HD (5 mg/kg) 5 min prior to ATP administration. MI size was calculated as the percentage of the risk area in the left ventricle. Myocardial apoptosis was determined using a TUNEL assay. Western blot analysis was performed to examine the levels of protein kinase B (Akt)/p-Akt and extracellular signal-regulated kinase (ERK)/p-ERK in the ischemic myocardium, 180 min after reperfusion. The infarct size was significantly smaller in the ATP group than in the control group (p<0.05). The infarct size-reducing effect of ATP was completely blocked by wortmannin, PD-98059 and 5-HD. Compared with the control group, cardiomyocyte apoptosis was significantly reduced in the ATP group, while this did not occur in the wortmannin+ATP, PD-98059+ATP and 5-HD+ATP groups. Western blot analysis revealed a higher myocardial expression of p-Akt and p-ERK 180 min following reperfusion in the ATP versus the control group. In conclusion, cardioprotection by postischemic ATP administration is mediated through activation of the reperfusion injury salvage kinase (RISK) pathway and opening of the mitochondrial ATP-dependent potassium channels.
Collapse
Affiliation(s)
- Zhe-Xun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fang Wang
- Department of Cardiology, The Third People's Hospital of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Jun-Hua Fu
- Department of Interventional Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zuo-Yuan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ru-Yong Yao
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
78
|
Hu Z, Yang B, Mo X, Zhou F. HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway. Brain Res 2016; 1644:15-21. [DOI: 10.1016/j.brainres.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/21/2016] [Accepted: 05/07/2016] [Indexed: 01/25/2023]
|
79
|
Jankowski M, Broderick TL, Gutkowska J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord 2016; 16:34. [PMID: 27268060 PMCID: PMC4895973 DOI: 10.1186/s12902-016-0110-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) emerges as a drug for the treatment of diabetes and obesity. The entire OT system is synthesized in the rat and human heart. The direct myocardial infusion with OT into an ischemic or failing heart has the potential to elicit a variety of cardioprotective effects. OT treatment attenuates cardiomyocyte (CMs) death induced by ischemia-reperfusion by activating pro-survival pathways within injured CMs in vivo and in isolated cells. OT treatment reduces cardiac apoptosis, fibrosis, and hypertrophy. The OT/OT receptor (OTR) system is downregulated in the db/db mouse model of type 2 diabetes which develops genetic diabetic cardiomyopathy (DC) similar to human disease. We have shown that chronic OT treatment prevents the development of DC in the db/db mouse. In addition, OT stimulates glucose uptake in both cardiac stem cells and CMs, and increases cell resistance to diabetic conditions. OT may help replace lost CMs by stimulating the in situ differentiation of cardiac stem cells into functional mature CMs. Lastly, adult stem cells amenable for transplantation such as MSCs could be preconditioned with OT ex vivo and implanted into the injured heart to aid in tissue regeneration through direct differentiation, secretion of protective and cardiomyogenic factors and/or their fusion with injured CMs.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Tour Viger, 900 St-Denis St., Montreal, Quebec, H2X 0A9, Canada.
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada.
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Agave Hall, office 217-B, 19555 North 59th Avenue, Glendale, AZ, 85308, USA.
