51
|
Sui Y, Zhang W, Tang T, Gao L, Cao T, Zhu H, You Q, Yu B, Yang T. Insulin-like growth factor-II overexpression accelerates parthenogenetic stem cell differentiation into cardiomyocytes and improves cardiac function after acute myocardial infarction in mice. Stem Cell Res Ther 2020; 11:86. [PMID: 32102690 PMCID: PMC7045450 DOI: 10.1186/s13287-020-1575-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/01/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Parthenogenetic stem cells (PSCs) are a promising source of regenerated cardiomyocytes; however, their application may be limited without a paternal genome. Insulin-like growth factor-II (IGF-II), a paternally expressed growth hormone, is critical in embryonic differentiation. This study investigated whether forced expression of IGF-II in PSCs can accelerate their differentiation. Methods Overexpression and re-knockdown of IGF-II in PSCs were performed to investigate the role of IGF-II in PSC differentiation. The derivatives of PSCs with different IGF-II manipulations were transplanted into infarcted murine hearts to investigate the role of IGF-II in cardiomyocyte differentiation in vivo. Results Data showed that the expression of cardiac troponin T and troponin I in IGF-II-PSC outgrowths preceded that of parental PSC outgrowths, suggesting that IGF-II can accelerate PSC differentiation into cardiac lineage. Overexpression of IGF-II accelerated PSC differentiation towards cardiomyocytes while inhibiting PSC proliferation via the IGF-II/IGF1R signaling. Similar to that observed in cardiac marker expression, on differentiation day 24, IGF-II-PSCs showed PCNA and cyclin D2 expression comparable to juvenile mouse cardiomyocytes, showing that IGF-II-PSCs at this stage possess differential and proliferative properties similar to those of juvenile cardiomyocytes. Moreover, the expression pattern of cardiac markers in IGF-II-overexpressing PSC derivatives resembled that of juvenile mouse cardiomyocytes. After transplantation into the infarcted mouse hearts, IGF-II-PSC-derived cardiomyocytes displayed significant characteristics of mature cardiomyocytes, and IGF-II-depletion by shRNA significantly reversed these effects, suggesting the critical role of IGF-II in promoting cardiomyocyte maturation in vivo. Furthermore, IGF-II-overexpressing PSC derivatives reduced collagen deposition and mitochondrial damage in the infarcted areas and improved cardiac function. The re-knockdown of IGF-II could counteract these favorable effects of IGF-II. Conclusions These findings suggest that the ectopic expression of IGF-II accelerates PSC differentiation into the cardiac lineage and promotes cardiomyocyte maturation. The underlying process includes the IGF-II/IGF1R signaling, which is involved in the suppressive effect of IGF-II on PSC proliferation. Moreover, transplanting IGF-II-overexpressing PSC derivatives into the infarcted heart could reduce collagen deposition and improve mitochondria biogenesis and measurements of cardiac function, highlighting the importance of IGF-II in the application of PSCs in cardiac regeneration.
Collapse
Affiliation(s)
- Yi Sui
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Zhang
- Department of Pharmacology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Tao Tang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
52
|
Nakao S, Ihara D, Hasegawa K, Kawamura T. Applications for Induced Pluripotent Stem Cells in Disease Modelling and Drug Development for Heart Diseases. Eur Cardiol 2020; 15:1-10. [PMID: 32180835 PMCID: PMC7066852 DOI: 10.15420/ecr.2019.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from reprogrammed somatic cells by the introduction of defined transcription factors. They are characterised by a capacity for self-renewal and pluripotency. Human (h)iPSCs are expected to be used extensively for disease modelling, drug screening and regenerative medicine. Obtaining cardiac tissue from patients with mutations for genetic studies and functional analyses is a highly invasive procedure. In contrast, disease-specific hiPSCs are derived from the somatic cells of patients with specific genetic mutations responsible for disease phenotypes. These disease-specific hiPSCs are a better tool for studies of the pathophysiology and cellular responses to therapeutic agents. This article focuses on the current understanding, limitations and future direction of disease-specific hiPSC-derived cardiomyocytes for further applications.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Dai Ihara
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| |
Collapse
|
53
|
van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells 2020; 38:174-186. [PMID: 31664757 PMCID: PMC7027796 DOI: 10.1002/stem.3110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Research on mechanisms underlying monogenic cardiac diseases such as primary arrhythmias and cardiomyopathies has until recently been hampered by inherent limitations of heterologous cell systems, where mutant genes are expressed in noncardiac cells, and physiological differences between humans and experimental animals. Human-induced pluripotent stem cells (hiPSCs) have proven to be a game changer by providing new opportunities for studying the disease in the specific cell type affected, namely the cardiomyocyte. hiPSCs are particularly valuable because not only can they be differentiated into unlimited numbers of these cells, but they also genetically match the individual from whom they were derived. The decade following their discovery showed the potential of hiPSCs for advancing our understanding of cardiovascular diseases, with key pathophysiological features of the patient being reflected in their corresponding hiPSC-derived cardiomyocytes (the past). Now, recent advances in genome editing for repairing or introducing genetic mutations efficiently have enabled the disease etiology and pathogenesis of a particular genotype to be investigated (the present). Finally, we are beginning to witness the promise of hiPSC in personalized therapies for individual patients, as well as their application in identifying genetic variants responsible for or modifying the disease phenotype (the future). In this review, we discuss how hiPSCs could contribute to improving the diagnosis, prognosis, and treatment of an individual with a suspected genetic cardiac disease, thereby developing better risk stratification and clinical management strategies for these potentially lethal but treatable disorders.
Collapse
Affiliation(s)
- Lettine van den Brink
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Catarina Grandela
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Richard P. Davis
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| |
Collapse
|
54
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
55
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|
56
|
Van de Sande DV, Kopljar I, Teisman A, Gallacher DJ, Snyders DJ, Lu HR, Labro AJ. Pharmacological Profile of the Sodium Current in Human Stem Cell-Derived Cardiomyocytes Compares to Heterologous Nav1.5+β1 Model. Front Pharmacol 2019; 10:1374. [PMID: 31920633 PMCID: PMC6917651 DOI: 10.3389/fphar.2019.01374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary β1-subunit, this subunit can also affect the channel’s pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+β1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when β1 was present. Thus, β1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including β1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+β1.
Collapse
Affiliation(s)
- Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Ivan Kopljar
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium.,Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
57
|
Kussauer S, David R, Lemcke H. hiPSCs Derived Cardiac Cells for Drug and Toxicity Screening and Disease Modeling: What Micro- Electrode-Array Analyses Can Tell Us. Cells 2019; 8:E1331. [PMID: 31661896 PMCID: PMC6912416 DOI: 10.3390/cells8111331] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) have been intensively used in drug development and disease modeling. Since iPSC-cardiomyocyte (CM) was first generated, their characterization has become a major focus of research. Multi-/micro-electrode array (MEA) systems provide a non-invasive user-friendly platform for detailed electrophysiological analysis of iPSC cardiomyocytes including drug testing to identify potential targets and the assessment of proarrhythmic risk. Here, we provide a systematical overview about the physiological and technical background of micro-electrode array measurements of iPSC-CM. We introduce the similarities and differences between action- and field potential and the advantages and drawbacks of MEA technology. In addition, we present current studies focusing on proarrhythmic side effects of novel and established compounds combining MEA systems and iPSC-CM. MEA technology will help to open a new gateway for novel therapies in cardiovascular diseases while reducing animal experiments at the same time.
