51
|
Kim BM, Lee YJ, Choi YH, Park EM, Kang JL. Gas6 Ameliorates Inflammatory Response and Apoptosis in Bleomycin-Induced Acute Lung Injury. Biomedicines 2021; 9:1674. [PMID: 34829903 PMCID: PMC8615678 DOI: 10.3390/biomedicines9111674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.
Collapse
Affiliation(s)
- Bo-Min Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
52
|
Yu D, Xiaolin Z, Lei P, Feng L, Lin Z, Jie S. Extracorporeal Membrane Oxygenation for Acute Toxic Inhalations: Case Reports and Literature Review. Front Med (Lausanne) 2021; 8:745555. [PMID: 34660650 PMCID: PMC8511675 DOI: 10.3389/fmed.2021.745555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 01/20/2023] Open
Abstract
Previous studies have shown that poisoning is a major threat to human health. Inhalation of acute toxic gas has been linked to serious health consequences. Among the antidotes for poisoning currently used, supportive care is the most common intervention in clinical practice. Severe acute respiratory distress syndrome (ARDS) and/or refractory cardiogenic shock or cardiac arrest caused by toxins are associated with high mortality and are difficult to treat. Extracorporeal membrane oxygenation (ECMO) is an aggressive supportive measure used to manage severely poisoned patients. This study presents two cases of acute toxic gases inhalation, severe ARDS and circulatory instability induced by bromine inhalation, and ARDS induced by nitric acid inhalation which were successfully treated with ECMO. The ECMO techniques used in the animal models and in human cases to treat severe poisoning are described as well as the indications, contraindications, complications, and weaning of ECMO.
Collapse
Affiliation(s)
- Dun Yu
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhang Xiaolin
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pan Lei
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Feng
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhang Lin
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shen Jie
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Medical Research Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
54
|
Corylin Ameliorates LPS-Induced Acute Lung Injury via Suppressing the MAPKs and IL-6/STAT3 Signaling Pathways. Pharmaceuticals (Basel) 2021; 14:ph14101046. [PMID: 34681270 PMCID: PMC8537250 DOI: 10.3390/ph14101046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.
Collapse
|
55
|
Agrawal DK, Smith BJ, Sottile PD, Albers DJ. A Damaged-Informed Lung Ventilator Model for Ventilator Waveforms. Front Physiol 2021; 12:724046. [PMID: 34658911 PMCID: PMC8517122 DOI: 10.3389/fphys.2021.724046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Motivated by a desire to understand pulmonary physiology, scientists have developed physiological lung models of varying complexity. However, pathophysiology and interactions between human lungs and ventilators, e.g., ventilator-induced lung injury (VILI), present challenges for modeling efforts. This is because the real-world pressure and volume signals may be too complex for simple models to capture, and while complex models tend not to be estimable with clinical data, limiting clinical utility. To address this gap, in this manuscript we developed a new damaged-informed lung ventilator (DILV) model. This approach relies on mathematizing ventilator pressure and volume waveforms, including lung physiology, mechanical ventilation, and their interaction. The model begins with nominal waveforms and adds limited, clinically relevant, hypothesis-driven features to the waveform corresponding to pulmonary pathophysiology, patient-ventilator interaction, and ventilator settings. The DILV model parameters uniquely and reliably recapitulate these features while having enough flexibility to reproduce commonly observed variability in clinical (human) and laboratory (mouse) waveform data. We evaluate the proof-in-principle capabilities of our modeling approach by estimating 399 breaths collected for differently damaged lungs for tightly controlled measurements in mice and uncontrolled human intensive care unit data in the absence and presence of ventilator dyssynchrony. The cumulative value of mean squares error for the DILV model is, on average, ≈12 times less than the single compartment lung model for all the waveforms considered. Moreover, changes in the estimated parameters correctly correlate with known measures of lung physiology, including lung compliance as a baseline evaluation. Our long-term goal is to use the DILV model for clinical monitoring and research studies by providing high fidelity estimates of lung state and sources of VILI with an end goal of improving management of VILI and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Deepak K. Agrawal
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Informatics and Data Science, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D. Sottile
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Albers
- Department of Bioengineering, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, United States
- Section of Informatics and Data Science, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| |
Collapse
|
56
|
Hussain MS, Sharma P, Dhanjal DS, Khurana N, Vyas M, Sharma N, Mehta M, Tambuwala MM, Satija S, Sohal SS, Oliver BGG, Sharma HS. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases. Chem Biol Interact 2021; 348:109637. [PMID: 34506765 DOI: 10.1016/j.cbi.2021.109637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, BT52 1SA, United Kingdom
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7248, Australia
| | - Brian G G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hari S Sharma
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
57
|
Bein K, Birru RL, Wells H, Larkin TP, Ge T, Leikauf GD. Sex-dependent acrolein sensitivity in mice is associated with differential lung cell, protein, and transcript changes. Physiol Rep 2021; 9:e14997. [PMID: 34605213 PMCID: PMC8488558 DOI: 10.14814/phy2.14997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Acrolein is a reactive inhalation hazard. Acrolein's initial interaction, which in itself can be function-altering, is followed by time-dependent cascade of complex cellular and pulmonary responses that dictate the severity of the injury. To investigate the pathophysiological progression of sex-dependent acrolein-induced acute lung injury, C57BL/6J mice were exposed for 30 min to sublethal, but toxic, and lethal acrolein. Male mice were more sensitive than female mice. Acrolein of 50 ppm was sublethal to female but lethal to male mice, and 75 ppm was lethal to female mice. Lethal and sublethal acrolein exposure decreased bronchoalveolar lavage (BAL) total cell number at 3 h after exposure. The cell number decrease was followed by progressive total cell and neutrophil number and protein increases. The BAL total cell number in female mice exposed to a sublethal, but not lethal dose, returned to control levels at 16 h. In contrast, BAL protein content and neutrophil number were higher in mice exposed to lethal compared to sublethal acrolein. RNASeq pathway analysis identified greater increased lung neutrophil, glutathione metabolism, oxidative stress responses, and CCL7 (aka MCP-3), CXCL10 (aka IP-10), and IL6 transcripts in males than females, whereas IL10 increased more in female than male mice. Thus, the IL6:IL10 ratio, an indicator of disease severity, was greater in males than females. Further, H3.3 histone B (H3F3B) and pro-platelet basic protein (PPBP aka CXCL7), transcripts increased in acrolein exposed mouse BAL and plasma at 3 h, while H3F3B protein that is associated with neutrophil extracellular traps formation increased at 12 h. These results suggest that H3F3B and PPBP transcripts increase may contribute to extracellular H3F3B and PPBP proteins increase.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rahel L. Birru
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Heather Wells
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Theodore P. Larkin
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tengziyi Ge
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - George D. Leikauf
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
58
|
Seo SU, Jeong JH, Baek BS, Choi JM, Choi YS, Ko HJ, Kweon MN. Bleomycin-Induced Lung Injury Increases Resistance to Influenza Virus Infection in a Type I Interferon-Dependent Manner. Front Immunol 2021; 12:697162. [PMID: 34484196 PMCID: PMC8416411 DOI: 10.3389/fimmu.2021.697162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) results in acute respiratory disease that causes fatal respiratory diseases; however, little is known about the incidence of influenza infection in ALI. Using a ALI-mouse model, we investigated the pro-inflammatory cytokine response to ALI and influenza infection. Mice treated with bleomycin (BLM), which induces ALI, were more resistant to influenza virus infection and exhibited higher levels of type I interferon (IFN-I) transcription during the early infection period than that in PBS-treated control mice. BLM-treated mice also exhibited a lower viral burden, reduced pro-inflammatory cytokine production, and neutrophil levels. In contrast, BLM-treated IFN-I receptor 1 (IFNAR1)-knockout mice failed to show this attenuated phenotype, indicating that IFN-I is key to the antiviral response in ALI-induced mice. The STING/TBK1/IRF3 pathway was found to be involved in IFN-I production and the establishment of an antiviral environment in the lung. The depletion of plasmacytoid dendritic cells (pDCs) reduced the effect of BLM treatment against influenza virus infection, suggesting that pDCs are the major source of IFN-I and are crucial for defense against viral infection in BLM-induced lung injury. Overall, this study showed that BLM-mediated ALI in mice induced the release of double-stranded DNA, which in turn potentiated IFN-I-dependent pulmonary viral resistance by activating the STING/TBK1/IRF3 pathway in association with pDCs.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Bum-Seo Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, South Korea
| |
Collapse
|
59
|
Yildirim S, Cinleti BA, Saygili SM, Senel E, Ediboglu O, Kirakli C. The effect of driving pressures in COVID-19 ARDS: Lower may still be better as in classic ARDS. Respir Investig 2021; 59:628-634. [PMID: 34244106 PMCID: PMC8258546 DOI: 10.1016/j.resinv.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The respiratory dynamics of coronavirus disease 2019 (COVID-19) patients under invasive ventilation are still not well known. In this prospective cohort, we aimed to assess the characteristics of the respiratory system in COVID-19 patients under invasive mechanical ventilation and evaluate their relationship with mortality. METHODS Fifty-eight COVID-19 patients who underwent invasive mechanical ventilation between March 11, 2020 and September 1, 2020 were enrolled for the present study. Demographics and laboratory values at baseline were recorded. Respiratory variables such as tidal volume, plateau pressure, positive end expiratory pressure, static compliance, and driving pressure were recorded daily under passive conditions. Further, the median values were analyzed. RESULTS Median age of the patients was 64 years (58-72). Mortality was 60% on day 28. Plateau pressure, driving pressure, and static compliance significantly differ between the survivors and non-survivors. When patients were categorized into two groups based on the median driving pressure (Pdrive) of ≤15 cmH2O or >15 cmH2O during their invasive mechanical ventilation period, there was significantly better survival on day 28 in patients having a Pdrive ≤ 15 cmH2O [28 days (95% CI = 19-28) vs 16 days (95% CI = 6-25), (log-rank p = 0.026). CONCLUSION COVID-19 related acute respiratory distress syndrome (ARDS) seemed to have similar characteristics as other forms of ARDS. Lung protective ventilation with low plateau and driving pressures might be related to lower mortality.
Collapse
Affiliation(s)
- Süleyman Yildirim
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey
| | - Burcu Acar Cinleti
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey
| | - Saba Mukaddes Saygili
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey
| | - Emre Senel
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey
| | - Ozlem Ediboglu
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey
| | - Cenk Kirakli
- University of Health Sciences, Dr. Suat Seren Chest Disease and Chest Surgery Training and Research Hospital, Intensive Care Unit, İzmir, Turkey.
| |
Collapse
|
60
|
Procollagen I and III as Prognostic Markers in Patients Treated with Extracorporeal Membrane Oxygenation: A Prospective Observational Study. J Clin Med 2021; 10:jcm10163686. [PMID: 34441982 PMCID: PMC8397027 DOI: 10.3390/jcm10163686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Procollagen peptides have been associated with lung fibroproliferation and poor outcomes in patients with acute respiratory distress syndrome (ARDS). Therefore, serum procollagen concentrations might have prognostic value in ARDS patients treated with extracorporeal membrane oxygenation (ECMO). Methods: In a prospective cohort study, serum N-terminal procollagen I-peptide (PINP) and N-terminal procollagen III-peptide (PIIINP) concentrations in twenty-three consecutive patients with severe ARDS treated with ECMO were measured at the time of ECMO initiation and during the course of treatment. The predictive value of PINP and PIIINP at the time of ECMO initiation was tested with a univariable logistic regression and a receiver operating characteristic (ROC) curve analysis. Results: Thirteen patients survived to intensive care unit (ICU) discharge. Non-survivors had higher serum PINP and PIIINP concentrations at all points in time during the course of treatment. Serum PIIINP at the day of ECMO initiation showed an odds ratio of 1.37 (95% CI 1.10–1.89, p = 0.017) with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.87 (95% CI 0.69–1.00, p = 0.0029) for death during the course of treatment. Conclusions: PINP and PIIINP concentrations differ between survivors and non-survivors in ARDS treated with ECMO. This exploratory hypothesis generating study suggests an association between PIIINP serum concentrations at ECMO initiation and an unfavorable clinical outcome.
