51
|
Kemp PJ, Telezhkin V, Wilkinson WJ, Mears R, Hanmer SB, Gadeberg HC, Müller CT, Riccardi D, Brazier SP. Enzyme-Linked Oxygen Sensing by Potassium Channels. Ann N Y Acad Sci 2009; 1177:112-8. [DOI: 10.1111/j.1749-6632.2009.05025.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Gonzalez C, Vaquero LM, López-López JR, Pérez-García MT. Oxygen-Sensitive Potassium Channels in Chemoreceptor Cell Physiology. Ann N Y Acad Sci 2009; 1177:82-8. [DOI: 10.1111/j.1749-6632.2009.05037.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Gomez-Niño A, Obeso A, Baranda JA, Santo-Domingo J, Lopez-Lopez JR, Gonzalez C. MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body. Am J Physiol Cell Physiol 2009; 297:C715-22. [PMID: 19570892 DOI: 10.1152/ajpcell.00507.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia activates chemoreceptor cells of the carotid body (CB) promoting an increase in their normoxic release of neurotransmitters. Catecholamine (CA) release rate parallels the intensity of hypoxia. Coupling of hypoxia to CA release requires cell depolarization, produced by inhibition of O(2)-regulated K(+) channels, and Ca(2+) entering the cells via voltage-operated channels. In rat chemoreceptor cells hypoxia inhibits large-conductance, calcium-sensitive K channels (maxiK) and a two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) channel (TASK)-like channel, but the significance of maxiK is controversial. A proposal envisions maxiK contributing to set the membrane potential (E(m)) and the hypoxic response, but the proposal is denied by authors finding that maxiK inhibition does not depolarize chemoreceptor cells or alters intracellular Ca(2+) concentration or CA release in normoxia or hypoxia. We found that maxiK channel blockers (tetraethylammonium and iberiotoxin) did not modify CA release in rat chemoreceptor cells, in either normoxia or hypoxia, and iberiotoxin did not alter the Ca(2+) transients elicited by hypoxia. On the contrary, both maxiK blockers increased the responses elicited by dinitrophenol, a stimulus we demonstrate does not affect maxiK channels in isolated patches of rat chemoreceptor cells. We conclude that in rat chemoreceptor cells maxiK channels do not contribute to the genesis of the E(m), and that their full inhibition by hypoxia, preclude further inhibition by maxiK channel blockers. We suggest that full inhibition of this channel is required to generate the spiking behavior of the cells in acute hypoxia.
Collapse
Affiliation(s)
- Angela Gomez-Niño
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Superior de Investigaciones Científicas, 47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Kim D, Cavanaugh EJ, Kim I, Carroll JL. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 2009; 587:2963-75. [PMID: 19403596 PMCID: PMC2718254 DOI: 10.1113/jphysiol.2009.171181] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/15/2009] [Indexed: 12/25/2022] Open
Abstract
Carotid body (CB) glomus cells from rat express a TASK-like background K+ channel that is believed to play a critical role in the regulation of excitability and hypoxia-induced increase in respiration. Here we studied the kinetic behaviour of single channel openings from rat CB cells to determine the molecular identity of the 'TASK-like' K+ channels. In outside-out patches, the TASK-like background K+ channel in CB cells was inhibited >90% by a reduction of pH(o) from 7.3 to 5.8. In cell-attached patches with 140 mM KCl and 1 mM Mg2+ in the bath and pipette solutions, two main open levels with conductance levels of approximately 14 pS and approximately 32 pS were recorded at a membrane potential of -60 mV. The K+ channels showed kinetic properties similar to TASK-1 (approximately 14 pS), TASK-3 (approximately 32 pS) and TASK-1/3 heteromer (approximately 32 pS). The presence of three TASK isoforms was tested by reducing [Mg2+](o) to approximately 0 mM, which had no effect on the conductance of TASK-1, but increased those of TASK-1/3 and TASK-3 to 42 pS and 74 pS, respectively. In CB cells, the reduction of [Mg2+](o) to approximately 0 mM also caused the appearance of approximately 42 pS (TASK-1/3-like) and approximately 74 pS (TASK-3-like) channels, in addition to the approximately 14 pS (TASK-1-like) channel. The 42 pS channel was the most abundant, contributing approximately 75% of the current produced by TASK-like channels. Ruthenium red (5 microM) had no effect on TASK-1 and TASK-1/3, but inhibited TASK-3 by 87%. In CB cells, ruthenium red caused approximately 12% inhibition of TASK-like activity. Methanandamide reduced the activity of all three TASKs by 80-90%, and that of TASK-like channels in CB cell also by approximately 80%. In CB cells, hypoxia caused inhibition of TASK-like channels, including TASK-1/3-like channels. These results show that TASK-1, TASK-1/3 and TASK-3 are all functionally expressed in isolated CB cells, and that the TASK-1/3 heteromer provides the major part of the oxygen-sensitive TASK-like background K+ conductance.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
55
|
Telezhkin V, Brazier SP, Cayzac S, Müller CT, Riccardi D, Kemp PJ. Hydrogen sulfide inhibits human BK(Ca) channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:65-72. [PMID: 19536466 DOI: 10.1007/978-90-481-2259-2_7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H(2)S) is produced endogenously in many types of mammalian cells. Evidence is now accumulating to suggest that H(2)S is an endogenous signalling molecule, with a variety of molecular targets, including ion channels. Here, we describe the effects of H(2)S on the large conductance, calcium-sensitive potassium channel (BK(Ca)). This channel contributes to carotid body glomus cell excitability and oxygen-sensitivity. The experiments were performed on HEK 293 cells, stably expressing the human BK(Ca) channel alpha subunit, using patch-clamp in the inside-out configuration. The H(2)S donor, NaSH (100microM-10 mM), inhibited BK(Ca) channels in a concentration-dependent manner with an IC(50) of ca. 670microM. In contrast to the known effects of CO donors, the H(2)S donor maximally decreased the open state probability by over 50% and shifted the half activation voltage by more than +16mV. In addition, although 1 mM KCN completely suppressed CO-evoked channel activation, it was without effect on the H(2)S-induced channel inhibition, suggesting that the effects of CO and H(2)S were non-competitive. RT-PCR showed that mRNA for both of the H(2)S-producing enzymes, cystathionine-beta-synthase and cystathionine-gamma-lyase, were expressed in HEK 293 cells and in rat carotid body. Furthermore, immunohistochemistry was able to localise cystathionine-gamma-lyase to glomus cells, indicating that the carotid body has the endogenous capacity to produce H(2)S. In conclusion, we have shown that H(2)S and CO have opposing effects on BK(Ca)channels, suggesting that these gases have separate modes of action and that they modulate carotid body activity by binding at different motifs in the BK(Ca)alphasubunit.
Collapse
Affiliation(s)
- V Telezhkin
- School of Bioscience, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK.
| | | | | | | | | | | |
Collapse
|
56
|
Perry S, Jonz M, Gilmour K. Chapter 5 Oxygen Sensing And The Hypoxic Ventilatory Response. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(08)00005-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Kemp JP, Peers C. Enzyme-linked acute oxygen sensing in airway and arterial chemoreceptors--invited article. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:39-48. [PMID: 19536463 DOI: 10.1007/978-90-481-2259-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Researchers have speculated as to the molecular basis of O(2) sensing for decades. In more recent years, since the discovery of ion channels as identified effectors for O(2) sensing pathways, research has focussed on possible pathways coupling a reduction in hypoxia to altered ion channel activity. The most extensively studied systems are the K(+) channels which are inhibited by hypoxia in chemoreceptor tissues (carotid and neuroepithelial bodies). In this review, we consider the evidence supporting the involvement of well defined enzymes in mediating the regulation of K(+) channels by hypoxia. Specifically, we focus on the roles proposed for three enzyme systems; NADPH oxidase, heme oxygenase and AMP activated protein kinase. These systems differ in that the former two utilise O(2) directly (to form superoxide in the case of NADPH oxidase, and as a co-factor in the degradation of heme to carbon monoxide, bilirubin and ferrous iron in the case of heme oxygenase), but the third responds to shifts in the AMP:ATP ratio, so responds to changes in O(2) levels more indirectly. We consider the evidence in favour of each of these systems, and highlight their differential importance in different systems and species. Whilst the evidence for each playing an important role in different tissues is strong, there is a clear need for further study, and current awareness indicates that no one specific cell type may rely on a single mechanism for O(2) sensing.