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Tour Viger, 900 St-Denis St., Montreal, Quebec, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
80
|
Ferrari R, Biscaglia S, Malagù M, Bertini M, Campo G. Can We Improve Myocardial Protection during Ischaemic Injury? Cardiology 2016; 135:14-26. [DOI: 10.1159/000444847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
|
81
|
Matkar PN, Leong-Poi H, Singh KK. Cardiac gene therapy: are we there yet? Gene Ther 2016; 23:635-48. [DOI: 10.1038/gt.2016.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/19/2023]
|
82
|
Heusch G. Treatment of Myocardial Ischemia/Reperfusion Injury by Ischemic and Pharmacological Postconditioning. Compr Physiol 2016; 5:1123-45. [PMID: 26140711 DOI: 10.1002/cphy.c140075] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Timely reperfusion is the only way to salvage ischemic myocardium from impending infarction. However, reperfusion also adds a further component to myocardial injury such that the ultimate infarct size is the result of both ischemia- and reperfusion-induced injury. Modification of reperfusion can attenuate reperfusion injury and thus reduce infarct size. Ischemic postconditioning is a maneuver of repeated brief interruption of reperfusion by short-lasting coronary occlusions which results in reduced infarct size. Cardioprotection by ischemic postconditioning is mediated through delayed reversal of acidosis and the activation of a complex signal transduction cascade, including triggers such as adenosine, bradykinin, and opioids, mediators such as protein kinases and, notably, mitochondrial function as effector. Inhibition of the mitochondrial permeability transition pore appears to be a final signaling step of ischemic postconditioning. Several drugs which recruit in part such signaling steps of ischemic postconditioning can induce cardioprotection, even when the drug is only administered at reperfusion, that is, there is also pharmacological postconditioning. Ischemic and pharmacological postconditioning have been translated to patients with acute myocardial infarction in proof-of-concept studies, but further mechanistic insight is needed to optimize the conditions and algorithms of cardioprotection by postconditioning.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
83
|
Levy E, Kornowski R, Gavrieli R, Fratty I, Greenberg G, Waldman M, Birk E, Shainberg A, Akirov A, Miskin R, Hochhauser E. Long-Lived αMUPA Mice Show Attenuation of Cardiac Aging and Leptin-Dependent Cardioprotection. PLoS One 2015; 10:e0144593. [PMID: 26673217 PMCID: PMC4681471 DOI: 10.1371/journal.pone.0144593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
αMUPA transgenic mice spontaneously consume less food compared with their wild type (WT) ancestors due to endogenously increased levels of the satiety hormone leptin. αMUPA mice share many benefits with mice under caloric restriction (CR) including an extended life span. To understand mechanisms linked to cardiac aging, we explored the response of αMUPA hearts to ischemic conditions at the age of 6, 18, or 24 months. Mice were subjected to myocardial infarction (MI) in vivo and to ischemia/reperfusion ex vivo. Compared to WT mice, αMUPA showed functional and histological advantages under all experimental conditions. At 24 months, none of the WT mice survived the first ischemic day while αMUPA mice demonstrated 50% survival after 7 ischemic days. Leptin, an adipokine decreasing under CR, was consistently ~60% higher in αMUPA sera at baseline. Leptin levels gradually increased in both genotypes 24h post MI but were doubled in αMUPA. Pretreatment with leptin neutralizing antibodies or with inhibitors of leptin signaling (AG-490 and Wortmannin) abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin, an adipokine previously implicated in CR-induced cardioprotection. WT mice treated for short-term CR exhibited cardioprotection similar to that of αMUPA, however, along with increased adiponectin at baseline. Collectively, the results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR.
Collapse
Affiliation(s)
- Esther Levy
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
| | - Ran Kornowski
- Cardiology Dept., Rabin Medical Center, Petah Tikva, Israel
| | - Reut Gavrieli
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ilana Fratty
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - Maayan Waldman
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
| | - Einat Birk
- Cardiology Dept. and Schneider Children’s Medical Center, Tel Aviv University, Petah Tikva, Israel
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Amit Akirov
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
| | - Ruth Miskin
- Weizmann Institute of Science, Rehovot, Israel
| | - Edith Hochhauser
- The Cardiac Research Laboratory, Felsenstein Medical Research Center, Tel Aviv University, Petah Tikva, Israel
- * E-mail:
| |
Collapse
|
84
|
MicroRNA-21 Mediates Isoflurane-induced Cardioprotection against Ischemia-Reperfusion Injury via Akt/Nitric Oxide Synthase/Mitochondrial Permeability Transition Pore Pathway. Anesthesiology 2015; 123:786-798. [PMID: 26259139 DOI: 10.1097/aln.0000000000000807] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The role of microRNA-21 in isoflurane-induced cardioprotection is unknown. The authors addressed this issue by using microRNA-21 knockout mice and explored the underlying mechanisms. METHODS C57BL/6 and microRNA-21 knockout mice were echocardiographically examined. Mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in vivo or ex vivo in the presence or absence of 1.0 minimum alveolar concentration of isoflurane administered before ischemia. Cardiac Akt, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) proteins were determined by Western blot analysis. Opening of the mitochondrial permeability transition pore (mPTP) in cardiomyocytes was induced by photoexcitation-generated oxidative stress and detected by rapid dissipation of tetramethylrhodamine ethyl ester fluorescence using a confocal microscope. RESULTS Genetic disruption of miR-21 gene did not alter phenotype of the left ventricle, baseline cardiac function, area at risk, and the ratios of phosphorylated-Akt/Akt, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS. Isoflurane decreased infarct size from 54 ± 10% in control to 36 ± 10% (P < 0.05, n = 8 mice per group), improved cardiac function after reperfusion, and increased the ratios of phosphorylated-Akt/AKT, phosphorylated-eNOS/eNOS, and phosphorylated-nNOS/nNOS in C57BL/6 mice subjected to ischemia-reperfusion injury. These beneficial effects of isoflurane were lost in microRNA-21 knockout mice. There were no significant differences in time of the mPTP opening induced by photoexcitation-generated oxidative stress in cardiomyocytes isolated between C57BL/6 and microRNA-21 knockout mice. Isoflurane significantly delayed mPTP opening in cardiomyocytes from C57BL/6 but not from microRNA-21 knockout mice. CONCLUSIONS Isoflurane protects mouse hearts from ischemia-reperfusion injury by a microRNA-21-dependent mechanism. The Akt/NOS/mPTP pathway is involved in the microRNA-21-mediated protective effect of isoflurane.