Collapse
Affiliation(s)
- Sophie Kussauer
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Robert David
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| | - Heiko Lemcke
- Department Cardiac Surgery, Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
58
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
59
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
60
|
Deisl C, Fine M, Moe OW, Hilgemann DW. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca 2+ and diacylglycerol signals. Pflugers Arch 2019; 471:1143-1157. [PMID: 31250095 PMCID: PMC6614165 DOI: 10.1007/s00424-019-02293-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca2+ and diacylglycerol, quantified with the Ca2+ sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca2+ and diacylglycerol. These results together suggest that basal Ca2+ and diacylglycerol form a positive feedback signaling loop that promotes execution of cardiac growth programs in these human myocytes. Given that basal Ca2+ in myocytes depends strongly on the Na+ gradient, we also tested whether nanomolar ouabain concentrations might stimulate Na+/K+ pumps, as described by others, and thereby prevent hypertrophy. However, stimulatory effects of nanomolar ouabain (1.5 nM) were not verified on Na+/K+ pump currents in stem cell-derived myocytes, nor did nanomolar ouabain block hypertrophy induced by endothelin-1. Thus, low-dose ouabain is not a "protective" intervention under the conditions of these experiments in this human myocyte model. To summarize, the major aim of this study has been to characterize the progression of hypertrophy in human embryonic stem cell-derived cardiac myocytes in dependence on diacylglycerol and Na+ gradient changes, developing a case that positive feedback coupling between these mechanisms plays an important role in the initiation of hypertrophy programs.
Collapse
Affiliation(s)
- Christine Deisl
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Michael Fine
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Orson W Moe
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Donald W Hilgemann
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| |
Collapse
|
61
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
62
|
Salvarani N, Crasto S, Miragoli M, Bertero A, Paulis M, Kunderfranco P, Serio S, Forni A, Lucarelli C, Dal Ferro M, Larcher V, Sinagra G, Vezzoni P, Murry CE, Faggian G, Condorelli G, Di Pasquale E. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat Commun 2019; 10:2267. [PMID: 31118417 PMCID: PMC6531493 DOI: 10.1038/s41467-019-09929-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in LMNA, which encodes the nuclear proteins Lamin A/C, can cause cardiomyopathy and conduction disorders. Here, we employ induced pluripotent stem cells (iPSCs) generated from human cells carrying heterozygous K219T mutation on LMNA to develop a disease model. Cardiomyocytes differentiated from these iPSCs, and which thus carry K219T-LMNA, have altered action potential, reduced peak sodium current and diminished conduction velocity. Moreover, they have significantly downregulated Nav1.5 channel expression and increased binding of Lamin A/C to the promoter of SCN5A, the channel's gene. Coherently, binding of the Polycomb Repressive Complex 2 (PRC2) protein SUZ12 and deposition of the repressive histone mark H3K27me3 are increased at SCN5A. CRISPR/Cas9-mediated correction of the mutation re-establishes sodium current density and SCN5A expression. Thus, K219T-LMNA cooperates with PRC2 in downregulating SCN5A, leading to decreased sodium current density and slower conduction velocity. This mechanism may underlie the conduction abnormalities associated with LMNA-cardiomyopathy.
Collapse
Affiliation(s)
- Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Silvia Crasto
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Michele Miragoli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43121, Italy
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Marianna Paulis
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Paolo Kunderfranco
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Simone Serio
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Alberto Forni
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Carla Lucarelli
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Veronica Larcher
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Paolo Vezzoni
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Gianluigi Condorelli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
- Humanitas University, Rozzano (MI), 20089, Italy.
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
| |
Collapse
|
63
|
Abstract
Brugada syndrome is an inherited, rare cardiac arrhythmogenic disease, associated with sudden cardiac death. It accounts for up to 20% of sudden deaths in patients without structural cardiac abnormalities. The majority of mutations involve the cardiac sodium channel gene SCN5A and give rise to classical abnormal electrocardiogram with ST segment elevation in the right precordial leads V1 to V3 and a predisposition to ventricular fibrillation. The pathophysiological mechanisms of Brugada syndrome have been investigated using model systems including transgenic mice, canine heart preparations, and expression systems to study different SCN5A mutations. These models have a number of limitations. The recent development of pluripotent stem cell technology creates an opportunity to study cardiomyocytes derived from patients and healthy individuals. To date, only a few studies have been done using Brugada syndrome patient-specific iPS-CM, which have provided novel insights into the mechanisms and pathophysiology of Brugada syndrome. This review provides an evaluation of the strengths and limitations of each of these model systems and summarizes the key mechanisms that have been identified to date.
Collapse
|
64
|
Stem cell models as an in vitro model for predictive toxicology. Biochem J 2019; 476:1149-1158. [PMID: 30988136 PMCID: PMC6463389 DOI: 10.1042/bcj20170780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Adverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds. However, animal models are imperfect proxies for human toxicity and there have been several high-profile cases of failure of animal models to predict human toxicity e.g. fialuridine, TGN1412 which highlight the need for improved predictive models of human toxicity. As a result, stem cell-derived models are under investigation as potential models for toxicity during early stages of drug development. Stem cells retain the genotype of the individual from which they were derived, offering the opportunity to model the reproducibility of rare phenotypes in vitro Differentiated 2D stem cell cultures have been investigated as models of hepato- and cardiotoxicity. However, insufficient maturity, particularly in the case of hepatocyte-like cells, means that their widespread use is not currently a feasible method to tackle the complex issues of off-target and often unpredictable toxicity of novel compounds. This review discusses the current state of the art for modelling clinically relevant toxicities, e.g. cardio- and hepatotoxicity, alongside the emerging need for modelling gastrointestinal toxicity and seeks to address whether stem cell technologies are a potential solution to increase the accuracy of ADR predictivity in humans.
Collapse
|
65
|
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med 2019; 6:32. [PMID: 31001541 PMCID: PMC6454035 DOI: 10.3389/fcvm.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
66
|
Wallace E, Howard L, Liu M, O'Brien T, Ward D, Shen S, Prendiville T. Long QT Syndrome: Genetics and Future Perspective. Pediatr Cardiol 2019; 40:1419-1430. [PMID: 31440766 PMCID: PMC6785594 DOI: 10.1007/s00246-019-02151-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/10/2019] [Indexed: 01/19/2023]
Abstract
Long QT syndrome (LQTS) is an inherited primary arrhythmia syndrome that may present with malignant arrhythmia and, rarely, risk of sudden death. The clinical symptoms include palpitations, syncope, and anoxic seizures secondary to ventricular arrhythmia, classically torsade de pointes. This predisposition to malignant arrhythmia is from a cardiac ion channelopathy that results in delayed repolarization of the cardiomyocyte action potential. The QT interval on the surface electrocardiogram is a summation of the individual cellular ventricular action potential durations, and hence is a surrogate marker of the abnormal cellular membrane repolarization. Severely affected phenotypes administered current standard of care therapies may not be fully protected from the occurrence of cardiac arrhythmias. There are 17 different subtypes of LQTS associated with monogenic mutations of 15 autosomal dominant genes. It is now possible to model the various LQTS phenotypes through the generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes. RNA interference can silence or suppress the expression of mutant genes. Thus, RNA interference can be a potential therapeutic intervention that may be employed in LQTS to knock out mutant mRNAs which code for the defective proteins. CRISPR/Cas9 is a genome editing technology that offers great potential in elucidating gene function and a potential therapeutic strategy for monogenic disease. Further studies are required to determine whether CRISPR/Cas9 can be employed as an efficacious and safe rescue of the LQTS phenotype. Current progress has raised opportunities to generate in vitro human cardiomyocyte models for drug screening and to explore gene therapy through genome editing.