Collapse
Affiliation(s)
- J Paul Kemp
- School of Bioesciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | |
Collapse
|
58
|
Brazier SP, Telezhkin V, Mears R, Müller CT, Riccardi D, Kemp PJ. Cysteine residues in the C-terminal tail of the human BK(Ca)alpha subunit are important for channel sensitivity to carbon monoxide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:49-56. [PMID: 19536464 DOI: 10.1007/978-90-481-2259-2_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the presence of oxygen (O(2)), carbon monoxide (CO) is synthesised from heme by endogenous hemeoxygenases, and is a powerful activator of BK(Ca) channels. This transduction pathway has been proposed to contribute to cellular O(2) sensing in rat carotid body. In the present study we have explored the role that four cysteine residues (C820, C911, C995 and C1028), located in the vicinity of the "calcium bowl" of C-terminal of human BK(Ca)-alphasubunit, have on channel CO sensitivity. Mutant BK(Ca)-alphasubunits were generated by site-directed mutagenesis (single, double and triple cysteine residue substitutions with glycine residues) and were transiently transfected into HEK 293 cells before subsequent analysis in inside-out membrane patches. Potassium cyanide (KCN) completely abolished activation of wild type BK(Ca) channels by the CO donor, tricarbonyldichlororuthenium (II) dimer, at 100microM. In the absence of KCN the CO donor increased wild-type channel activity in a concentration-dependent manner, with an EC(50) of ca. 50microM. Single cysteine point mutations of residues C820, C995 and C1028 affected neither channel characteristics nor CO EC(50) values. In contrast, the CO sensitivity of the C911G mutation was significantly decreased (EC(50) ca. 100 M). Furthermore, all double and triple mutants which contained the C911G substitution exhibited reduced CO sensitivity, whilst those which did not contain this mutation displayed essentially unaltered CO EC(50) values. These data highlight that a single cysteine residue is crucial to the activation of BK(Ca) by CO. We suggest that CO may bind to this channel subunit in a manner similar to the transition metal-dependent co-ordination which is characteristic of several enzymes, such as CO dehydrogenase.
Collapse
Affiliation(s)
- S P Brazier
- School of Bioscience, Museum Avenue, Cardiff University, Cardiff CF11 9BX, UK.
| | | | | | | | | | | |
Collapse
|
59
|
Olson KR. Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. ACTA ACUST UNITED AC 2008; 211:2727-34. [PMID: 18723529 DOI: 10.1242/jeb.010066] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although all cells are variously affected by oxygen, a few have the responsibility of monitoring oxygen tensions and initiating key homeostatic responses when P(O2) falls to critical levels. These ;oxygen-sensing' cells include the chemoreceptors in the gills (neuroepithelial cells), airways (neuroepithelial bodies) and vasculature (carotid bodies) that initiate cardiorespiratory reflexes, oxygen sensitive chromaffin cells associated with systemic veins or adrenal glands that regulate the rate of catecholamine secretion, and vascular smooth muscle cells capable of increasing blood flow to systemic tissues, or decreasing it through the lungs. In spite of intense research, and enormous clinical applicability, there is little, if any, consensus regarding the mechanism of how these cells sense oxygen and transduce this into the appropriate physiological response. We have recently proposed that the metabolism of hydrogen sulfide (H2S) may serve as an 'oxygen sensor' in vertebrate vascular smooth muscle and preliminary evidence suggests it has similar activity in gill chemoreceptors. In this proposed mechanism, the cellular concentration of H2S is determined by the simple balance between constitutive H2S production in the cytoplasm and H2S oxidation in the mitochondria; when tissue oxygen levels fall the rate of H2S oxidation decreases and the concentration of biologically active H2S in the tissue increases. This commentary briefly describes the oxygen-sensitive tissues in fish and mammals, delineates the current hypotheses of oxygen sensing by these tissues, and then critically evaluates the evidence for H2S metabolism in oxygen sensing.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine, South Bend Center, South Bend, Indiana 46617, USA.
| |
Collapse
|
60
|
Buniel M, Glazebrook PA, Ramirez-Navarro A, Kunze DL. Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body. J Comp Neurol 2008; 510:367-77. [PMID: 18668683 PMCID: PMC2723167 DOI: 10.1002/cne.21796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. By using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase and in the CSN axons within the carotid body. Channels contributing to resting membrane potential, including HCN2 responsible in part for I(h) current and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal "M current," were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge, including Kv1.4, Kv1.5, Kv4.3, and K(Ca) (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment.
Collapse
Affiliation(s)
- Maria Buniel
- Rammelkamp Center for Education and Research, MetroHealth Campus of Case Western Reserve University, Cleveland, Ohio 44109-1998, USA
| | | | | | | |
Collapse
|
61
|
Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF. Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 2008; 295:R669-80. [PMID: 18565835 DOI: 10.1152/ajpregu.00807.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquatic O2 sensing and the homolog of the mammalian carotid body. Intrabuccal injection of H2S in unanesthetized trout produced a dose-dependent bradycardia and increased ventilatory frequency and amplitude similar to the hypoxic response. Removal of the first, but not second, pair of gills significantly inhibited H2S-mediated bradycardia, consistent with the loss of aquatic chemoreceptors. mRNA for H2S-synthesizing enzymes, cystathionine beta-synthase and cystathionine gamma-lyase, was present in branchial tissue. Homogenized gills produced H2S enzymatically, and H2S production was inhibited by O2, whereas mitochondrial H2S consumption was O2 dependent. Ambient hypoxia did not affect plasma H2S in unanesthetized trout, but produced a PO2-dependent increase in a sulfide moiety suggestive of increased H2S production. In isolated zebrafish neuroepithelial cells, the putative chemoreceptive cells of fish, both hypoxia and H2S, produced a similar approximately 10-mV depolarization. These studies are consistent with H2S involvement in O2 sensing/signal transduction pathway(s) in chemoreceptive cells, as previously demonstrated in vascular smooth muscle. This novel mechanism, whereby H2S concentration ([H2S]) is governed by the balance between constitutive production and oxidation, tightly couples tissue [H2S] to PO2 and may provide an exquisitely sensitive, yet simple, O2 sensor in a variety of tissues.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, 1234 Notre Dame Ave., South Bend, IN 46617, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Williams SE, Brazier SP, Baban N, Telezhkin V, Müller CT, Riccardi D, Kemp PJ. A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK Ca channels. Pflugers Arch 2008; 456:561-72. [PMID: 18180950 DOI: 10.1007/s00424-007-0439-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/19/2007] [Accepted: 12/18/2007] [Indexed: 11/24/2022]
Abstract
Carbon monoxide (CO) is a potent activator of large conductance, calcium-dependent potassium (BK Ca) channels of vascular myocytes and carotid body glomus cells or when heterologously expressed. Using the human BK Ca channel alpha1-subunit (hSlo1; KCNMA1) stably and transiently expressed in human embryonic kidney 293 cells, the mechanism and structural basis of channel activation by CO was investigated in inside-out, excised membrane patches. Activation by CO was concentration dependent (EC50 approximately 20 microM), rapid, reversible, and evoked a shift in the V 0.5 of -20 mV. CO evoked no changes in either single channel conductance or in deactivation rate but augmented channel activation rate. Activation was independent of the redox state of the channel, or associated compounds/protein partners, and was partially dependent on [Ca2+]i in the physiological range (100-1,000 nM). Importantly, CO "super-stimulated" BK Ca activity even in saturating [Ca2+]i. Single or double mutation of two histidine residues previously implicated in CO sensing did not suppress CO activation but replacing the S9-S10 module of the C-terminal of Slo1 with that of Slo3 completely prevented the action of CO. These findings show that a motif in the S9-S10 part of the C-terminal is essential for CO activation and suggest that this gas transmitter activates the BK Ca channel by redox-independent changes in gating.
Collapse
|
63
|
Abstract
Chronic hypoxia increases resistance to myocardial ischemia in infants. Activation of the mitochondrial big conductance Ca(2+) -sensitive K channel (mitoBKCa) has been shown to be protective in adult hearts; however, its role in infant hearts is unknown. Hearts from normoxic or hypoxic infant rabbits were perfused with a mitoKCa opener, NS1619, or blocker Paxilline before ischemia and reperfusion. Hypoxic hearts were more resistant to ischemia than normoxic hearts as manifested by a reduction in infarct size (9 +/- 5% versus 14 +/- 5%) and an increase in recovery of left ventricular developed pressure (LVDP) (69 +/- 7% versus 51 +/- 2%). NS1619 decreased infarct size in normoxic hearts from 14 +/- 5% to 10 +/- 5% and increased recovery of LVDP from 51 +/- 2% to 65 +/- 4%, but it had no effect on hypoxic hearts. Paxilline did not affect normoxic or hypoxic hearts. Activation of mitoBKCa protects normoxic infant rabbit hearts; however, cardioprotection by chronic hypoxia in infant rabbits does not appear involve mitoBKCa.