Collapse
|
61
|
Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplant 2021; 29:963689720954140. [PMID: 33050736 PMCID: PMC7784512 DOI: 10.1177/0963689720954140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study tested the hypothesis that both allogenic adipose-derived mesenchymal stem cells (ADMSCs) and human inducible pluripotent stem cell-derived MSCs (iPS-MSCs) offered a comparable effect for protecting the lung against ischemia-reperfusion (IR) injury in rodent through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways. Adult male Sprague–Dawley rats (n = 32) were categorized into group 1 (sham-operated control), group 2 (IRI), group 3 [IRI + ADMSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and group 4 [IRI + iPS-MSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and lungs were harvested at 72 h after IR procedure. In vitro study demonstrated that protein expressions of three signaling pathways in inflammation (TLR4/MyD88/TAK1/IKK/I-κB/NF-κB/Cox-2/TNF-α/IL-1ß), mitochondrial damage/cell apoptosis (cytochrome C/cyclophilin D/DRP1/ASK1/APAF-1/mitochondrial-Bax/caspase3/8/9), and autophagy/cell death (ULK1/beclin-1/Atg5,7,12, ratio of LCB3-II/LC3B-I, p-AKT/m-TOR) were significantly higher in lung epithelial cells + 6h hypoxia as compared with the control, and those were significantly reversed by iPS-MSC treatment (all P < 0.001). Flow cytometric analysis revealed that percentages of the inflammatory cells in bronchioalveolar lavage fluid and circulation, and immune cells in circulation/spleen as well as circulatory early and late apoptotic cells were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4 (all P < 0.0001). Microscopy showed the lung injury score and numbers of inflammatory cells and Western blot analysis showed the signaling pathways of inflammation, mitochondrial damage/cell apoptosis, autophagy, and oxidative stress exhibited an identical pattern of flow cytometric results among the four groups (all P < 0.0001). Both xenogeneic and allogenic MSCs protected the lung against IRI via suppressing the inflammatory, oxidative stress, and autophagic signaling.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jun-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fan-Yen Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,*Both the authors contributed equally to this article
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Department of Nursing, Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.,*Both the authors contributed equally to this article
| |
Collapse
|
62
|
Sud S, Friedrich JO, Adhikari NKJ, Fan E, Ferguson ND, Guyatt G, Meade MO. Comparative Effectiveness of Protective Ventilation Strategies for Moderate and Severe Acute Respiratory Distress Syndrome. A Network Meta-Analysis. Am J Respir Crit Care Med 2021; 203:1366-1377. [PMID: 33406009 DOI: 10.1164/rccm.202008-3039oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Choosing the best ventilation strategy for acute respiratory distress syndrome (ARDS) is complex, yet it is highly relevant to clinicians during a respiratory pandemic. Objectives: To compare the effects of low Vt, high Vt, high positive end-expiratory pressure (PEEP), prone ventilation, high-frequency oscillation, and venovenous extracorporeal membrane oxygenation (VV ECMO) on mortality in ARDS. Methods: We performed a network meta-analysis of randomized trials. We applied the Grading of Recommendations Assessment, Development and Evaluation methodology to discern the relative effect of interventions on mortality. Measurements and Main Results: We analyzed 34 trials including 9,085 adults with primarily moderate-to-severe ARDS (median baseline PaO2/FiO2, 118; interquartile range, 110-143). Prone positioning combined with low Vt was the best strategy (risk ratio [RR], 0.74 [95% confidence interval (CI), 0.60-0.92] vs. low Vt; high certainty). VV ECMO was also rated among the best (RR, 0.78 [95% CI, 0.58-1.05] vs. low Vt; RR, 0.66; [95% CI, 0.49-0.88] vs. high Vt) but was rated with lower certainty because VV ECMO was restricted to very severe ARDS (mean baseline PaO2/FiO2<75). High PEEP combined with low Vt was rated intermediately (RR, 0.91 [95% CI, 0.81-1.03] vs. low Vt; low certainty; RR, 0.77 [95% CI, 0.65-0.91] vs. high Vt; moderate certainty). High Vt was rated worst (RR, 1.19 [95% CI, 1.02-1.37] vs. low Vt; moderate certainty), and we found no support for high-frequency oscillation or high Vt with prone ventilation. Conclusions: These findings suggest that combining low Vt with prone ventilation is associated with the greatest reduction in mortality for critically ill adults with moderate-to-severe ARDS.
Collapse
Affiliation(s)
- Sachin Sud
- Division of Critical Care, Department of Medicine, Trillium Health Partners-University of Toronto, Mississauga, Ontario, Canada.,Institute of Better Health, Trillium Health Partners, Mississauga, Ontario, Canada
| | | | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Guyatt
- Department of Health Research Methods, Evidence and Impact
| | - Maureen O Meade
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
63
|
Chen J, Li C, Liang Z, Li C, Li Y, Zhao Z, Qiu T, Hao H, Niu R, Chen L. Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway. Cytotherapy 2021; 23:918-930. [PMID: 34272174 DOI: 10.1016/j.jcyt.2021.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Acute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors' study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms. METHODS A total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein. RESULTS The administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1. CONCLUSIONS These findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.
Collapse
Affiliation(s)
- Jie Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chonghui Li
- Department of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Institute of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhixin Liang
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Chunsun Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Yanqin Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhigang Zhao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Tian Qiu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| | - Liangan Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China.
| |
Collapse
|
64
|
Leiphrakpam PD, Weber HR, McCain A, Matas RR, Duarte EM, Buesing KL. A novel large animal model of smoke inhalation-induced acute respiratory distress syndrome. Respir Res 2021; 22:198. [PMID: 34233680 PMCID: PMC8261975 DOI: 10.1186/s12931-021-01788-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is multifactorial and can result from sepsis, trauma, or pneumonia, amongst other primary pathologies. It is one of the major causes of death in critically ill patients with a reported mortality rate up to 45%. The present study focuses on the development of a large animal model of smoke inhalation-induced ARDS in an effort to provide the scientific community with a reliable, reproducible large animal model of isolated toxic inhalation injury-induced ARDS. Methods Animals (n = 21) were exposed to smoke under general anesthesia for 1 to 2 h (median smoke exposure = 0.5 to 1 L of oak wood smoke) after the ultrasound-guided placement of carotid, pulmonary, and femoral artery catheters. Peripheral oxygen saturation (SpO2), vital signs, and ventilator parameters were monitored throughout the procedure. Chest x-ray, carotid, femoral and pulmonary artery blood samples were collected before, during, and after smoke exposure. Animals were euthanized and lung tissue collected for analysis 48 h after smoke inhalation. Results Animals developed ARDS 48 h after smoke inhalation as reflected by a decrease in SpO2 by approximately 31%, PaO2/FiO2 ratio by approximately 208 (50%), and development of bilateral, diffuse infiltrates on chest x-ray. Study animals also demonstrated a significant increase in IL-6 level, lung tissue injury score and wet/dry ratio, as well as changes in other arterial blood gas (ABG) parameters. Conclusions This study reports, for the first time, a novel large animal model of isolated smoke inhalation-induced ARDS without confounding variables such as cutaneous burn injury. Use of this unique model may be of benefit in studying the pathophysiology of inhalation injury or for development of novel therapeutics.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-3280, USA
| | - Hannah R Weber
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-3280, USA
| | - Andrea McCain
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Roser Romaguera Matas
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ernesto Martinez Duarte
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keely L Buesing
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| |
Collapse
|
65
|
Saha R, Assouline B, Mason G, Douiri A, Summers C, Shankar-Hari M. Impact of differences in acute respiratory distress syndrome randomised controlled trial inclusion and exclusion criteria: systematic review and meta-analysis. Br J Anaesth 2021; 127:85-101. [PMID: 33812666 PMCID: PMC9768208 DOI: 10.1016/j.bja.2021.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Control-arm mortality varies between acute respiratory distress syndrome (ARDS) RCTs. METHODS We systematically reviewed ARDS RCTs that commenced recruitment after publication of the American-European Consensus (AECC) definition (MEDLINE, Embase, and Cochrane central register of controlled trials; January 1994 to October 2020). We assessed concordance of RCT inclusion criteria to ARDS consensus definitions and whether exclusion criteria are strongly or poorly justified. We estimated the proportion of between-trial difference in control-arm 28-day mortality explained by the inclusion criteria and RCT design characteristics using meta-regression. RESULTS A literature search identified 43 709 records. One hundred and fifty ARDS RCTs were included; 146/150 (97.3%) RCTs defined ARDS inclusion criteria using AECC/Berlin definitions. Deviations from consensus definitions, primarily aimed at improving ARDS diagnostic certainty, frequently related to duration of hypoxaemia (117/146; 80.1%). Exclusion criteria could be grouped by rationale for selection into strongly or poorly justified criteria. Common poorly justified exclusions included pregnancy related, age, and comorbidities (infectious/immunosuppression, hepatic, renal, and human immunodeficiency virus/acquired immunodeficiency syndrome). Control-arm 28-day mortality varied between ARDS RCTs (mean: 29.8% [95% confidence interval: 27.0-32.7%; I2=88.8%; τ2=0.02; P<0.01]), and differed significantly between RCTs with different Pao2:FiO2 ratio inclusion thresholds (26.6-39.9 kPa vs <26.6 kPa; P<0.01). In a meta-regression model, inclusion criteria and RCT design characteristics accounted for 30.6% of between-trial difference (P<0.01). CONCLUSIONS In most ARDS RCTs, consensus definitions are modified to use as inclusion criteria. Between-RCT mortality differences are mostly explained by the Pao2:FiO2 ratio threshold within the consensus definitions. An exclusion criteria framework can be applied when designing and reporting exclusion criteria in future ARDS RCTs.
Collapse
Affiliation(s)
- Rohit Saha
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Georgina Mason
- Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, UK; National Institute for Health Research Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Manu Shankar-Hari
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
66
|
Histone Deacetylase 7 Inhibition in a Murine Model of Gram-Negative Pneumonia-Induced Acute Lung Injury. Shock 2021; 53:344-351. [PMID: 31083049 DOI: 10.1097/shk.0000000000001372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pulmonary infections remain the most common cause of Acute Respiratory Distress Syndrome (ARDS), a pulmonary inflammatory disease with high mortality, for which no targeted therapy currently exists. We have previously demonstrated an ameliorated syndrome with early, broad spectrum Histone Deacetylase (HDAC) inhibition in a murine model of gram-negative pneumonia-induced Acute Lung Injury (ALI), the underlying pulmonary pathologic phenotype leading to ARDS. With the current project we aim to determine if selective inhibition of a specific HDAC leads to a similar pro-survival phenotype, potentially pointing to a future therapeutic target. METHODS C57Bl/6 mice underwent endotracheal instillation of 30×10Escherichia coli (strain 19138) versus saline (n = 24). Half the infected mice were administered Trichostatin A (TSA) 30 min later. All animals were sacrificed 6 h later for tissue sampling and HDAC quantification, while another set of animals (n = 24) was followed to determine survival. Experiments were repeated with selective siRNA inhibition of the HDAC demonstrating the greatest inhibition versus scrambled siRNA (n = 24). RESULTS TSA significantly ameliorated the inflammatory phenotype and improved survival in infected-ALI mice, and HDAC7 was the HDAC with the greatest transcription and protein translation suppression. Similar results were obtained with selective HDAC7 siRNA inhibition compared with scrambled siRNA. CONCLUSION HDAC7 appears to play a key role in the inflammatory response that leads to ALI after gram-negative pneumonia in mice.