Collapse
Affiliation(s)
- Eimear Wallace
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Deirdre Ward
- Department of Cardiology, Tallaght University Hospital, Dublin, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Terence Prendiville
- Department of Paediatric Cardiology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
67
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
68
|
Large-Scale Simulation of the Phenotypical Variability Induced by Loss-of-Function Long QT Mutations in Human Induced Pluripotent Stem Cell Cardiomyocytes. Int J Mol Sci 2018; 19:ijms19113583. [PMID: 30428582 PMCID: PMC6274824 DOI: 10.3390/ijms19113583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Loss-of-function long QT (LQT) mutations inducing LQT1 and LQT2 syndromes have been successfully translated to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) used as disease-specific models. However, their in vitro investigation mainly relies on experiments using small numbers of cells. This is especially critical when working with cells as heterogeneous as hiPSC-CMs. We aim (i) to investigate in silico the ionic mechanisms underlying LQT1 and LQT2 hiPSC-CM phenotypic variability, and (ii) to enable massive in silico drug tests on mutant hiPSC-CMs. We combined (i) data of control and mutant slow and rapid delayed rectifying K+ currents, IKr and IKs respectively, (ii) a recent in silico hiPSC-CM model, and (iii) the population of models paradigm to generate control and mutant populations for LQT1 and LQT2 cardiomyocytes. Our four populations contain from 1008 to 3584 models. In line with the experimental in vitro data, mutant in silico hiPSC-CMs showed prolonged action potential (AP) duration (LQT1: +14%, LQT2: +39%) and large electrophysiological variability. Finally, the mutant populations were split into normal-like hiPSC-CMs (with action potential duration similar to control) and at risk hiPSC-CMs (with clearly prolonged action potential duration). At risk mutant hiPSC-CMs carried higher expression of L-type Ca2+, lower expression of IKr and increased sensitivity to quinidine as compared to mutant normal-like hiPSC-CMs, resulting in AP abnormalities. In conclusion, we were able to reproduce the two most common LQT syndromes with large-scale simulations, which enable investigating biophysical mechanisms difficult to assess in vitro, e.g., how variations of ion current expressions in a physiological range can impact on AP properties of mutant hiPSC-CMs.
Collapse
|
69
|
Sparks NRL, Martinez IKC, Soto CH, Zur Nieden NI. Low Osteogenic Yield in Human Pluripotent Stem Cells Associates with Differential Neural Crest Promoter Methylation. Stem Cells 2018; 36:349-362. [PMID: 29193426 DOI: 10.1002/stem.2746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
Abstract
Human pluripotent stem cell-derived osteoblasts possess great potential for use in bone disorder elucidation and repair; however, while the general ability of human pluripotent stem cells to differentiate into osteoblasts and lay down bone-specific matrix has been shown, previous studies lack the complete characterization of the process whereby such osteoblasts are derived as well as a comparison between the osteogenic efficiency of multiple cell lines. Here, we compared the osteogenic potential of two human induced pluripotent stem cell lines (RIV9 and RIV4) to human H9 embryonic stem cells. Generally capable of osteogenic differentiation, the overall osteogenic yield was lower in the RIV9 and RIV4 lines and correlated with differential expression of osteocalcin (OCN) in mature cultures and PAX7 and TWIST1 during early differentiation. In the undifferentiated cells, the promoters of the latter two genes were differentially methylated potentially explaining the variation in differentiation efficiency. Furthermore, the expression signatures of selected neural crest and mesodermal genes and proteins suggested that H9 cells preferentially gave rise to neural crest-derived osteoblasts, whereas the osteoblasts in the RIV9 cultures were generated both through a mesodermal and a neural crest route although each at a lower rate. These data suggest that epigenetic dissimilarities between multiple PSC lines may lead to differences in lineage derivation and mineralization. Since osteoblast progenitors from one origin inadequately repair a defect in the other, these data underscore the importance of screening human pluripotent stem cells lines for the identity of the osteoprogenitors they lay down. Stem Cells 2018;36:349-362.
Collapse
Affiliation(s)
- Nicole Renee Lee Sparks
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Ivann Kenneth Carvajal Martinez
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Cristina Helen Soto
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Nicole Isolde Zur Nieden
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| |
Collapse
|
70
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
71
|
van den Hurk M, Erwin JA, Yeo GW, Gage FH, Bardy C. Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells. Front Mol Neurosci 2018; 11:261. [PMID: 30147644 PMCID: PMC6096303 DOI: 10.3389/fnmol.2018.00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently, advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq). We have built upon such technical progress to combine scRNA-seq with patch-clamping electrophysiological recording and morphological analysis of single human neurons in vitro. This new powerful method, referred to as Patch-seq, enables a thorough, multimodal profiling of neurons and permits us to expose the links between functional properties, morphology, and gene expression. Here, we present a detailed Patch-seq protocol for isolating single neurons from in vitro neuronal cultures. We have validated the Patch-seq whole-transcriptome profiling method with human neurons generated from embryonic and induced pluripotent stem cells (ESCs/iPSCs) derived from healthy subjects, but the procedure may be applied to any kind of cell type in vitro. Patch-seq may be used on neurons in vitro to profile cell types and states in depth to unravel the human molecular basis of neuronal diversity and investigate the cellular mechanisms underlying brain disorders.
