51
|
Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADDM, Machado CA, Poli-de-Figueiredo CE, Amodeo C, Mion Júnior D, Barbosa ECD, Nobre F, Guimarães ICB, Vilela-Martin JF, Yugar-Toledo JC, Magalhães MEC, Neves MFT, Jardim PCBV, Miranda RD, Póvoa RMDS, Fuchs SC, Alessi A, Lucena AJGD, Avezum A, Sousa ALL, Pio-Abreu A, Sposito AC, Pierin AMG, Paiva AMGD, Spinelli ACDS, Nogueira ADR, Dinamarco N, Eibel B, Forjaz CLDM, Zanini CRDO, Souza CBD, Souza DDSMD, Nilson EAF, Costa EFDA, Freitas EVD, Duarte EDR, Muxfeldt ES, Lima Júnior E, Campana EMG, Cesarino EJ, Marques F, Argenta F, Consolim-Colombo FM, Baptista FS, Almeida FAD, Borelli FADO, Fuchs FD, Plavnik FL, Salles GF, Feitosa GS, Silva GVD, Guerra GM, Moreno Júnior H, Finimundi HC, Back IDC, Oliveira Filho JBD, Gemelli JR, Mill JG, Ribeiro JM, Lotaif LAD, Costa LSD, Magalhães LBNC, Drager LF, Martin LC, Scala LCN, Almeida MQ, Gowdak MMG, Klein MRST, Malachias MVB, Kuschnir MCC, Pinheiro ME, Borba MHED, Moreira Filho O, Passarelli Júnior O, Coelho OR, Vitorino PVDO, Ribeiro Junior RM, Esporcatte R, Franco R, Pedrosa R, Mulinari RA, Paula RBD, Okawa RTP, Rosa RF, Amaral SLD, Ferreira-Filho SR, Kaiser SE, Jardim TDSV, Guimarães V, Koch VH, Oigman W, Nadruz W. Brazilian Guidelines of Hypertension - 2020. Arq Bras Cardiol 2021; 116:516-658. [PMID: 33909761 PMCID: PMC9949730 DOI: 10.36660/abc.20201238] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Weimar Kunz Sebba Barroso
- Universidade Federal de Goiás , Goiânia , GO - Brasil
- Liga de Hipertensão Arterial , Goiânia , GO - Brasil
| | - Cibele Isaac Saad Rodrigues
- Pontifícia Universidade Católica de São Paulo , Faculdade de Ciências Médicas e da Saúde , Sorocaba , SP - Brasil
| | | | | | - Andréa Araujo Brandão
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
| | | | | | | | - Celso Amodeo
- Universidade Federal de São Paulo (UNIFESP), São Paulo , SP - Brasil
| | - Décio Mion Júnior
- Hospital das Clínicas da Faculdade de Medicina da USP , São Paulo , SP - Brasil
| | | | - Fernando Nobre
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo , Ribeirão Preto , SP - Brasil
- Hospital São Francisco , Ribeirão Preto , SP - Brasil
| | | | | | | | - Maria Eliane Campos Magalhães
- Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro , RJ - Brasil
| | - Mário Fritsch Toros Neves
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
| | | | | | | | - Sandra C Fuchs
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre , RS - Brasil
| | | | | | - Alvaro Avezum
- Hospital Alemão Oswaldo Cruz , São Paulo , SP - Brasil
| | - Ana Luiza Lima Sousa
- Universidade Federal de Goiás , Goiânia , GO - Brasil
- Liga de Hipertensão Arterial , Goiânia , GO - Brasil
| | | | | | | | | | | | | | | | - Bruna Eibel
- Instituto de Cardiologia , Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre , RS - Brasil
- Centro Universitário da Serra Gaúcha (FSG), Caxias do Sul , RS - Brasil
| | | | | | | | | | | | | | - Elizabete Viana de Freitas
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
- Departamento de Cardiogeriatria da Sociedade Brazileira de Cardiologia , Rio de Janeiro , RJ - Brasil
| | | | | | - Emilton Lima Júnior
- Hospital de Clínicas da Universidade Federal do Paraná (HC/UFPR), Curitiba , PR - Brasil
| | - Erika Maria Gonçalves Campana
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
- Universidade Iguaçu (UNIG), Rio de Janeiro , RJ - Brasil
| | - Evandro José Cesarino
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo , Ribeirão Preto , SP - Brasil
- Associação Ribeirãopretana de Ensino, Pesquisa e Assistência ao Hipertenso (AREPAH), Ribeirão Preto , SP - Brasil
| | - Fabiana Marques
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - Fernando Antonio de Almeida
- Pontifícia Universidade Católica de São Paulo , Faculdade de Ciências Médicas e da Saúde , Sorocaba , SP - Brasil
| | | | | | - Frida Liane Plavnik
- Instituto do Coração (InCor), São Paulo , SP - Brasil
- Hospital Alemão Oswaldo Cruz , São Paulo , SP - Brasil
| | | | | | | | - Grazia Maria Guerra
- Instituto do Coração (InCor), São Paulo , SP - Brasil
- Universidade Santo Amaro (UNISA), São Paulo , SP - Brasil
| | | | | | | | | | | | - José Geraldo Mill
- Centro de Ciências da Saúde , Universidade Federal do Espírito Santo , Vitória , ES - Brasil
| | - José Marcio Ribeiro
- Faculdade Ciências Médicas de Minas Gerais , Belo Horizonte , MG - Brasil
- Hospital Felício Rocho , Belo Horizonte , MG - Brasil
| | - Leda A Daud Lotaif
- Instituto Dante Pazzanese de Cardiologia , São Paulo , SP - Brasil
- Hospital do Coração (HCor), São Paulo , SP - Brasil
| | | | | | | | | | | | - Madson Q Almeida
- Hospital das Clínicas da Faculdade de Medicina da USP , São Paulo , SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | | | - Roberto Esporcatte
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
- Hospital Pró-Cradíaco , Rio de Janeiro , RJ - Brasil
| | - Roberto Franco
- Universidade Estadual Paulista (UNESP), Bauru , SP - Brasil
| | - Rodrigo Pedrosa
- Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife , PE - Brasil
| | | | | | | | | | | | | | - Sergio Emanuel Kaiser
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
| | | | | | - Vera H Koch
- Universidade de São Paulo (USP), São Paulo , SP - Brasil
| | - Wille Oigman
- Faculdade de Ciências Médicas da Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro , RJ - Brasil
| | - Wilson Nadruz
- Universidade Estadual de Campinas (UNICAMP), Campinas , SP - Brasil
| |
Collapse
|
52
|
Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, Wakker V, Creemers EE, de Laat W, Boukens BJ, Christoffels VM. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ Res 2021; 128:115-129. [PMID: 33107387 DOI: 10.1161/circresaha.120.317045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Binding Sites
- Binding, Competitive
- CRISPR-Cas Systems
- Cell Line
- Disease Models, Animal
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice, Knockout
- Multigene Family
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Ingeborg B Hooijkaas
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
53
|
Li Z, Liu J, Shen J, Chen Y, He L, Li M, Xie X. Sex-specific cardiac and vascular responses to hypertension in Chinese populations without overt cardiovascular diseases. Postgrad Med 2020; 133:181-187. [PMID: 33032484 DOI: 10.1080/00325481.2020.1835037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of current study was to evaluate sex-specific cardiac and vascular responses to hypertension in Chinese populations without overt cardiovascular disease. METHODS This was a cross-sectional study and participants were enrolled in outpatient clinic between January 2017 and December 2019. Transthoracic echocardiographic measurements were performed to evaluate cardiac and vascular structure and function. RESULTS Among 486 participants, women account for 36.2% (n = 176). Compared to men, women were younger, had shorter duration of hypertension, and more likely to be abdominal obesity. Mean systolic and diastolic blood pressure (SBP and DBP) were similar, but women had higher mean pulse pressure (PP) than men. After adjustment for covariates, women had higher E/e' ratio and arterial elastance (Ea). The proportion of patients with concentric remodeling was higher in women (14.7% vs 9.5%). Increased SBP was associated with relative wall thickness (RWT), stroke volume (SV) index, E/e' ratio and Ea in both women and men, and the magnitude of the association between SBP and E/e' ratio was greater in women than in men (Pinteraction = 0.04). Increased DBP was associated with RWT and Ea in both women and men with similar magnitude. Increased PP was associated with RWT, E/e' ratio and Ea in both women and men, and the magnitude of the association between PP and Ea was greater in women than in men (Pinteraction = 0.03). CONCLUSION In conclusion, the current study indicates cardiac and vascular responses to hypertension are greater in women than in men, manifesting as an increased estimated LV filling pressure and arterial elastance in women.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Jingguang Liu
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Jian Shen
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Yumin Chen
- Department of Echocardiography, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Lizhen He
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Menghao Li
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Xiongwei Xie
- Department of Cardiology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| |
Collapse
|
54
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
55
|
Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H. Effects of Isorhamnetin in Human Amniotic Epithelial Stem Cells in vitro and Its Cardioprotective Effects in vivo. Front Cell Dev Biol 2020; 8:578197. [PMID: 33117805 PMCID: PMC7552739 DOI: 10.3389/fcell.2020.578197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy and fibrosis are major pathophysiologic disorders that lead to serious cardiovascular diseases (CVDs), such as heart failure and arrhythmia. It is well known that transforming growth factor β (TGFβ) signaling pathways play a major role in the proliferation of cardiac hypertrophy and fibrosis, which is mainly stimulated by angiotensin II (AgII). This study aimed to investigate the cardioprotective potential of isorhamnetin (ISO) in human amniotic epithelial stem cells (hAESCs) through global gene expression analysis and to confirm its beneficial effects on cardiac hypertrophy and fibrosis in the AgII-induced in vivo model. In vitro, biological processes including TGFβ, collagen-related functions, and inflammatory processes were significantly suppressed in ISO pretreated hAESCs. In vivo, continuous AgII infusion using an osmotic pump induced significant pathological fibrosis and myocardial hypertrophy, which were remarkably suppressed by ISO pretreatment. ISO was found to reverse the enhanced TGFβ and Collagen type I alpha 1 mRNA expression induced by AgII exposure, which causes cardiovascular remodeling in ventricular tissue. These findings indicate that ISO could be a potential agent against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Kazuhiro Aonuma
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
56
|
Malachias MVB, Jhund PS, Claggett BL, Wijkman MO, Bentley‐Lewis R, Chaturvedi N, Desai AS, Haffner SM, Parving H, Prescott MF, Solomon SD, De Zeeuw D, McMurray JJV, Pfeffer MA. NT-proBNP by Itself Predicts Death and Cardiovascular Events in High-Risk Patients With Type 2 Diabetes Mellitus. J Am Heart Assoc 2020; 9:e017462. [PMID: 32964800 PMCID: PMC7792415 DOI: 10.1161/jaha.120.017462] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background NT-proBNP (N-terminal pro-B-type natriuretic peptide) improves the discriminatory ability of risk-prediction models in type 2 diabetes mellitus (T2DM) but is not yet used in clinical practice. We assessed the discriminatory strength of NT-proBNP by itself for death and cardiovascular events in high-risk patients with T2DM. Methods and Results Cox proportional hazards were used to create a base model formed by 20 variables. The discriminatory ability of the base model was compared with that of NT-proBNP alone and with NT-proBNP added, using C-statistics. We studied 5509 patients (with complete data) of 8561 patients with T2DM and cardiovascular and/or chronic kidney disease who were enrolled in the ALTITUDE (Aliskiren in Type 2 Diabetes Using Cardiorenal Endpoints) trial. During a median 2.6-year follow-up period, 469 patients died and 768 had a cardiovascular composite outcome (cardiovascular death, resuscitated cardiac arrest, nonfatal myocardial infarction, stroke, or heart failure hospitalization). NT-proBNP alone was as discriminatory as the base model for predicting death (C-statistic, 0.745 versus 0.744, P=0.95) and the cardiovascular composite outcome (C-statistic, 0.723 versus 0.731, P=0.37). When NT-proBNP was added, it increased the predictive ability of the base model for death (C-statistic, 0.779 versus 0.744, P<0.001) and for cardiovascular composite outcome (C-statistic, 0.763 versus 0.731, P<0.001). Conclusions In high-risk patients with T2DM, NT-proBNP by itself demonstrated discriminatory ability similar to a multivariable model in predicting both death and cardiovascular events and should be considered for risk stratification. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00549757.