Collapse
|
67
|
Ma X, Li X, Di Q, Zhao X, Zhang R, Xiao Y, Sun P, Tang H, Quan J, Xiao W, Chen W. Natural molecule Munronoid I attenuates LPS-induced acute lung injury by promoting the K48-linked ubiquitination and degradation of TAK1. Biomed Pharmacother 2021; 138:111543. [PMID: 34311538 DOI: 10.1016/j.biopha.2021.111543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1β and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1β)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.
Collapse
Affiliation(s)
- Xingyu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, PR China.
| |
Collapse
|
68
|
Tan W, Xu DY, Xu MJ, Wang ZF, Dai B, Li LL, Zhao HW, Wang W, Kang J. The efficacy and tolerance of prone positioning in non-intubation patients with acute hypoxemic respiratory failure and ARDS: a meta-analysis. Ther Adv Respir Dis 2021; 15:17534666211009407. [PMID: 33888007 PMCID: PMC8071979 DOI: 10.1177/17534666211009407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background and aims: The application of prone positioning with acute hypoxemic respiratory failure (AHRF) or acute respiratory distress syndrome (ARDS) in non-intubation patients is increasing gradually, applying prone positioning for more high-flow nasal oxygen therapy (HFNC) and non-invasive ventilation (NIV) patients. This meta-analysis evaluates the efficacy and tolerance of prone positioning combined with non-invasive respiratory support in patients with AHRF or ARDS. Methods: We searched randomized controlled trials (RCTs) (prospective or retrospective cohort studies, RCTs and case series) published in PubMed, EMBASE and the Cochrane Central Register of Controlled Trials from 1 January 2000 to 1 July 2020. We included studies that compared prone and supine positioning with non-invasive respiratory support in awake patients with AHRF or ARDS. The meta-analyses used random effects models. The methodological quality of the RCTs was evaluated using the Newcastle–Ottawa quality assessment scale. Results: A total of 16 studies fulfilled selection criteria and included 243 patients. The aggregated intubation rate and mortality rate were 33% [95% confidence interval (CI): 0.26–0.42, I2 = 25%], 4% (95% CI: 0.01–0.07, I2 = 0%), respectively, and the intolerance rate was 7% (95% CI: 0.01–0.12, I2 = 5%). Prone positioning increased PaO2/FiO2 [mean difference (MD) = 47.89, 95% CI: 28.12–67.66; p < 0.00001, I2 = 67%] and SpO2 (MD = 4.58, 95% CI: 1.35–7.80, p = 0.005, I2 = 97%), whereas it reduced respiratory rate (MD = −5.01, 95% CI: −8.49 to −1.52, p = 0.005, I2 = 85%). Subgroup analyses demonstrated that the intubation rate of shorter duration prone (⩽5 h/day) and longer duration prone (>5 h/day) were 34% and 21%, respectively; and the mortality rate of shorter duration prone (⩽5 h/day) and longer duration prone (>5 h/day) were 6% and 0%, respectively. PaO2/FiO2 and SpO2 were significantly improved in COVID-19 patients and non-COVID-19 patients. Conclusion: Prone positioning could improve the oxygenation and reduce respiratory rate in both COVID-19 patients and non-COVID-19 patients with non-intubated AHRF or ARDS. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Wei Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Yang Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng-Jiao Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zan-Feng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| | - Li-Li Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| | - Hong-Wen Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
69
|
Marx G, Bickenbach J, Fritsch SJ, Kunze JB, Maassen O, Deffge S, Kistermann J, Haferkamp S, Lutz I, Voellm NK, Lowitsch V, Polzin R, Sharafutdinov K, Mayer H, Kuepfer L, Burghaus R, Schmitt W, Lippert J, Riedel M, Barakat C, Stollenwerk A, Fonck S, Putensen C, Zenker S, Erdfelder F, Grigutsch D, Kram R, Beyer S, Kampe K, Gewehr JE, Salman F, Juers P, Kluge S, Tiller D, Wisotzki E, Gross S, Homeister L, Bloos F, Scherag A, Ammon D, Mueller S, Palm J, Simon P, Jahn N, Loeffler M, Wendt T, Schuerholz T, Groeber P, Schuppert A. Algorithmic surveillance of ICU patients with acute respiratory distress syndrome (ASIC): protocol for a multicentre stepped-wedge cluster randomised quality improvement strategy. BMJ Open 2021; 11:e045589. [PMID: 34550901 PMCID: PMC8039261 DOI: 10.1136/bmjopen-2020-045589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The acute respiratory distress syndrome (ARDS) is a highly relevant entity in critical care with mortality rates of 40%. Despite extensive scientific efforts, outcome-relevant therapeutic measures are still insufficiently practised at the bedside. Thus, there is a clear need to adhere to early diagnosis and sufficient therapy in ARDS, assuring lower mortality and multiple organ failure. METHODS AND ANALYSIS In this quality improvement strategy (QIS), a decision support system as a mobile application (ASIC app), which uses available clinical real-time data, is implemented to support physicians in timely diagnosis and improvement of adherence to established guidelines in the treatment of ARDS. ASIC is conducted on 31 intensive care units (ICUs) at 8 German university hospitals. It is designed as a multicentre stepped-wedge cluster randomised QIS. ICUs are combined into 12 clusters which are randomised in 12 steps. After preparation (18 months) and a control phase of 8 months for all clusters, the first cluster enters a roll-in phase (3 months) that is followed by the actual QIS phase. The remaining clusters follow in month wise steps. The coprimary key performance indicators (KPIs) consist of the ARDS diagnostic rate and guideline adherence regarding lung-protective ventilation. Secondary KPIs include the prevalence of organ dysfunction within 28 days after diagnosis or ICU discharge, the treatment duration on ICU and the hospital mortality. Furthermore, the user acceptance and usability of new technologies in medicine are examined. To show improvements in healthcare of patients with ARDS, differences in primary and secondary KPIs between control phase and QIS will be tested. ETHICS AND DISSEMINATION Ethical approval was obtained from the independent Ethics Committee (EC) at the RWTH Aachen Faculty of Medicine (local EC reference number: EK 102/19) and the respective data protection officer in March 2019. The results of the ASIC QIS will be presented at conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER DRKS00014330.
Collapse
Affiliation(s)
- Gernot Marx
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Johannes Bickenbach
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Sebastian Johannes Fritsch
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Julian Benedict Kunze
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Oliver Maassen
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Saskia Deffge
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Jennifer Kistermann
- Department of Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
| | - Silke Haferkamp
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Division Information Technology, University Hospital Aachen, Aachen, Germany
| | - Irina Lutz
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Division Information Technology, University Hospital Aachen, Aachen, Germany
| | - Nora Kristiana Voellm
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Division Information Technology, University Hospital Aachen, Aachen, Germany
| | - Volker Lowitsch
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Healthcare IT Solutions GmbH, Aachen, Germany
| | - Richard Polzin
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute for Computational Biomedicine II, RWTH Aachen University, Aachen, Germany
| | - Konstantin Sharafutdinov
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute for Computational Biomedicine II, RWTH Aachen University, Aachen, Germany
| | - Hannah Mayer
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Systems Pharmacology & Medicine, Bayer AG, Leverkusen, Germany
| | - Lars Kuepfer
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Systems Pharmacology & Medicine, Bayer AG, Leverkusen, Germany
| | - Rolf Burghaus
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Systems Pharmacology & Medicine, Bayer AG, Leverkusen, Germany
| | - Walter Schmitt
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Clinical Pharmacometry, Bayer AG, Leverkusen, Germany
| | - Joerg Lippert
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Clinical Pharmacometry, Bayer AG, Leverkusen, Germany
| | - Morris Riedel
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Chadi Barakat
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - André Stollenwerk
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Informatik 11 - Embedded Software, RWTH Aachen University, Aachen, Germany
| | - Simon Fonck
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Informatik 11 - Embedded Software, RWTH Aachen University, Aachen, Germany
| | - Christian Putensen
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Bonn, Bonn, Germany
| | - Sven Zenker
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Bonn, Bonn, Germany
- Staff Unit for Medical and Scientific Technology Development and Coordination, Commercial Directorate, University of Bonn Medical Center, Applied Medical Informatics, Institute for Biometrics, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Felix Erdfelder
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Bonn, Bonn, Germany
- Staff Unit for Medical and Scientific Technology Development and Coordination, Commercial Directorate, University of Bonn Medical Center, Applied Medical Informatics, Institute for Biometrics, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Grigutsch
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Bonn, Bonn, Germany
- Staff Unit for Medical and Scientific Technology Development and Coordination, Commercial Directorate, University of Bonn Medical Center, Applied Medical Informatics, Institute for Biometrics, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Rainer Kram
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Susanne Beyer
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- IT Department, University Hospital Dusseldorf, Dusseldorf, Germany
| | - Knut Kampe
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Erik Gewehr
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Research IT, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Salman
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Juers
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Research IT, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Tiller
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- IT Department, Data Integration Center, University Hospital Halle, Halle, Germany
| | - Emilia Wisotzki
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- IT Department, Data Integration Center, University Hospital Halle, Halle, Germany
| | - Sebastian Gross
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Halle, Germany
| | - Lorenz Homeister
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Halle, Germany
| | - Frank Bloos
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - André Scherag
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Danny Ammon
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- IT Department, Data Integration Center, Jena University Hospital, Jena, Germany
| | - Susanne Mueller
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Julia Palm
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Philipp Simon
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Nora Jahn
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Markus Loeffler
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Thomas Wendt
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Data Integration Center, IT Department, University Hospital Leipzig, Leipzig, Germany
| | - Tobias Schuerholz
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Petra Groeber
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- IT Department, Rostock University Medical Center, Rostock, Germany
| | - Andreas Schuppert
- SMITH consortium of the German Medical Informatics Initiative, Leipzig, Germany
- Institute for Computational Biomedicine II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
70
|
Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, Li Y, Chen X, Weng D, Liu S, Zhang H, Su Y, Zhou J, Li H, Song Y. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res Ther 2021; 12:216. [PMID: 33781349 PMCID: PMC8008635 DOI: 10.1186/s13287-021-02276-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute respiratory failure with extremely high mortality and few effective treatments. Mesenchymal stem cells (MSCs) may reportedly contribute to tissue repair in ALI and ARDS. However, applications of MSCs have been restricted due to safety considerations and limitations in terms of large-scale production and industrial delivery. Alternatively, the MSC secretome has been considered promising for use in therapeutic approaches and has been advanced in pre-clinical and clinical trials. Furthermore, the MSC secretome can be freeze-dried into a stable and ready-to-use supernatant lyophilized powder (SLP) form. Currently, there are no studies on the role of MSC SLP in ALI. METHODS Intratracheal bleomycin was used to induce ALI in mice, and intratracheal MSC SLP was administered as a treatment. Histopathological assessment was performed by hematoxylin and eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis, inflammatory infiltration, immunological cell counts, cytokine levels, and mRNA- and protein-expression levels of relevant targets were measured by performing terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, determining total cell and protein levels in bronchoalveolar lavage fluids, flow cytometry, multiple cytokine-detection techniques, and reverse transcriptase-quantitative polymerase chain reaction and western blot analysis, respectively. RESULTS We found that intratracheal MSC SLP considerably promoted cell survival, inhibited epithelial cell apoptosis, attenuated inflammatory cell recruitment, and reversed immunological imbalances induced by bleomycin. MSC SLP inhibited the interleukin 6-phosphorylated signal transducer and activator of transcription signaling pathway to activate tumor protein 63-jagged 2 signaling in basal cells, suppress T helper 17 cell differentiation, promote p63+ cell proliferation and lung damage repair, and attenuate inflammatory responses. CONCLUSIONS MSC SLP ameliorated ALI by activating p63 and promoting p63+ cell proliferation and the repair of damaged epithelial cells. The findings of this study also shed insight into ALI pathogenesis and imply that MSC SLP shows considerable therapeutic promise for treating ALI and ARDS.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meijia Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ge Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tingting Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yijia Li
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Xi Chen
- Yunnan Province Stem cell Bank, Kunming, 650101, Yunnan, China
| | - Dong Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongwei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Su
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| | - Huayin Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
71
|
Liu X, Wang L, Xing Q, Li K, Si J, Ma X, Mao L. Sevoflurane inhibits ferroptosis: A new mechanism to explain its protective role against lipopolysaccharide-induced acute lung injury. Life Sci 2021; 275:119391. [PMID: 33774026 DOI: 10.1016/j.lfs.2021.119391] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Sevoflurane (Sev) has protective effects in acute lung injury (ALI), but the relevant mechanisms are still not fully understood. The present study aimed to determine whether Sev exerts a protective effect on lipopolysaccharide (LPS)-induced ALI by regulating ferroptosis. In this study, we found that Sev could protect mice from lung injury caused by LPS stimulation, including extenuating lung histological damage, pulmonary edema and pulmonary vascular permeability, and the content of inflammatory factors in Bronchoalveolar lavage fluid (BALF), as well as improving the survival rate of ALI mice, which was in line with the effects of ferroptosis inhibitor ferrostatin-1. Simultaneously, Sev could eliminate the worsening effects of ferroptosis inducer Fe-citrate on LPS-induced ALI to a certain extent. Additionally, the administration of Sev could inhibit ferroptosis caused by LPS, which was manifested by reducing the accumulation of MDA and Fe2+, and increasing the levels of GSH and GPX4 in the lung tissues of ALI mice. It was also observed in BEAS-2B cells that the increased MDA and Fe2+ levels and the decreased GSH and GPX4 levels caused by LPS could be rescued by ferrostatin-1 and Sev. LPS stimulation compensatory up-regulated heme oxygenase-1 (HO-1) expression in mouse lung tissues and BEAS-2B cells, which could be enhanced by Sev. Moreover, HO-1 depletion could offset the inhibitory effect of Sev on LPS-induced ferroptosis and inflammation in BEAS-2B cells. Taken together, Sev inhibited ferroptosis by up-regulating HO-1 expression to reduce LPS-induced ALI, which may provide a possible mechanism for the application of Sev in clinical anesthesia.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Ling Wang
- Department of Anesthesiology, No. 989 Hospital of Joint Logistic Support Force of the Chinese People's Liberation Army, Luoyang 471003, Henan Province, China.