Collapse
Affiliation(s)
- Mark van den Hurk
- Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI) Mind and Brain, Adelaide, SA, Australia
| | - Jennifer A. Erwin
- The Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Cedric Bardy
- Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI) Mind and Brain, Adelaide, SA, Australia
- Flinders University College of Medicine and Public Health, Adelaide, SA, Australia
| |
Collapse
|
72
|
Caluori G, Pribyl J, Cmiel V, Pesl M, Potocnak T, Provaznik I, Skladal P, Rotrekl V. Simultaneous study of mechanobiology and calcium dynamics on hESC-derived cardiomyocytes clusters. J Mol Recognit 2018; 32:e2760. [PMID: 30084213 DOI: 10.1002/jmr.2760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/11/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022]
Abstract
Calcium ions act like ubiquitous second messengers in a wide amount of cellular processes. In cardiac myocytes, Ca2+ handling regulates the mechanical contraction necessary to the heart pump function. The field of intracellular and intercellular Ca2+ handling, employing in vitro models of cardiomyocytes, has become a cornerstone to understand the role and adaptation of calcium signalling in healthy and diseased hearts. Comprehensive in vitro systems and cell-based biosensors are powerful tools to enrich and speed up cardiac phenotypic and drug response evaluation. We have implemented a combined setup to measure contractility and calcium waves in human embryonic stem cells-derived cardiomyocyte 3D clusters, obtained from embryoid body differentiation. A combination of atomic force microscopy to monitor cardiac contractility, and sensitive fast scientific complementary metal-oxide-semiconductor camera for epifluorescence video recording, provided correlated signals in real time. To speed up the integrated data processing, we tested several post-processing algorithms, to improve the automatic detection of relevant functional parameters. The validation of our proposed method was assessed by caffeine stimulation (10mM) and detection/characterization of the induced cardiac response. We successfully report the first simultaneous recording of cardiac contractility and calcium waves on the described cardiac 3D models. The drug stimulation confirmed the automatic detection capabilities of the used algorithms, measuring expected physiological response, such as elongation of contraction time and Ca2+ cytosolic persistence, increased calcium basal fluorescence, and transient peaks. These results contribute to the implementation of novel, integrated, high-information, and reliable experimental systems for cardiac models and drug evaluation.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Centre of Saint Anne Hospital of Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology Group, Brno, Czech Republic.,Nanobiotechnology Group, Central European Institute of Technology of Masaryk University (CEITEC-MU), Brno, Czech Republic
| | - Jan Pribyl
- Nanobiotechnology Group, Central European Institute of Technology of Masaryk University (CEITEC-MU), Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Brno, Czech Republic
| | - Martin Pesl
- International Clinical Research Centre of Saint Anne Hospital of Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology Group, Brno, Czech Republic.,Department of Biology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Tomas Potocnak
- Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Brno, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Brno, Czech Republic
| | - Petr Skladal
- Nanobiotechnology Group, Central European Institute of Technology of Masaryk University (CEITEC-MU), Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
73
|
Anderson RH, Francis KR. Modeling rare diseases with induced pluripotent stem cell technology. Mol Cell Probes 2018; 40:52-59. [PMID: 29307697 PMCID: PMC6033695 DOI: 10.1016/j.mcp.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Rare diseases, in totality, affect a significant proportion of the population and represent an unmet medical need facing the scientific community. However, the treatment of individuals affected by rare diseases is hampered by poorly understood mechanisms preventing the development of viable therapeutics. The discovery and application of cellular reprogramming to create novel induced pluripotent stem cell models of rare diseases has revolutionized the rare disease community. Through developmental and functional analysis of differentiated cell types, these stem cell models carrying patient-specific mutations have become an invaluable tool for rare disease research. In this review article, we discuss the reprogramming of samples from individuals affected with rare diseases to induced pluripotent stem cells, current and future applications for this technology, and how integration of genome editing to rare disease research will help to improve our understanding of disease pathogenesis and lead to patient therapies.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
74
|
Jiang Y, Park P, Hong SM, Ban K. Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells: Current Strategies and Limitations. Mol Cells 2018; 41:613-621. [PMID: 29890820 PMCID: PMC6078855 DOI: 10.14348/molcells.2018.0143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
The capacity of differentiation of human pluripotent stem cells (hPSCs), which include both embryonic stem cells and induced pluripotent stem cells, into cardiomyocytes (CMs) in vitro provides an unlimited resource for human CMs for a wide range of applications such as cell based cardiac repair, cardiac drug toxicology screening, and human cardiac disease modeling. However, their applicability is significantly limited by immature phenotypes. It has been well known that currently available CMs derived from hPSCs (hPSC-CMs) represent immature embryonic or fetal stage CMs and are functionally and structurally different from mature human CMs. To overcome this critical issue, several new approaches aiming to generate more mature hPSC-CMs have been developed. This review describes recent approaches to generate more mature hPSC-CMs including their scientific principles, advantages, and limitations.
Collapse
Affiliation(s)
- Yanqing Jiang
- University of Toronto, Hospital of Sick Children, Toronto,
Canada
| | - Peter Park
- Emory University, Department of Biology, Atlanta, Georgia,
USA
| | - Sang-Min Hong
- Department of Physical Education, Dongguk University Seoul, Seoul 04620,
Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong,
Hong Kong
| |
Collapse
|
75
|
Human iPSC-Derived Cardiomyocytes for Investigation of Disease Mechanisms and Therapeutic Strategies in Inherited Arrhythmia Syndromes: Strengths and Limitations. Cardiovasc Drugs Ther 2018; 31:325-344. [PMID: 28721524 PMCID: PMC5550530 DOI: 10.1007/s10557-017-6735-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last two decades, significant progress has been made in the identification of genetic defects underlying inherited arrhythmia syndromes, which has provided some clinical benefit through elucidation of gene-specific arrhythmia triggers and treatment. However, for most arrhythmia syndromes, clinical management is hindered by insufficient knowledge of the functional consequences of the mutation in question, the pro-arrhythmic mechanisms involved, and hence the most optimal treatment strategy. Moreover, disease expressivity and sensitivity to therapeutic interventions often varies between mutations and/or patients, underlining the need for more individualized strategies. The development of the induced pluripotent stem cell (iPSC) technology now provides the opportunity for generating iPSC-derived cardiomyocytes (CMs) from human material (hiPSC-CMs), enabling patient- and/or mutation-specific investigations. These hiPSC-CMs may furthermore be employed for identification and assessment of novel therapeutic strategies for arrhythmia syndromes. However, due to their relative immaturity, hiPSC-CMs also display a number of essential differences as compared to adult human CMs, and hence there are certain limitations in their use. We here review the electrophysiological characteristics of hiPSC-CMs, their use for investigating inherited arrhythmia syndromes, and their applicability for identification and assessment of (novel) anti-arrhythmic treatment strategies.
Collapse
|
76
|
Oikonomopoulos A, Kitani T, Wu JC. Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Mol Ther 2018; 26:1624-1634. [PMID: 29699941 PMCID: PMC6035734 DOI: 10.1016/j.ymthe.2018.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Regenerative therapy has been applied to restore lost cardiac muscle and cardiac performance. Induced pluripotent stem cells (iPSCs) can provide an unlimited source of cardiomyocytes and therefore play a key role in cardiac regeneration. Despite initial encouraging results from pre-clinical studies, progress toward clinical applications has been hampered by issues such as tumorigenesis, arrhythmogenesis, immune rejection, scalability, low graft-cell survival, and poor engraftment. Here, we review recent developments in iPSC research on regenerating injured heart tissue, including novel advances in cell therapy and potential strategies to overcome current obstacles in the field.