Collapse
Affiliation(s)
- Marcus V. B. Malachias
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Faculdade Ciências Médicas de Minas GeraisFundação Educacional Lucas MachadoBelo HorizonteMinas GeraisBrazil
| | - Pardeep S. Jhund
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUnited Kingdom
| | - Brian L. Claggett
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Magnus O. Wijkman
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
- Department of Internal Medicine and Department of Health, Medicine and Caring SciencesLinköping UniversityNorrköpingSweden
| | | | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCLInstitute for Cardiovascular SciencesUniversity College LondonLondonUnited Kingdom
| | - Akshay S. Desai
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Steven M. Haffner
- Department of Medicine and Clinical EpidemiologyUniversity of Texas Health Science CenterSan AntonioTX
| | - Hans‐Henrik Parving
- Department of Medical EndocrinologyRigshospitaletUniversity of CopenhagenDenmark
| | | | - Scott D. Solomon
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| | - Dick De Zeeuw
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - John J. V. McMurray
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUnited Kingdom
| | - Marc A. Pfeffer
- Cardiovascular DivisionBrigham & Women’s HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|
57
|
Placental mitochondrial DNA mutations and copy numbers in intrauterine growth restricted (IUGR) pregnancy. Mitochondrion 2020; 55:85-94. [PMID: 32861875 DOI: 10.1016/j.mito.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Intrauterine Growth Restriction (IUGR) is a common and significant complication that arises during pregnancy wherein the fetus fails to attain its full growth potential. Mitochondria being one of the primary sources of energy, plays an important role in placentation and fetal development. In IUGR pregnancy, increased oxidative stress due to inadequate oxygen and nutrient supply could possibly alter mitochondrial functions and homeostasis. In this study, we evaluated the biochemical and molecular changes in mitochondria as biosignature for early and better characterization of IUGR pregnancies. We identified significant increase in mtDNA copy number in both IUGR (p = 0.0001) and Small for Gestational Age (SGA) but healthy (p = 0.0005) placental samples when compared to control. Whole mitochondrial genome sequencing identified novel mutations in both coding and non-coding regions of mtDNA in multiple IUGR placental samples. Sirtuin-3 (Sirt3) protein expression was significantly downregulated (p = 0.027) in IUGR placenta but there was no significant difference in Nrf1 expression in IUGR when compared to control group. Our study provides an evidence for altered mitochondrial homeostasis and paves a way towards interrogating mitochondrial abnormalities in IUGR pregnancies.
Collapse
|
58
|
Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, Martineau S, Nadeau V, Gagnon K, Mazoyer F, Perron J, Potus F, Lin JH, Zafar H, Kiely DG, Lawrie A, Archer SL, Paulin R, Provencher S, Boucherat O, Bonnet S. Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation 2020; 142:1464-1484. [PMID: 32698630 DOI: 10.1161/circulationaha.120.047626] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Right ventricular (RV) function is the major determinant for both functional capacity and survival in patients with pulmonary arterial hypertension (PAH). Despite the recognized clinical importance of preserving RV function, the subcellular mechanisms that govern the transition from a compensated to a decompensated state remain poorly understood and as a consequence there are no clinically established treatments for RV failure and a paucity of clinically useful biomarkers. Accumulating evidence indicates that long noncoding RNAs are powerful regulators of cardiac development and disease. Nonetheless, their implication in adverse RV remodeling in PAH is unknown. METHODS Expression of the long noncoding RNA H19 was assessed by quantitative PCR in plasma and RV from patients categorized as control RV, compensated RV or decompensated RV based on clinical history and cardiac index. The impact of H19 suppression using GapmeR was explored in 2 rat models mimicking RV failure, namely the monocrotaline and pulmonary artery banding. Echocardiographic, hemodynamic, histological, and biochemical analyses were conducted. In vitro gain- and loss-of-function experiments were performed in rat cardiomyocytes. RESULTS We demonstrated that H19 is upregulated in decompensated RV from PAH patients and correlates with RV hypertrophy and fibrosis. Similar findings were observed in monocrotaline and pulmonary artery banding rats. We found that silencing H19 limits pathological RV hypertrophy, fibrosis and capillary rarefaction, thus preserving RV function in monocrotaline and pulmonary artery banding rats without affecting pulmonary vascular remodeling. This cardioprotective effect was accompanied by E2F transcription factor 1-mediated upregulation of enhancer of zeste homolog 2. In vitro, knockdown of H19 suppressed cardiomyocyte hypertrophy induced by phenylephrine, while its overexpression has the opposite effect. Finally, we demonstrated that circulating H19 levels in plasma discriminate PAH patients from controls, correlate with RV function and predict long-term survival in 2 independent idiopathic PAH cohorts. Moreover, H19 levels delineate subgroups of patients with differentiated prognosis when combined with the NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels or the risk score proposed by both REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) and the 2015 European Pulmonary Hypertension Guidelines. CONCLUSIONS Our findings identify H19 as a new therapeutic target to impede the development of maladaptive RV remodeling and a promising biomarker of PAH severity and prognosis.
Collapse
Affiliation(s)
- Junichi Omura
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Karima Habbout
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (W-H.W.)
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Kassandra Gagnon
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Florence Mazoyer
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Jean Perron
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.)
| | - Francois Potus
- Department of Medicine, Queen's University, Kingston, ON, Canada (F.P., S.L.A.)
| | - Jian-Hui Lin
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.)
| | - Hamza Zafar
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.).,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, UK (H.Z., D.G.K.)
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.).,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, UK (H.Z., D.G.K.)
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, UK (J-H.L., H.Z., D.G.K., A.L.)
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada (F.P., S.L.A.)
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Center de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada (J.O., K.H., T.S., W-H.W., S.B-B., E.T., S.M., V.N., K.G., F.M., J.P., R.P., S.P., O.B., S.B.).,Department of Medicine, Université Laval, Québec, QC, Canada (R.P., S.P., O.B., S.B.)
| |
Collapse
|
59
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
60
|
Luhong Formula Has a Cardioprotective Effect on Left Ventricular Remodeling in Pressure-Overloaded Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4095967. [PMID: 32565857 PMCID: PMC7277070 DOI: 10.1155/2020/4095967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Background Luhong formula (LHF)-a traditional Chinese medicine containing Cervus nippon Temminck, Carthamus tinctorius L., Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Codonopsis pilosula (Franch.) Nannf., Cinnamomum cassia Presl, and Lepidium apetalum Willd-is used in the treatment of heart failure, but little is known about its mechanism of action. We have investigated the effects of LHF on antifibrosis. Methods Forty-eight SD male rats were randomly assigned into six groups (n = 8), model group, sham-operation group, perindopril group (0.036 mg/ml), LHF high doses (LHF-H, 1.44 g/mL), LHF middle doses (LHF-M, 0.72 g/mL), and LHF low doses (LHF-L, 0.36 g/mL). Except the sham-operation group, the other groups were received an abdominal aorta constriction to establish a model of myocardial hypertrophy. The HW and LVW were measured to calculate the LVW/BW and HW/BW. ELISA was used to detect the serum concentration of BNP. The expressions of eNOS, TGF-β1, caspase-3, VEGF, and VEGFR2 in heart tissues were assessed by western blot analysis. mRNA expressions of eNOS, Col1a1, Col3a1, TGF-β1, VEGF, and VEGFR2 in heart tissues were measured by RT-PCR. The specimens were stained with hematoxylin-eosin (HE) and picrosirius red staining for observing the morphological characteristics and collagen fibers I and III of the myocardium under a light microscope. Results LHF significantly lowered the rat's HW/BW and LVM/BW, and the level of BNP in the LHF-treated group compared with the model group. Histopathological and pathomorphological changes of collagen fibers I and III showed that LHF inhibited myocardial fibrosis in heart failure rats. Treatment with LHF upregulated eNOS expression in heart tissue and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression. Conclusion LHF can improve left ventricular remodeling in a pressure-overloaded heart failure rat model; this cardiac protective ability may be due to cardiac fibrosis and attenuated apoptosis. Upregulated eNOS expression and downregulated Col1a1, Col3a1, TGF-β1, caspase-3, VEGF, and VEGFR2 expression may play a role in the observed LHF cardioprotective effect.