| | - Qunzhi Xing
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Kehan Li
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Jianluo Si
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xiaowu Ma
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Lianjing Mao
- Department of Anesthesiology, No. 989 Hospital of Joint Logistic Support Force of the Chinese People's Liberation Army, Luoyang 471003, Henan Province, China
| |
Collapse
|
72
|
Xu Y, Zhu J, Feng B, Lin F, Zhou J, Liu J, Shi X, Lu X, Pan Q, Yu J, Zhang Y, Li L, Cao H. Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8 + T cells in lipopolysaccharide-induced acute lung injury in mice. Cell Prolif 2021; 54:e13028. [PMID: 33738881 PMCID: PMC8088466 DOI: 10.1111/cpr.13028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Acute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study. Materials and methods We evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry. Results Mesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer's patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect. Conclusions The present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.
Collapse
Affiliation(s)
- Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Xuan Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China.,National Clinical Research Center for Infectious Diseases, Hangzhou City, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou City, China
| |
Collapse
|
73
|
Sinha T, Stinehart K, Moorer C, Spitzer C. Cardiopulmonary Arrest and Resuscitation in the Prone Patient: An Adult Simulation Case for Internal Medicine Residents. MEDEDPORTAL : THE JOURNAL OF TEACHING AND LEARNING RESOURCES 2021; 17:11081. [PMID: 33598532 PMCID: PMC7880259 DOI: 10.15766/mep_2374-8265.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is present in approximately 10% of ICU admissions and is associated with great morbidity and mortality. Prone ventilation has been shown to improve refractory hypoxemia and mortality in patients with ARDS. METHODS In this simulation, a 70-year-old male had been transferred to the ICU for ARDS and was undergoing scheduled prone ventilation as part of his care when he experienced a cardiopulmonary arrest secondary to a tension pneumothorax. Learners demonstrated how to manage cardiac arrest in a prone patient and subsequently identified and treated the tension pneumothorax that was the cause of his initial arrest. This single-session simulation for internal medicine residents (PGY 1-PGY 4) utilized a prone mannequin connected to a ventilator in a high-fidelity simulation center. Following the simulation, facilitators led a team debriefing and reviewed key learning objectives. RESULTS A total of 103 internal medicine residents participated in this simulation. Of those, 43 responded to a postsimulation survey. Forty-two of 43 agreed or strongly agreed that all learning objectives were met, that the simulation was appropriate for their level of training, and that their participation would be useful for their future practice. DISCUSSION We designed this simulation to improve learners' familiarity with prone cardiopulmonary resuscitation and to enhance overall comfort with cardiac arrest management. Postsimulation survey results and debriefings revealed that the simulation was a valuable education opportunity, and learners felt that their participation in this simulation would be helpful in their future practice.
Collapse
Affiliation(s)
- Tejas Sinha
- Chief Resident, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Kyle Stinehart
- Fellow, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center
| | - Cashay Moorer
- Medical Simulation Specialist, Clinical Skills Education and Assessment Center, The Ohio State University College of Medicine
| | - Carleen Spitzer
- Assistant Professor, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center
| |
Collapse
|
74
|
GYY4137 alleviates sepsis-induced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway. Life Sci 2021; 271:119192. [PMID: 33577850 DOI: 10.1016/j.lfs.2021.119192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 12/29/2022]
Abstract
AIMS GYY4137 [GYY, morpholin-4-ium-4-methoxyphenyl (morpholino) phosphinodithioate] is a novel and perfect hydrogen sulfide (H2S) donor that is stable in vivo and in vitro. H2S, along with CO and NO, has been recognized as the third physiological gas signaling molecule that plays an active role in fighting various lung infections. However, the mechanism by which GYY4137 affects cecal ligation and puncture (CLP)-induced acute lung injury (ALI) is not understood. This study aimed to investigate whether GYY4137 inhibits the activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome by inhibiting the PDGFRβ/Akt/NF-κB pathway. MAIN METHODS The model of CLP-induced ALI was established in vivo. The mice were subsequently treated with GYY4137 (25 μg/g and 50 μg/g) to simulate the realistic conditions of pathogenesis. Western blotting and immunohistochemical staining were used to examine protein expression, hematoxylin and eosin staining was used for the histopathological analysis, and the levels of inflammatory factors were determined using enzyme-linked immunosorbent assays (ELISAs). KEY FINDINGS GYY4137 significantly increased the 7-day survival of mice with septic peritonitis and protected against CLP-induced ALI, including decreasing neutrophil infiltration, improving sepsis-induced lung histopathological changes, diminishing lung tissue damage, and attenuating the severity of lung injury in mice. The protective effect of GYY4137 was undoubtedly dose-dependent. We discovered that GYY4137 reduced the levels of the p-PDGFRβ, p-NF-κB, ASC, NLRP3, caspase-1, and p-Akt proteins in septic mouse lung tissue. Akt regulates the generation of proinflammatory cytokines in endotoxemia-associated ALI by enhancing the nuclear translocation of NF-κB. SIGNIFICANCE These results indicate a new molecular mechanism explaining the effect of GYY4137 on the treatment of CLP-induced ALI in mice.
Collapse
|
75
|
Papazian L, Pauly V, Hamouda I, Daviet F, Orleans V, Forel JM, Roch A, Hraiech S, Boyer L. National incidence rate and related mortality for acute respiratory distress syndrome in France. Anaesth Crit Care Pain Med 2021; 40:100795. [PMID: 33359625 PMCID: PMC9896966 DOI: 10.1016/j.accpm.2020.100795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite many efforts to improve mechanical ventilation strategies and the use of rescue strategies, ARDS-related mortality remains high. The primary objective of this study was to determine the incidence and 90-day mortality of ARDS patients admitted to all French ICUs following the introduction of the Berlin definition of ARDS. PATIENTS AND METHODS The data source for this nationwide cohort study was the French national hospital database (Programme de Médicalisation des Systèmes d'Information (PMSI)), which systematically collects administrative and medical information related to all patients hospitalised and hospital stays. Patient-level data were obtained from the PMSI database for all patients admitted to an ICU from the 1st of January 2017, through the 31st of December 2017. The inclusion criteria were as follows: ICU patients ≥ 18 years old with at least one International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10) diagnosis code of J80 (ARDS), either as a primary diagnosis or a secondary diagnosis, during their ICU stay. RESULTS A total of 12,846 ICU adult patients with ARDS were included. The crude incidence of ARDS was 24.6 per 100,000 person-years, varying with age from 6.7 per 100,000 person-years for those 18 through 40 years of age to 51.9 per 100,000 person-years for those 68 through 76 years of age. The in-hospital mortality rate was 51.1%. Day-90 mortality (day-1 being the ICU admission) was 51.2% and increased with age from 29.0% for patients 18 through 40 years of age to 69.3% for patients 77 years of age or older (p < 0.001). Only 53.9% of the survivors were transferred home directly after hospital discharge. CONCLUSIONS The incidence and mortality of ARDS in adults in France are higher than that generally reported in other countries.