Collapse
Affiliation(s)
- Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
77
|
Gélinas R, El Khoury N, Chaix MA, Beauchamp C, Alikashani A, Ethier N, Boucher G, Villeneuve L, Robb L, Latour F, Mondesert B, Rivard L, Goyette P, Talajic M, Fiset C, Rioux JD. Characterization of a Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for the Study of Variant Pathogenicity: Validation of a KCNJ2 Mutation. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001755. [PMID: 29021306 DOI: 10.1161/circgenetics.117.001755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Long-QT syndrome is a potentially fatal condition for which 30% of patients are without a genetically confirmed diagnosis. Rapid identification of causal mutations is thus a priority to avoid at-risk situations that can lead to fatal cardiac events. Massively parallel sequencing technologies are useful for the identification of sequence variants; however, electrophysiological testing of newly identified variants is crucial to demonstrate causality. Long-QT syndrome could, therefore, benefit from having a standardized platform for functional characterization of candidate variants in the physiological context of human cardiomyocytes. METHODS AND RESULTS Using a variant in Kir2.1 (Gly52Val) revealed by whole-exome sequencing in a patient presenting with symptoms of long-QT syndrome as a proof of principle, we demonstrated that commercially available human induced pluripotent stem cell-derived cardiomyocytes are a powerful model for screening variants involved in genetic cardiac diseases. Immunohistochemistry experiments and whole-cell current recordings in human embryonic kidney cells expressing the wild-type or the mutant Kir2.1 demonstrated that Kir2.1-52V alters channel cellular trafficking and fails to form a functional channel. Using human induced pluripotent stem cell-derived cardiomyocytes, we not only confirmed these results but also further demonstrated that Kir2.1-52V is associated with a dramatic prolongation of action potential duration with evidence of arrhythmic activity, parameters which could not have been studied using human embryonic kidney cells. CONCLUSIONS Our study confirms the pathogenicity of Kir2.1-52V in 1 patient with long-QT syndrome and also supports the use of isogenic human induced pluripotent stem cell-derived cardiomyocytes as a physiologically relevant model for the screening of variants of unknown function.
Collapse
Affiliation(s)
- Roselle Gélinas
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Nabil El Khoury
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Marie-A Chaix
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Claudine Beauchamp
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Azadeh Alikashani
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Nathalie Ethier
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Gabrielle Boucher
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Louis Villeneuve
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Laura Robb
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Frédéric Latour
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Blandine Mondesert
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Lena Rivard
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Philippe Goyette
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Mario Talajic
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada
| | - Céline Fiset
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada.
| | - John David Rioux
- From the Research Center (R.G., N.E.K., M.-A.C., C.B., A.A., N.E., G.B., L.V., L.R., F.L., B.M., L.R., P.G., M.T., C.F., J.D.R.) and Cardiovascular Genetics Center (L. Robb, L. Rivard, M.T.), Montreal Heart Institute, Quebec, Canada; and Department of Medicine (R.G., M.-A.C., B.M., L.R., M.T., J.D.R.) and Faculty of Pharmacy (N.E.K., C.F.), Université de Montréal, Quebec, Canada.
| |
Collapse
|
78
|
Brandão KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech 2018; 10:1039-1059. [PMID: 28883014 PMCID: PMC5611968 DOI: 10.1242/dmm.030320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is now a decade since human induced pluripotent stem cells (hiPSCs) were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.
Collapse
Affiliation(s)
- Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Viola A Tabel
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
79
|
Horváth A, Lemoine MD, Löser A, Mannhardt I, Flenner F, Uzun AU, Neuber C, Breckwoldt K, Hansen A, Girdauskas E, Reichenspurner H, Willems S, Jost N, Wettwer E, Eschenhagen T, Christ T. Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:822-833. [PMID: 29429959 PMCID: PMC5918194 DOI: 10.1016/j.stemcr.2018.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.
Collapse
Affiliation(s)
- András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Marc D Lemoine
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Alexandra Löser
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ahmet Umur Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Erich Wettwer
- Institute of Pharmacology, University Duisburg-Essen, 45122 Essen, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
80
|
Sinus Bradycardia in Carriers of the SCN5A-1795insD Mutation: Unraveling the Mechanism through Computer Simulations. Int J Mol Sci 2018; 19:ijms19020634. [PMID: 29473904 PMCID: PMC5855856 DOI: 10.3390/ijms19020634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
The SCN5A gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac fast sodium current (INa). The 1795insD mutation in SCN5A causes sinus bradycardia, with a mean heart rate of 70 beats/min in mutation carriers vs. 77 beats/min in non-carriers from the same family (lowest heart rate 41 vs. 47 beats/min). To unravel the underlying mechanism, we incorporated the mutation-induced changes in INa into a recently developed comprehensive computational model of a single human sinoatrial node cell (Fabbri–Severi model). The 1795insD mutation reduced the beating rate of the model cell from 74 to 69 beats/min (from 49 to 43 beats/min in the simulated presence of 20 nmol/L acetylcholine). The mutation-induced persistent INa per se resulted in a substantial increase in beating rate. This gain-of-function effect was almost completely counteracted by the loss-of-function effect of the reduction in INa conductance. The further loss-of-function effect of the shifts in steady-state activation and inactivation resulted in an overall loss-of-function effect of the 1795insD mutation. We conclude that the experimentally identified mutation-induced changes in INa can explain the clinically observed sinus bradycardia. Furthermore, we conclude that the Fabbri–Severi model may prove a useful tool in understanding cardiac pacemaker activity in humans.
Collapse
|
81
|
Ovchinnikova E, Hoes M, Ustyantsev K, Bomer N, de Jong TV, van der Mei H, Berezikov E, van der Meer P. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:794-807. [PMID: 29456183 PMCID: PMC5918264 DOI: 10.1016/j.stemcr.2018.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction.
Collapse
Affiliation(s)
- Ekaterina Ovchinnikova
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands; European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Martijn Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Henny van der Mei
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department, Groningen, 9713AV, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands.
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands.
| |
Collapse
|
82
|
Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Pérez GJ, Scornik FS, Brugada R, Mills NL. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 2018; 114:10-19. [PMID: 29024690 PMCID: PMC5807028 DOI: 10.1016/j.yjmcc.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
Abstract
Brugada syndrome predisposes to sudden death due to disruption of normal cardiac ion channel function, yet our understanding of the underlying cellular mechanisms is incomplete. Commonly used heterologous expression models lack many characteristics of native cardiomyocytes and, in particular, the individual genetic background of a patient. Patient-specific induced pluripotent stem (iPS) cell-derived cardiomyocytes (iPS-CM) may uncover cellular phenotypical characteristics not observed in heterologous models. Our objective was to determine the properties of the sodium current in iPS-CM with a mutation in SCN5A associated with Brugada syndrome. Dermal fibroblasts from a Brugada syndrome patient with a mutation in SCN5A (c.1100G>A, leading to Nav1.5_p.R367H) were reprogrammed to iPS cells. Clones were characterized and differentiated to form beating clusters and sheets. Patient and control iPS-CM were structurally indistinguishable. Sodium current properties of patient and control iPS-CM were compared. These results were contrasted with those obtained in tsA201 cells heterologously expressing sodium channels with the same mutation. Patient-derived iPS-CM showed a 33.1-45.5% reduction in INa density, a shift in both activation and inactivation voltage-dependence curves, and faster recovery from inactivation. Co-expression of wild-type and mutant channels in tsA201 cells did not compromise channel trafficking to the membrane, but resulted in a reduction of 49.8% in sodium current density without affecting any other parameters. Cardiomyocytes derived from iPS cells from a Brugada syndrome patient with a mutation in SCN5A recapitulate the loss of function of sodium channel current associated with this syndrome; including pro-arrhythmic changes in channel function not detected using conventional heterologous expression systems.