Collapse
|
61
|
Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|
62
|
Sorrentino A, Michel T. Redox à la carte: Novel chemogenetic models of heart failure. Br J Pharmacol 2020; 177:3162-3167. [PMID: 32368791 DOI: 10.1111/bph.15093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
Many current animal models of heart failure are hampered by intrinsic methodological complexities, while other models yield only a subtle cardiac phenotype even after prolonged in vivo treatments. A new 'chemogenetic' animal model of heart failure reproduces a critical characteristic shared by many disease states that lead to heart failure in humans: an increase in redox stress in the heart. This 'chemogenetic' approach exploits a recombinant yeast enzyme that can be dynamically and specifically activated in vivo to generate the ROS hydrogen peroxide (H2 O2 ) in cardiac myocytes. Redox stress can be rapidly, selectively and reversibly manipulated by chemogenetic generation of ROS in cardiac myocytes, yielding a new model of dilated cardiomyopathy. Treatment of animals with the angiotensin receptor antagonist valsartan promotes recovery of ventricular function and resolution of adverse cardiac remodelling. This mini-review discusses in vivo chemogenetic approaches to manipulate and analyse oxidative stress in the heart.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Sullivan RD, Houng AK, Gladysheva IP, Fan THM, Tripathi R, Reed GL, Wang D. Corin Overexpression Reduces Myocardial Infarct Size and Modulates Cardiomyocyte Apoptotic Cell Death. Int J Mol Sci 2020; 21:E3456. [PMID: 32422879 PMCID: PMC7278931 DOI: 10.3390/ijms21103456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Altered expression of corin, a cardiac transmembrane serine protease, has been linked to dilated and ischemic cardiomyopathy. However, the potential role of corin in myocardial infarction (MI) is lacking. This study examined the outcomes of MI in wild-type vs. cardiac-specific overexpressed corin transgenic (Corin-Tg) mice during pre-MI, early phase (3, 24, 72 h), and late phase (1, 4 weeks) post-MI. Corin overexpression significantly reduced cardiac cell apoptosis (p < 0.001), infarct size (p < 0.001), and inhibited cleavage of procaspases 3, 9, and 8 (p < 0.05 to p < 0.01), as well as altered the expression of Bcl2 family proteins, Bcl-xl, Bcl2 and Bak (p < 0.05 to p < 0.001) at 24 h post-MI. Overexpressed cardiac corin also significantly modulated heart function (ejection fraction, p < 0.0001), lung congestion (lung weight to body weight ratio, p < 0.0001), and systemic extracellular water (edema, p < 0.05) during late phase post-MI. Overall, cardiac corin overexpression significantly reduced apoptosis, infarct size, and modulated cardiac expression of key members of the apoptotic pathway in early phase post-MI; and led to significant improvement in heart function and reduced congestion in late phase post-MI. These findings suggest that corin may be a useful target to protect the heart from ischemic injury and subsequent post-infarction remodeling.
Collapse
Affiliation(s)
- Ryan D. Sullivan
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (I.P.G.); (R.T.)
| | - Aiilyan K. Houng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.H.); (T.-H.M.F.)
| | - Inna P. Gladysheva
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (I.P.G.); (R.T.)
| | - Tai-Hwang M. Fan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (A.K.H.); (T.-H.M.F.)
| | - Ranjana Tripathi
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (I.P.G.); (R.T.)
| | - Guy L. Reed
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (I.P.G.); (R.T.)
| | - Dong Wang
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (R.D.S.); (I.P.G.); (R.T.)
| |
Collapse
|
64
|
Hoffman M, Kyriazis ID, Dimitriou A, Mishra SK, Koch WJ, Drosatos K. B-type natriuretic peptide is upregulated by c-Jun N-terminal kinase and contributes to septic hypotension. JCI Insight 2020; 5:133675. [PMID: 32324169 PMCID: PMC7205432 DOI: 10.1172/jci.insight.133675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
B-type natriuretic peptide (BNP) is secreted by ventricular cardiomyocytes in response to various types of cardiac stress and has been used as a heart failure marker. In septic patients, increased BNP suggests poor prognosis; however, no causal link has been established. Among various effects, BNP decreases systemic vascular resistance and increases natriuresis that leads to lower blood pressure. We previously observed that JNK inhibition corrects cardiac dysfunction and suppresses cardiac BNP mRNA in endotoxemia. In this study, we investigated the transcriptional mechanism that regulates BNP expression and the involvement of plasma BNP in causing septic hypotension. Our in vitro and in vivo findings confirmed that activation of JNK signaling increases BNP expression in sepsis via direct binding of c-Jun in activating protein–1 (AP-1) regulatory elements of the Nppb promoter. Accordingly, genetic ablation of BNP, as well as treatment with a potentially novel neutralizing anti-BNP monoclonal antibody (19B3) or suppression of its expression via administration of JNK inhibitor SP600125 improved cardiac output, stabilized blood pressure, and improved survival in mice with polymicrobial sepsis. Therefore, inhibition of JNK signaling or BNP in sepsis appears to stabilize blood pressure and improve survival.
Collapse
Affiliation(s)
- Matthew Hoffman
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexandra Dimitriou
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
65
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
66
|
Burtenshaw D, Cahill PA. Natriuretic Peptides and the Regulation of Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2019; 40:7-10. [PMID: 31869266 DOI: 10.1161/atvbaha.119.313566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Denise Burtenshaw
- From the Vascular Biology and Therapeutics Laboratories, School of Biotechnology, Faculty of Science and Health, Dublin City University, Ireland
| | - Paul A Cahill
- From the Vascular Biology and Therapeutics Laboratories, School of Biotechnology, Faculty of Science and Health, Dublin City University, Ireland
| |
Collapse
|
67
|
Che C, Dudick K, Shoemaker R. Cardiac hypertrophy with obesity is augmented after pregnancy in C57BL/6 mice. Biol Sex Differ 2019; 10:59. [PMID: 31842996 PMCID: PMC6916003 DOI: 10.1186/s13293-019-0269-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Over a third of reproductive-age women in the USA are obese, and the prevalence of cardiovascular disease (CVD) is rising in premenopausal women. Cardiac hypertrophy is an independent predictor of CVD. In contrast to pregnancy, where transiently increased left ventricular (LV) mass is not associated with cardiac damage, obesity-mediated cardiac hypertrophy is pathological. There is a paucity of data describing the effect of obesity during pregnancy on maternal cardiovascular health. The purpose of this study was to determine the long-term effect of obesity during pregnancy on cardiac function and structure in mice. METHODS Female C57BL/6 J mice were fed a high-fat (HF) or a low-fat (LF) diet for 20 weeks. After 4 weeks, LF- and HF-fed female mice were either crossed with males to become pregnant or remained non-pregnant controls. Following delivery, pups were euthanized, and females maintained on respective diets. After 20 weeks of diet feeding, cardiac function was quantified by echocardiography, and plasma leptin and adiponectin concentrations quantified in LF- and HF-fed postpartum and nulliparous females. mRNA abundance of genes regulating cardiac hypertrophy and remodeling was quantified from left ventricles using the NanoString nCounter Analysis System. Cardiac fibrosis was assessed from picrosirius red staining of left ventricles. RESULTS HF-fed postpartum mice had markedly greater weight gain and fat mass expansion with obesity, associated with significantly increased LV mass, cardiac output, and stroke volume compared with HF-fed nulliparous mice. Plasma leptin, but not adiponectin, concentrations were correlated with LV mass in HF-fed females. HF feeding increased LV posterior wall thickness; however, LV chamber diameter was only increased in HF-fed postpartum females. Despite the marked increase in LV mass in HF-fed postpartum mice, mRNA abundance of genes regulating fibrosis and interstitial collagen content was similar between HF-fed nulliparous and postpartum mice. In contrast, only HF-fed postpartum mice exhibited altered expression of genes regulating the extracellular matrix. CONCLUSIONS These results suggest that the combined effects of pregnancy and obesity augment cardiac hypertrophy and promote remodeling. The rising prevalence of CVD in premenopausal women may be attributed to an increased prevalence of women entering pregnancy with an overweight or obese BMI.