Collapse
Affiliation(s)
- Laurent Papazian
- Assistance Publique – Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France,Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Corresponding author at: Médecine Intensive Réanimation, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| | - Vanessa Pauly
- Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Unité d’Aide Méthodologique à la Recherche Clinique, Assistance Publique, Hôpitaux de Marseille, 13015 Marseille, France
| | - Ilyes Hamouda
- Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Unité d’Aide Méthodologique à la Recherche Clinique, Assistance Publique, Hôpitaux de Marseille, 13015 Marseille, France
| | - Florence Daviet
- Assistance Publique – Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France,Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France
| | - Veronica Orleans
- Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Unité d’Aide Méthodologique à la Recherche Clinique, Assistance Publique, Hôpitaux de Marseille, 13015 Marseille, France
| | - Jean-Marie Forel
- Assistance Publique – Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France,Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France
| | - Antoine Roch
- Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Assistance Publique – Hôpitaux de Marseille, Hôpital Nord, Service des Urgences, 13015 Marseille, France
| | - Sami Hraiech
- Assistance Publique – Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France,Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France
| | - Laurent Boyer
- Aix-Marseille Université, Faculté de Médecine, Centre d’Études et de Recherches sur les Services de Santé et qualité de vie EA 3279, 13005 Marseille, France,Unité d’Aide Méthodologique à la Recherche Clinique, Assistance Publique, Hôpitaux de Marseille, 13015 Marseille, France
| |
Collapse
|
76
|
Erfinanda L, Ravindran K, Kohse F, Gallo K, Preissner R, Walther T, Kuebler WM. Oestrogen-mediated upregulation of the Mas receptor contributes to sex differences in acute lung injury and lung vascular barrier regulation. Eur Respir J 2021; 57:13993003.00921-2020. [PMID: 32764118 DOI: 10.1183/13993003.00921-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 11/05/2022]
Abstract
Epidemiological data from the SARS-CoV-2 outbreak suggest sex differences in mortality and vulnerability; however, sex-dependent incidence of acute respiratory distress syndrome (ARDS) remains controversial and the sex-dependent mechanisms of endothelial barrier regulation are unknown. In premenopausal women, increased signalling of angiotensin (Ang)(1-7) via the Mas receptor has been linked to lower cardiovascular risk. Since stimulation of the Ang(1-7)/Mas axis protects the endothelial barrier in acute lung injury (ALI), we hypothesised that increased Ang(1-7)/Mas signalling may protect females over males in ALI/ARDS.Clinical data were collected from Charité inpatients (Berlin) and sex differences in ALI were assessed in wild-type (WT) and Mas-receptor deficient (Mas-/- ) mice. Endothelial permeability was assessed as weight change in isolated lungs and as transendothelial electrical resistance (TEER) in vitroIn 734 090 Charité inpatients (2005-2016), ARDS had a higher incidence in men as compared to women. In murine ALI, male WT mice had more lung oedema, protein leaks and histological evidence of injury than female WT mice. Lung weight change in response to platelet-activating factor (PAF) was more pronounced in male WT and female Mas-/- mice than in female WT mice, whereas Mas-receptor expression was higher in female WT lungs. Ovariectomy attenuated protection in female WT mice and reduced Mas-receptor expression. Oestrogen increased Mas-receptor expression and attenuated endothelial leakage in response to thrombin in vitro This effect was alleviated by Mas-receptor blockade.Improved lung endothelial barrier function protects female mice from ALI-induced lung oedema. This effect is partially mediated via enhanced Ang(1-7)/Mas signalling as a result of oestrogen-dependent Mas expression.
Collapse
Affiliation(s)
- Lasti Erfinanda
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Franziska Kohse
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany.,Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Kathleen Gallo
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Thomas Walther
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany .,Dept of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland.,Shared senior authorship
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Dept of Physiology and Dept of Surgery, University of Toronto, Toronto, ON, Canada.,Shared senior authorship
| |
Collapse
|
77
|
Li J, Xu MX, Dai Z, Xu T. Mitofusion 2 Overexpression Decreased Proliferation of Human Embryonic Lung Fibroblasts in Acute Respiratory Distress Syndrome through Inhibiting RAS-RAF-1-ERK1/2 Pathway. Curr Med Sci 2021; 40:1092-1098. [PMID: 33428137 DOI: 10.1007/s11596-020-2305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most fatal diseases worldwide. Pulmonary fibrosis occurs early in ARDS, and its severity plays a crucial role in ARDS mortality rate. Some studies suggested that fibroproliferation is an essential mechanism in ARDS. Mitofusion2 (Mfn2) overexpression plays a role in inhibiting cell proliferation. However, the role and potential mechanism of Mfn2 on the proliferation of fibroblasts is still unknown. In this study, we aimed at exploring the effect of Mfn2 on the human embryonic lung fibroblasts (HELF) and discussed its related mechanism. The HELF were treated with the Mfn2 overexpressing lentivirus (adv-Mfn2). The cell cycle was detected by flow cytometry. MTT, PCR and Western blotting were used to investigate the effect of Mfn2 on the proliferation of the HELF, collagen expression, the RAS-RAF-1-ERK1/2 pathway and the expression of cycle-related proteins (p21, p27, Rb, Raf-1, p-Raf-1, Erk1/2 and p-Erk1/2). The co-immunoprecipitation assay was used to explore the interaction between Mfn2 and Ras. The results showed that the overexpression of Mfn2 inhibited the proliferation of the HELF and induced the cell cycle arrest at the G0/G1 phase. Meanwhile, Mfn2 also inhibited the expression of collagen I, p-Erk and p-Raf-1. In addition, an interaction between Mfn2 and Ras existed in the HELF. This study suggests that the overexpression of Mfn2 can decrease the proliferation of HELF in ARDS, which was associated with the inhibition of the RAS-RAF-1-ERK1/2 pathway. The results may offer a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Juan Li
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mei-Xia Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Dai
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Xu
- Department of Critical Care Medicine, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
78
|
Goursaud S, Valette X, Dupeyrat J, Daubin C, du Cheyron D. Ultraprotective ventilation allowed by extracorporeal CO 2 removal improves the right ventricular function in acute respiratory distress syndrome patients: a quasi-experimental pilot study. Ann Intensive Care 2021; 11:3. [PMID: 33411146 PMCID: PMC7788545 DOI: 10.1186/s13613-020-00784-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Right ventricular (RV) failure is a common complication in moderate-to-severe acute respiratory distress syndrome (ARDS). RV failure is exacerbated by hypercapnic acidosis and overdistension induced by mechanical ventilation. Veno-venous extracorporeal CO2 removal (ECCO2R) might allow ultraprotective ventilation with lower tidal volume (VT) and plateau pressure (Pplat). This study investigated whether ECCO2R therapy could affect RV function. Methods This was a quasi-experimental prospective observational pilot study performed in a French medical ICU. Patients with moderate-to-severe ARDS with PaO2/FiO2 ratio between 80 and 150 mmHg were enrolled. An ultraprotective ventilation strategy was used with VT at 4 mL/kg of predicted body weight during the 24 h following the start of a low-flow ECCO2R device. RV function was assessed by transthoracic echocardiography (TTE) during the study protocol. Results The efficacy of ECCO2R facilitated an ultraprotective strategy in all 18 patients included. We observed a significant improvement in RV systolic function parameters. Tricuspid annular plane systolic excursion (TAPSE) increased significantly under ultraprotective ventilation compared to baseline (from 22.8 to 25.4 mm; p < 0.05). Systolic excursion velocity (S’ wave) also increased after the 1-day protocol (from 13.8 m/s to 15.1 m/s; p < 0.05). A significant improvement in the aortic velocity time integral (VTIAo) under ultraprotective ventilation settings was observed (p = 0.05). There were no significant differences in the values of systolic pulmonary arterial pressure (sPAP) and RV preload. Conclusion Low-flow ECCO2R facilitates an ultraprotective ventilation strategy thatwould improve RV function in moderate-to-severe ARDS patients. Improvement in RV contractility appears to be mainly due to a decrease in intrathoracic pressure allowed by ultraprotective ventilation, rather than a reduction of PaCO2.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000, Caen, France.
| | - Xavier Valette
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Julien Dupeyrat
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Cédric Daubin
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| | - Damien du Cheyron
- CHU de Caen Normandie, Service de Réanimation Médicale, Av côte de Nacre, 14000, Caen, France
| |
Collapse
|
79
|
Mock JR, Tune MK, Dial CF, Torres-Castillo J, Hagan RS, Doerschuk CM. Effects of IFN-γ on immune cell kinetics during the resolution of acute lung injury. Physiol Rep 2021; 8:e14368. [PMID: 32061190 PMCID: PMC7023890 DOI: 10.14814/phy2.14368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
The immunologic responses that occur early in the acute respiratory distress syndrome (ARDS) elicit immune‐mediated damage. The mechanisms underlying the resolution of ARDS, particularly the role of signaling molecules in regulating immune cell kinetics, remain important questions. Th1‐mediated responses can contribute to the pathogenesis of acute lung injury (ALI). Interferon‐gamma (IFN‐γ) orchestrates early inflammatory events, enhancing immune‐mediated damage. The current study investigated IFN‐γ during resolution in several experimental models of ALI. The absence of IFN‐γ resulted in altered kinetics of lymphocyte and macrophage responses, suggesting that IFN‐γ present in this microenvironment is influential in ALI resolution. Genetic deficiency of IFN‐γ or administering neutralizing IFN‐γ antibodies accelerated the pace of resolution. Neutralizing IFN‐γ decreased the numbers of interstitial and inflammatory macrophages and increased alveolar macrophage numbers during resolution. Our results underline the complexity of lung injury resolution and provide insight into the effects through which altered IFN‐γ concentrations affect immune cell kinetics and the rate of resolution. These findings suggest that therapies that spatially or temporally control IFN‐γ signaling may promote ALI resolution. Identifying and elucidating the mechanisms critical to ALI resolution will allow the development of therapeutic approaches to minimize collateral tissue damage without adversely altering the response to injury.
Collapse
Affiliation(s)
- Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Catherine F Dial
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Jose Torres-Castillo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.,Center for Airways Disease, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
80
|
Gender Differences in Low-Molecular-Mass-Induced Acute Lung Inflammation in Mice. Int J Mol Sci 2021; 22:ijms22010419. [PMID: 33401552 PMCID: PMC7796370 DOI: 10.3390/ijms22010419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Gender differences in pulmonary inflammation have been well documented. Although low molecular mass hyaluronan (LMMHA) is known to trigger pulmonary lung inflammation, sex differences in susceptibility to LMMHA are still unknown. In this study, we test the hypothesis that mice may display sex-specific differences after LMMHA administration. After LMMHA administration, male mice have higher neutrophil, cytokine, and chemokine counts compared to that of their female counterparts. Additionally, Ovariectomized (OVX) mice show greater LMMHA-induced inflammation compared to that of mice with intact ovaries. Injections of OVX mice with 17β-estradiol can decrease inflammatory responses in the OVX mice. These results show that ovarian hormones regulate LMMHA induced lung inflammation.
Collapse
|
81
|
Han Y, Mu SC, Wang JL, Wei W, Zhu M, Du SL, Min M, Xu YJ, Song ZJ, Tong CY. MicroRNA-145 plays a role in mitochondrial dysfunction in alveolar epithelial cells in lipopolysaccharide-induced acute respiratory distress syndrome. World J Emerg Med 2021; 12:54-60. [PMID: 33505551 DOI: 10.5847/wjem.j.1920-8642.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) causes substantial mortalities. Alveolar epithelium is one of the main sites of cell injuries in ARDS. As an important kind of microRNAs (miRNAs), microRNA-145 (miR-145) has been studied in various diseases, while its role in ARDS has not been investigated. METHODS Lipopolysaccharide (LPS) was intratracheally instilled to establish a rat ARDS model. Cytokines from bronchoalveolar lavage fluid (BALF) were measured using rat tumor necrosis factor-α and interleukin-6 enzyme-linked immunosorbent assay kits (R&D Systems), and the pathological structures were evaluated using hematoxylin and eosin (H&E) staining and transmission electron microscope; the lung miR-145 messenger RNA (mRNA) was detected using quantitative polymerase chain reaction. Bioinformatics focused on the target genes and possible pathways of gene regulation. RESULTS A rat model of LPS-induced ARDS was successfully established. The miR-145 was down-regulated in the LPS-induced ARDS lung, and mitochondrial dysfunction was observed in alveolar epithelial cells, most obviously at 72 hours after LPS. TargetScan and miRDB databases were used to predict the target genes of miR-145. A total of 428 overlapping genes were identified, seven genes were associated with mitochondrial function, and Ogt, Camk2d, Slc8a3, and Slc25a25 were verified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, and Gene Ontology (GO) biological process was mainly enriched in signal transduction and transcription regulation. CONCLUSIONS The miR-145 is down-regulated in LPS-induced ARDS, and affects its downstream genes targeting mitochondrial functions.
