51
|
Relationship Between Acute Kidney Injury and Fluid Overload: Are We Any Closer to the Truth? Pediatr Crit Care Med 2019; 20:1097-1098. [PMID: 31688683 DOI: 10.1097/pcc.0000000000002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
High mobility group box protein 1 neutralization therapy in ovine bacteremia: Lessons learned from an ovine septic shock model incorporating intensive care support. Exp Ther Med 2019; 18:3271-3280. [PMID: 31602200 PMCID: PMC6777221 DOI: 10.3892/etm.2019.7961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.
Collapse
|
53
|
Renal Klotho is Reduced in Septic Patients and Pretreatment With Recombinant Klotho Attenuates Organ Injury in Lipopolysaccharide-Challenged Mice. Crit Care Med 2019; 46:e1196-e1203. [PMID: 30239382 PMCID: PMC6250245 DOI: 10.1097/ccm.0000000000003427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To determine the applicability of recombinant Klotho to prevent inflammation and organ injury in sepsis in man and mice. DESIGN Prospective, clinical laboratory study using "warm" human postmortem sepsis-acute kidney injury biopsies. Laboratory study using a mouse model of endotoxemia. SETTING Research laboratory at a university teaching hospital. SUBJECTS Adult patients who died of sepsis in the ICU and control patients undergoing total nephrectomy secondary to renal cancer; male C57BL/6 and Klotho haploinsufficient mice. INTERVENTIONS Lipopolysaccharide (0.05 mg/kg) injection and kill after 4, 8, and 24 hours. Mice received recombinant Klotho (0.05 mg/kg) 30 minutes prior to lipopolysaccharide (1 mg/kg) injection. Mice treated with saline were included as controls. MEASUREMENTS AND MAIN RESULTS Quantitative reverse transcription polymerase chain reaction and immunohistochemical staining were used to quantify Klotho messenger RNA and protein expression in the kidney of sepsis-acute kidney injury patients and the kidney and brain of mice. The messenger RNA and protein expression of damage markers, inflammatory cytokine, chemokines, and endothelial adhesion molecules were also determined in mice. Renal neutrophil influx was quantified. We found significantly lower renal Klotho messenger RNA and protein levels in sepsis-acute kidney injury biopsies than in control subjects. These findings were recapitulated in the kidney and brain of lipopolysaccharide-challenged mice. Decreased Klotho expression paralleled an increase in kidney damage markers neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Administration of recombinant Klotho prior to lipopolysaccharide injection attenuated organ damage, inflammation and endothelial activation in the kidney and brain of mice. Furthermore, less neutrophils infiltrated into the kidneys of recombinant Klotho mice compared with lipopolysaccharide only treated mice. CONCLUSIONS Renal Klotho expression in human sepsis-acute kidney injury and in mouse models of sepsis was significantly decreased and correlated with renal damage. Recombinant Klotho intervention diminished organ damage, inflammation, and endothelial activation in the kidney and brain of lipopolysaccharide-challenged mice. Systemic Klotho replacement may potentially be an organ-protective therapy for septic patients to halt acute, inflammatory organ injury.
Collapse
|
54
|
Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury. Crit Care Med 2019; 46:1284-1292. [PMID: 29771701 DOI: 10.1097/ccm.0000000000003209] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. DESIGN Prospective controlled animal experiment study. SETTING Hospital-affiliated animal research institution. SUBJECTS Fifteen female pigs. INTERVENTIONS The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. MEASUREMENTS AND MAIN RESULTS Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. CONCLUSIONS In our lipopolysaccharide model, with resuscitation targeted at blood pressure, contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.