Collapse
|
64
|
Stimulatory Actions of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Rat Carotid Glomus Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:69-74. [DOI: 10.1007/978-0-387-73693-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|
65
|
Abstract
The carotid body is a peripheral sensory organ that can transduce modest falls in the arterial PO2 (partial pressure of oxygen) into a neural signal that provides the afferent limb of a set of stereotypic cardiorespiratory reflexes that are graded according to the intensity of the stimulus. The stimulus sensed is tissue PO2 and this can be estimated to be around 50 mmHg during arterial normoxia, falling to between 10–40 mmHg during hypoxia. The chemoafferent hypoxia stimulus-response curve is exponential, rising in discharge frequency with falling PO2, and with no absolute threshold apparent in hyperoxia. Although the oxygen sensor has not been definitely identified, it is believed to reside within type I cells of the carotid body, and presently two major hypotheses have been put forward to account for the sensing mechanism. The first relies upon alterations in the cell energy status that is sensed by the cytosolic enzyme AMPK (AMP-activated protein kinase) subsequent to hypoxia-induced increases in the cellular AMP/ATP ratio during hypoxia. AMPK is localized close to the plasma membrane and its activation can inhibit both large conductance, calcium-activated potassium (BK) and background, TASK-like potassium channels, inducing membrane depolarization, voltage-gated calcium entry and neurosecretion of a range of transmitter and modulator substances, including catecholamines, ATP and acetylcholine. The alternative hypothesis considers a role for haemoxygenase-2, which uses oxygen as a substrate and may act to gate an associated BK channel through the action of its products, carbon monoxide and possibly haem. It is likely however, that these and other hypotheses of oxygen transduction are not mutually exclusive and that each plays a role, via its own particular sensitivity, in shaping the full response of this organ between hyperoxia and anoxia.
Collapse
Affiliation(s)
- Prem Kumar
- Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
66
|
Roy A, Baby SM, Wilson DF, Lahiri S. Rat carotid body chemosensory discharge and glomus cell HIF-1α expression in vitro: regulation by a common oxygen sensor. Am J Physiol Regul Integr Comp Physiol 2007; 293:R829-36. [PMID: 17475674 DOI: 10.1152/ajpregu.00882.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Addition of Pco (∼350 Torr) to a normoxic medium (Po2 of ∼130 Torr) was used to investigate the relationship between carotid body (CB) sensory discharge and expression of hypoxia-inducible factor 1α (HIF-1α) in glomus cells. Afferent electrical activity measured for in vitro -perfused rat CB increased rapidly (1–2 s) with addition of high CO (Pco of ∼350 Torr; Po2 of ∼130 Torr), and this increase was fully reversed by white light. At submaximal light intensities, the extent of reversal was much greater for monochromatic light at 430 and 590 nm than for light at 450, 550, and 610 nm. This wavelength dependence is consistent with the action spectrum of the CO compound of mitochondrial cytochrome a3. Interestingly, when isolated glomus cells cultured for 45 min in the presence of high CO (Pco of ∼350 Torr; Po2 of ∼130 Torr) in the dark, the levels of HIF-1α, which turn over slowly (many minutes), increased. This increase was not observed if the cells were illuminated with white light during the incubation. Monochromatic light at 430- and 590-nm light was much more effective than that at 450, 550, and 610 nm in blocking the CO-induced increase in HIF-1α, as was the case for chemoreceptor discharge. Although the changes in HIF-1α take minutes and those for CB neural activity occur in 1–2 s, the similar responses to CO and light suggest that the oxygen sensor is the same (mitochondrial cytochrome a3).
Collapse
Affiliation(s)
- Arijit Roy
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | | | |
Collapse
|
67
|
López-López JR, Pérez-García MT. Oxygen sensitive Kv channels in the carotid body. Respir Physiol Neurobiol 2007; 157:65-74. [PMID: 17442633 DOI: 10.1016/j.resp.2007.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/17/2007] [Accepted: 01/22/2007] [Indexed: 11/25/2022]
Abstract
Hypoxic inhibition of K(+) channels has been documented in many native chemoreceptor cells, and is crucial to initiate reflexes directed to improve tissue O(2) supply. In the carotid body (CB) chemoreceptors, there is a general consensus regarding the facts that a decrease in P(O2) leads to membrane depolarization, increase of Ca(2+) entry trough voltage-dependent Ca(2+) channels and Ca(2+)-dependent release of neurotransmitters. Central to this pathway is the modulation by hypoxia of K(+) channels that triggers depolarization. However, the details of this process are still controversial, and even the molecular nature of these oxygen-sensitive K(+) (K(O2)) channels in the CB is hotly debated. Clearly there are inter-species differences, and even in the same preparation more that one K(O2) may be present. Here we recapitulate our present knowledge of the role of voltage dependent K(+) channels as K(O2) in the CB from different species, and their functional contribution to cell excitability in response to acute and chronic exposure to hypoxia.
Collapse
Affiliation(s)
- José Ramón López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | |
Collapse
|
68
|
Wyatt CN, Evans AM. AMP-activated protein kinase and chemotransduction in the carotid body. Respir Physiol Neurobiol 2007; 157:22-9. [PMID: 17409030 DOI: 10.1016/j.resp.2007.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key component of a kinase cascade that regulates energy balance at the cellular level. Our recent research has raised the possibility that AMPK may also function to couple hypoxic inhibition of mitochondrial oxidative phosphorylation to O(2)-sensitive K(+) channel inhibition and hence underpin carotid body type I cell excitation. Thus, in addition to maintaining the cellular energy state AMPK may act as the primary metabolic sensor and effector of hypoxic chemotransduction in type I cells. These findings provide a unifying link between two previously separate theories pertaining to O(2)-sensing in the carotid body, namely the 'membrane hypothesis' and the 'mitochondrial hypothesis'. Furthermore, our data suggest that in addition to its effects at the cellular level the AMPK signalling cascade can mediate vital physiological mechanisms essential for meeting the metabolic needs of the whole organism.
Collapse
|
69
|
Buckler KJ. TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 2007; 157:55-64. [PMID: 17416212 DOI: 10.1016/j.resp.2007.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/17/2022]
Abstract
Chemosensing by type-1 cells of the carotid body involves a series of events which culminate in the calcium-dependent secretion of neurotransmitter substances which then excite afferent nerves. This response is mediated via membrane depolarisation and voltage-gated calcium entry. Studies utilising isolated cells indicates that the membrane depolarisation in response to hypoxia, and acidosis, appears to be primarily mediated via the inhibition of a background K(+)-current. The pharmacological and biophysical characteristics of these channels suggest that they are probably closely related to the TASK subfamily of tandem-P-domain K(+)-channels. Indeed they show greatest similarity to TASK-1 and -3. In addition to being sensitive to hypoxia and acidosis, the background K(+)-channels of the type-1 cell are also remarkably sensitive to inhibition of mitochondrial energy metabolism. Metabolic poisons are known potent stimulants of the carotid body and cause membrane depolarisation of type-1 cells. In the presence of metabolic inhibitors hypoxic sensitivity is lost suggesting that oxygen sensing may itself be mediated via depression of mitochondrial energy production. Thus these TASK-like background channels play a central role in mediating the chemotransduction of several different stimuli within the type-1 cell. The mechanisms by which metabolic/oxygen sensitivity might be conferred upon these channels are briefly discussed.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, UK.
| |
Collapse
|
70
|
Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J, Stensaas L, Fidone S. The role of NADPH oxidase in carotid body arterial chemoreceptors. Respir Physiol Neurobiol 2007; 157:45-54. [PMID: 17223613 PMCID: PMC2570203 DOI: 10.1016/j.resp.2006.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/06/2006] [Accepted: 12/10/2006] [Indexed: 01/22/2023]
Abstract
O(2)-sensing in the carotid body occurs in neuroectoderm-derived type I glomus cells where hypoxia elicits a complex chemotransduction cascade involving membrane depolarization, Ca(2+) entry and the release of excitatory neurotransmitters. Efforts to understand the exquisite O(2)-sensitivity of these cells currently focus on the coupling between local P(O2) and the open-closed state of K(+)-channels. Amongst multiple competing hypotheses is the notion that K(+)-channel activity is mediated by a phagocytic-like multisubunit enzyme, NADPH oxidase, which produces reactive oxygen species (ROS) in proportion to the prevailing P(O2). In O(2)-sensitive cells of lung neuroepithelial bodies (NEB), multiple studies confirm that ROS levels decrease in hypoxia, and that E(M) and K(+)-channel activity are indeed controlled by ROS produced by NADPH oxidase. However, recent studies in our laboratories suggest that ROS generated by a non-phagocyte isoform of the oxidase are important contributors to chemotransduction, but that their role in type I cells differs fundamentally from the mechanism utilized by NEB chemoreceptors. Data indicate that in response to hypoxia, NADPH oxidase activity is increased in type I cells, and further, that increased ROS levels generated in response to low-O(2) facilitate cell repolarization via specific subsets of K(+)-channels.