Collapse
Affiliation(s)
- Yi Han
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Su-Cheng Mu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Li Wang
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Wei
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Zhu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi-Lin Du
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Min
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun-Jie Xu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhen-Ju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao-Yang Tong
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
82
|
Hsu CY, Lai CC, Yeh YP, Chang-Chuan C, Chen HH. Progression from Pneumonia to ARDS as a Predictor for Fatal COVID-19. J Infect Public Health 2020; 14:504-507. [PMID: 33743372 PMCID: PMC7834113 DOI: 10.1016/j.jiph.2020.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022] Open
Abstract
There is a serious concern over the variation of case fatality of COVID-19 patients that reflects the preparedness of the medical care system in response to the surge of pneumonia patients. We aimed to quantify the disease spectrum of COVID-19 on which we are based to develop a key indicator on the probability of progression from pneumonia to acute respiratory disease syndrome (ARDS) for fatal COVID-19. The retrospective cohort on 12 countries that have already experienced the epidemic of COVID-19 with available open data on the conformed cases with detailed information on mild respiratory disease (MRD), pneumonia, ARDS, and deaths were used. The pooled estimates from three countries with detailed information were 73% from MRD to pneumonia and 27% from MRD to recovery and the case-fatality rate of ARDS was 43%. The progression from pneumonia to ARDS varied from 3% to 63%. These key estimates were highly associated with the case fatality rates reported for each country with a statistically significant positive relationship (adjusted R2 = 95%). Such a quantitative model provides key messages for the optimal medical resources allocation to a spectrum of patients requiring quarantine and isolation at home, isolation wards, and intensive care unit in order to reduce deaths from COVID-19.
Collapse
Affiliation(s)
- Chen-Yang Hsu
- Dachung Hospital, Miaoli, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 533, No. 17, Xu-Zhou Road, Taipei, 100, Taipei, Taiwan
| | - Chao-Chih Lai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 533, No. 17, Xu-Zhou Road, Taipei, 100, Taipei, Taiwan; Emergency Department of Taipei City Hospital, Ren-Ai Branch, Taiwan
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chan Chang-Chuan
- Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiu-His Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 533, No. 17, Xu-Zhou Road, Taipei, 100, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
83
|
Pan X, Xu S, Zhou Z, Wang F, Mao L, Li H, Wu C, Wang J, Huang Y, Li D, Wang C, Pan J. Fibroblast growth factor-2 alleviates the capillary leakage and inflammation in sepsis. Mol Med 2020; 26:108. [PMID: 33187467 PMCID: PMC7662026 DOI: 10.1186/s10020-020-00221-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute lung injury (ALI), which is induced by numerous pathogenic factors, especially sepsis, can generate alveolar damage, pulmonary edema and vascular hyper-permeability ultimately leading to severe hypoxemia. Fibroblast growth factor-2 (FGF2) is an important member of the FGF family associated with endothelial cell migration and proliferation, and injury repairment. Here, we conducted this study aiming to evaluate the therapeutic effect of FGF2 in sepsis-induced ALI. Methods Recombinant FGF2 was abdominally injected into septic mice induced by cecal ligation and puncture (CLP), and then the inflammatory factors of lung tissue, vascular permeability and lung injury-related indicators based on protein levels and gene expression were detected. In vitro, human pulmonary microvascular endothelial cells (HPMEC) and mouse peritoneal macrophages (PMs) were challenged by lipopolysaccharides (LPS) with or without FGF2 administration in different groups, and then changes in inflammation indicators and cell permeability ability were tested. Results The results revealed that FGF2 treatment reduced inflammation response, attenuated pulmonary capillary leakage, alleviated lung injury and improved survival in septic mice. The endothelial injury and macrophages inflammation induced by LPS were inhibited by FGF2 administration via AKT/P38/NF-κB signaling pathways. Conclusion These findings indicated a therapeutic role of FGF2 in ALI through ameliorating capillary leakage and inflammation.
Collapse
Affiliation(s)
- Xiaojun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Shunyao Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Zhen Zhou
- Department of Intensive Care Unit, Hangzhou Third Hospital, Hangzhou, 310000, Zhejiang, P. R. China
| | - Fen Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Lingjie Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Hao Li
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Caixia Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Junfeng Wang
- The Yiwu Affiliated Hospital of Wenzhou Medical University, Jinhua, 322000, Zhejiang, P. R. China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Cong Wang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P. R. China.
| |
Collapse
|
84
|
Akhlaghi N, Needham DM, Bose S, Banner-Goodspeed VM, Beesley SJ, Dinglas VD, Groat D, Greene T, Hopkins RO, Jackson J, Mir-Kasimov M, Sevin CM, Wilson E, Brown SM. Evaluating the association between unmet healthcare needs and subsequent clinical outcomes: protocol for the Addressing Post-Intensive Care Syndrome-01 (APICS-01) multicentre cohort study. BMJ Open 2020; 10:e040830. [PMID: 33099499 PMCID: PMC7590359 DOI: 10.1136/bmjopen-2020-040830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION As short-term mortality declines for critically ill patients, a growing number of survivors face long-term physical, cognitive and/or mental health impairments. After hospital discharge, many critical illness survivors require an in-depth plan to address their healthcare needs. Early after hospital discharge, numerous survivors experience inadequate care or a mismatch between their healthcare needs and what is provided. Many patients are readmitted to the hospital, have substantial healthcare resource use and experience long-lasting morbidity. The objective of this study is to investigate the gap in healthcare needs occurring immediately after hospital discharge and its association with hospital readmissions or death for survivors of acute respiratory failure (ARF). METHODS AND ANALYSIS In this multicentre prospective cohort study, we will enrol 200 survivors of ARF in the intensive care unit (ICU) who are discharged directly home from their acute care hospital stay. Unmet healthcare needs, the primary exposure of interest, will be evaluated as soon as possible within 1 to 4 weeks after hospital discharge, via a standardised telephone assessment. The primary outcome, death or hospital readmission, will be measured at 3 months after discharge. Secondary outcomes (eg, quality of life, cognitive impairment, depression, anxiety and post-traumatic stress disorder) will be measured as part of 3-month and 6-month telephone-based follow-up assessments. Descriptive statistics will be reported for the exposure and outcome variables along with a propensity score analysis, using inverse probability weighting for the primary exposure, to evaluate the relationship between the primary exposure and outcome. ETHICS AND DISSEMINATION The study received ethics approval from Vanderbilt University Medical Center Institutional Review Board (IRB) and the University of Utah IRB (for the Veterans Affairs site). These results will inform both clinical practice and future interventional trials in the field. We plan to disseminate the results in peer-reviewed journals, and via national and international conferences. TRIAL REGISTRATION DETAILS ClinicalTrials.gov (NCT03738774). Registered before enrollment of the first patient.
Collapse
Affiliation(s)
- Narjes Akhlaghi
- Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dale M Needham
- Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Somnath Bose
- Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Valerie M Banner-Goodspeed
- Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sarah J Beesley
- Center for Humanizing Critical Care and Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA
- Pulmonary and Critical Care Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Victor D Dinglas
- Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Danielle Groat
- Center for Humanizing Critical Care and Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA
| | - Tom Greene
- Division of Epidemiology Biostatistics, University of Utah, Salt Lake City, UT, USA
| | - Ramona O Hopkins
- Center for Humanizing Critical Care and Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA
- Psychology and Neuroscience, Brigham Young University, Provo, UT, USA
| | - James Jackson
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mustafa Mir-Kasimov
- Pulmonary and Critical Care Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Carla M Sevin
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily Wilson
- Center for Humanizing Critical Care and Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA
| | - Samuel M Brown
- Center for Humanizing Critical Care and Pulmonary/Critical Care Medicine, Intermountain Medical Center, Murray, UT, USA
- Pulmonary and Critical Care Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
85
|
Zhu Y, Almuntashiri S, Han Y, Wang X, R. Somanath P, Zhang D. The Roles of CCN1/CYR61 in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21217810. [PMID: 33105556 PMCID: PMC7659478 DOI: 10.3390/ijms21217810] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
CCN1 (cysteine-rich 61, connective tissue growth factor, and nephroblastoma-1), previously named CYR61 (cysteine-rich angiogenic inducer 61) belongs to the CCN family of matricellular proteins. CCN1 plays critical roles in the regulation of proliferation, differentiation, apoptosis, angiogenesis, and fibrosis. Recent studies have extensively characterized the important physiological and pathological roles of CCN1 in various tissues and organs. In this review, we summarize both basic and clinical aspects of CCN1 in pulmonary diseases, including acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), lung fibrosis, pulmonary arterial hypertension (PAH), lung infection, and lung cancer. We also emphasize the important challenges for future investigations to better understand the CCN1 and its role in physiology and pathology, as well as the questions that need to be addressed for the therapeutic development of CCN1 antagonists in various lung diseases.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (Y.Z.); (S.A.); (Y.H.); (P.R.S.)
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (Y.Z.); (S.A.); (Y.H.); (P.R.S.)
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (Y.Z.); (S.A.); (Y.H.); (P.R.S.)
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (Y.Z.); (S.A.); (Y.H.); (P.R.S.)
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (Y.Z.); (S.A.); (Y.H.); (P.R.S.)
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
86
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
87
|
Farling S, Straube TL, Vesel TP, Bottenus N, Klitzman B, Cheifetz IM, Deshusses MA. Development of a novel intravascular oxygenator catheter: Oxygen mass transfer properties across nonporous hollow fiber membranes. Biotechnol Bioeng 2020; 118:345-356. [PMID: 32959889 DOI: 10.1002/bit.27574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/06/2022]
Abstract
Despite hypoxic respiratory failure representing a large portion of total hospitalizations and healthcare spending worldwide, therapeutic options beyond mechanical ventilation are limited. We demonstrate the technical feasibility of providing oxygen to a bulk medium, such as blood, via diffusion across nonporous hollow fiber membranes (HFMs) using hyperbaric oxygen. The oxygen transfer across Teflon® membranes was characterized at oxygen pressures up to 2 bars in both a stirred tank vessel (CSTR) and a tubular device mimicking intravenous application. Fluxes over 550 ml min-1 m-2 were observed in well-mixed systems, and just over 350 ml min-1 m-2 in flow through tubular systems. Oxygen flux was proportional to the oxygen partial pressure inside the HFM over the tested range and increased with mixing of the bulk liquid. Some bubbles were observed at the higher pressures (1.9 bar) and when bulk liquid dissolved oxygen concentrations were high. High-frequency ultrasound was applied to detect and count individual bubbles, but no increase from background levels was detected during lower pressure operation. A conceptual model of the oxygen transport was developed and validated. Model parametric sensitivity studies demonstrated that diffusion through the thin fiber walls was a significant resistance to mass transfer, and that promoting convection around the fibers should enable physiologically relevant oxygen supply. This study indicates that a device is within reach that is capable of delivering greater than 10% of a patient's basal oxygen needs in a configuration that readily fits intravascularly.