Collapse
|
55
|
Renal Blood Flow Measurement in Early Clinical Sepsis-Can You Catch a Shadow? Crit Care Med 2019; 46:1028-1030. [PMID: 29762410 DOI: 10.1097/ccm.0000000000003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Lomivorotov VV, Moroz G, Ismoilov S, Shmyrev V, Efremov S, Abubakirov M, Batalov V, Landoni G, Lembo R, Bogachev-Prokophiev A, Sapegin A, Bellomo R. Sustained High-dose Thiamine Supplementation in High-risk Cardiac Patients Undergoing Cardiopulmonary Bypass: A Pilot Feasibility Study (The APPLY trial). J Cardiothorac Vasc Anesth 2019; 34:594-600. [PMID: 31558398 DOI: 10.1053/j.jvca.2019.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To test the feasibility and investigate possible cardiovascular effects of a sustained high-dose intravenous thiamine protocol in patients undergoing combined valvular and coronary artery bypass graft surgery. DESIGN Randomized, placebo-controlled, pilot feasibility trial. SETTING Cardiac surgery department of a tertiary hospital. PARTICIPANTS Forty patients undergoing combined valvular and coronary artery bypass surgery. INTERVENTIONS Intravenous thiamine (600 mg on the day of surgery, and 400 mg/day on postoperative days 1, 2, and 3) or placebo. MEASUREMENTS AND MAIN RESULTS The primary feasibility endpoints were recruitment rate and protocol compliance. Secondary endpoints included markers of possible biological and physiological effects. The mean recruitment rate was 8 patients per month and protocol compliance was 97.5%. There were no differences in median peak postoperative lactate (2.7 mmol/L [interquartile range [IQR] 1.4-4.6] for thiamine v 2.5 mmol/L [IQR 1.4-3.6] for placebo; p = 0.53), median peak postoperative creatinine (104 µmol/L [IQR 92.5-129] for thiamine v 99 µmol/L [IQR 86.5-109.5] for placebo; p = 0.53), median nadir postoperative cardiac index (1.8 L/min/m2 [IQR 1.5-2.1] for thiamine v 2.2 L/min/m2 [IQR 1.5-2.5] for placebo; p = 0.25), or the number of patients on vasopressor/inotropic agents (thiamine, 12 [63%]; placebo, 12 [60%]; p = 0.80), or in the total inotrope/vasopressor dose 0.14 µg/kg for thiamine v 0.12 µg/kg for placebo; p = 0.88). CONCLUSIONS A double-blind trial of sustained high-dose intravenous thiamine supplementation in higher-risk cardiac surgery patients was feasible and appeared to be safe. However, such treatment did not demonstrate evidence of biological or physiological effects.
Collapse
Affiliation(s)
- Vladimir V Lomivorotov
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| | - Gleb Moroz
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | | | - Vladimir Shmyrev
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Sergey Efremov
- Saint Petersburg State University Hospital, Saint Petersburg, Russia
| | - Marat Abubakirov
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Vasily Batalov
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Rosalba Lembo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrey Sapegin
- E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
57
|
Ferrara G, Kanoore Edul VS, Caminos Eguillor JF, Buscetti MG, Canales HS, Lattanzio B, Gatti L, Ince C, Dubin A. Effects of fluid and norepinephrine resuscitation in a sheep model of endotoxin shock and acute kidney injury. J Appl Physiol (1985) 2019; 127:788-797. [DOI: 10.1152/japplphysiol.00172.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of renal failure in septic shock is complex. Although microvascular dysfunction has been proposed as a mechanism, there are controversial findings about the characteristics of microvascular redistribution and the effects of resuscitation. Our hypothesis was that the normalization of systemic hemodynamics with fluids and norepinephrine fails to improve acute kidney injury. To test this hypothesis, we assessed systemic and renal hemodynamics and oxygen metabolism in 24 anesthetized and mechanically ventilated sheep. Renal cortical microcirculation was evaluated by SDF-videomicroscopy. Shock ( n = 12) was induced by intravenous administration of endotoxin. After 60 min of shock, 30 mL/kg of saline solution was infused and norepinephrine was titrated to reach a mean blood pressure of 70 mmHg for 2 h. These