Collapse
Affiliation(s)
- Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Franziska Sendfeld
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Claire N Medine
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, University of Barcelona, Spain
| | - Sir Ian Wilmut
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Hospital Josep Trueta, Girona, Spain
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
83
|
Abstract
In vitro generated human cardiomyocytes hold the ultimate promise for heart patients for repair of injured or diseased myocardium, but they also provide experimental models for studying normal cardiomyocyte development, for disease modeling and for drug development. Here we provide reliable protocols for differentiation of human embryonic stem cells into functional cardiomyocytes, together with Notes about troubleshooting and optimizing such protocols for specific cell lines. This chapter also briefly discusses other published protocols and those further adapted for differentiation of induced pluripotent stem cells into cardiomyocytes.
Collapse
Affiliation(s)
- Silvia Mazzotta
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, Scotland, UK.
| |
Collapse
|
84
|
Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017; 174:3749-3765. [PMID: 27641943 PMCID: PMC5647193 DOI: 10.1111/bph.13577] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is a severe side effect of drugs that induce structural or electrophysiological changes in heart muscle cells. As a result, the heart undergoes failure and potentially lethal arrhythmias. It is still a major reason for drug failure in preclinical and clinical phases of drug discovery. Current methods for predicting cardiotoxicity are based on guidelines that combine electrophysiological analysis of cell lines expressing ion channels ectopically in vitro with animal models and clinical trials. Although no new cases of drugs linked to lethal arrhythmias have been reported since the introduction of these guidelines in 2005, their limited predictive power likely means that potentially valuable drugs may not reach clinical practice. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are now emerging as potentially more predictive alternatives, particularly for the early phases of preclinical research. However, these cells are phenotypically immature and culture and assay methods not standardized, which could be a hurdle to the development of predictive computational models and their implementation into the drug discovery pipeline, in contrast to the ambitions of the comprehensive pro-arrhythmia in vitro assay (CiPA) initiative. Here, we review present and future preclinical cardiotoxicity screening and suggest possible hPSC-CM-based strategies that may help to move the field forward. Coordinated efforts by basic scientists, companies and hPSC banks to standardize experimental conditions for generating reliable and reproducible safety indices will be helpful not only for cardiotoxicity prediction but also for precision medicine. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Milena Bellin
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Christine L Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
85
|
Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2017; 26:1695-1705. [PMID: 28992755 PMCID: PMC5706629 DOI: 10.1089/scd.2017.0172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are now a well-established modality for modeling genetic disorders of the heart. This is especially so for long QT syndrome (LQTS), which is caused by perturbation of ion channel function, and can lead to fainting, malignant arrhythmias and sudden cardiac death. LQTS2 is caused by mutations in KCNH2, a gene whose protein product contributes to IKr (also known as HERG), which is the predominant repolarizing potassium current in CMs. β-blockers are the mainstay treatment for patients with LQTS, functioning by reducing heart rate and arrhythmogenesis. However, they are not effective in around a quarter of LQTS2 patients, in part, because they do not correct the defining feature of the condition, which is excessively prolonged QT interval. Since new therapeutics are needed, in this report, we biopsied skin fibroblasts from a patient who was both genetically and clinically diagnosed with LQTS2. By producing LQTS-hiPSC-CMs, we assessed the impact of different drugs on action potential duration (APD), which is used as an in vitro surrogate for QT interval. Not surprisingly, the patient's own β-blocker medication, propranolol, had a marginal effect on APD in the LQTS-hiPSC-CMs. However, APD could be significantly reduced by up to 19% with compounds that enhanced the IKr current by direct channel binding or by indirect mediation through the PPARδ/protein 14-3-3 epsilon/HERG pathway. Drug-induced enhancement of an alternative potassium current, IKATP, also reduced APD by up to 21%. This study demonstrates the utility of LQTS-hiPSC-CMs in evaluating whether drugs can shorten APD and, importantly, shows that PPARδ agonists may form a new class of therapeutics for this condition.
Collapse
Affiliation(s)
- Gary Duncan
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Karl Firth
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Vinoj George
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Minh Duc Hoang
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Andrew Staniforth
- 3 Department of Cardiovascular Medicine, Queen's Medical Centre , Nottingham, United Kingdom
| | - Godfrey Smith
- 4 Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, United Kingdom
| | - Chris Denning
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
86
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
87
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
88
|
Moreau A, Boutjdir M, Chahine M. Induced pluripotent stem-cell-derived cardiomyocytes: cardiac applications, opportunities, and challenges. Can J Physiol Pharmacol 2017; 95:1108-1116. [DOI: 10.1139/cjpp-2016-0726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Chronic diseases are the primary cause of mortality worldwide, accounting for 67% of deaths. One of the major challenges in developing new treatments is the lack of understanding of the exact underlying biological and molecular mechanisms. Chronic cardiovascular diseases are the single most common cause of death worldwide, and sudden deaths due to cardiac arrhythmias account for approximately 50% of all such cases. Traditional genetic screening for genes involved in cardiac disorders is labourious and frequently fails to detect the mutation that explains or causes the disorder. However, when mutations are identified, human induced pluripotent stem cells (hiPSCs) derived from affected patients make it possible to address fundamental research questions directly relevant to human health. As such, hiPSC technology has recently been used to model human diseases and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) thus offer a unique opportunity to investigate potential disease-causing genetic variants in their natural environment. The purpose of this review is to present the current state of knowledge regarding hiPSC-CMs, including their potential, limitations, and challenges and to discuss future prospects.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare, Brooklyn, New York, USA
| | - Mohamed Chahine
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Université Laval, Quebec City, QC G1K 7P4, Canada
| |
Collapse
|
89
|
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp. Int J Mol Sci 2017; 18:ijms18091873. [PMID: 28867785 PMCID: PMC5618522 DOI: 10.3390/ijms18091873] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in "ventricular-like" and "atrial-like" hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jan G Zegers
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Connie R Bezzina
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
90
|
Maizels L, Huber I, Arbel G, Tijsen AJ, Gepstein A, Khoury A, Gepstein L. Patient-Specific Drug Screening Using a Human Induced Pluripotent Stem Cell Model of Catecholaminergic Polymorphic Ventricular Tachycardia Type 2. Circ Arrhythm Electrophysiol 2017. [PMID: 28630169 DOI: 10.1161/circep.116.004725] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia type 2 (CPVT2) results from autosomal recessive CASQ2 mutations, causing abnormal Ca2+-handling and malignant ventricular arrhythmias. We aimed to establish a patient-specific human induced pluripotent stem cell (hiPSC) model of CPVT2 and to use the generated hiPSC-derived cardiomyocytes to gain insights into patient-specific disease mechanism and pharmacotherapy. METHODS AND RESULTS hiPSC cardiomyocytes were derived from a CPVT2 patient (D307H-CASQ2 mutation) and from healthy controls. Laser-confocal Ca2+ and voltage imaging showed significant Ca2+-transient irregularities, marked arrhythmogenicity manifested by early afterdepolarizations and triggered arrhythmias, and reduced threshold for store overload-induced Ca2+-release events in the CPVT2-hiPSC cardiomyocytes when compared with healthy control cells. Pharmacological studies revealed the prevention of adrenergic-induced arrhythmias by β-blockers (propranolol and carvedilol), flecainide, and the neuronal sodium-channel blocker riluzole; a direct antiarrhythmic action of carvedilol (independent of its α/β-adrenergic blocking activity), flecainide, and riluzole; and suppression of abnormal Ca2+ cycling by the ryanodine stabilizer JTV-519 and carvedilol. Mechanistic insights were gained on the different antiarrhythmic actions of the aforementioned drugs, with carvedilol and JTV-519 (but not flecainide or riluzole) acting primarily through sarcoplasmic reticulum stabilization. Finally, comparable outcomes were found between flecainide and labetalol antiarrhythmic effects in vitro and the clinical results in the same patient. CONCLUSIONS These results demonstrate the ability of hiPSCs cardiomyocytes to recapitulate CPVT2 disease phenotype and drug response in the culture dish, to provide novel insights into disease and drug therapy mechanisms, and potentially to tailor patient-specific drug therapy.