Collapse
Affiliation(s)
- B Dinger
- Department of Physiology, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Gonzalez C, Agapito MT, Rocher A, Gonzalez-Martin MC, Vega-Agapito V, Gomez-Niño A, Rigual R, Castañeda J, Obeso A. Chemoreception in the context of the general biology of ROS. Respir Physiol Neurobiol 2007; 157:30-44. [PMID: 17331812 DOI: 10.1016/j.resp.2007.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Superoxide anion is the most important reactive oxygen species (ROS) primarily generated in cells. The main cellular constituents with capabilities to generate superoxide anion are NADPH oxidases and mitochondrial respiratory chain. The emphasis of our article is centered in critically examining hypotheses proposing that ROS generated by NADPH oxidase and mitochondria are key elements in O(2)-sensing and hypoxic responses generation in carotid body chemoreceptor cells. Available data indicate that chemoreceptor cells express a specific isoform of NADPH oxidase that is activated by hypoxia; generated ROS acting as negative modulators of the carotid body (CB) hypoxic responses. Literature is also consistent in supporting that poisoned respiratory chain can produce high amounts of ROS, making mitochondrial ROS potential triggers-modulators of the CB activation elicited by mitochondrial venoms. However, most data favour the notion that levels of hypoxia, capable of strongly activating chemoreceptor cells, would not increase the rate of ROS production in mitochondria, making mitochondrial ROS unlikely triggers of hypoxic responses in the CB. Finally, we review recent literature on heme oxygenases from two perspectives, as potential O(2)-sensors in chemoreceptor cells and as generators of bilirubin which is considered to be a ROS scavenger of major quantitative importance in mammalian cells.
Collapse
Affiliation(s)
- C Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología e, Instituto de Biología y Genética Molecular, Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Fung ML, Li M, Lahiri S. Increased endogenous nitric oxide release by iron chelation and purinergic activation in the rat carotid body. Open Biochem J 2007; 1:1-6. [PMID: 18949066 PMCID: PMC2570544 DOI: 10.2174/1874091x00701010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 05/26/2007] [Accepted: 06/04/2007] [Indexed: 11/22/2022] Open
Abstract
We examined the hypothesis that hypoxic chemotransduction with stabilization of HIF-1 and activation of purinoceptors stimulate the endogenous NO production in the rat carotid body. The effects of blockade of purinoceptors with suramin, or blockade of HIF-1α hydroxylation by suppressing prolyl hydroxylase (PAH) activity on the endogenous NO release measured electrochemically by microsensor inserted into the isolated carotid body superfused with bicarbonate-buffer were examined. Suramin did not change the resting NO level under normoxic conditions but it significantly decreased the hypoxia-induced NO elevation in a dose-dependent manner. Suramin (100μM) blocked the NO response to acute hypoxia by 53%. Intracellular iron chelator, ciclopirox olamine (CPX) significantly increased the resting NO release close to the hypoxic level, which was reversed by FeSO4 or blocked by L-NMMA. Also, PAH inhibition with dimethy-loxalylglycine (DMOG) moderately increased the resting NO release. In the presence of CPX and DMOG the resting NO release was increased to the hypoxic level. Collectively, results suggest that iron chelation and purinoceptor stimulation play a role in the hypoxic chemotransduction for an increase in the endogenous NO production in the rat carotid body.
Collapse
Affiliation(s)
- Man-Lung Fung
- Department of Physiology, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
73
|
Zhao G, Adebiyi A, Xi Q, Jaggar JH. Hypoxia reduces KCa channel activity by inducing Ca2+ spark uncoupling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2007; 292:C2122-8. [PMID: 17314264 PMCID: PMC2241735 DOI: 10.1152/ajpcell.00629.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arterial smooth muscle cell large-conductance Ca(2+)-activated potassium (K(Ca)) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. K(Ca) channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca(2+) transients, termed Ca(2+) sparks, but hypoxic regulation of Ca(2+) sparks and K(Ca) channel activation by Ca(2+) sparks has not been investigated. We report here that in voltage-clamped (-40 mV) cerebral artery smooth muscle cells, a reduction in dissolved O(2) partial pressure from 150 to 15 mmHg reversibly decreased Ca(2+) spark-induced transient K(Ca) current frequency and amplitude to 61% and 76% of control, respectively. In contrast, hypoxia did not alter Ca(2+) spark frequency, amplitude, global intracellular Ca(2+) concentration, or sarcoplasmic reticulum Ca(2+) load. Hypoxia reduced transient K(Ca) current frequency by decreasing the percentage of Ca(2+) sparks that activated a transient K(Ca) current from 89% to 63%. Hypoxia reduced transient K(Ca) current amplitude by attenuating the amplitude relationship between Ca(2+) sparks that remained coupled and the evoked transient K(Ca) currents. Consistent with these data, in inside-out patches at -40 mV hypoxia reduced K(Ca) channel apparent Ca(2+) sensitivity and increased the K(d) for Ca(2+) from approximately 17 to 32 microM, but did not alter single-channel amplitude. In summary, data indicate that hypoxia reduces K(Ca) channel apparent Ca(2+) sensitivity via a mechanism that is independent of cytosolic signaling messengers, and this leads to uncoupling of K(Ca) channels from Ca(2+) sparks. Transient K(Ca) current inhibition due to uncoupling would oppose hypoxic cerebrovascular dilation.
Collapse
Affiliation(s)
- Guiling Zhao
- Dept. of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
74
|
Gu XQ, Siemen D, Parvez S, Cheng Y, Xue J, Zhou D, Sun X, Jonas EA, Haddad GG. Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochem Biophys Res Commun 2007; 358:311-6. [PMID: 17481584 DOI: 10.1016/j.bbrc.2007.04.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
To explore the potential function of the BK channel in the inner mitochondrial membrane under physiological and hypoxic conditions, we used on-mitoplast and whole-mitoplast patches. Single BK channels had a conductance of 276+/-9 pS under symmetrical K(+) solutions, were Ca(2+)- and voltage-dependent and were inhibited by 0.1 microM charybdotoxin. In response to hypoxia, BK increased open probability, shifted its reversal potential (9.3+/-2.4 mV) in the positive direction and did not change its conductance. We conclude that (1) the properties at rest of this mitoplast K(+) channel are similar to those of BK channels in the plasma membrane; (2) hypoxia induces an increase, rather than a decrease (as in the plasmalemma), in the open probability of this K(+) channel, leading to K(+) efflux from the mitochondrial matrix to the outside. We speculate that this increase in K(+) efflux from mitochondria into the cytosol is important during hypoxia in maintaining cytosolic K(+).
Collapse
Affiliation(s)
- Xiang Q Gu
- Department of Pediatrics (Section of Respiratory Medicine), University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0735, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Xu F, Tse FW, Tse A. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+current. J Neurochem 2007; 101:1284-93. [PMID: 17498241 DOI: 10.1111/j.1471-4159.2007.04468.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice are prone to sudden neonatal death and have reduced respiratory response to hypoxia. Here we found that PACAP-38 elevated cytosolic [Ca(2+)] ([Ca(2+)](i)) in the oxygen sensing type I cells but not the glial-like type II (sustentacular) cells of the rat carotid body. This action of PACAP could not be mimicked by vasoactive intestinal peptide but was abolished by PACAP 6-38, implicating the involvement of PAC(1) receptors. H89, a protein kinase A (PKA) inhibitor attenuated the PACAP response. Simultaneous measurement of membrane potential and [Ca(2+)](i) showed that the PACAP-mediated [Ca(2+)](i) rise was accompanied by depolarization and action potential firing. Ni(2+), a blocker of voltage-gated Ca(2+) channels (VGCC) or the removal of extracellular Ca(2+) reversibly inhibited the PACAP-mediated [Ca(2+)](i) rise. In the presence of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), PACAP reduced a background K(+) current. Anandamide, a blocker of TWIK-related acid-sensitive K(+) (TASK)-like K(+) channel, occluded the inhibitory action of PACAP on K(+) current. We conclude that PACAP, acting via the PAC(1) receptors coupled PKA pathway inhibits a TASK-like K(+) current and causes depolarization and VGCC activation. This stimulatory action of PACAP in carotid type I cells can partly account for the role of PACAP in respiratory disorders.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Pharmacology and Center for Neurosciences, 9-70 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
76
|
D'Amico G, Lam F, Hagen T, Moncada S. Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 2007; 119:2291-8. [PMID: 16723735 DOI: 10.1242/jcs.02914] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Wolfson Institute for Biomedical Research, University College London, UK.
| | | | | | | |
Collapse
|
77
|
Abstract
The ability to sense and react to changes in environmental oxygen levels is crucial to the survival of all aerobic life forms. In mammals, specialized tissues have evolved which can sense and rapidly respond to an acute reduction in oxygen and central to this ability in many is dynamic modulation of ion channels by hypoxia. The most widely studied oxygen-sensitive ion channels are potassium channels but oxygen sensing by members of both the calcium and sodium channel families has also been demonstrated. This chapter will focus on mechanisms of physiological oxygen sensing by ion channels, with particular emphasis on potassium channel function, and will highlight some of the consensuses and controversies within the field. Where data are available, this chapter will also make use of information gleaned from heterologous expression of recombinant proteins in an attempt to consolidate what we know currently about the molecular mechanisms of acute oxygen sensing by ion channels.