animals were compared with a sham group ( n = 12). After endotoxin administration, mean blood pressure, cardiac index, and systemic O2 transport and consumption decreased ( P < 0.05 for all). Resuscitation improved these variables. Endotoxin shock also reduced renal blood flow and O2 transport and consumption (205[157–293] vs. 131 [99–185], 28.4[19.0–38.2] vs. 15.8[13.5–23.2], and 5.4[4.0–8.8] vs. 3.7[3.3–4.5] mL·min−1·100 g−1, respectively); cortical perfused capillary density (23.8[23.5–25.9] vs. 17.5[15.1–19.0] mm/mm2); and creatinine clearance (62.4[39.2–99.4] vs. 10.7[4.4–23.5] mL/min). After 2 h of resuscitation, these variables did not improve (174[91–186], 20.5[10.8–22.7], and 3.8[1.9–4.8] mL·min−1·100 g−1, 19.9[18.6–22.1] mm/mm2, and 5.9[1.0–11.9] mL/min). In conclusion, endotoxin shock induced severe renal failure associated with decreased renal flow, O2 transport and consumption, and cortical microcirculation. Normalization of systemic hemodynamics with fluids and norepinephrine failed to improve renal perfusion, oxygenation, and function. NEW & NOTEWORTHY This experimental model of endotoxin shock induced severe renal failure, which was associated with abnormalities in renal regional blood flow, microcirculation, and oxygenation. Derangements included the compromise of peritubular microvascular perfusion. Improvements in systemic hemodynamics through fluids and norepinephrine were unable to correct these abnormalities.
Collapse
Affiliation(s)
- Gonzalo Ferrara
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Vanina Siham Kanoore Edul
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | | | - María Guillermina Buscetti
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Héctor Saúl Canales
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Bernardo Lattanzio
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Luis Gatti
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Arnaldo Dubin
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Cátedra de Farmacología Aplicada, La Plata, Argentina
| |
Collapse
|
58
|
Dai XG, Li T, Huang WB, Zeng ZH, Li Q, Yang Y, Duan ZP, Wang YJ, Ai YH. Upregulation of Mitochondrial Transcription Factor A Promotes the Repairment of Renal Tubular Epithelial Cells in Sepsis by Inhibiting Reactive Oxygen Species-Mediated Toll-Like Receptor 4/p38MAPK Signaling. Pathobiology 2019; 86:263-273. [PMID: 31430762 DOI: 10.1159/000501789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial transcription factor A (TFAM) plays multiple pathophysiologic roles in mitochondrial DNA (mtDNA) maintenance. However, the role of TFAM in sepsis-induced acute kidney injury (AKI) remains largely unknown. METHODS Lipopolysaccharide (LPS) treatment of HK-2 cells mimics the in vitro model of AKI inflammation. pcDNA3.1 plasmid was used to construct pcDNA3.1-TFAM. sh-TFAM-543, sh-TFAM-717, sh-TFAM-765, sh-TFAM-904 and pcDNA3.1-TFAM were transfected into HK-2 cells using Lipofectamine 2000. MtDNA transcriptional levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was performed to assess the cell viability. Changes in reactive oxygen species (ROS) and mitochondrial membrane potential in HK-2 cells were detected using the corresponding kits. Immunofluorescence experiment was used to investigate the displacement of TFAM. mRNA and protein expression levels of TFAM and its related genes were measured by qRT-PCR and western blot respectively. Mice in sepsis were administered cecal ligation and puncture surgery. RESULTS LPS treatment was a non-lethal influencing factor, leading to the upregulation of ROS levels and downregulation of mtDNA copy number and NADH dehydrogenase subunit-1 (ND1) expression, and caused damage to the mitochondria. As the LPS treatment time increased, TFAM was displaced from the periphery of the nucleus to cytoplasm. TFAM reduced ROS and P38MAPK levels by inhibiting toll-like receptor 4 (TLR4) expression, ultimately inhibiting inflammation and repairing mtDNA. CONCLUSIONS Our results indicate that TFAM repairs mtDNA by blocking the TLR4/ROS/P38MAPK signaling pathway in inflammatory cells, thereby repairing septic tubular epithelial cells, and TFAM may serve as a new target for sepsis therapy.