Collapse
Affiliation(s)
- Leonid Maizels
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Irit Huber
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Gil Arbel
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Anke J Tijsen
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Amira Gepstein
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Asaad Khoury
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.)
| | - Lior Gepstein
- From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.).
| |
Collapse
|
91
|
Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: An in silico approach. Heart Rhythm 2017; 14:1704-1712. [PMID: 28756098 PMCID: PMC5668441 DOI: 10.1016/j.hrthm.2017.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 12/16/2022]
Abstract
Background Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are in vitro models with the clear advantages of their human origin and suitability for human disease investigations. However, limitations include their incomplete characterization and variability reported in different cell lines and laboratories. Objective The purpose of this study was to investigate in silico ionic mechanisms potentially explaining the phenotypic variability of hiPSC-CMs in long QT syndrome type 3 (LQT3) and their response to antiarrhythmic drugs. Methods Populations of in silico hiPSC-CM models were constructed and calibrated for control (n = 1,463 models) and LQT3 caused by INaL channelopathy (n = 1,401 models), using experimental recordings for late sodium current (INaL) and action potentials (APs). Antiarrhythmic drug therapy was evaluated by simulating mexiletine and ranolazine multichannel effects. Results As in experiments, LQT3 hiPSC-CMs yield prolonged action potential duration at 90% repolarization (APD90) (+34.3% than controls) and large electrophysiological variability. LQT3 hiPSC-CMs with symptomatic APs showed overexpression of ICaL, IK1, and INaL, underexpression of IKr, and increased sensitivity to both drugs compared to asymptomatic LQT3 models. Simulations showed that both mexiletine and ranolazine corrected APD prolongation in the LQT3 population but also highlighted differences in drug response. Mexiletine stops spontaneous APs in more LQT3 hiPSC-CMs models than ranolazine (784/1,401 vs 53/1,401) due to its stronger action on INa. Conclusion In silico simulations demonstrate our ability to recapitulate variability in LQT3 and control hiPSC-CM phenotypes, and the ability of mexiletine and ranolazine to reduce APD prolongation, in agreement with experiments. The in silico models also identify potential ionic mechanisms of phenotypic variability in LQT3 hiPSC-CMs, explaining APD prolongation in symptomatic vs asymptomatic LQT3 hiPSC-CMs.
Collapse
|
92
|
Veerman CC, Mengarelli I, Lodder EM, Kosmidis G, Bellin M, Zhang M, Dittmann S, Guan K, Wilde AAM, Schulze-Bahr E, Greber B, Bezzina CR, Verkerk AO. Switch From Fetal to Adult SCN5A Isoform in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Unmasks the Cellular Phenotype of a Conduction Disease-Causing Mutation. J Am Heart Assoc 2017; 6:JAHA.116.005135. [PMID: 28739862 PMCID: PMC5586268 DOI: 10.1161/jaha.116.005135] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CMs) can recapitulate features of ion channel mutations causing inherited rhythm disease. However, the lack of maturity of these cells is considered a significant limitation of the model. Prolonged culture of hiPSC‐CMs promotes maturation of these cells. We studied the electrophysiological effects of the I230T mutation in the sodium channel gene SCN5A in hiPSC‐CMs generated from a homozygous (I230Thomo) and a heterozygous (I230Thet) individual from a family with recessive cardiac conduction disease. Since the I230T mutation occurs in the developmentally regulated “adult” isoform of SCN5A, we investigated the relationship between the expression fraction of the adult SCN5A isoform and the electrophysiological phenotype at different time points in culture. Methods and Results After a culture period of 20 days, sodium current (INa) was mildly reduced in I230Thomo hiPSC‐CMs compared with control hiPSC‐CMs, while I230Thet hiPSC‐CMs displayed no reduction in INa. This coincided with a relatively high expression fraction of the “fetal” SCN5A isoform compared with the adult isoform as measured by quantitative polymerase chain reaction. Following prolonged culture to 66 days, the fraction of adult SCN5A isoform increased; this was paralleled by a marked decrease in INa in I230Thomo hiPSC‐CMs, in line with the severe clinical phenotype in homozygous patients. At this time in culture, I230Thet hiPSC‐CMs displayed an intermediate loss of INa, compatible with a gene dosage effect. Conclusions Prolonged culture of hiPSC‐CMs leads to an increased expression fraction of the adult sodium channel isoform. This new aspect of electrophysiological immaturity should be taken into account in studies that focus on the effects of SCN5A mutations in hiPSC‐CMs.
Collapse
Affiliation(s)
- Christiaan C Veerman
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Isabella Mengarelli
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miao Zhang
- Human Pluripotent Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Arthur A M Wilde
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Boris Greber
- Human Pluripotent Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Connie R Bezzina
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Experimental and Clinical Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands .,Department of Anatomy, Embryology and Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
93
|
Lemoine MD, Mannhardt I, Breckwoldt K, Prondzynski M, Flenner F, Ulmer B, Hirt MN, Neuber C, Horváth A, Kloth B, Reichenspurner H, Willems S, Hansen A, Eschenhagen T, Christ T. Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci Rep 2017; 7:5464. [PMID: 28710467 PMCID: PMC5511281 DOI: 10.1038/s41598-017-05600-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for drug testing and modelling genetic disorders. Abnormally low upstroke velocity is a current limitation. Here we investigated the use of 3D engineered heart tissue (EHT) as a culture method with greater resemblance to human heart tissue in comparison to standard technique of 2D monolayer (ML) format. INa was measured in ML or EHT using the standard patch-clamp technique. INa density was ~1.8 fold larger in EHT (-18.5 ± 1.9 pA/pF; n = 17) than in ML (-10.3 ± 1.2 pA/pF; n = 23; p < 0.001), approaching densities reported for human CM. Inactivation kinetics, voltage dependency of steady-state inactivation and activation of INa did not differ between EHT and ML and were similar to previously reported values for human CM. Action potential recordings with sharp microelectrodes showed similar upstroke velocities in EHT (219 ± 15 V/s, n = 13) and human left ventricle tissue (LV, 253 ± 7 V/s, n = 25). EHT showed a greater resemblance to LV in CM morphology and subcellular NaV1.5 distribution. INa in hiPSC-CM showed similar biophysical properties as in human CM. The EHT format promotes INa density and action potential upstroke velocity of hiPSC-CM towards adult values, indicating its usefulness as a model for excitability of human cardiac tissue.