Collapse
Affiliation(s)
- Paul J Kemp
- Cardiff School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | |
Collapse
|
78
|
Peers C, Wyatt CN. The role of maxiK channels in carotid body chemotransduction. Respir Physiol Neurobiol 2006; 157:75-82. [PMID: 17157084 DOI: 10.1016/j.resp.2006.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 01/10/2023]
Abstract
MaxiK channels are a unique class of K(+) channels activated by both voltage and intracellular Ca(2+). Derived from a single gene, their diversity arises from extensive splicing, and their wide distribution has led to their implication in a large variety of cellular functions. In the carotid body, they have been proposed to contribute to the resting membrane potential of type I cells, and also to be O(2) sensitive. Thus, they have been suggested to have an important role in hypoxic chemotransduction. Their O(2) sensitivity is preserved when the channels are expressed in HEK 293 cells, permitting detailed studies of candidate mechanisms underlying hypoxic inhibition of maxiK channels. In this article, we review evidence for and against an important role for maxiK channels in chemotransduction. We also consider different mechanisms proposed to account for hypoxic channel inhibition and suggest that, although our understanding of this important physiological process has advanced significantly in recent years, there remain important, unanswered questions as to the importance of maxiK in carotid body chemoreception.
Collapse
Affiliation(s)
- Chris Peers
- School of Medicine, University of Leeds, Leeds, UK.
| | | |
Collapse
|
79
|
Boczkowski J, Poderoso JJ, Motterlini R. CO–metal interaction: vital signaling from a lethal gas. Trends Biochem Sci 2006; 31:614-21. [PMID: 16996273 DOI: 10.1016/j.tibs.2006.09.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/17/2006] [Accepted: 09/07/2006] [Indexed: 11/15/2022]
Abstract
The past few years have witnessed intense research into the biological significance of carbon monoxide (CO) as an essential signaling mediator in cells and tissues. To transduce the signal properly, CO must react selectively with functional and structural proteins containing moieties that show preferred reactivity towards this gaseous molecule. This selectivity is exemplified by the interaction of CO with iron- and heme-dependent proteins, although systems containing other transition metals can potentially become a preferential target for CO. Notably, transition metal carbonyls, which carry and liberate CO, are also emerging as a pharmacological tool to mimic the bioactivity of endogenously generated CO. Thus, exploring how CO binding to metal complexes is translated into a cytoprotective function is a challenging task and might open up opportunities for therapeutic applications based on CO delivery.
Collapse
Affiliation(s)
- Jorge Boczkowski
- Inserm, U700, Université Paris 7, Faculté de Medecine, Site Xavier Bichat, Asistance Publique-Hôpitaux de Paris, CIC 07, Hôpital Bichat, 75018 Paris, France
| | | | | |
Collapse
|
80
|
Abstract
The majority of physiological processes proceed most favourably when O(2) is in plentiful supply. However, there are a number of physiological and pathological circumstances in which this supply is reduced either acutely or chronically. A crucial homeostatic response to such arterial hypoxaemia is carotid body excitation and a resultant increase in ventilation. Central to this response in carotid body, and many other chemosensory tissues, is the rapid inhibition of ion channels by hypoxia. Since the first direct demonstration of hypoxia-evoked depression in K(+) channel activity, the numbers of mechanisms which have been proposed to serve as the primary O(2) sensor have been almost as numerous as the experimental strategies with which to probe their nature. Three of the current favourite candidate mechanisms are mitochondria, AMP-activated kinase and haemoxygenase-2; a fourth proposal has been NADPH oxidase, but recent evidence suggests that this enzyme plays a secondary role in the O(2)-sensing process. All of these proposals have attractive points, but none can fully reconcile all of the data which have accumulated over the last two decades or so, suggesting that there may, in fact, not be a unique sensing system even within a single cell type. This latter point is key, because it implies that the ability of a cell to respond appropriately to decreased O(2) availability is biologically so important that several mechanisms have evolved to ensure that cellular function is never compromised during moderate to severe hypoxic insult.
Collapse
Affiliation(s)
- Paul J Kemp
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF11 9BX, UK.
| |
Collapse
|
81
|
Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 91:249-86. [PMID: 16137743 DOI: 10.1016/j.pbiomolbio.2005.07.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This review is divided into three parts: (a) The primary site of oxygen sensing is the carotid body which instantaneously respond to hypoxia without involving new protein synthesis, and is historically known as the first oxygen sensor and is therefore placed in the first section (Lahiri, Roy, Baby and Hoshi). The carotid body senses oxygen in acute hypoxia, and produces appropriate responses such as increases in breathing, replenishing oxygen from air. How this oxygen is sensed at a relatively high level (arterial PO2 approximately 50 Torr) which would not be perceptible by other cells in the body, is a mystery. This response is seen in afferent nerves which are connected synaptically to type I or glomus cells of the carotid body. The major effect of oxygen sensing is the increase in cytosolic calcium, ultimately by influx from extracellular calcium whose concentration is 2 x 10(4) times greater. There are several contesting hypotheses for this response: one, the mitochondrial hypothesis which states that the electron transport from the substrate to oxygen through the respiratory chain is retarded as the oxygen pressure falls, and the mitochondrial membrane is depolarized leading to the calcium release from the complex of mitochondria-endoplasmic reticulum. This is followed by influx of calcium. Also, the inhibitors of the respiratory chain result in mitochondrial depolarization and calcium release. The other hypothesis (membrane model) states that K(+) channels are suppressed by hypoxia which depolarizes the membrane leading to calcium influx and cytosolic calcium increase. Evidence supports both the hypotheses. Hypoxia also inhibits prolyl hydroxylases which are present in all the cells. This inhibition results in membrane K(+) current suppression which is followed by cell depolarization. The theme of this section covers first what and where the oxygen sensors are; second, what are the effectors; third, what couples oxygen sensors and the effectors. (b) All oxygen consuming cells have a built-in mechanism, the transcription factor HIF-1, the discovery of which has led to the delineation of oxygen-regulated gene expression. This response to chronic hypoxia needs new protein synthesis, and the proteins of these genes mediate the adaptive physiological responses. HIF-1alpha, which is a part of HIF-1, has come to be known as master regulator for oxygen homeostasis, and is precisely regulated by the cellular oxygen concentration. Thus, the HIF-1 encompasses the chronic responses (gene expression in all cells of the body). The molecular biology of oxygen sensing is reviewed in this section (Semenza). (c) Once oxygen is sensed and Ca(2+) is released, the neurotransmittesr will be elaborated from the glomus cells of the carotid body. Currently it is believed that hypoxia facilitates release of one or more excitatory transmitters from glomus cells, which by depolarizing the nearby afferent terminals, leads to increases in the sensory discharge. The transmitters expressed in the carotid body can be classified into two major categories: conventional and unconventional. The conventional neurotransmitters include those stored in synaptic vesicles and mediate their action via activation of specific membrane bound receptors often coupled to G-proteins. Unconventional neurotransmitters are those that are not stored in synaptic vesicles, but spontaneously generated by enzymatic reactions and exert their biological responses either by interacting with cytosolic enzymes or by direct modifications of proteins. The gas molecules such as NO and CO belong to this latter category of neurotransmitters and have unique functions. Co-localization and co-release of neurotransmitters have also been described. Often interactions between excitatory and inhibitory messenger molecules also occur. Carotid body contains all kinds of transmitters, and an interplay between them must occur. But very little has come to be known as yet. Glimpses of these interactions are evident in the discussion in the last section (Prabhakar).