Collapse
|
85
|
Lux A, Pokreisz P, Swinnen M, Caluwe E, Gillijns H, Szelid Z, Merkely B, Janssens SP. Concomitant Phosphodiesterase 5 Inhibition Enhances Myocardial Protection by Inhaled Nitric Oxide in Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2015; 356:284-92. [DOI: 10.1124/jpet.115.227850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
|
86
|
Liu C, Liu Y, Shen Z, Miao L, Zhang K, Wang F, Li Y. Sevoflurane Preconditioning Reduces Intestinal Ischemia-Reperfusion Injury: Role of Protein Kinase C and Mitochondrial ATP-Sensitive Potassium Channel. PLoS One 2015; 10:e0141426. [PMID: 26505750 PMCID: PMC4624762 DOI: 10.1371/journal.pone.0141426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic preconditioning (IPC) has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI) since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC) also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC) and mitochondrial ATP-sensitive potassium channel (mKATP) in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA) was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC) for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE) or mKATP inhibitor 5-Hydroxydecanoic (5-HD) was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu’s scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α). These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC—induced protective effects by increasing Chiu’s scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC.
Collapse
Affiliation(s)
- Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan, Guangdong, China
| | - Yanhui Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| |
Collapse
|
87
|
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2015; 66:1142-74. [PMID: 25261534 DOI: 10.1124/pr.113.008300] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
88
|
Bian B, Yu X, Wang Q, Teng T, Nie J. Atorvastatin protects myocardium against ischemia-reperfusion arrhythmia by increasing Connexin 43 expression: A rat model. Eur J Pharmacol 2015; 768:13-20. [PMID: 26386290 DOI: 10.1016/j.ejphar.2015.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022]
Abstract
Atorvastatin has protective effects against myocardial ischemia-reperfusion injuries and ischemia-reperfusion arrhythmia. This study was designed to investigate whether atorvastatin is able to protect against myocardial ischemia-reperfusion injury by enhancing the expression of Connexin 43 (Cx43) via the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway and mitochondrial ATP-sensitive potassium (K(ATP)) channels. Isolated perfused rat hearts were treated with classic ischemia postconditioning (IPOST), atorvastatin, and atorvastatin combined with inhibitor of PI3K and K(ATP) channels, respectively, after 30min of LAD ischemia and then subjected to reperfusion for 120min. The QRS duration and the ischemia-reperfusion ventricular arrhythmia were assessed. The lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) levels were measured and the Cx43 expression was assessed by immunoblotting and immunohistochemistry. After 120min of reperfusion, atorvastatin and IPOST significantly decreased the QRS duration and inhibited ventricular arrhythmia. They also decreased the levels of LDH and CK-MB. Meanwhile, atorvastatin and IPOST also significantly enhanced the Cx43 expression and the phosphorylation of Cx43. Such protective effects were abolished in the presence of the inhibitor of PI3K or the inhibitor of mitochondrial K(ATP) channels. This study suggests that atorvastatin protected against myocardial ischemia-reperfusion injury and enhanced the expression of Cx43 by activating the PI3K/Akt pathway and mitochondrial K(ATP) channels.