Collapse
Affiliation(s)
- Chen Che
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA
| | - Kayla Dudick
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA
| | - Robin Shoemaker
- University of Kentucky, Department of Dietetics and Human Nutrition, 203 Funkhouser Bldg, Lexington, KY, 40506-0054, USA.
| |
Collapse
|
68
|
Xue M, Shi Y, Pang A, Men L, Hu Y, Zhou P, Long G, Tian X, Wang R, Zhao Y, Liao X, Shen Y, Cui Y. Corin plays a protective role via upregulating MAPK and downregulating eNOS in diabetic nephropathy endothelial dysfunction. FASEB J 2019; 34:95-106. [PMID: 31914697 DOI: 10.1096/fj.201900531rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients, but its pathogenesis is unclear. We aimed to study the role of the pro-ANP convertase Corin in the pathogenesis of DN. Corin and ANP expression in DN rat kidneys and high-glucose-treated HK-2 cells was analyzed by real-time PCR, western blotting, and immunohistochemical staining. The effect of Corin-siRNA or ANP-siRNA HK-2 cells on EA.hy926 cell migration was determined by scratch-wound healing assay. The expression of mitogen-activated protein kinase (MAPK) and endothelial NO synthase (eNOS) in EA.hy926 cells treated with conditioned medium from Corin-siRNA- or ANP-siRNA-transfected HK-2 cells was determined by western blotting. We found a significant reduction in Corin and ANP expression in DN rat kidneys. These results were recapitulated in HK-2 cells treated with high glucose. EA.hy926 cells treated with conditioned medium from Corin-deficient HK-2 cells had inhibited migration, increased MAPK activity, and decreased eNOS activity. Similar effects were observed with ANP-siRNA transfection. Finally, adding ANP to the Corin-deficient HK-2 conditioned medium rescued the above defects, indicating that Corin mediates its effects through ANP. In conclusion, Corin plays a renoprotective role through pro-ANP processing, and defects in Corin cause endothelial dysfunction through MAPK and eNOS signaling in DN.
Collapse
Affiliation(s)
- Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Shi
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Men
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Rong Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|
69
|
Cao Z, Zhao M, Xu C, Zhang T, Jia Y, Wang T, Zhu B. Evaluation of Agonal Cardiac Function for Sudden Cardiac Death in Forensic Medicine with Postmortem Brain Natriuretic Peptide (BNP) and NT‐proBNP: A Meta‐analysis. J Forensic Sci 2019; 65:686-691. [DOI: 10.1111/1556-4029.14232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology School of Forensic Medicine China Medical University Shenyang 110122 China
| | - Mengyang Zhao
- Department of Forensic Genetics and Biology School of Forensic Medicine China Medical University Shenyang 110122 China
| | - Chengyang Xu
- The First Affiliated Hospital of China Medical University Shenyang 110001 China
| | - Tianyi Zhang
- Department of Forensic Pathology School of Forensic Medicine China Medical University Shenyang 110122 China
| | - Yuqing Jia
- Department of Forensic Pathology School of Forensic Medicine China Medical University Shenyang 110122 China
| | - Tianqi Wang
- Department of Forensic Pathology School of Forensic Medicine China Medical University Shenyang 110122 China
| | - Baoli Zhu
- Department of Forensic Pathology School of Forensic Medicine China Medical University Shenyang 110122 China
| |
Collapse
|
70
|
O'Sullivan J, Finnie SL, Teenan O, Cairns C, Boyd A, Bailey MA, Thomson A, Hughes J, Bénézech C, Conway BR, Denby L. Refining the Mouse Subtotal Nephrectomy in Male 129S2/SV Mice for Consistent Modeling of Progressive Kidney Disease With Renal Inflammation and Cardiac Dysfunction. Front Physiol 2019; 10:1365. [PMID: 31803059 PMCID: PMC6872545 DOI: 10.3389/fphys.2019.01365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease (CKD) is prevalent worldwide and is associated with significant co-morbidities including cardiovascular disease (CVD). Traditionally, the subtotal nephrectomy (remnant kidney) experimental model has been performed in rats to model progressive renal disease. The model experimentally mimics CKD by reducing nephron number, resulting in renal insufficiency. Presently, there is a lack of translation of pre-clinical findings into successful clinical results. The pre-clinical nephrology field would benefit from reproducible progressive renal disease models in mice in order to avail of more widely available transgenics and experimental tools to dissect mechanisms of disease. Here we evaluate if a simplified single step subtotal nephrectomy (STNx) model performed in the 129S2/SV mouse can recapitulate the renal and cardiac changes observed in patients with CKD in a reproducible and robust way. The single step STNx surgery was well-tolerated and resulted in clinically relevant outcomes including hypertension, increased urinary albumin:creatinine ratio, and significantly increased serum creatinine, phosphate and urea. STNx mice developed significant left ventricular hypertrophy without reduced ejection fraction or cardiac fibrosis. Analysis of intra-renal inflammation revealed persistent recruitment of Ly6Chi monocytes transitioning to pro-fibrotic inflammatory macrophages in STNx kidneys. Unlike 129S2/SV mice, C57BL/6 mice exhibited renal fibrosis without proteinuria, renal dysfunction, or cardiac pathology. Therefore, the 129S2/SV genetic background is susceptible to induction of progressive proteinuric renal disease and cardiac hypertrophy using our refined, single-step flank STNx method. This reproducible model could be used to study the systemic pathophysiological changes induced by CKD in the kidney and the heart, intra-renal inflammation and for testing new therapies for CKD.
Collapse
Affiliation(s)
- James O'Sullivan
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Louise Finnie
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Teenan
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Boyd
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Thomson
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hughes
- Centre for Inflammation, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan Ronald Conway
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
71
|
Zlabinger K, Spannbauer A, Traxler D, Gugerell A, Lukovic D, Winkler J, Mester-Tonczar J, Podesser B, Gyöngyösi M. MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1 +Sca-1 +c-kit + Porcine Cardiac Progenitor Cells In Vitro. Cells 2019; 8:cells8111416. [PMID: 31717562 PMCID: PMC6912367 DOI: 10.3390/cells8111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cost- and time-intensive porcine translational disease models offer great opportunities to test drugs and therapies for pathological cardiac hypertrophy and can be supported by porcine cell culture models that provide further insights into basic disease mechanisms. Cardiac progenitor cells (CPCs) residing in the adult heart have been shown to differentiate in vitro into cardiomyocytes and could contribute to cardiac regeneration. Therefore, it is important to evaluate their changes on the cellular level caused by disease. We successfully isolated Isl1+Sca1+cKit+ porcine CPCs (pCPCs) from pig hearts and stimulated them with endothelin-1 (ET-1) and angiotensin II (Ang II) in vitro. We also performed a cardiac reprogramming transfection and tested the same conditions. Our results show that undifferentiated Isl1+Sca1+cKit+ pCPCs were significantly upregulated in GATA4, MEF2c, and miR-29a gene expressions and in BNP and MCP-1 protein expressions with Ang II stimulation, but they showed no significant changes in miR-29a and MCP-1 when stimulated with ET-1. Differentiated Isl1+Sca1+cKit+ pCPCs exhibited significantly higher levels of MEF2c, GATA4, miR-29a, and miR-21 as well as Cx43 and BNP with Ang II stimulation. pMx-MGT-transfected Isl1+Sca1+cKit+ pCPCs showed significant elevations in MEF2c, GATA4, and BNP expressions when stimulated with ET-1. Our model demonstrates that in vitro stimulation leads to successful Isl1+Sca1+cKit+ pCPC hypertrophy with upregulation of cardiac remodeling associated genes and profibrotic miRNAs and offers great possibilities for further investigations of disease mechanisms and treatment.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| | - Andreas Spannbauer
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Denise Traxler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Alfred Gugerell
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Dominika Lukovic
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Johannes Winkler
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Julia Mester-Tonczar
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
| | - Bruno Podesser
- Medical University of Vienna, Department of Biomedical Research, 1090 Vienna, Austria;
| | - Mariann Gyöngyösi
- Medical University of Vienna, Department of Cardiology, 1090 Vienna, Austria; (A.S.); (D.T.); (A.G.); (D.L.); (J.W.); (J.M.-T.)
- Correspondence: (K.Z.); (M.G.); Tel.: +43(0)-140-400-48520 (K.Z.)
| |
Collapse
|
72
|
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int J Mol Sci 2019; 20:ijms20184634. [PMID: 31540546 PMCID: PMC6770314 DOI: 10.3390/ijms20184634] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Collapse
|
73
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Interaction Between Sacubitril and Valsartan in Preventing Heart Failure Induced by Aortic Valve Insufficiency in Rats. J Card Fail 2019; 25:921-931. [PMID: 31539619 DOI: 10.1016/j.cardfail.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2019] [Accepted: 09/12/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Synergistic interactions between neprilysin inhibition (NEPi) with sacubitril and angiotensin receptor type1 blockade (ARB) with valsartan have been implicated in improvement of left ventricular (LV) contractility, relaxation, exercise tolerance, and fibrosis in preexisting heart failure (HF) induced by aortic valve insufficiency (AVI). It is not known whether this pharmacologic synergy can prevent cardiovascular pathology in a similar AVI model. Our aim was to investigate the pharmacology of sacubitril/valsartan in an experimental setting with therapy beginning immediately after creation of AVI. METHODS HF was induced through partial disruption of the aortic valve in rats. Therapy began 3 hours after valve disruption and lasted 8 weeks. Sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), sacubitril (31 mg/kg), or vehicle were administered daily via oral gavage (N=8 in each group). Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. RESULTS Only sacubitril/valsartan increased total arterial compliance and ejection fraction (EF). Therapies with sacubitril/valsartan and valsartan similarly improved load-dependent (dP/dtmax) and load independent indices (Ees) of LV contractility, and exercise tolerance, whereas sacubitril did not. None of the therapies improved LV relaxation (dP/dtmin), whereas all reduced myocardial fibrosis. CONCLUSIONS 1) The synergistic interaction between NEPi and ARB in early therapy with sacubitril/valsartan leads to increased total arterial compliance and EF. 2) Improvement in indices of LV contractility, and exercise tolerance with sacubitril/valsartan is likely because of ARB effect of valsartan. 3) All three therapies provided antifibrotic effects, suggesting both ARB and NEPi are capable of reducing myocardial fibrosis.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts.
| | - Stephan Foianini
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Dita Mayer
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Michael V Orlov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Cardiology, Boston, Massachusetts
| | - Mark A Lovich
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| |
Collapse
|
74
|
Espiner E, Prickett T, Olney R. Plasma C-Type Natriuretic Peptide: Emerging Applications in Disorders of Skeletal Growth. Horm Res Paediatr 2019; 90:345-357. [PMID: 30844819 DOI: 10.1159/000496544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
Although studies in experimental animals show that blood levels of C-type natriuretic peptide (CNP) and its bioinactive aminoterminal propeptide (NTproCNP) are potential biomarkers of long bone growth, a lack of suitable assays and appropriate reference ranges has limited the application of CNP measurements in clinical practice. Plasma concentrations of the processed product of proCNP, NTproCNP - and to a lesser extent CNP itself - correlate with concurrent height velocity throughout all phases of normal skeletal growth, as well as during interventions known to affect skeletal growth in children. Since a change in levels precedes a measurable change in height velocity during interventions, measuring NTproCNP may have predictive value in clinical practice. Findings from a variety of genetic disorders affecting CNP signaling suggest that plasma concentrations of both peptides may be helpful in diagnosis, provided factors such as concurrent height velocity, feedback regulation of CNP, and differential changes in peptide clearance are considered when interpreting values. An improved understanding of factors affecting plasma levels, and the availability of commercial kits enabling accurate measurement using small volumes of plasma, can be expected to facilitate potential applications in growth disorders including genetic causes -affecting the CNP signaling pathway.