Collapse
Affiliation(s)
- S Lahiri
- Department of Physiology, University of Pennsylvania Medical Center, Philadelphia, 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Xu F, Xu J, Tse FW, Tse A. Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies. Am J Physiol Cell Physiol 2006; 290:C1592-8. [PMID: 16436472 DOI: 10.1152/ajpcell.00546.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hypoxia, the level of adenosine in the carotid bodies increases as a result of ATP catabolism and adenosine efflux via adenosine transporters. Using Ca2+imaging, we found that adenosine, acting via A2Areceptors, triggered a rise in cytoplasmic [Ca2+] ([Ca2+]i) in type I (glomus) cells of rat carotid bodies. The adenosine response could be mimicked by forskolin (but not its inactive analog), and could be abolished by the PKA inhibitor H89. Simultaneous measurements of membrane potential (perforated patch recording) and [Ca2+]ishowed that the adenosine-mediated [Ca2+]irise was accompanied by depolarization. Ni2+, a voltage-gated Ca2+channel (VGCC) blocker, abolished the adenosine-mediated [Ca2+]irise. Although adenosine was reported to inhibit a 4-aminopyridine (4-AP)-sensitive K+current, 4-AP failed to trigger any [Ca2+]irise, or to attenuate the adenosine response. In contrast, anandamide, an inhibitor of the TWIK-related acid-sensitive K+-1 (TASK-1) channels, triggered depolarization and [Ca2+]irise. The adenosine response was attenuated by anandamide but not by tetraethylammonium. Our results suggest that adenosine, acting via the adenylate cyclase and PKA pathways, inhibits the TASK-1 K+channels. This leads to depolarization and activation of Ca2+entry via VGCC. This excitatory action of adenosine on type I cells may contribute to the chemosensitivity of the carotid body during hypoxia.
Collapse
Affiliation(s)
- Fenglian Xu
- Dept. of Pharmacology and Center for Neurosciences, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
83
|
Zhou L, Miller CA. Mitogen-Activated Protein Kinase Signaling, Oxygen Sensors and Hypoxic Induction of Neurogenesis. NEURODEGENER DIS 2006; 3:50-5. [PMID: 16909037 DOI: 10.1159/000092093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the adult nervous system, neuronal subpopulations sustain a hierarchical pattern of selective vulnerability to hypoxia. Hypoxia also activates quiescent neural progenitor cells (NPCs) resulting in their amplification and subsequent differentiation into neurons and glia. Use of rat organotypic hippocampal cultures facilitates examination of early signaling events in response to hypoxia and reoxygenation that result in neurogenesis. Cultures were exposed to hypoxia for up to 6 h followed by reoxygenation. CA1 neurons showed focal nuclear condensation by 2 h of hypoxia, but CA2 and CA3 neurons were spared. JNKs and c-Jun reached peak activation by 4 h, returning to basal levels by 6 h. Expression of oxygen sensors, hemoxygenase 2 and HIF1, were elevated by 30 min and 2 h, respectively. By 24 h of reoxygenation, there was proliferation of nestin-positive NPCs. With U0126, an upstream inhibitor of ERK activation, BrdU labeling was markedly reduced immunohistochemically as well as PCNA protein expression, suggesting a role for ERKs in the proliferation response. Immunohistochemically, antinestin detected NPCs and on Western blots reached peak levels by 24-48 h of reoxygenation. Proliferation and differentiation of endogenous NPCs in the area of neuronal loss further suggests that mechanisms potentially exist in vitro for replacement with functional neurons.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
84
|
Teppema LJ, Bijl H, Mousavi Gourabi B, Dahan A. The carbonic anhydrase inhibitors methazolamide and acetazolamide have different effects on the hypoxic ventilatory response in the anaesthetized cat. J Physiol 2006; 574:565-72. [PMID: 16675491 PMCID: PMC1817761 DOI: 10.1113/jphysiol.2006.110528] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We compared the effects of the carbonic anhydrase inhibitors methazolamide and acetazolamide (3 mg kg(-1), i.v.) on the steady-state hypoxic ventilatory response in 10 anaesthetized cats. In five additional animals, we studied the effect of 3 and 33 mg kg(-1) methazolamide. The steady-state hypoxic ventilatory response was described by the exponential function: *Vi= G exp(-D P(O2)) + A where *Vi is the inspired ventilation, G is hypoxic sensitivity, D is the shape factor and A is hyperoxic ventilation. In the first group of 10 animals, methazolamide did not change parameters G and D, while A increased from 0.86 +/- 0.33 to 1.30 +/- 0.40 l min(-1) (mean +/- s.d., P = 0.003). However, the subsequent administration of acetazolamide reduced G by 44% (control, 1.93 +/- 1.32; acetazolamide, 1.09 +/- 0.92 l min(-1), P = 0.003), while A did not show a further change. Acetazolamide tended to reduce D (control, 0.20 +/- 0.07; acetazolamide, 0.14 +/- 0.06 kPa(-1), P = 0.023). In the second group of five animals, neither low- nor high-dose methazolamide changed parameters G, D and A. The observation that even high-dose methazolamide, causing full inhibition of carbonic anhydrase in all body tissues, did not reduce the hypoxic ventilatory response is reminiscent of previous findings by others showing no change in magnitude of the hypoxic response of the in vitro carotid body by this agent. This suggests that normal carbonic anhydrase activity is not necessary for a normal hypoxic ventilatory response to occur. The mechanism by which acetazolamide reduces the hypoxic ventilatory response needs further study.
Collapse
Affiliation(s)
- Luc J Teppema
- Department of Anesthesiolgy, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
85
|
Teppema LJ, Bijl H, Romberg RR, Dahan A. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man. J Physiol 2006; 572:849-56. [PMID: 16439432 PMCID: PMC1780009 DOI: 10.1113/jphysiol.2005.104174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/21/2005] [Accepted: 01/25/2006] [Indexed: 12/27/2022] Open
Abstract
The carbonic anhydrase inhibitor acetazolamide may have both inhibitory and stimulatory effects on breathing. In this placebo-controlled double-blind study we measured the effect of an intravenous dose (4 mg kg(-1)) of this agent on the acute isocapnic hypoxic ventilatory response in 16 healthy volunteers (haemoglobin oxygen saturation 83-85%) and examined whether its inhibitory effects on this response could be reversed by antioxidants (1 g ascorbic acid i.v. and 200 mg alpha-tocopherol p.o.). The subjects were randomly divided into an antioxidant (Aox) and placebo group. In the Aox group, acetazolamide reduced the mean normocapnic and hypercapnic hypoxic responses by 37% (P < 0.01) and 55% (P < 0.01), respectively, and abolished the O2-CO2 interaction, i.e. the increase in O2 sensitivity with rising Pco2. Antioxidants completely reversed this inhibiting effect on the normocapnic hypoxic response, while in hypercapnia the reversal was partial. In the placebo group, acetazolamide reduced the normo- and hypercapnic hypoxic responses by 33 and 47%, respectively (P < 0.01 versus control in both cases), and also abolished the O2-CO2 interaction. Placebo failed to reverse these inhibitory effects of acetazolamide in this group. We hypothesize that either an isoform of carbonic anhydrase may be involved in the regulation of the redox state in the carotid bodies or that acetazolamide and antioxidants exert independent effects on oxygen-sensing cells, in which both carbonic anhydrase and potassium channels may be involved. The novel findings of this study may have clinical implications, for example with regard to a combined use of acetazolamide and antioxidants at high altitude.
Collapse
Affiliation(s)
- Luc J Teppema
- Department of Anaesthesiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
86
|
He L, Dinger B, Gonzalez C, Obeso A, Fidone S. Function of NADPH oxidase and signaling by reactive oxygen species in rat carotid body type I cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 580:155-60; discussion 351-9. [PMID: 16683712 DOI: 10.1007/0-387-31311-7_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
87
|
McCartney CE, McClafferty H, Huibant JM, Rowan EG, Shipston MJ, Rowe ICM. A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel alpha-subunits. Proc Natl Acad Sci U S A 2005; 102:17870-6. [PMID: 16306267 PMCID: PMC1308893 DOI: 10.1073/pnas.0505270102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Indexed: 01/15/2023] Open
Abstract
Cellular responses to hypoxia are tissue-specific and dynamic. However, the mechanisms that underlie this differential sensitivity to hypoxia are unknown. Large conductance voltage- and Ca-activated K (BK) channels are important mediators of hypoxia responses in many systems. Although BK channels are ubiquitously expressed, alternative pre-mRNA splicing of the single gene encoding their pore-forming alpha-subunits provides a powerful mechanism for generating functional diversity. Here, we demonstrate that the hypoxia sensitivity of BK channel alpha-subunits is splice-variant-specific. Sensitivity to hypoxia is conferred by a highly conserved motif within an alternatively spliced cysteine-rich insert, the stress-regulated exon (STREX), within the intracellular C terminus of the channel. Hypoxic inhibition of the STREX variant is Ca-sensitive and reversible, and it rapidly follows the change in oxygen tension by means of a mechanism that is independent of redox or CO regulation. Hypoxia sensitivity was abolished by mutation of the serine (S24) residue within the STREX insert. Because STREX splice-variant expression is tissue-specific and dynamically controlled, alternative splicing of BK channels provides a mechanism to control the plasticity of cellular responses to hypoxia.