Collapse
Affiliation(s)
- Xin-Gui Dai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, China.,Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Tao Li
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Wei-Bo Huang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Hua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Li
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yang Yang
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Ze-Peng Duan
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yu-Jing Wang
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yu-Hang Ai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
59
|
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96:1083-1099. [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026] [Citation(s) in RCA: 752] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is difficult because by the time patients seek medical attention, most have already developed acute kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, novel biomarkers of kidney stress and damage have been recently validated for risk prediction and early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental mechanisms that may play a role in the development of S-AKI. However, more mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
60
|
Abstract
Sepsis is defined as organ dysfunction resulting from the host's deleterious response to infection. One of the most common organs affected is the kidneys, resulting in sepsis associated acute kidney injury (SA-AKI) that contributes to the morbidity and mortality of sepsis. A growing body of knowledge has illuminated the clinical risk factors, pathobiology, response to treatment, and elements of renal recovery that have advanced our ability to prevent, detect, and treat SA-AKI. Despite these advances, SA-AKI remains an important concern and clinical burden, and further study is needed to reduce the acute and chronic consequences. This review summarizes the relevant evidence, with a focus on the risk factors, early recognition and diagnosis, treatment, and long term consequences of SA-AKI. In addition to literature pertaining to SA-AKI specifically, pertinent sepsis and acute kidney injury literature relevant to SA-AKI was included.
Collapse
Affiliation(s)
- Jason T Poston
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago
| |
Collapse
|
61
|
Effects of Fluid Bolus Therapy on Renal Perfusion, Oxygenation, and Function in Early Experimental Septic Kidney Injury. Crit Care Med 2019; 47:e36-e43. [DOI: 10.1097/ccm.0000000000003507] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Aslan A, van den Heuvel MC, Stegeman CA, Popa ER, Leliveld AM, Molema G, Zijlstra JG, Moser J, van Meurs M. Kidney histopathology in lethal human sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:359. [PMID: 30591070 PMCID: PMC6307291 DOI: 10.1186/s13054-018-2287-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023]
Abstract
Purpose The histopathology of sepsis-associated acute kidney injury (AKI) in critically ill patients remains an understudied area. Previous studies have identified that acute tubular necrosis (ATN) is not the only driver of sepsis-AKI. The focus of this study was to identify additional candidate processes that may drive sepsis-AKI. To do this we immunohistochemically characterized the histopathological and cellular features in various compartments of human septic kidneys. Methods We studied the following histopathological features: leukocyte subsets, fibroblast activation, cellular proliferation, apoptosis, and fibrin deposition in the glomerulus and the tubulointerstitium in human post-mortem kidney biopsy tissue. Biopsy tissue samples from 27 patients with sepsis-AKI were collected 33 min (range 24–150) after death in the ICU. The unaffected part of the kidneys from 12 patients undergoing total nephrectomy as a result of renal carcinoma served as controls. Results Immunohistochemical analysis revealed the presence of more neutrophils and macrophages in the glomeruli and more neutrophils in the tubulointerstitium of renal tissue from patients with sepsis compared to control renal tissue. Type II macrophages were predominant, with some macrophages expressing both type I and type II markers. In contrast, there were almost no macrophages found in control kidneys. The number of activated (myo)fibroblasts was low in the glomeruli of sepsis-AKI kidneys, yet this was not observed in the tubulointerstitium. Cell proliferation and fibrin deposition were more pronounced in the glomeruli and tubulointerstitium of sepsis-AKI than in control kidneys. Conclusions The extensive heterogeneity of observations among and within patients emphasizes the need to thoroughly characterize patients with sepsis-AKI in a large sample of renal biopsy tissue from patients with sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-018-2287-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adnan Aslan
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology & Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Eliane R Popa
- Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Annemarie M Leliveld
- Department of Urology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| |
Collapse
|
63
|
Moskowitz A, Andersen LW, Huang DT, Berg KM, Grossestreuer AV, Marik PE, Sherwin RL, Hou PC, Becker LB, Cocchi MN, Doshi P, Gong J, Sen A, Donnino MW. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care 2018; 22:283. [PMID: 30373647 PMCID: PMC6206928 DOI: 10.1186/s13054-018-2217-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The combination of thiamine, ascorbic acid, and hydrocortisone has recently emerged as a potential adjunctive therapy to antibiotics, infectious source control, and supportive care for patients with sepsis and septic shock. In the present manuscript, we provide a comprehensive review of the pathophysiologic basis and supporting research for each element of the thiamine, ascorbic acid, and hydrocortisone drug combination in sepsis. In addition, we describe potential areas of synergy between these therapies and discuss the strengths/weaknesses of the two studies to date which have evaluated the drug combination in patients with severe infection. Finally, we describe the current state of current clinical practice as it relates to the thiamine, ascorbic acid, and hydrocortisone combination and present an overview of the randomized, placebo-controlled, multi-center Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other planned/ongoing randomized clinical trials.