Collapse
Affiliation(s)
- Bo Bian
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuefang Yu
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China.
| | - Qing Wang
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianming Teng
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Nie
- Cardiology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
89
|
Gonzalez-Reyes A, Menaouar A, Yip D, Danalache B, Plante E, Noiseux N, Gutkowska J, Jankowski M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia-reperfusion. Mol Cell Endocrinol 2015; 412:170-81. [PMID: 25963797 DOI: 10.1016/j.mce.2015.04.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023]
Abstract
Oxytocin (OT) stimulates cardioprotection. Here we investigated heart-derived H9c2 cells in simulated ischemia-reperfusion (I-R) experiments in order to examine the mechanism of OT protection. I-R was induced in an anoxic chamber for 2 hours and followed by 2 h of reperfusion. In comparison to normoxia, I-R resulted in decrease of formazan production by H9c2 cells to 63.5 ± 1.7% (MTT assay) and in enhanced apoptosis from 1.7 ± 0.3% to 2.8 ± 0.4% (Tunel test). Using these assays it was observed that treatment with OT (1-500 nM) exerted significant protection during I-R, especially when OT was added at the time of ischemia or reperfusion. Using the CM-H2DCFDA probe we found that OT triggers a short-lived burst in reactive oxygen species (ROS) production in cells but reduces ROS production evoked by I-R. In cells treated with OT, Western-blot revealed the phosphorylation of Akt (Thr 308, p-Akt), eNOS and ERK 1/2. Microscopy showed translocation of p-Akt and eNOS into the nuclear and perinuclear area and NO production in cells treated with OT. The OT-induced protection against I-R was abrogated by an OT antagonist, the Pi3K inhibitor Wortmannin, the cGMP-dependent protein kinase (PKG) inhibitor, KT5823, as well as soluble guanylate cyclase (GC) inhibitor, ODQ, and particulate GC antagonist, A71915. In conditions of I-R, the cells with siRNA-mediated reduction in OT receptor (OTR) expression responded to OT treatment by enhanced apoptosis. In conclusion, the OTR protected H9c2 cells against I-R, especially if activated at the onset of ischemia or reperfusion. The OTR-transduced signals include pro-survival kinases, such as Akt and PKG.
Collapse
Affiliation(s)
- Araceli Gonzalez-Reyes
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Ahmed Menaouar
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Denis Yip
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University
| | - Bogdan Danalache
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Eric Plante
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada
| | - Nicolas Noiseux
- Department of Surgery, Faculty of Medicine, University of Montreal
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Experimental Medicine, McGill University; Department of Medicine, University of Montreal
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM, Montréal, Québec, Canada; Department of Medicine, University of Montreal.
| |
Collapse
|
90
|
Kierulf-Lassen C, Nieuwenhuijs-Moeke GJ, Krogstrup NV, Oltean M, Jespersen B, Dor FJMF. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res 2015; 55:151-83. [PMID: 26330099 DOI: 10.1159/000437352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized.
Collapse
|
91
|
Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists. Diabetes Ther 2015; 6:239-56. [PMID: 26271795 PMCID: PMC4575308 DOI: 10.1007/s13300-015-0127-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administration and clinical profile. Members of this class approved for clinical use include exenatide twice-daily, exenatide once-weekly, liraglutide and lixisenatide once-daily. Recently, two new once-weekly GLP1-RAs have been approved: dulaglutide and albiglutide. This article summarizes properties of short- and long-acting GLP-1 analogs, and provides useful information to help choose the most appropriate compound for individual patients.
Collapse
Affiliation(s)
| | - Stefano Genovese
- Diabetes Endocrine and Metabolic Diseases Unit, IRCCS MultiMedica, 20099, Sesto San Giovanni, MI, Italy
| | | | | | - Antonio Ceriello
- Insititut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
92
|
Mason D, Chen YZ, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215:101-11. [PMID: 26254712 DOI: 10.1016/j.jconrel.2015.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/15/2022]
Abstract
Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.