Collapse
Affiliation(s)
- Claire E McCartney
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | | | | | | | | | | |
Collapse
|
88
|
He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C. Effect of p47phoxgene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L916-24. [PMID: 16280459 DOI: 10.1152/ajplung.00015.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K+channels. Coupling of Po2to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po2and a subset of K+channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47phoxgene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 μM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 μM), arachidonic acid (10 μM), and cytochalasin B (5 μg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 μM). KO neutrophils did not respond; however, azide (5 μM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+current and increased intracellular Ca2+levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+and enhanced the depression of K+current in low O2. Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+channel activity in hypoxia.
Collapse
Affiliation(s)
- L He
- Dept. of Physiology, University of Utah School of Medicine, 410 Chipeta Way, Salt Lake City, 84108 UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005; 57:585-630. [PMID: 16382109 DOI: 10.1124/pr.57.4.3] [Citation(s) in RCA: 672] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, studies have unraveled many aspects of endogenous production and physiological functions of carbon monoxide (CO). The majority of endogenous CO is produced in a reaction catalyzed by the enzyme heme oxygenase (HO). Inducible HO (HO-1) and constitutive HO (HO-2) are mostly recognized for their roles in the oxidation of heme and production of CO and biliverdin, whereas the biological function of the third HO isoform, HO-3, is still unclear. The tissue type-specific distribution of these HO isoforms is largely linked to the specific biological actions of CO on different systems. CO functions as a signaling molecule in the neuronal system, involving the regulation of neurotransmitters and neuropeptide release, learning and memory, and odor response adaptation and many other neuronal activities. The vasorelaxant property and cardiac protection effect of CO have been documented. A plethora of studies have also shown the importance of the roles of CO in the immune, respiratory, reproductive, gastrointestinal, kidney, and liver systems. Our understanding of the cellular and molecular mechanisms that regulate the production and mediate the physiological actions of CO has greatly advanced. Many diseases, including neurodegenerations, hypertension, heart failure, and inflammation, have been linked to the abnormality in CO metabolism and function. Enhancement of endogenous CO production and direct delivery of exogenous CO have found their applications in many health research fields and clinical settings. Future studies will further clarify the gasotransmitter role of CO, provide insight into the pathogenic mechanisms of many CO abnormality-related diseases, and pave the way for innovative preventive and therapeutic strategies based on the physiologic effects of CO.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Biology, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, Canada P7B 5E1
| | | |
Collapse
|
90
|
Zhuang J, Xu F, Campen M, Hernandez J, Shi S, Wang R. Transient carbon monoxide inhibits the ventilatory responses to hypoxia through peripheral mechanisms in the rat. Life Sci 2005; 78:2654-61. [PMID: 16318862 DOI: 10.1016/j.lfs.2005.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Hypoxia inhibits K+ channels of chemoreceptors of the carotid body (CB), which is reversed by transient carbon monoxide (CO), suggesting an inhibitory effect of CO on hypoxic stimulation of carotid chemoreceptors. Therefore, we hypothesized that the ventilatory responses to hypoxic stimulation of the CB might be depressed in intact rats by transient inhalation of CO. Anesthetized, spontaneously breathing rats were exposed to room air, and 1 min of 11% O2 (HYP) and CO (0.25-2%) alone and in combination (HYP+CO). We found that transient CO did not affect baseline cardiorespiratory variables, but significantly attenuated hypoxic ventilatory augmentation, predominantly via reduction of tidal volume. To distinguish whether this CO modulation occurs at the CB or within the central nervous system, the cardiorespiratory responses to electrical stimulation of the fastigial nucleus (FN), a cerebellar nucleus known excitatory to respiration, were compared before and during transient CO. Our results showed that the FN-mediated cardiorespiratory responses were not significantly changed by transient CO exposure. To evaluate the effect of CO accumulation, we also compared baseline cardiorespiratory responses to 5 min of 1% and 2% CO, respectively. Interestingly, only the latter produced a biphasic ventilatory response (initial increase followed by decrease) associated with hypotension. We conclude that eupneic breathing in anesthetized rat was not affected by transient CO, but was altered by prolonged exposure to higher levels of CO. Moreover, transient CO depresses hypoxic ventilatory responses mainly through peripherally inhibiting hypoxic stimulation of carotid chemoreceptors.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Department of Pathophysiology, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | |
Collapse
|
91
|
Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ Res 2005; 97:805-12. [PMID: 16166559 PMCID: PMC1415201 DOI: 10.1161/01.res.0000186180.47148.7b] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon monoxide (CO) is an endogenous paracrine and autocrine gaseous messenger that regulates physiological functions in a wide variety of tissues. CO induces vasodilation by activating arterial smooth muscle large-conductance Ca2+-activated potassium (BK(Ca)) channels. However, the mechanism by which CO activates BK(Ca) channels remains unclear. Here, we tested the hypothesis that CO activates BK(Ca) channels by binding to channel-bound heme, a BK(Ca) channel inhibitor, and altering the interaction between heme and the conserved heme-binding domain (HBD) of the channel alpha subunit C terminus. Data obtained using thin-layer chromatography, spectrophotometry, mass spectrometry (MS), and MS-MS indicate that CO modifies the binding of reduced heme to the alpha subunit HBD. In contrast, CO does not alter the interaction between the HBD and oxidized heme (hemin), to which CO cannot bind. Consistent with these findings, electrophysiological measurements of native and cloned (cbv) cerebral artery smooth muscle BK(Ca) channels show that CO reverses BK(Ca) channel inhibition by heme but not by hemin. Site-directed mutagenesis of the cbv HBD from CKACH to CKASR abolished both heme-induced channel inhibition and CO-induced activation. Furthermore, on binding CO, heme switches from being a channel inhibitor to an activator. These findings indicate that reduced heme is a functional CO receptor for BK(Ca) channels, introduce a unique mechanism by which CO regulates the activity of a target protein, and reveal a novel process by which a gaseous messenger regulates ion channel activity.
Collapse
Affiliation(s)
- Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis 38139, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Kemp PJ. Hemeoxygenase-2 as an O2 sensor in K+ channel-dependent chemotransduction. Biochem Biophys Res Commun 2005; 338:648-52. [PMID: 16137652 DOI: 10.1016/j.bbrc.2005.08.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/15/2005] [Indexed: 01/12/2023]
Abstract
The physiological response of the carotid body is critically dependent upon oxygen-sensing by potassium channels expressed in glomus cells. One such channel is the large conductance, voltage- and calcium-dependent potassium channel, BK(Ca). Although it is well known that a decrease in oxygen evokes glomus cell depolarization, voltage-gated calcium entry, and transmitter release, the molecular identity of the upstream oxygen sensor has been the subject of some controversy for decades. Recently, we have demonstrated that hemeoxygenase-2 associates tightly with recombinant BK(Ca) and that activity of this enzyme confers oxygen sensitivity to the BK(Ca) channel complex. Similar observations were also made in native channels recorded from carotid body glomus cells, suggesting that hemoxygenase-2 functions as an oxygen sensor of native and recombinant BK(Ca) channels.
Collapse
Affiliation(s)
- Paul J Kemp
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| |
Collapse
|
93
|
Gribkoff VK, Winquist RJ. Voltage-gated cation channel modulators for the treatment of stroke. Expert Opin Investig Drugs 2005; 14:579-92. [PMID: 15926865 DOI: 10.1517/13543784.14.5.579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuronal voltage-gated cation channels regulate the transmembrane flux of calcium, sodium and potassium. Neuronal ischaemia occurring during acute ischaemic stroke results in the breakdown in the normal function of these ion channels, contributing to a series of pathological events leading to cell death. A dramatic increase in the intracellular concentration of calcium during neuronal ischaemia plays a particularly important role in the neurotoxic cascade resulting in stroke-related acute neurodegeneration. One approach to provide therapeutic benefit following ischaemic stroke has been to target neuronal voltage-gated cation channels, and particularly blockers of calcium and sodium channels, for post-stroke neuroprotection. A recent development has been the identification of openers of large-conductance calcium- and voltage-dependent potassium channels (maxi-K channels), which hyperpolarize ischaemic neurons, reduce excitatory amino acid release, and reduce ischaemic calcium entry. Thus far, targeting these voltage-gated cation channels has not yet yielded significant clinical benefit. The reasons for this may involve the lack of small-molecule blockers of many neuronal members of these ion channel families and the design of preclinical stroke models, which do not adequately emulate the clinical condition and hence lack sufficient rigor to predict efficacy in human stroke. Furthermore, there may be a need for changes in clinical trial designs to optimise the selection of patients and the course of drug treatment to protect neurons during all periods of potential neuronal sensitivity to neuro-protectants. Clinical trials may also have to be powered to detect small effect sizes or be focused on patients more likely to respond to a particular therapy. The development of future solutions to these problems should result in an improved probability of success for the treatment of stroke.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Biology, Scion Pharmaceuticals, Inc., 200 Boston Avenue, Suite 3600, Medford, MA 02155, USA.