Collapse
Affiliation(s)
- Marc D Lemoine
- Department of Cardiology-Electrophysiology, University Heart Center, Hamburg, Germany. .,Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bärbel Ulmer
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Benjamin Kloth
- Department of Cardiovascular Surgery, University Heart Center, Hamburg, Germany
| | | | - Stephan Willems
- Department of Cardiology-Electrophysiology, University Heart Center, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
94
|
Harmer SC, Tinker A. The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes. Biol Chem 2017; 397:679-93. [PMID: 26910742 DOI: 10.1515/hsz-2015-0306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.
Collapse
|
95
|
Liang P, Sallam K, Wu H, Li Y, Itzhaki I, Garg P, Zhang Y, Vermglinchan V, Lan F, Gu M, Gong T, Zhuge Y, He C, Ebert AD, Sanchez-Freire V, Churko J, Hu S, Sharma A, Lam CK, Scheinman MM, Bers DM, Wu JC. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Brugada Syndrome. J Am Coll Cardiol 2017; 68:2086-2096. [PMID: 27810048 DOI: 10.1016/j.jacc.2016.07.779] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Ping Liang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Karim Sallam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Haodi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Yingxin Li
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Ying Zhang
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Vittavat Vermglinchan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Feng Lan
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mingxia Gu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Tingyu Gong
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chunjiang He
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Veronica Sanchez-Freire
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Jared Churko
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Shijun Hu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Arun Sharma
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Melvin M Scheinman
- Department of Medicine, Division of Cardiology, University of California, San Francisco, California
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
96
|
Kosmidis G, Veerman CC, Casini S, Verkerk AO, van de Pas S, Bellin M, Wilde AAM, Mummery CL, Bezzina CR. Readthrough-Promoting Drugs Gentamicin and PTC124 Fail to Rescue Nav1.5 Function of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Carrying Nonsense Mutations in the Sodium Channel Gene SCN5A. Circ Arrhythm Electrophysiol 2017; 9:CIRCEP.116.004227. [PMID: 27784737 DOI: 10.1161/circep.116.004227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several compounds have been reported to induce translational readthrough of premature stop codons resulting in the production of full-length protein by interfering with ribosomal proofreading. Here we examined the effect of 2 of these compounds, gentamicin and PTC124, in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes bearing nonsense mutations in the sodium channel gene SCN5A, which are associated with conduction disease and potential lethal arrhythmias. METHODS AND RESULTS We generated hiPSC from 2 patients carrying the mutations R1638X and W156X. hiPSC-derived cardiomyocytes from both patients recapitulated the expected electrophysiological phenotype, as evidenced by reduced Na+ currents and action potential upstroke velocities compared with hiPSC-derived cardiomyocytes from 2 unrelated control individuals. While we were able to confirm the readthrough efficacy of the 2 drugs in Human Embryonic Kidney 293 cells, we did not observe rescue of the electrophysiological phenotype in hiPSC-derived cardiomyocytes from the patients. CONCLUSIONS We conclude that these drugs are unlikely to present an effective treatment for patients carrying the loss-of-function SCN5A gene mutations examined in this study.
Collapse
Affiliation(s)
- Georgios Kosmidis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Christiaan C Veerman
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Simona Casini
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Arie O Verkerk
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Simone van de Pas
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Milena Bellin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Arthur A M Wilde
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Christine L Mummery
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands
| | - Connie R Bezzina
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (G.K., S.C., S.v.d.P., M.B., C.L.M.); and Heart Center, Department of Experimental and Clinical Cardiology (C.C.V., A.A.M.W., C.R.B.) and Department of Anatomy and Embryology, Academic Medical Center (A.O.V.), Amsterdam, The Netherlands.
| |
Collapse
|
97
|
Sayed N, Liu C, Wu JC. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine. J Am Coll Cardiol 2017; 67:2161-2176. [PMID: 27151349 DOI: 10.1016/j.jacc.2016.01.083] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
98
|
Larbig R, Reda S, Paar V, Trost A, Leitner J, Weichselbaumer S, Motloch KA, Wernly B, Arrer A, Strauss B, Lichtenauer M, Reitsamer HA, Eckardt L, Seebohm G, Hoppe UC, Motloch LJ. Through modulation of cardiac Ca2+handling, UCP2 affects cardiac electrophysiology and influences the susceptibility for Ca2+-mediated arrhythmias. Exp Physiol 2017; 102:650-662. [DOI: 10.1113/ep086209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Robert Larbig
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Sara Reda
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Vera Paar
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Johannes Leitner
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | | | - Karolina A. Motloch
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Bernhard Wernly
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andreas Arrer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Benjamin Strauss
- Cardiovascular Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Michael Lichtenauer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Herbert A. Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IFGH), Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lukas J. Motloch
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| |
Collapse
|
99
|
Shen N, Knopf A, Westendorf C, Kraushaar U, Riedl J, Bauer H, Pöschel S, Layland SL, Holeiter M, Knolle S, Brauchle E, Nsair A, Hinderer S, Schenke-Layland K. Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals. Stem Cell Reports 2017; 9:122-135. [PMID: 28528699 PMCID: PMC5511039 DOI: 10.1016/j.stemcr.2017.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) may offer significant advances in creating in vitro cardiac tissues for disease modeling, drug testing, and elucidating developmental processes; however, the induction of ESCs to a more adult-like CM phenotype remains challenging. In this study, we developed a bioreactor system to employ pulsatile flow (1.48 mL/min), cyclic strain (5%), and extended culture time to improve the maturation of murine and human ESC-CMs. Dynamically-cultured ESC-CMs showed an increased expression of cardiac-associated proteins and genes, cardiac ion channel genes, as well as increased SERCA activity and a Raman fingerprint with the presence of maturation-associated peaks similar to primary CMs. We present a bioreactor platform that can serve as a foundation for the development of human-based cardiac in vitro models to verify drug candidates, and facilitates the study of cardiovascular development and disease. Custom-made bioreactor exposes ESC-CMs to defined shear stress and cyclic stretch Physical signals and extended culture significantly improve maturation of ESC-CMs Biochemical fingerprint of dynamically cultured ESC-CMs is similar to primary CMs
Collapse
Affiliation(s)
- Nian Shen
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Anne Knopf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Claas Westendorf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany
| | - Udo Kraushaar
- Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Julia Riedl
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Hannah Bauer
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Simone Pöschel
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Shannon Lee Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Monika Holeiter
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Stefan Knolle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, David School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
100
|
Portero V, Casini S, Hoekstra M, Verkerk AO, Mengarelli I, Belardinelli L, Rajamani S, Wilde AA, Bezzina CR, Veldkamp MW, Remme CA. Anti-arrhythmic potential of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/− and human SCN5A-1795insD+/− iPSC-derived cardiomyocytes. Cardiovasc Res 2017; 113:829-838. [DOI: 10.1093/cvr/cvx077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Vincent Portero
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Simona Casini
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Maaike Hoekstra
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Isabella Mengarelli
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | | | | | - Arthur A.M. Wilde
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Marieke W. Veldkamp
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology/Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 15, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|