Collapse
Affiliation(s)
- Eric Espiner
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand,
| | - Robert Olney
- Division of Endocrinology, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| |
Collapse
|
75
|
Zhang H, Tian L, Shen M, Tu C, Wu H, Gu M, Paik DT, Wu JC. Generation of Quiescent Cardiac Fibroblasts From Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circ Res 2019; 125:552-566. [PMID: 31288631 DOI: 10.1161/circresaha.119.315491] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Activated fibroblasts are the major cell type that secretes excessive extracellular matrix in response to injury, contributing to pathological fibrosis and leading to organ failure. Effective anti-fibrotic therapeutic solutions, however, are not available due to the poorly defined characteristics and unavailability of tissue-specific fibroblasts. Recent advances in single-cell RNA-sequencing fill such gaps of knowledge by enabling delineation of the developmental trajectories and identification of regulatory pathways of tissue-specific fibroblasts among different organs. OBJECTIVE This study aims to define the transcriptome profiles of tissue-specific fibroblasts using recently reported mouse single-cell RNA-sequencing atlas and to develop a robust chemically defined protocol to derive cardiac fibroblasts (CFs) from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis and drug screening. METHODS AND RESULTS By analyzing the single-cell transcriptome profiles of fibroblasts from 10 selected mouse tissues, we identified distinct tissue-specific signature genes, including transcription factors that define the identities of fibroblasts in the heart, lungs, trachea, and bladder. We also determined that CFs in large are of the epicardial lineage. We thus developed a robust chemically defined protocol that generates CFs from human induced pluripotent stem cells. Functional studies confirmed that iPSC-derived CFs preserved a quiescent phenotype and highly resembled primary CFs at the transcriptional, cellular, and functional levels. We demonstrated that this cell-based platform is sensitive to both pro- and anti-fibrosis drugs. Finally, we showed that crosstalk between human induced pluripotent stem cell-derived cardiomyocytes and CFs via the atrial/brain natriuretic peptide-natriuretic peptide receptor-1 pathway is implicated in suppressing fibrogenesis. CONCLUSIONS This study uncovers unique gene signatures that define tissue-specific identities of fibroblasts. The bona fide quiescent CFs derived from human induced pluripotent stem cells can serve as a faithful in vitro platform to better understand the underlying mechanisms of cardiac fibrosis and to screen anti-fibrotic drugs.
Collapse
Affiliation(s)
- Hao Zhang
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Lei Tian
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Mengcheng Shen
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Chengyi Tu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Haodi Wu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Mingxia Gu
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases (M.G.), CA
- Department of Pediatrics, Stanford University School of Medicine (M.G.), CA
| | - David T Paik
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
- Department of Radiology (H.Z., L.T., M.S., C.T., H.W., M.G., D.T.P., J.C.W.), CA
- Department of Medicine, Division of Cardiology (H.Z., L.T., M.S., C.T., H.W., D.T.P., J.C.W.), CA
| |
Collapse
|
76
|
Jansen van Vuren E, Malan L, von Känel R, Magnusson M, Lammertyn L, Malan NT. BDNF increases associated with constant troponin T levels and may protect against poor cognitive interference control: The SABPA prospective study. Eur J Clin Invest 2019; 49:e13116. [PMID: 30932178 DOI: 10.1111/eci.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) modulates brain health and cognition, which can interfere with executive cognitive function. BDNF was implicated with microcirculatory ischaemia and may reflect cardiomyocyte injury. We aimed to determine whether prospective changes (%Δ) in BDNF and cardiac troponin T (cTnT) will be associated with executive cognitive function in a bi-ethnic cohort. DESIGN A prospective investigation was conducted over a three-year period in a bi-ethnic sex cohort (N = 338; aged 20-65 years) from South Africa. Fasting serum samples for BDNF and cTnT were obtained. The STROOP-color-word conflict test (CWT) was applied to assess executive cognitive function at baseline. RESULTS In Blacks, BDNF (P < 0.001) increased over the three-year period while cTnT did not change. In contrast, in Whites, BDNF and cTnT decreased over three years. In Black men, no change in cTnT was associated with increased ΔBDNF (β = 0.25; 95% CI 0.05-0.45; P = 0.02). In the Black men, constant cTnT levels were inversely associated with executive cognitive function (β = -0.33; 95% CI -0.53 to -0.12; P = 0.003). Three-year increases in BDNF increased the likelihood for chronic lower cTnT levels at a pre-established cut-point of <4.2 ng/L [OR = 2.35 (1.12-4.94), P = 0.02]. The above associations were not found in the White sex groups. CONCLUSIONS Central neural control mechanisms may have upregulated BDNF in Black men as a way to protect against myocardial stress progression and to possibly improve processes related to cognitive interference control. High-sensitive cTnT levels may act as an early predictor of disturbed neural control mechanisms.
Collapse
Affiliation(s)
- Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, Switzerland
| | - Martin Magnusson
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Malmö, Sweden
| | - Leandi Lammertyn
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Nicolaas T Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| |
Collapse
|
77
|
Zhao H, Li T, Liu G, Zhang L, Li G, Yu J, Lou Q, He R, Zhan C, Li L, Yang W, Zang Y, Cheng C, Li W. Chronic B-Type Natriuretic Peptide Therapy Prevents Atrial Electrical Remodeling in a Rabbit Model of Atrial Fibrillation. J Cardiovasc Pharmacol Ther 2019; 24:575-585. [PMID: 31159577 DOI: 10.1177/1074248419854749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is an important and growing clinical problem. Current pharmacological treatments are unsatisfactory. Electrical remodeling has been identified as one of the principal pathophysiological mechanisms that promote AF, but there are no effective therapies to prevent or correct electrical remodeling in patients with AF. In AF, cardiac production and circulating levels of B-type natriuretic peptide (BNP) are increased. However, its functional significance in AF remains to be determined. We assessed the hypotheses that chronic BNP treatment may prevent the altered electrophysiology in AF, and preventing AF-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) may play a role. METHODS AND RESULTS Forty-four rabbits were randomly divided into sham, rapid atrial pacing (RAP at 600 beats/min for 3 weeks), RAP/BNP, and sham/BNP groups. Rabbits in the RAP/BNP and sham/BNP groups received subcutaneous BNP (20 μg/kg twice daily) during the 3-week study period. HL-1 cells were subjected to rapid field stimulation for 24 hours in the presence or absence of BNP, KN-93 (a CaMKII inhibitor), or KN-92 (a nonactive analog of KN-93). We compared atrial electrical remodeling-related alterations in the ion channel/function/expression of these animals. We found that only in the RAP group, AF inducibility was significantly increased, atrial effective refractory periods and action potential duration were reduced, and the density of I Ca, L and I to decreased, while I K1 increased. The changes in the expressions of Cav1.2, Kv4.3, and Kir2.1 and currents showed a similar trend. In addition, in the RAP group, the activation of CaMKIIδ and phosphorylation of ryanodine receptor 2 and phospholamban significantly increased. Importantly, these changes were prevented in the RAP/BNP group, which were further validated by in vitro studies. CONCLUSIONS Chronic BNP therapy prevents atrial electrical remodeling in AF. Inhibition of CaMKII activation plays an important role to its anti-AF efficacy in this model.
Collapse
Affiliation(s)
- Hongyan Zhao
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,2 Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Tiankai Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangzhong Liu
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Zhang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangnan Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Yu
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Lou
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui He
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengchuang Zhan
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyifei Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Yang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanxiang Zang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheping Cheng
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,3 Department of Internal Medicine, Section on Cardiovascular Medicine, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Weimin Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
78
|
Wang J, Zhang QJ, Pirolli TJ, Liu ZP, Powell L, Thorp EB, Jessen M, Forbess JM. Cardio-omentopexy Reduces Cardiac Fibrosis and Heart Failure After Experimental Pressure Overload. Ann Thorac Surg 2019; 107:1448-1455. [PMID: 30552887 PMCID: PMC6478504 DOI: 10.1016/j.athoracsur.2018.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND The pedicled greater omentum has been shown to offer benefit in ischemic heart disease for both animal models and human patients. The impact of cardio-omentopexy in a pressure overload model of left ventricular hypertrophy (LVH) is unknown. METHODS LVH was created in rats by banding the ascending aorta after right thoracotomy (n = 23). Sham surgery was performed in 12 additional rats. Six weeks after banding, surviving LVH rats were assigned to cardio-omentopexy by left thoracotomy (LVH+Om, n = 8) or sham left thoracotomy (LVH, n = 8). Sham rats also underwent left thoracotomy for cardio-omentopexy (Sham+Om, n = 6); the remaining rats underwent sham left thoracotomy (Sham, n = 6). RESULTS Echocardiography 10 weeks after cardio-omentopexy revealed LV end-systolic diameter, cardiomyocyte diamter, and myocardial fibrosis in the LVH group were significantly increased compared with the LVH+Om, Sham+Om, and Sham groups (p < 0.01). LV ejection fraction of the LVH group was lower than the LVH+Om group (p < 0.01). Gene expression analysis revealed significantly lower levels of sarcoendoplasmic reticulum calcium adenosine triphosphatase 2b in LVH rats than in the LVH+Om, Sham+Om, and Sham groups (p < 0.01). In contrast, collagen type 1 α 1 chain, lysyl oxidase-like protein 1, nuclear protein-1, and transforming growth factor- β1 in the LVH group were significantly higher than in the LVH+Om cohort (p < 0.01), consistent with a reduced fibrotic phenotype after omentopexy. Lectin staining showed myocardial capillary density of the LVH group was significantly lower than all other groups (p < 0.01). CONCLUSIONS Cardio-omentopexy reduced cardiac dilation, contractile dysfunction, cardiomyocyte hypertrophy, and myocardial fibrosis, while maintaining other molecular indicators of contractile function in this LVH model.