Collapse
Affiliation(s)
- Daniel Mason
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yu-Zhe Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Harini Venkata Krishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
93
|
Zhao H, Yang R, Shi Y, Yang W, Zeng Q, Zhao G, Wang X. Up-regulation of iNOS by hypoxic postconditioning inhibits H9c2 cardiomyocyte apoptosis induced by hypoxia/re-oxygenation. Acta Biochim Biophys Sin (Shanghai) 2015; 47:516-21. [PMID: 26040314 DOI: 10.1093/abbs/gmv043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/10/2015] [Indexed: 11/14/2022] Open
Abstract
Apoptosis is a crucial mode of cell death induced by ischemia and reperfusion, and ischemic postconditioning (PostC) has been reported to inhibit cell apoptosis. Inducible nitric oxide synthase (iNOS) has been confirmed to play an important role in triggering and mediating the late cardio-protection against ischemia/hypoxia. In this study, we found that hypoxic PostC remarkably up-regulated the expression of iNOS and decreased cardiomyocyte apoptosis. Pre-treatment with 1400w (a highly selective inhibitor of iNOS) or iNOS siRNA weakened the anti-apoptotic effect of hypoxic PostC. These findings suggested that iNOS may be one of the key molecular mechanisms responsible for the inhibition of apoptosis by hypoxic PostC.
Collapse
Affiliation(s)
- Huanxin Zhao
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Rong Yang
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Yujuan Shi
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Wanfang Yang
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Qun Zeng
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Guoyi Zhao
- Department of Physiology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, China
| | - Xiaoliang Wang
- Center for Cardiovascular Sciences, Albany Medical Center, Albany, NY 12208, USA
| |
Collapse
|
94
|
Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G. Across-Species Transfer of Protection by Remote Ischemic Preconditioning With Species-Specific Myocardial Signal Transduction by Reperfusion Injury Salvage Kinase and Survival Activating Factor Enhancement Pathways. Circ Res 2015; 117:279-88. [PMID: 26058828 DOI: 10.1161/circresaha.117.306878] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Reduction of myocardial infarct size by remote ischemic preconditioning (RIPC), that is, cycles of ischemia/reperfusion in an organ remote from the heart before sustained myocardial ischemia/reperfusion, was confirmed in all species so far, including humans. OBJECTIVE To identify myocardial signal transduction of cardioprotection by RIPC. METHODS AND RESULTS Anesthetized pigs were subjected to RIPC (4×5/5 minutes hindlimb ischemia/reperfusion) or placebo (PLA) before 60/180 minutes coronary occlusion/reperfusion. Phosphorylation of protein kinase B, extracellular signal-regulated kinase 1/2 (reperfusion injury salvage kinase [RISK] pathway), and signal transducer and activator of transcription 3 (survival activating factor enhancement [SAFE] pathway) in the area at risk was determined by Western blot. Wortmannin/U0126 or AG490 was used for pharmacological RISK or SAFE blockade, respectively. Plasma sampled after RIPC or PLA, respectively, was transferred to isolated bioassay rat hearts subjected to 30/120 minutes global ischemia/reperfusion. RIPC reduced infarct size in pigs to 16±11% versus 43±11% in PLA (% area at risk; mean±SD; P<0.05). RIPC increased the phosphorylation of signal transducer and activator of transcription 3 at early reperfusion, and AG490 abolished the protection, whereas RISK blockade did not. Signal transducer and activator of transcription 5 phosphorylation was decreased at early reperfusion in both RIPC and PLA. In isolated rat hearts, pig plasma taken after RIPC reduced infarct size (25±5% of ventricular mass versus 38±5% in PLA; P<0.05) and activated both RISK and SAFE. RISK or SAFE blockade abrogated this protection. CONCLUSIONS Cardioprotection by RIPC in pigs causally involves activation of signal transducer and activator of transcription 3 but not of RISK. Protection can be transferred with plasma from pigs to isolated rat hearts where activation of both RISK and SAFE is causally involved. The myocardial signal transduction of RIPC is the same as that of ischemic postconditioning.