| | | |
Collapse
|
94
|
Abstract
Summary During hypoxia, ATP was released from type I (glomus) cells in the carotid bodies. We studied the action of ATP on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of type I cells dissociated from rat carotid bodies using a Ca(2+) imaging technique. ATP did not affect the resting [Ca(2+)](i) but strongly suppressed the hypoxia-induced [Ca(2+)](i) elevations in type I cells. The order of purinoreceptor agonist potency in inhibiting the hypoxia response was 2-methylthioATP > ATP > ADP >> alpha, beta-methylene ATP > UTP, implicating the involvement of P2Y(1) receptors. Simultaneous measurements of membrane potential and [Ca(2+)](i) show that ATP inhibited the hypoxia-induced Ca(2+) signal by reversing the hypoxia-triggered depolarization. However, ATP did not oppose the hypoxia-mediated inhibition of the oxygen-sensitive TASK-like K(+) background current. Neither the inhibition of the large-conductance Ca(2+)-activated K(+) (maxi-K) channels nor the removal of extracellular Na(+) could affect the inhibitory action of ATP. Under normoxic condition, ATP caused hyperpolarization and increase in cell input resistance. These results suggest that the inhibitory action of ATP is mediated via the closure of background conductance(s) other than the TASK-like K(+), maxi-K or Na(+) channels. In summary, ATP exerts strong negative feedback regulation on hypoxia signaling in rat carotid type I cells.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Pharmacology and Center for Neurosciences, 9-70 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
95
|
Huang CW, Huang CC, Huang MH, Wu SN, Hsieh YJ. Sodium cyanate-induced opening of calcium-activated potassium currents in hippocampal neuron-derived H19-7 cells. Neurosci Lett 2005; 377:110-4. [PMID: 15740847 DOI: 10.1016/j.neulet.2004.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/18/2022]
Abstract
We investigated the chemical toxic agent sodium cyanate (NaOCN) on the large conductance calcium-activated potassium channels (BK(Ca)) on hippocampal neuron-derived H19-7 cells. The whole-cell and cell-attach configuration of patch-clamp technique were applied to investigate the BK(Ca) currents in H19-7 cells in the presence of NaOCN (0.3 mM). NaOCN activated BK(Ca) channels on H19-7 cells. The single-channel conductance of BK(Ca) channels was 138+/-7pS. The presence of NaOCN (0.3 mM) caused an obvious increase in open probability of BK(Ca) channels. NaOCN did not exert effect on the slope of the activation curve and stimulated the activity of BK(Ca) channels in a voltage-dependent fashion in H19-7 cells. The presence of paxilline or EGTA significantly reduced the BK(Ca) amplitude, in comparison with the presence of NaOCN. These findings suggest that during NaOCN exposure, the activation of BK(Ca) channels in neurons could be one of the ionic mechanisms underlying the decreased neuronal excitability and neurological disorders.
Collapse
Affiliation(s)
- Chin-Wei Huang
- Department of Neurology, National Cheng-Kung University Medical Center, No. 1, University Road, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
96
|
Hool LC. Acute hypoxia differentially regulates K+ channels. Implications with respect to cardiac arrhythmia. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:369-76. [PMID: 15726346 DOI: 10.1007/s00249-005-0462-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 01/03/2005] [Accepted: 01/14/2005] [Indexed: 11/26/2022]
Abstract
The first ion channels demonstrated to be sensitive to changes in oxygen tension were K(+) channels in glomus cells of the carotid body. Since then a number of hypoxia-sensitive ion channels have been identified. However, not all K(+) channels respond to hypoxia alike. This has raised some debate about how cells detect changes in oxygen tension. Because ion channels respond rapidly to hypoxia it has been proposed that the channel is itself an oxygen sensor. However, channel function can also be modified by thiol reducing and oxidizing agents, implicating reactive oxygen species as signals in hypoxic events. Cardiac ion channels can also be modified by hypoxia and redox agents. The rapid and slow components of the delayed rectifier K(+) channel are differentially regulated by hypoxia and beta-adrenergic receptor stimulation. Mutations in the genes that encode the subunits for the channel are associated with Long QT syndrome and sudden cardiac death. The implications with respect to effects of hypoxia on the channel and triggering of cardiac arrhythmia will be discussed.
Collapse
Affiliation(s)
- Livia C Hool
- School of Biomedical and Chemical Sciences Australia and The Western Australian Institute of Medical Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
97
|
Affiliation(s)
- Toshinori Hoshi
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
98
|
Williams SEJ, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 2004; 306:2093-7. [PMID: 15528406 DOI: 10.1126/science.1105010] [Citation(s) in RCA: 346] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modulation of calcium-sensitive potassium (BK) channels by oxygen is important in several mammalian tissues, and in the carotid body it is crucial to respiratory control. However, the identity of the oxygen sensor remains unknown. We demonstrate that hemoxygenase-2 (HO-2) is part of the BK channel complex and enhances channel activity in normoxia. Knockdown of HO-2 expression reduced channel activity, and carbon monoxide, a product of HO-2 activity, rescued this loss of function. Inhibition of BK channels by hypoxia was dependent on HO-2 expression and was augmented by HO-2 stimulation. Furthermore, carotid body cells demonstrated HO-2-dependent hypoxic BK channel inhibition, which indicates that HO-2 is an oxygen sensor that controls channel activity during oxygen deprivation.
Collapse
|
99
|
López-Barneo J, del Toro R, Levitsky KL, Chiara MD, Ortega-Sáenz P. Regulation of oxygen sensing by ion channels. J Appl Physiol (1985) 2004; 96:1187-95; discussion 1170-2. [PMID: 14766769 DOI: 10.1152/japplphysiol.00929.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
O(2) sensing is of critical importance for cell survival and adaptation of living organisms to changing environments or physiological conditions. O(2)-sensitive ion channels are major effectors of the cellular responses to hypoxia. These channels are preferentially found in excitable neurosecretory cells (glomus cells of the carotid body, cells in the neuroepithelial bodies of the lung, and neonatal adrenal chromaffin cells), which mediate fast cardiorespiratory adjustments to hypoxia. O(2)-sensitive channels are also expressed in the pulmonary and systemic arterial smooth muscle cells where they participate in the vasomotor responses to low O(2) tension (particularly in hypoxic pulmonary vasoconstriction). The mechanisms underlying O(2) sensing and how the O(2) sensors interact with the ion channels remain unknown. Recent advances in the field give different support to the various current hypotheses. Besides the participation of ion channels in acute O(2) sensing, they also contribute to the gene program developed under chronic hypoxia. Gene expression of T-type calcium channels is upregulated by hypoxia through the same hypoxia-inducible factor-dependent signaling pathway utilized by the classical O(2)-regulated genes. Alteration of acute or chronic O(2) sensing by ion channels could participate in the pathophysiology of human diseases, such as sudden infant death syndrome or primary pulmonary hypertension.
Collapse
Affiliation(s)
- José López-Barneo
- Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.
| | | | | | | | | |
Collapse
|
100
|
Peers C, Kemp PJ. Ion channel regulation by chronic hypoxia in models of acute oxygen sensing. Cell Calcium 2004; 36:341-8. [PMID: 15261490 DOI: 10.1016/j.ceca.2004.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Several potentially life-threatening cardiovascular and respiratory disorders result in prolonged deprivation of oxygen, which in turn results in significant cellular adaptation, or remodelling. An important component of this functional adaptation arises as a direct consequence of altered ion channel expression by chronic hypoxia. In this review, we discuss current understanding of this hypoxic remodelling process, with particular reference to regulation of L-type Ca2+ channels and high-conductance, Ca2+-sensitive K+ (BK) channels. In systems where this remodelling occurs, changes in functional expression of these particular channels evokes marked alteration in, or responses to, Ca2+-dependent events. Evidence to date indicates that channel expression can be modulated at the transcriptional level but, additionally, that crucial post-transcriptional events are also regulated by chronic hypoxia. Importantly, such remodelling is, in some cases, strongly associated with production of amyloid peptides of Alzheimer's disease, implicating chronic hypoxia as a causative factor in the progression of specific pathology. Moreover, subtle changes in functional expression of BK channels implicates chronic hypoxia as an important regulator of cell excitability.
Collapse
Affiliation(s)
- Chris Peers
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|