Collapse
Affiliation(s)
- Stewart Farling
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Tobias L Straube
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Travis P Vesel
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Bruce Klitzman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Kenan Plastic Surgery Research Labs, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ira M Cheifetz
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Marc A Deshusses
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
88
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
89
|
Gacouin A, Lesouhaitier M, Reizine F, Pronier C, Grégoire M, Painvin B, Maamar A, Thibault V, Le Tulzo Y, Tadié JM. Short-term survival of acute respiratory distress syndrome patients due to influenza virus infection alone: a cohort study. ERJ Open Res 2020; 6:00587-2020. [PMID: 33263066 PMCID: PMC7682721 DOI: 10.1183/23120541.00587-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/07/2022] Open
Abstract
Background Influenza virus (IV)-related pathophysiology suggests that the prognosis of acute respiratory distress syndrome (ARDS) due to IV could be different from the prognosis of ARDS due to other causes. However, the impact of IV infection alone on the prognosis of ARDS patients compared to that of patients with other causes of ARDS has been poorly assessed. Methods We compared the 28-day survival from the diagnosis of ARDS with an arterial oxygen tension/inspiratory oxygen fraction ratio ≤150 mmHg between patients with and without IV infection alone. Data were collected prospectively and analysed retrospectively. We first performed survival analysis on the whole population; second, patients with IV infection alone were compared with matched pairs using propensity score matching. Results The cohort admitted from October 2009 to March 2020 consisted of 572 patients, including 73 patients (13%) with IV alone. On the first 3 days of mechanical ventilation, nonpulmonary Sequential Organ Failure Assessment scores were significantly lower in patients with IV infection than in the other patients. After the adjusted analysis, IV infection alone remained independently associated with lower mortality at day 28 (hazard ratio 0.51, 95% CI 0.26–0.99, p=0.047). Mortality at day 28 was significantly lower in patients with IV infection alone than in other patients when propensity score matching was used (20% versus 38%, p=0.02). Conclusions Our results suggest that patients with ARDS following IV infection alone have a significantly better prognosis at day 28 and less severe nonpulmonary organ dysfunction than do those with ARDS from causes other than IV infection alone. Influenza virus infection alone is associated with a better short-term prognosis than are other causes of ARDShttps://bit.ly/31W2Mh2
Collapse
|
90
|
Soheili M, Haji-allahverdipoor K, Khadem-erfan MB, Baban B, Nikkhoo B, Eliasi A, Nasseri S. Combination of C21 and ARBs with rhACE2 as a therapeutic protocol: A new promising approach for treating ARDS in patients with coronavirus infection. Med J Islam Repub Iran 2020; 34:120. [PMID: 33316002 PMCID: PMC7722962 DOI: 10.34171/mjiri.34.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is caused by a new severe acute respiratory syndrome Coronavirus. COVID-19 patients are at risk for acute respiratory distress syndrome and death from respiratory failure. Methods: In this study the complete genome of the SARS-CoV-2 reference sequence, geologically isolated types, and Coronavirus related to human diseases were compared by the Molecular Phylogenetic Maximum Likelihood method. The secondary and tertiary structures of the main protease of SARS-CoV were defined as the most similar viruses to SARS-CoV-2, aligned with chimera software. Therefore, considering ineffective antiviral medications used for SARS-CoV and the importance of preventing acute respiratory distress syndrome as the main cause of mortality, 2 strategies were adopted to acquire the most effective drug combination. Results: The results of phylogenic analysis showed that SARS-CoV is the most similar virus to SARS-CoV-2. The secondary structure and superimposing of tertiary structure did not show a significant difference between SARS and SARS-CoV-2 3C-like main protease and the root means square deviation between Cα atoms did not support the difference between the 2 protein structures. Thus, these 2 mechanisms were fostered in accordance with the correlation between acute respiratory distress syndrome-related Coronavirus, angiotensin-converting enzyme 2 on one side and the possible treatments for reducing the respiratory side effects on the other. The analysis of renin-angiotensin system as well as the tested drugs applied to acute respiratory distress syndrome cases, indicated that angiotensin II receptor blockers, angiotensin-converting enzyme inhibitors, and C21 as nonpeptide agonist might possess a promising modality of treatment for acute respiratory distress syndrome. Furthermore, implementing recombinant human ACE2 as a competitive receptor might be an effective way to trap and chelate the SARS-CoV-2 particles. Conclusion: The data suggest that combination therapy of angiotensin II receptor blockers and C21 could be a potential pharmacologic regimen to control and reduce acute respiratory distress syndrome. Moreover, rhACE2 can be recommended as an effective protective antiviral therapy in the treatment of COVID-19 and its complications.
Collapse
Affiliation(s)
- Marzieh Soheili
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kaveh Haji-allahverdipoor
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Bagher Khadem-erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, DCG, Augusta University, Augusta GA, USA
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anwar Eliasi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
91
|
Huang H, Wang J, Liu Z, Gao F. The angiotensin-converting enzyme 2/angiotensin (1-7)/mas axis protects against pyroptosis in LPS-induced lung injury by inhibiting NLRP3 activation. Arch Biochem Biophys 2020; 693:108562. [PMID: 32866470 DOI: 10.1016/j.abb.2020.108562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023]
Abstract
Previous studies have suggested that pyroptosis may play an important role in LPS-induced acute lung injury (ALI), but the exact mechanism of pyroptosis induction and the role of Angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas axis in pyroptosis has not been investigated yet. The present study aimed to establish a mice model of ALI and clarify the involvement of pyroptosis and ACE2/Ang (1-7)/Mas axis. The results showed that LPS induced pyroptosis in lung, demonstrated by increased expression of Gasdermin D (GSDMD), cleaved GSDMD, IL-1β, and Caspase-1. Treatment of Ang (1-7) significantly reduced the severity of ALI and pyroptosis, while AngII significantly exaggerated them. Furthermore, ACE2 activator resorcinolnaphthalein (RES) significantly reduced the severity of ALI and pyroptosis, but ACE2 inhibitor MLN-4760 and Mas inhibitor A779 significantly exaggerated them, suggesting that the ACE2/Ang (1-7)/Mas axis was involved in the pyroptosis in LPS-induced ALI. In addition, Ang (1-7) and RES significantly decreased the levels of NLRP3, which were increased by AngII and A779. NLRP3 knockout significantly reduced the severity of ALI and pyroptosis. In conclusion, pyroptosis played an important role in ALI induced by LPS. The ACE2/Ang (1-7)/Mas axis negatively regulated the pyroptosis and protected mice against LPS-induced ALI through NLRP3 inhibition. The present study expanded our understating of the role of ACE2/Ang (1-7)/Mas axis in ALI by providing a novel explanation that it may regulate the pyroptosis in ALI.
Collapse
Affiliation(s)
- Haihua Huang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Jin Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhenwei Liu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200080, PR China.
| | - Fengying Gao
- Department of Respiratory Medicine, Shanghai Construction Group Hospital, Shanghai, 200083, PR China.
| |
Collapse
|
92
|
Podlasin RB, Kowalska JD, Pihowicz A, Wojtycha-Kwaśnica B, Thompson M, Dyda T, Czeszko-Paprocka H, Horban A. How to follow-up a patient who received tocilizumab in severe COVID-19: a case report. Eur J Med Res 2020; 25:37. [PMID: 32854774 PMCID: PMC7450912 DOI: 10.1186/s40001-020-00438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND COVID-19 is characterized by fast deterioration in the mechanism of cytokine storm. Therefore, treatment with immunomodulating agents should be initiated as soon as hyperinflammation is established. Evidence for the use of tocilizumab (TCZ) in COVID-19 is emerging, but the drug in this setting is used "off label" with limited data on both effectiveness and safety. Therefore, Hospital for Infectious Diseases in Warsaw established a Standard Operating Procedure (SOP) for the use of TCZ in severe COVID-19 cases. CASE PRESENTATION Here, we present a case of 27-year-old, otherwise healthy man, who was successfully treated with chloroquine, azithromycin, tocilizumab and a standard of care. Initially the magnitude of lung devastation, clinical deterioration and the need for mechanical ventilation suggested unfavorable prognosis. However, we observed complete regression in radiological changes and rapid clinical improvement. Irrespective of this, patient's serum interleukin 6 and aminotransferases remained elevated even after a month from treatment. CONCLUSIONS An overlapping effect of hyperinflammation, hypoxic organ injury and drug-related toxicity warrants a long-term follow-up for COVID-19 survivors. In addition, residual IL-6 receptors blockage may mask new infections. A standardized approach to follow-up for COVID-19 survivors is urgently needed. Current and future research should also investigate the impact of experimental therapies on lung tissue healing and regeneration, as well as long-term treatment toxicities.
Collapse
Affiliation(s)
| | - Justyna D Kowalska
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Andrzej Pihowicz
- Intensive Care Unit, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Beata Wojtycha-Kwaśnica
- Department of Diagnostic Imaging, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | | | - Tomasz Dyda
- Molecular Diagnostics Laboratory, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Hanna Czeszko-Paprocka
- Central Analytical Laboratory, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland
| | - Andrzej Horban
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
93
|
Kapicibaşi HO, Kiraz HA, Demir ET, Adali Y, Elmas S. Pulmonary effects of ozone therapy at different doses combined with antibioticotherapy in experimental sepsis model. Acta Cir Bras 2020; 35:e202000604. [PMID: 32667585 PMCID: PMC7357834 DOI: 10.1590/s0102-865020200060000004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose This experimental sepsis model created with Escherichia coli aimed to investigate the histopathological effects of two different doses of ozone combined with antibiotherapy on lung tissue. Methods Rats were divided into 5 groups. Then sepsis was induced intraperitoneally in the first 4 groups. The 1st group was treated with cefepime, the 2nd and 3rd groups were treated with cefepime combined with ozone at a dose of 0.6 mg/kg and 1.1 mg/kg. Lung tissue sections were stained with hematoxylin-eosin and assessed under light microscope and scored between 0-4 in terms of histopathological findings. Results In the comparisons between Group 1 and Group 4 in terms of cellular damage (p=0.030), inflammation (p=0.000) and overall score (p=0.007), statistically significant positive effects were observed in favor of Group 1. In the comparisons of Groups 2 and 3 with Group 4, only positive effects were observed in terms of inflammation (p=0.020, p=0.012, respectively). Conclusion Although negative histopathological effects of ozone on tissue injury were detected, it was noteworthy that the increase in the ozone dose reduced the number of damaged parameters.
Collapse
Affiliation(s)
| | | | | | | | - Sait Elmas
- Çanakkale Onsekiz Mart University, Turkey
| |
Collapse
|
94
|
Hsieh YH, Litvin DG, Zaylor AR, Nethery DE, Dick TE, Jacono FJ. Brainstem inflammation modulates the ventilatory pattern and its variability after acute lung injury in rodents. J Physiol 2020; 598:2791-2811. [PMID: 32378188 DOI: 10.1113/jp279177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Compared with sham rats, rats a week after acute lung injury (ALI) express more pro-inflammatory cytokines in their brainstem respiratory control nuclei, exhibit a higher respiratory frequency (fR) and breathe with a more predictable pattern. These characteristics of the respiratory pattern persist in in situ preparations even after minimizing pulmonary and chemo-afferent inputs. Interleukin (IL)-1β microinjected in the nucleus tractus solitarii increases fR and the predictability of the ventilatory pattern similar to rats with ALI. Intracerebroventricular infusion of indomethacin, an anti-inflammatory drug, mitigates the effect of ALI on fR and ventilatory pattern variability. We conclude that changes in the ventilatory pattern after ALI result not only from sensory input due to pulmonary damage and dysfunction but also from neuro-inflammation. ABSTRACT Acute lung injury (ALI) increases respiratory rate (fR) and ventilatory pattern variability (VPV), but also evokes peripheral and central inflammation. We hypothesized that central inflammation has a role in determining the ventilatory pattern after ALI. In rat pups, we intratracheally injected either bleomycin to induce ALI or saline as a sham control. One week later, we recorded the ventilatory pattern of the rat pups using flow-through plethysmography, then formed in situ preparations from these pups and recorded their 'fictive' patterns from respiratory motor nerves. Compared with the ventilatory pattern of the sham rat pups, injured rat pups had increased fR and predictability. Surprisingly, the fictive patterns of the in situ preparations from ALI pups retained these characteristics despite removing their lungs to eliminate pulmonary sensory inputs and perfusing them with hyperoxic artificial cerebral spinal fluid to minimize peripheral chemoreceptor input. Histological processing revealed increased immunoreactivity of the pro-inflammatory cytokine Interleukin-1β (IL-1β) in the nucleus tractus solitarii (nTS) from ALI but not sham rats. In subsequent experiments, we microinjected IL-1β in the nTS bilaterally in anaesthetized naïve adult rats, which increased fR and predictability of ventilatory pattern variability (VPV) after 2 h. Finally, we infused indomethacin intracerebroventricularly during the week of survival after ALI. This did not affect sham rats, but mitigated changes in fR and VPV in ALI rats. We conclude that neuro-inflammation has an essential role in determining the ventilatory pattern of ALI rats.