Collapse
Affiliation(s)
- Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Sabine Gent
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Georgios Amanakis
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Christiane Schulte
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
95
|
Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR, Maack C. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2015; 309:H345-59. [PMID: 26001415 DOI: 10.1152/ajpheart.00683.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Although exercise mediates beneficial effects in patients after myocardial infarction (MI), the underlying mechanisms as well as the question of whether an early start of exercise after MI is safe or even beneficial are incompletely resolved. The present study analyzed the effects of exercise before and reinitiated early after MI on cardiac remodeling and function. Male C57BL/6N mice were housed sedentary or with the opportunity to voluntarily exercise for 6 wk before MI induction (ligation of the left anterior descending coronary artery) or sham operation. After a 5-day exercise-free phase after MI, mice were allowed to reexercise for another 4 wk. Exercise before MI induced adaptive hypertrophy with moderate increases in heart weight, cardiomyocyte diameter, and left ventricular (LV) end-diastolic volume, but without fibrosis. In sedentary mice, MI induced eccentric LV hypertrophy with massive fibrosis but maintained systolic LV function. While in exercised mice gross LV end-diastolic volumes and systolic function did not differ from sedentary mice after MI, LV collagen content and thinning of the infarcted area were reduced. This was associated with ameliorated activation of inflammation, mediated by TNF-α, IL-1β, and IL-6, as well as reduced activation of matrix metalloproteinase 9. In contrast, no differences in the activation patterns of various MAPKs or adenosine receptor expressions were observed 5 wk after MI in sedentary or exercised mice. In conclusion, continuous exercise training before and with an early reonset after MI ameliorates adverse LV remodeling by attenuating inflammation, fibrosis, and scar thinning. Therefore, an early reonset of exercise after MI can be encouraged.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Andreas Müller
- Klinik für Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Michael Wagner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg; and
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Daniel R Wagner
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| |
Collapse
|
96
|
Pipicz M, Varga ZV, Kupai K, Gáspár R, Kocsis GF, Csonka C, Csont T. Rapid ventricular pacing-induced postconditioning attenuates reperfusion injury: effects on peroxynitrite, RISK and SAFE pathways. Br J Pharmacol 2015; 172:3472-83. [PMID: 25827015 DOI: 10.1111/bph.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Rapid ventricular pacing (RVP) applied before an index ischaemia has anti-ischaemic effects. Here, we investigated whether RVP applied after index ischaemia attenuates reperfusion injury and whether peroxynitrite, reperfusion injury salvage kinase (RISK) and survival activating factor enhancement (SAFE) pathways as well as haem oxygenase 1 (HO1) are involved in the mechanism of RVP-induced postconditioning. EXPERIMENTAL APPROACH Langendorff perfused rat hearts were subjected to 30 min regional ischaemia and 120 min reperfusion with or without ischaemic postconditioning (6 × 10/10 s reperfusion/ischaemia; IPost) or RVP (6 × 10/10 s non-pacing/rapid pacing at 600 bpm) applied at the onset of reperfusion. KEY RESULTS Meta-analysis of our previous studies revealed an association between longer reperfusion-induced ventricular tachycardia/fibrillation with decreased infarct size. In the present experiments, we tested whether RVP is cardioprotective and found that both IPost and RVP significantly decreased infarct size; however, only RVP attenuated the incidence of reperfusion-induced ventricular tachycardia. Both postconditioning methods increased the formation of cardiac 3-nitrotyrosine and superoxide, and non-significantly enhanced Akt phosphorylation at the beginning of reperfusion without affecting ERK1/2 and STAT3, while IPost alone induced HO1. Application of brief ischaemia/reperfusion cycles or RVP without preceding index ischaemia also facilitated peroxynitrite formation; nevertheless, only brief RVP increased STAT3 phosphorylation. CONCLUSIONS AND IMPLICATIONS Short periods of RVP at the onset of reperfusion are cardioprotective and increase peroxynitrite formation similarly to IPost and thus may serve as an alternative postconditioning method. However, downstream mechanisms of the protection elicited by IPost and RVP seem to be partially different. LINKED ARTICLES This article is part of a themed section on Conditioning the Heart - Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-8.