Collapse
Affiliation(s)
- Jian Wang
- Department of Thoracic and Cardiovascular Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing-Jun Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Timothy J Pirolli
- Department of Thoracic and Cardiovascular Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhi-Ping Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - LaShondra Powell
- Department of Thoracic and Cardiovascular Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael Jessen
- Department of Thoracic and Cardiovascular Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph M Forbess
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.
| |
Collapse
|
79
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
80
|
Cao Z, Jia Y, Zhu B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int J Mol Sci 2019; 20:ijms20081820. [PMID: 31013779 PMCID: PMC6515513 DOI: 10.3390/ijms20081820] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Currently, brain natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are widely used as diagnostic biomarkers for heart failure (HF) and cardiac dysfunction in clinical medicine. They are also used as postmortem biomarkers reflecting cardiac function of the deceased before death in forensic medicine. Several previous studies have reviewed BNP and NT-proBNP in clinical medicine, however, few articles have reviewed their application in forensic medicine. The present article reviews the biological features, the research and application status, and the future research prospects of BNP and NT-proBNP in both clinical medicine and forensic medicine, thereby providing valuable assistance for clinicians and forensic pathologists.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Yuqing Jia
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Baoli Zhu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
81
|
Guo Q, Wang J, Ge Y, Malhotra DK, Dworkin LD, Wang P, Gong R. Brain natriuretic peptide mitigates TIMP2 induction and reinstates extracellular matrix catabolic activity via GSK3β inhibition in glomerular podocytes exposed to a profibrogenic milieu. Am J Transl Res 2019; 11:964-973. [PMID: 30899395 PMCID: PMC6413260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Brain natriuretic peptide (BNP) has a demonstrable anti-fibrotic effect on diverse organ systems, including the kidney. To understand the molecular mechanism underlying this renoprotective effect, the efficacy of BNP was examined in an in vitro model of glomerular sclerosis by exposing glomerular podocytes to transforming growth factor (TGF)β1-containing media that recapitulates the profibrogenic milieu in chronic glomerular disease. BNP mitigates extracellular matrix (ECM) accumulation in TGFβ1-treated podocytes, as evidenced by Sirius red assay and staining, concomitant with a restoration of the ECM catabolizing activity, as assessed by pulse chase analysis. This effect was in parallel with a mitigating effect on TGFβ1-elicited overexpression of tissue inhibitor of metalloproteinases (TIMP)2, a key inhibitor of a multitude of ECM-degrading metalloproteinases. Mechanistically, glycogen synthase kinase (GSK)3β, a key player in pathogenesis of podocyte injury and glomerulopathies, seems to be involved. BNP treatment considerably induced GSK3β inhibition, marked by inhibitory phosphorylation at the serine 9 residue, and this significantly correlated with the abrogated TIMP2 induction in TGFβ1-injured podocytes. Moreover, genetic knockout of GSK3β in podocytes is sufficient to attenuate the TGFβ1 induced TIMP2 expression and ECM deposition, reminiscent of the effect of BNP. Conversely, ectopic expression of a nonphosphorylatable GSK3β mutant abolished the inhibitory effect of BNP on TGFβ1-elicited TIMP2 overexpression and ECM accumulation, signifying an essential role of GSK3β inhibition in mediating the effect of BNP. Collectively, BNP possesses an anti-fibrotic activity in glomerular epithelial cells. This finding, if validated in vivo, may open a new avenue to the treatment of glomerulosclerosis.
Collapse
Affiliation(s)
- Qiongqiong Guo
- Department of Hemopurification Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang, China
| | - Junxia Wang
- Department of Hemopurification Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang, China
| | - Yan Ge
- Institute of Nephrology, Blood Purification Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
- Division of Nephrology, Department of Medicine, University of Toledo College of MedicineToledo, Ohio, USA
| | - Deepak K Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo College of MedicineToledo, Ohio, USA
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of MedicineToledo, Ohio, USA
| | - Pei Wang
- Institute of Nephrology, Blood Purification Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of MedicineToledo, Ohio, USA
| |
Collapse
|
82
|
Atrial Natriuretic Peptide: A Potential Early Therapy for the Prevention of Multiple Organ Dysfunction Syndrome Following Severe Trauma. Shock 2019; 49:126-130. [PMID: 28727609 DOI: 10.1097/shk.0000000000000947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Trauma remains a tremendous medical burden partly because of increased expenditure for the management of multiple organ dysfunction syndrome (MODS) developed during hospital stay. The intestinal barrier injury continues to be a second insult resulting in MODS which currently lacks efficient strategies for prevention. Recent studies have uncovered multi-organ protective benefits of atrial natriuretic peptide (ANP) in cardiovascular disease. However, the role of ANP in the prevention of MODS following severe trauma has not been understood. In our laboratory study, 1-h infusion of exogenous ANP during hemorrhagic shock following severe trauma induced high-level expression of endogenous serum ANP after 24 h, this effect was related to the improved level of functional biomarkers in multiple organs. Such phenomenon has not been found in other laboratories. A thorough literature review consequently was performed to uncover the potential mechanisms, to appraise therapy safety, and to propose uncertainties. In severe trauma, short-term exogenous ANP therapy during hemorrhagic shock may promote sustained endogenous expression of ANP from intestinal epithelium through activating a positive feedback loop mechanism involving phospholipase C-γ1 and reactive oxygen species crosstalk. This feedback loop may prevent MODS through multiple signaling pathways. Administration of ANP during hemorrhagic shock is thought to be safe. Further studies are required to confirm our proposed mechanisms and to investigate the dose, duration, and timing of ANP therapy in severe trauma.
Collapse
|
83
|
Magga J, Vainio L, Kilpiö T, Hulmi JJ, Taponen S, Lin R, Räsänen M, Szabó Z, Gao E, Rahtu-Korpela L, Alakoski T, Ulvila J, Laitinen M, Pasternack A, Koch WJ, Alitalo K, Kivelä R, Ritvos O, Kerkelä R. Systemic Blockade of ACVR2B Ligands Protects Myocardium from Acute Ischemia-Reperfusion Injury. Mol Ther 2019; 27:600-610. [PMID: 30765322 PMCID: PMC6404100 DOI: 10.1016/j.ymthe.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.
Collapse
Affiliation(s)
- Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Teemu Kilpiö
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saija Taponen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland
| | - Mika Laitinen
- Department of Medicine, University of Helsinki, 00029 Helsinki, Finland; Department of Medicine, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Walter J Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, 90220 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
84
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Synergy between sacubitril and valsartan leads to hemodynamic, antifibrotic, and exercise tolerance benefits in rats with preexisting heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H289-H297. [PMID: 30461302 DOI: 10.1152/ajpheart.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simultaneous neprilysin inhibition (NEPi) and angiotensin receptor blockade (ARB) with sacubitril/valsartan improves cardiac function and exercise tolerance in patients with heart failure. However, it is not known whether these therapeutic benefits are primarily due to NEPi with sacubitril or ARB with valsartan or their combination. Therefore, the aim of the present study was to investigate the potential contribution of sacubitril and valsartan to the benefits of the combination therapy on left ventricular (LV) function and exercise tolerance. Heart failure was induced by volume overload via partial disruption of the aortic valve in rats. Therapy began 4 wk after valve disruption and lasted through 8 wk. Drugs were administered daily via oral gavage [sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), and sacubitril (31 mg/kg)]. Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. Therapy with sacubitril/valsartan improved load-dependent indexes of LV contractility (dP/d tmax) and relaxation (dP/d tmin), exercise tolerance, and mitigated myocardial fibrosis, whereas monotherapies with valsartan, or sacubitril did not. Both sacubitril/valsartan and valsartan similarly improved a load-independent index of contractility [slope of the end-systolic pressure-volume relationship ( Ees)]. Sacubitril did not improve Ees. First, synergy of NEPi with sacubitril and ARB with valsartan leads to the improvement of load-dependent LV contractility and relaxation, exercise tolerance, and reduction of myocardial collagen content. Second, the improvement in load-independent LV contractility with sacubitril/valsartan appears to be solely due to ARB with valsartan constituent. NEW & NOTEWORTHY Our data suggest the following explanation for the effects of sacubitril/valsartan: 1) synergy of sacubitril and valsartan leads to the improvement of load-dependent left ventricular contractility and relaxation, exercise tolerance, and reduction of myocardial fibrosis and 2) improvement in load-independent left ventricular contractility is solely due to the valsartan constituent. The findings offer a better understanding of the outcomes observed in clinical studies and might facilitate the continuing development of the next generations of angiotensin receptor neprilysin inhibitors.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Stephan Foianini
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Dita Mayer
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Michael V Orlov
- Department of Cardiology, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Mark A Lovich
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
85
|
López-Morales MA, Castelló-Ruiz M, Burguete MC, Jover-Mengual T, Aliena-Valero A, Centeno JM, Alborch E, Salom JB, Torregrosa G, Miranda FJ. Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke. Mol Cell Endocrinol 2018; 472:1-9. [PMID: 29842904 DOI: 10.1016/j.mce.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after tMCAO. Apoptotic cell death and expression of natriuretic peptide receptors (NPR-A and NPR-C), K+ channels (KATP, KV and BKCa), and PI3K/Akt and MAPK/ERK1/2 signaling pathways were analyzed. Significant improvement in neurofunctional status, associated to reduction in infarct and edema volumes, was shown in the high-dose ANP group. As to the molecular mechanisms analyzed, high-dose ANP: 1) reduced caspase-3-mediated apoptosis; 2) did not modify the expression of NPR-A and NPR-C, which had been downregulated by the ischemic insult; 3) induced a significant reversion of ischemia-downregulated KATP channel expression; and 4) induced a significant reversion of ischemia-upregulated pERK2/ERK2 expression ratio. In conclusion, ANP exerts a significant protective role in terms of both improvement of neurofunctional status and reduction in infarct volume. Modulation of ANP on some molecular mechanisms involved in ischemia-induced apoptotic cell death (KATP channels and MAPK/ERK1/2 signaling pathway) could account, at least in part, for its beneficial effect. Therefore, ANP should be considered as a potential adjunctive neuroprotective agent improving stroke outcome after successful reperfusion interventions.