Collapse
Affiliation(s)
- Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - David G Litvin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Fundamental Neuroscience, University of Lausanne, Lausanne, 1005, Switzerland
| | - Abigail R Zaylor
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, Ohio, United States
| | - David E Nethery
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, Ohio, United States
| |
Collapse
|
95
|
Prognostic Value of N-terminal Probrain Natriuretic Peptide for Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3472615. [PMID: 32337240 PMCID: PMC7165325 DOI: 10.1155/2020/3472615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 01/02/2023]
Abstract
Objectives The mortality rate of patients with acute respiratory distress syndrome (ARDS) is high. Hence, it is crucial to identify a reliable biomarker with wide clinical applications for predicting the prognosis of patients with ARDS. This systematic review and meta-analysis was conducted to investigate the value of plasma N-terminal probrain natriuretic peptide (NT-proBNP) for predicting mortality in patients with ARDS. Methods An electronic search of databases including PubMed, Web of Science, Cochrane Library, and Chinese National Knowledge Infrastructure was conducted up to May 31, 2019, without language restrictions. The quality of the included studies was evaluated using QUADAS-2. Data were extracted and analyzed to obtain pooled estimates of sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio. A forest graph was used to evaluate heterogeneity. Potential causes of heterogeneity were further explored by subgroup analysis based on the testing day, testing method, observation endpoint, or cut-off points. A summary receiver operating characteristic curve was drawn to obtain the pooled area under the curve. Results A total of 7 studies involving 581 patients with ARDS were included. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were as follows: 0.79 (95% CI: 0.72–0.84), 0.79 (95% CI: 0.66–0.88), 3.68 (95% CI: 2.16–6.28), 0.27 (95% CI: 0.20–0.38), and 13.58 (95% CI: 6.17–29.90), respectively. The results of subgroup analysis showed that the testing day influenced the summary sensitivity and that the cut-off points influenced the summary sensitivity and specificity. Conclusion Our results indicate that elevated plasma NT-proBNP levels have a moderate value for predicting the mortality of patients with ARDS.
Collapse
|
96
|
Zhao X, Yu Z, Lv Z, Meng L, Xu J, Yuan S, Fu Z. Activation of Alpha-7 Nicotinic Acetylcholine Receptors (α7nAchR) Promotes the Protective Autophagy in LPS-Induced Acute Lung Injury (ALI) In Vitro and In Vivo. Inflammation 2020; 42:2236-2245. [PMID: 31522340 DOI: 10.1007/s10753-019-01088-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The release of inflammatory cytokines and chemokines and autophagy has been reported to be involved in the pathogenic mechanism of acute lung injury (ALI). Reportedly, alpha-7 nicotinic acetylcholine receptors (α7nAchR) might play a protective role in LPS-induced ALI. In the current research, we established LPS-induced ALI model in mice and α7nAchR agonist PNU-282987 improved LPS-induced injury. In MH-S cells, LPS stimulation inhibited, whereas α7nAchR agonist PNU-282987 enhanced the autophagy. α7nAchR agonist PNU-282987 protected MH-S cells from LPS-induced inflammation by reducing the concentrations of IL-6, TNF-α, and IL-1β. Finally, LPS stimulation dramatically inhibited MH-S cell viability but enhanced cell apoptosis, whereas PNU-282987 treatment exerted opposite effects; α7nAchR might regulate the cellular homeostasis via affecting the crosstalk between the autophagy and apoptosis in MH-S cells; in other words, α7nAChR agonist enhances MH-S cell autophagy and inhibits MH-S cell apoptosis. In conclusion, α7nAchR promote the protective autophagy in LPS-induced ALI model in mice and MH-S cells. The application of α7nAchR agonist is considered a potent target for LPS-induced ALI, which needs further clinical investigation.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, People's Republic of China. .,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
97
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
98
|
Wang X, Zhang Y, Mei H, An C, Liu C, Zhang Y, Zhang Y, Xin C. Study on the Relationship Between Respiratory Distress Syndrome and SP-A1 (rs1059057) Gene Polymorphism in Mongolian Very Premature Infants. Front Pediatr 2020; 8:81. [PMID: 32257981 PMCID: PMC7090089 DOI: 10.3389/fped.2020.00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Aim: To study the relationship between rs1059057 polymorphism of pulmonary surfactant protein A1 (SP-A1) and respiratory distress syndrome (RDS) in Mongolian very premature infants. Methods: Applying the strategy of case-control study, 120 Mongolian RDS very premature infants (58 males and 62 females) in the western part of Inner Mongolia were selected as the case group, and 120 subjects of non-RDS very premature infants (56 males and 64 females) with the same nationality, same sex and similar gestational age were used as the control group. The single nucleotide polymorphism (SNP) site rs1059057 of SP-A1 was genotyped using polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP). Results: Two genotypes, A/G and A/A, were detected at the SP-A1 rs1059057 locus in the western part of Inner Mongolia. In the case group, the frequencies of two genotypes were 53 and 47%, and the frequencies of A allele and G allele were 73 and 27%, respectively. In the control group, the frequencies of the two genotypes were 42 and 58%, and the frequencies of A allele and G allele were 79 and 21%, respectively. There was no significant difference in the genotype frequency of SP-A1 (rs1059057) locus between the case group and the control group (X 2 = 3.275, P > 0.05), and no significant difference in allele frequency between the case group and the control group (X 2 = 2.255, P > 0.05). Conclusion: The genotypes and allele frequencies of SP-A1 (rs1059057) locus were not associated with the incidence of RDS in Mongolian very premature infants in western Inner Mongolia.
Collapse
Affiliation(s)
- Xiaoli Wang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Mei
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Chunzhi Liu
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yayu Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanbo Zhang
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chun Xin
- Division of Neonatology, Department of Pediatric, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
99
|
Shaukat A, Yang C, Yang Y, Guo YF, Jiang K, Guo S, Liu J, Zhang T, Zhao G, Ma X, Wu Z, Zhou Q, Akhtar M, Zahoor A, Umar T, Shaukat I, Hanif S, Rajput SA, Hassan M, Mehmood K, Hua Z, Xiaoyan W, Nannan Y, Deng G. Ginsenoside Rb 1: A novel therapeutic agent in Staphylococcusaureus-induced Acute Lung Injury with special reference to Oxidative stress and Apoptosis. Microb Pathog 2020; 143:104109. [PMID: 32171710 DOI: 10.1016/j.micpath.2020.104109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is considered as an uncontrolled inflammatory response that can leads to acute respiratory distress syndrome (ARDS), which limits the therapeutic strategies. Ginsenosides Rb1 (Rb1), an active ingredient obtained from Panax ginseng, possesses a broad range of pharmacological and medicinal properties, comprising the anti-inflammatory, anti-oxidant, and anti-tumor activities. Therefore, the purpose of the present study was to investigate the protective effects of Rb1 against S. aureus-induced (ALI) through regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and mitochondrial-mediated apoptotic pathways in mice (in-vivo), and RAW264.7 cells (in-vitro). For that purpose, forty Kunming mice were randomly assigned into four treatment groups; (1) Control group (phosphate buffer saline (PBS); (2) S. aureus group; (3) S. aureus + Rb1 (20 mg/kg) group; and (4) Rb1 (20 mg/kg) group. The 20 μg/mL dose of Rb1 was used in RAW264.7 cells. In the present study, we found that Rb1 treatment reduced ALI-induced oxidative stress via suppressing the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the antioxidant enzyme activities of superoxidase dismutase 1 (SOD1), Catalase (CAT), and glutathione peroxidase 1 (Gpx1). Similarly, Rb1 markedly increased messenger RNA (mRNA) expression of antioxidant genes (SOD1, CAT and Gpx1) in comparison with ALI group. The histopathological results showed that Rb1 treatment ameliorated ALI-induced hemorrhages, hyperemia, perivascular edema and neutrophilic infiltration in the lungs of mice. Furthermore, Rb1 enhanced the antioxidant defense system through activating the Nrf2 signaling pathway. Our findings showed that Rb1 treated group significantly up-regulated mRNA and protein expression of Nrf2 and its downstream associated genes down-regulated by ALI in vivo and in vitro. Moreover, ALI significantly increased the both mRNA and protein expression of mitochondrial-apoptosis-related genes (Bax, caspase-3, caspase-9, cytochrome c and p53), while decreased the Bcl-2. In addition, Rb1 therapy significantly reversed the mRNA and protein expression of these mitochondrial-apoptosis-related genes, as compared to the ALI group in vivo and in vitro. Taken together, Rb1 alleviates ALI-induced oxidative injury and apoptosis by modulating the Nrf2 and mitochondrial signaling pathways in the lungs of mice.
Collapse
Affiliation(s)
- Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying-Fang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhiming Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Irfan Shaukat
- Faculty of Medicine, University of Lorraine, Nancy, France
| | | | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Guangzhou, 510642, People's Republic of China
| | - Mubashar Hassan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zhang Hua
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wang Xiaoyan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yin Nannan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
100
|
Balakrishnan N, Thabah MM, Dineshbabu S, Sistla S, Kadhiravan T, Venkateswaran R. Aetiology and Short-Term Outcome of Acute Respiratory Distress Syndrome: A Real-World Experience from a Medical Intensive Care Unit in Southern India. J R Coll Physicians Edinb 2020. [DOI: 10.4997/jrcpe.2020.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a highly fatal syndrome especially in resource constrained settings. In this study we prospectively studied the aetiology of ARDS and its short-term outcome. Methods Consecutive adults with suspected ARDS were screened. ARDS was diagnosed by the Berlin criteria. Aetiology was determined clinically, and by imaging and microbiological investigations. Patients presenting with fever, prominent cough and expectoration had a throat swab tested for influenza H1N1 virus. Outcome was discharge from hospital or death. Results A total of 42 patients, mean age 42.6 years, were studied. All received mechanical ventilation. Thirteen (31%) had pulmonary ARDS: H1N1 virus infection (n = 5), pneumonia (n = 7) and tuberculosis (n = 1). Twenty nine (69%) had extrapulmonary ARDS: sepsis (n = 16) and scrub typhus (n = 8). Thirty three (79%) died, of the nine survivors scrub typhus was diagnosed in seven patients. Conclusion The aetiology of ARDS in tropical medical setting is infection related. ARDS due to scrub typhus appeared to be mild with good outcome.
Collapse
Affiliation(s)
| | - Molly Mary Thabah
- Additional Professor, Department of Medicine, JIPMER, Puducherry, India
| | - Sekar Dineshbabu
- Senior Resident, Department of Medicine, JIPMER, Puducherry, India
| | - Sujatha Sistla
- Professor, Department of Microbiology, JIPMER, Puducherry, India
| | | | | |
Collapse
|