Collapse
Affiliation(s)
- Márton Pipicz
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Krisztina Kupai
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | - Csaba Csonka
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
97
|
Overexpression of ankyrin repeat domain 1 enhances cardiomyocyte apoptosis by promoting p53 activation and mitochondrial dysfunction in rodents. Clin Sci (Lond) 2015; 128:665-78. [PMID: 25511237 DOI: 10.1042/cs20140586] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ankrd1 (ankyrin repeat domain 1) gene is known to be up-regulated in heart failure and acts as a co-activator of p53, modulating its transcriptional activity, but it remains inconclusive whether this gene promotes or inhibits cell apoptosis. In the present study, we attempted to investigate the role of Ankrd1 on AngII (angiotensin II)- or pressure-overload-induced cardiomyocyte apoptosis. In the failing hearts of mice with pressure overload, the protein expression of Ankrd1-encoded CARP (cardiac ankyrin repeat protein) was significantly increased. In NRCs (neonatal rat cardiomyocytes), AngII increased the expression of Ankrd1 and CARP. In the presence of AngII in NRCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1) enhanced the mitochondrial translocation of Bax and phosphorylated p53, increased mitochondrial permeability and cardiomyocyte apoptosis, and reduced cell viability, whereas these effects were antagonized by silencing of Ankrd1. Intra-myocardial injection of Ad-Ankrd1 in mice with TAC (transverse aortic constriction) markedly exacerbated cardiac dysfunction with an increase in the lung weight/body weight ratio and a decrease in left ventricular fractional shortening. Cardiomyocyte apoptosis and the expression of phosphorylated p53 were also significantly increased in Ad-Ankrd1-infected TAC mice, whereas knockdown of Ankrd1 significantly inhibited the apoptotic signal pathway as well as cardiomyocyte apoptosis in pressure-overload mice. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac dysfunction through enhancement of cardiomyocyte apoptosis mediated by the up-regulation of p53.
Collapse
|
98
|
Maslov LN, Naryzhnaya NV, Prokudina ES, Kolar F, Gorbunov AS, Zhang Y, Wang H, Tsibulnikov SY, Portnichenko AG, Lasukova TV, Lishmanov YB. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: Role of opioid receptors. Clin Exp Pharmacol Physiol 2015; 42:496-501. [DOI: 10.1111/1440-1681.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Leonid N Maslov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Frantisek Kolar
- Department of Developmental Cardiology; Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Yi Zhang
- Department of Physiology; Hebei Medical University; Shijiazhuang China
| | - Hongxin Wang
- Department of Pharmacology; Liaoning Medical College; Jinzhou City China
| | - Sergey Yu Tsibulnikov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| | - Alla G Portnichenko
- Bogomoletz Institute of Physiology; National Academy of Sciences of Ukraine; Kiev Ukraine
| | | | - Yury B Lishmanov
- Laboratory of Experimental Cardiology; Federal State Budgetary Scientific Institution; Research Institute for Cardiology; Tomsk Russia
| |
Collapse
|
99
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
100
|
Correlation of plasma catestatin level and the prognosis of patients with acute myocardial infarction. PLoS One 2015; 10:e0122993. [PMID: 25848973 PMCID: PMC4388679 DOI: 10.1371/journal.pone.0122993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/26/2015] [Indexed: 01/29/2023] Open
Abstract
Catestatin is a peptide which is a potent inhibitor of catecholamine secretion and played essential functions in the cardiovascular system. Previous research found that dramatic changes of catestatin were associated with hemodynamics in acute myocardial infarction (AMI) during the first week after the AMI symptoms onset, but whether catestatin is also involved in the pathophysiological progression after AMI and then a predictor for outcomes is not clear. The aim of this study is to determine the correlation of plasma catestatin levels at different time points and the prognosis of AMI. 100 participants recruited were all patients with AMI, all of who received successful primary percutaneous coronary intervention (PCI) within 12h from the AMI symptom onset in our center; the concentrations of plasma catestatin were evaluated from blood samples of those 100 participants. Subsequent 65 months' follow-up was performed after discharging to evaluate cardiac adverse events and the association between catestatin levels and prognosis of AMI was examined. We confirmed the dramatic change of catestatin concentrations in the first week of AMI, and the levels of catestatin on D3 were much higher in adverse events group than those in non-adverse events group (p<0.0001), but the ratio of D7/D3 was significantly lower. In addition, the Kaplan-Meier analysis showed that the groups in which the levels on D3 were higher (p<0.0001) and the ratios of D7/D3 were lower (p<0.0001), patients trended to be more susceptive to adverse events after AMI. Furthermore, according to the analysis, we surmised catestatin level on D3 as an appropriate predictor for outcomes in patients with AMI with good specificity as well as sensitivity. All of the evidence confirmed that catestatin plays an important role in the progress of AMI, and may act as a promising target for prognostic prediction.
Collapse
|