Collapse
Affiliation(s)
- Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - José M Centeno
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Enrique Alborch
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
| | - Francisco J Miranda
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
86
|
Birkenfeld AL, Jordan J, Dworak M, Merkel T, Burnstock G. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts. Pharmacol Ther 2018; 194:132-144. [PMID: 30149104 DOI: 10.1016/j.pharmthera.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant therapeutic advances in heart failure (HF) therapy, the morbidity and mortality associated with this disease remains unacceptably high. The concept of metabolic dysfunction as an important underlying mechanism in HF is well established. Cardiac function is inextricably linked to metabolism, with dysregulation of cardiac metabolism pathways implicated in a range of cardiac complications, including HF. Modulation of cardiac metabolism has therefore become an attractive clinical target. Cardiac metabolism is based on the integration of adenosine triphosphate (ATP) production and utilization pathways. ATP itself impacts the heart not only by providing energy, but also represents a central element in the purinergic signaling pathway, which has received considerable attention in recent years. Furthermore, novel drugs that have received interest in HF include angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors, whose favorable cardiovascular profile has been at least partly attributed to their effects on metabolism. This review, describes the major metabolic pathways and concepts of the healthy heart (including fatty acid oxidation, glycolysis, Krebs cycle, Randle cycle, and purinergic signaling) and their dysregulation in the progression to HF (including ketone and amino acid metabolism). The cardiac implications of HF comorbidities, including metabolic syndrome, diabetes mellitus and cachexia are also discussed. Finally, the impact of current HF and diabetes therapies on cardiac metabolism pathways and the relevance of this knowledge for current clinical practice is discussed. Targeting cardiac metabolism may have utility for the future treatment of patients with HF, complementing current approaches.
Collapse
Affiliation(s)
- Andreas L Birkenfeld
- Medical Clinic III, Universitätsklinikum "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital, Faculty of Medicine, Dresden, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center and Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | | | | | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free Campus, University College Medical School, London, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
87
|
Krichevskiy LA, Kozlov IA. Natriuretic Peptides in Cardiac Anesthesia and Intensive Care. J Cardiothorac Vasc Anesth 2018; 33:1407-1419. [PMID: 30228053 DOI: 10.1053/j.jvca.2018.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Natriuretic peptides, predominantly B-type, are widely used in cardiology as prognostic and diagnostic biomarkers or, much less often, as a substantive treatment tool. They are hormones that are produced mainly in the myocardium in response to overload and ischemia, and their level quite accurately reflects the degree of myocardial dysfunction. Although their use in cardiac anesthesia and intensive care setting seems to be very beneficial for assessing the risk of acute disturbance of myocardial function or its laboratory monitoring, the actual significance of natriuretic peptides in this area is not yet recognized. This is due to the lack of clear diagnostic and prognostic values for these biomarkers supported by high-quality researches. On the basis of the available data, main advantages, existing difficulties, and most effective ways of using natriuretic peptides for determining the risk of heart surgery and assessing the severity of sepsis, pneumonia, and other critical conditions have been discussed in this review. In addition, the expediency of using natriuretic peptides as target parameters for goal-oriented therapy and as a substantive tool for treatment is considered.
Collapse
Affiliation(s)
- Lev A Krichevskiy
- Department of Anesthesiology and Intensive Care, City Clinical Hospital n.a. S.S.Yudin, Department of Health of Moscow, Moscow, Russia.
| | - Igor A Kozlov
- Department of Anaesthesiology, Moscow Regional Research Clinical Institute n.a. M.F. Vladimirskiy, Moscow, Russia
| |
Collapse
|
88
|
Suematsu Y, Jing W, Nunes A, Kashyap ML, Khazaeli M, Vaziri ND, Moradi H. LCZ696 (Sacubitril/Valsartan), an Angiotensin-Receptor Neprilysin Inhibitor, Attenuates Cardiac Hypertrophy, Fibrosis, and Vasculopathy in a Rat Model of Chronic Kidney Disease. J Card Fail 2018; 24:266-275. [PMID: 29325796 DOI: 10.1016/j.cardfail.2017.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with cardiac hypertrophy, fibrosis, and increased risk of cardiovascular mortality. LCZ696 (sacubitril/valsartan) is a promising agent that has shown significant potential in treatment of heart failure. We hypothesized that LCZ696 is more effective than valsartan alone in the treatment of cardiovascular abnormalities associated with experimental CKD. METHODS AND RESULTS Male Sprague-Dawley rats underwent 5/6 nephrectomy and were subsequently randomized to no treatment (CKD), 30 mg/kg valsartan (VAL), or 60 mg/kg LCZ696 (LCZ). After 8 weeks, cardiovascular parameters, including markers of inflammation, oxidative stress, mitochondrial abundance/function, hypertrophy, and fibrosis, were measured. Treatment with LCZ resulted in significant improvements in the heart-body weight ratio and serum concentrations of N-terminal pro-B-type natriuretic peptide and fibroblast growth factor 23 along with improvement of kidney function. In addition, LCZ ameliorated aortic fibrosis and cardiac hypertrophy and fibrosis, reduced markers of cardiac oxidative stress and inflammation, and improved indicators of mitochondrial mass/function. Although VAL also improved some of these indices, treatment with LCZ was more effective than VAL alone. CONCLUSIONS CKD-associated cardiovascular abnormalities, including myocardial hypertrophy, fibrosis, inflammation, oxidative stress, and mitochondrial depletion/dysfunction, were more effectively attenuated by LCZ treatment than by VAL alone.
Collapse
Affiliation(s)
- Yasunori Suematsu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; Nephrology Section, Long Beach VA Healthcare System, California
| | - Wanghui Jing
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ane Nunes
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Moti L Kashyap
- Cardiology Section, Long Beach VA Healthcare System, California
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California.
| | - Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California; Nephrology Section, Long Beach VA Healthcare System, California.
| |
Collapse
|
89
|
Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK. Hypertension. Nat Rev Dis Primers 2018; 4:18014. [PMID: 29565029 PMCID: PMC6477925 DOI: 10.1038/nrdp.2018.14] [Citation(s) in RCA: 587] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is the most important modifiable risk factor for all-cause morbidity and mortality worldwide and is associated with an increased risk of cardiovascular disease (CVD). Fewer than half of those with hypertension are aware of their condition, and many others are aware but not treated or inadequately treated, although successful treatment of hypertension reduces the global burden of disease and mortality. The aetiology of hypertension involves the complex interplay of environmental and pathophysiological factors that affect multiple systems, as well as genetic predisposition. The evaluation of patients with hypertension includes accurate standardized blood pressure (BP) measurement, assessment of the patients' predicted risk of atherosclerotic CVD and evidence of target-organ damage, and detection of secondary causes of hypertension and presence of comorbidities (such as CVD and kidney disease). Lifestyle changes, including dietary modifications and increased physical activity, are effective in lowering BP and preventing hypertension and its CVD sequelae. Pharmacological therapy is very effective in lowering BP and in preventing CVD outcomes in most patients; first-line antihypertensive medications include angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, dihydropyridine calcium-channel blockers and thiazide diuretics.
Collapse
Affiliation(s)
- Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham (UAB), 1720 2nd Avenue South, Birmingham, AL, 35294-0007, USA
| | | | | | - Dan R Berlowitz
- Center for Healthcare Organization and Implementation Research, Bedford Veteran Affairs Medical Center, Bedford, MA, USA
- Schools of Medicine and Public Health, Boston University, Boston, MA, USA
| | - Renata Cífková
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Guido Grassi
- Clinica Medica, University of Milano-Bicocca, Milan, Italy
- IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), University of Cologne, Cologne, Germany
| | - Neil R Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Anthony Rodgers
- The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Paul K Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
90
|
Najenson AC, Courreges AP, Perazzo JC, Rubio MF, Vatta MS, Bianciotti LG. Atrial natriuretic peptide reduces inflammation and enhances apoptosis in rat acute pancreatitis. Acta Physiol (Oxf) 2018; 222. [PMID: 29117461 DOI: 10.1111/apha.12992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
AIM We previously reported that atrial natriuretic peptide (ANP) reduces serum amylase and intrapancreatic trypsinogen activation in the onset of acute pancreatitis whereas secretin increases them. In the present work, we sought to establish the effect of ANP and secretin on the inflammatory response and cell death in experimental acute pancreatitis. METHODS The expression and activity of key inflammatory mediators and apoptosis were evaluated in the presence or absence of the atrial peptide, secretin or both in cerulein-induced acute pancreatitis in rats. Also, ultrastructural changes in pancreatic acinar cells were assessed by transmission electron microscopy. RESULTS ANP significantly reduced NF-κB activation and TNF-α intrapancreatic levels. Furthermore, it decreased inducible nitric oxide synthase and cyclooxygenase 2 expression and activity while it diminished myeloperoxidase activity. ANP also stimulated apoptosis as shown by caspase-3 expression and activation as well as TUNEL assay. These findings correlated well with the ultrastructural changes observed in the exocrine pancreas. Although secretin reduced various inflammatory markers, it also diminished caspase-3 activation and the overall response was the aggravation of the disease as reflected by the ultrastructural alterations of pancreatic acinar cells. In the presence of ANP, various effects evoked by secretin were antagonized. CONCLUSION Present findings show that ANP significantly attenuated the severity of acute pancreatitis in the rat by inducing apoptosis and reducing the inflammatory response and further suggest that ANP may have eventual therapeutic implications in the disease and/or in medical interventions at risk of its developing like endoscopic retrograde cholangiopancreatography.
Collapse
Affiliation(s)
- A. C. Najenson
- Instituto de Inmunología; Genética y Metabolismo (INIGEM-CONICET-UBA); Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires Argentina
| | - A. P. Courreges
- Instituto de Inmunología; Genética y Metabolismo (INIGEM-CONICET-UBA); Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires Argentina
| | - J. C. Perazzo
- Instituto de Patología; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - M. F. Rubio
- Instituto de Investigaciones Médicas (IDIM-CONICET-UBA); Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - M. S. Vatta
- Cátedra de Fisiología-Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET-UBA); Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires Argentina
| | - L. G. Bianciotti
- Instituto de Inmunología; Genética y Metabolismo (INIGEM-CONICET-UBA); Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires Argentina
- Departamento de Ciencias Biológicas; Cátedra de Fisiopatología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
91
|
Chronic exercise induces pathological left ventricular hypertrophy in adrenaline-deficient mice. Int J Cardiol 2018; 253:113-119. [DOI: 10.1016/j.ijcard.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022]
|
92
|
STRUCTURAL CHANGES OF ENDOCRINE SYSTEM OF MYOCARDIUM DURING THE STREPTOZOTOCIN DIABETES MELLITUS. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-1-63-126-130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
93
|
Lottonen-Raikaslehto L, Rissanen R, Gurzeler E, Merentie M, Huusko J, Schneider JE, Liimatainen T, Ylä-Herttuala S. Left ventricular remodeling leads to heart failure in mice with cardiac-specific overexpression of VEGF-B 167: echocardiography and magnetic resonance imaging study. Physiol Rep 2017; 5:5/6/e13096. [PMID: 28351964 PMCID: PMC5371547 DOI: 10.14814/phy2.13096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/07/2016] [Accepted: 11/20/2016] [Indexed: 01/24/2023] Open
Abstract
Cardiac-specific overexpression of vascular endothelial growth factor (VEGF)-B167 is known to induce left ventricular hypertrophy due to altered lipid metabolism, in which ceramides accumulate to the heart and cause mitochondrial damage. The aim of this study was to evaluate and compare different imaging methods to find the most sensitive way to diagnose at early stage the progressive left ventricular remodeling leading to heart failure. Echocardiography and cardiovascular magnetic resonance imaging were compared for imaging the hearts of transgenic mice with cardiac-specific overexpression of VEGF-B167 and wild-type mice from 5 to 14 months of age at several time points. Disease progression was verified by molecular biology methods and histology. We showed that left ventricular remodeling is already ongoing at the age of 5 months in transgenic mice leading to heart failure by the age of 14 months. Measurements from echocardiography and cardiovascular magnetic resonance imaging revealed similar changes in cardiac structure and function in the transgenic mice. Changes in histology, gene expressions, and electrocardiography supported the progression of left ventricular hypertrophy. Longitudinal relaxation time in rotating frame (T1ρ ) in cardiovascular magnetic resonance imaging could be suitable for detecting severe fibrosis in the heart. We conclude that cardiac-specific overexpression of VEGF-B167 leads to left ventricular remodeling at early age and is a suitable model to study heart failure development with different imaging methods.
Collapse
Affiliation(s)
- Line Lottonen-Raikaslehto
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riina Rissanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jurgen E Schneider
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, United kingdom
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland .,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
94
|
Salo PP, Havulinna AS, Tukiainen T, Raitakari O, Lehtimäki T, Kähönen M, Kettunen J, Männikkö M, Eriksson JG, Jula A, Blankenberg S, Zeller T, Salomaa V, Kristiansson K, Perola M. Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001713. [PMID: 29237677 PMCID: PMC6072381 DOI: 10.1161/circgenetics.117.001713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. METHODS AND RESULTS We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27 059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2×10-4). CONCLUSIONS Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.
Collapse
|
95
|
Nielsen PM, Grimm D, Wehland M, Simonsen U, Krüger M. The Combination of Valsartan and Sacubitril in the Treatment of Hypertension and Heart Failure - an Update. Basic Clin Pharmacol Toxicol 2017; 122:9-18. [DOI: 10.1111/bcpt.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Peter Munch Nielsen
- Department of Biomedicine, Pharmacology; Aarhus University; Aarhus C Denmark
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology; Aarhus University; Aarhus C Denmark
- Clinic for Plastic, Aesthetic and Hand Surgery; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | - Ulf Simonsen
- Department of Biomedicine, Pharmacology; Aarhus University; Aarhus C Denmark
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery; Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| |
Collapse
|
96
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
97
|
Thomas MR, Lip GYH. Novel Risk Markers and Risk Assessments for Cardiovascular Disease. Circ Res 2017; 120:133-149. [PMID: 28057790 DOI: 10.1161/circresaha.116.309955] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
The use of risk markers has transformed cardiovascular medicine, exemplified by the routine assessment of troponin, for both diagnosis and assessment of prognosis in patients with chest pain. Clinical risk factors form the basis for risk assessment of cardiovascular disease and the addition of biochemical, cellular, and imaging parameters offers further refinement. Identifying novel risk factors may allow greater risk stratification and a steady, but gradual progression toward precision medicine. Indeed, the generation of data in this area of research is explosive and when combined with new technologies and techniques provides the potential for more refined, targeted approaches to cardiovascular medicine. Although discussing the most recent developments in this field, this review article aims to strike a balance between novelty and validity by focusing on recent large sample-size studies that have been validated in a separate cohort in most cases. Risk markers related to atherosclerosis, thrombosis, inflammation, cardiac injury, and fibrosis are introduced in the context of their pathophysiology. Rapidly developing new areas, such as assessment of micro-RNA, are also explored. Subsequently the prognostic ability of these risk markers in coronary artery disease, heart failure, and atrial fibrillation is discussed in detail.
Collapse
Affiliation(s)
- Mark R Thomas
- From the University of Birmingham Institute of Cardiovascular Sciences, City Hospital, University of Birmingham, United Kingdom (M.R.T., G.Y.H.L.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark (G.Y.H.L.)
| | - Gregory Y H Lip
- From the University of Birmingham Institute of Cardiovascular Sciences, City Hospital, University of Birmingham, United Kingdom (M.R.T., G.Y.H.L.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark (G.Y.H.L.).
| |
Collapse
|
98
|
Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun 2017; 486:329-335. [PMID: 28302481 DOI: 10.1016/j.bbrc.2017.03.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022]
Abstract
To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the acetylation level of PGC-1α through up-regulating Sirt3, mitigates the damage to mitochondrial membrane potential of model of heart failure after myocardial infarction and improves the respiratory function of mitochondria, thus improving the cardiac function of mice.
Collapse
Affiliation(s)
- Dan Sun
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing City, China.
| | - Fei Yang
- Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing City, China
| |
Collapse
|
99
|
Díez J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy. Eur J Heart Fail 2017; 19:167-176. [PMID: 27766748 PMCID: PMC5297869 DOI: 10.1002/ejhf.656] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Natriuretic peptides (NPs) promote diuresis, natriuresis and vasodilation in early chronic heart failure (CHF), countering renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) overstimulation. Despite dramatic increases in circulating NP concentrations as CHF progresses, their effects become blunted. Increases in diuresis, natriuresis, and vasodilation after administration of exogenous atrial (ANP) or brain (BNP) natriuretic peptides are attenuated in patients with advanced CHF compared with controls. Several major factors may account for the reduced effectiveness of the natriuretic peptide system (NPS) in CHF. First, there is reduced availability of active forms of NPs, namely BNP. Second, target organ responsiveness becomes diminished. Third, the counter-regulatory hormones of the RAAS and SNS, and endothelin-1 become over-activated. Therefore, pharmacological approaches to enhance the functional effectiveness of the NPS in CHF have been explored in recent years. In terms of clinical outcomes, studies of synthetic BNP, or of neprilysin inhibitors alone or associated with an angiotensin converting enzyme inhibitor, have been controversial for several reasons. Recently, however, encouraging results have been obtained with the angiotensin receptor neprilysin inhibitor sacubitril/valsartan. The available data show that treatment with sacubitril/valsartan is associated with increased levels of NPs and their intracellular mediator cyclic guanosine monophosphate, suggesting improved functional effectiveness of the NPS, in addition to beneficial effects on mortality and morbidity outcomes. Therefore, combined targeting of the NPS and RAAS with sacubitril/valsartan emerges as the current optimal approach for redressing the neurohormonal imbalance in CHF.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, and Department of Cardiology and Cardiac SurgeryUniversity of Navarra Clinic, University of NavarraPamplonaSpain
| |
Collapse
|
100
|
Nagai-Okatani C, Kangawa K, Minamino N. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization. J Pept Sci 2017; 23:486-495. [PMID: 28120499 DOI: 10.1002/psc.2969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022]
Abstract
Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|