Collapse
Affiliation(s)
- Ari Moskowitz
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Lars W. Andersen
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - David T. Huang
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Katherine M. Berg
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Anne V. Grossestreuer
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
| | - Paul E. Marik
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA USA
| | - Robert L. Sherwin
- Department of Emergency Medicine, Wayne State University School of Medicine/Detroit Receiving Hospital, Detroit, MI USA
| | - Peter C. Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Lance B. Becker
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Michael N. Cocchi
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Pratik Doshi
- Department of Emergency Medicine and Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Jonathan Gong
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New Hyde Park, NY USA
| | - Ayan Sen
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ USA
| | - Michael W. Donnino
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Emergency Medicine, One Deaconess Rd, W/CC 2, Boston, MA 02215 USA
| |
Collapse
|
64
|
Merz T, Wepler M, Nußbaum B, Vogt J, Calzia E, Wang R, Szabo C, Radermacher P, McCook O. Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Med Exp 2018; 6:43. [PMID: 30343340 PMCID: PMC6195873 DOI: 10.1186/s40635-018-0208-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Sepsis is associated with disturbed glucose metabolism and reduced mitochondrial activity and biogenesis, ultimately leading to multiple organ dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major cardiovascular source of endogenous H2S release, is implicated in the regulation of glucose metabolism and mitochondrial activity through a PGC1α-dependent mechanism, and critical for kidney function. Atherosclerosis is associated with mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post hoc study was to test the hypothesis whether there is an interplay between CSE expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying coronary artery disease. Methods This study is a post hoc analysis of material from anesthetized and instrumented swine with a high fat diet-induced hypercholesterolemia and atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline (NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13C6-glucose and expiratory 13CO2/12CO2 isotope enrichment during 13C6-glucose infusion. Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α expression, as well as nitrotyrosine formation and albumin extravasation, were quantified by immunohistochemistry of formalin-fixed kidney paraffin sections. Results Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p = 0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.008) were increased in septic kidneys. Conclusions Sepsis-induced AKI is associated with disturbed mitochondrial respiration and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our results confirm previous data in murine septic shock and porcine hemorrhage and resuscitation on the crucial role of CSE for barrier integrity and kidney function. Electronic supplementary material The online version of this article (10.1186/s40635-018-0208-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Martin Wepler
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Benedikt Nußbaum
- Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX, 77555, USA.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|
65
|
The Emperor Has No Clothes? Searching for Dysregulation in Sepsis. J Clin Med 2018; 7:jcm7090247. [PMID: 30158480 PMCID: PMC6162833 DOI: 10.3390/jcm7090247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022] Open
Abstract
The core conception of sepsis—that it is a dysregulated state—is a powerful and durable idea that has inspired decades of research. But is it true that the body’s response to sepsis is dysregulated? To answer that question, this review surveyed the history of trials of experimental sepsis treatments targeting the host response. Sepsis survival is not improved by blocking one or many immune pathways. Similarly, sepsis is resistant to treatment by normalizing one or many physiologic parameters simultaneously. The vast majority of interventions are either ineffective or harmful. With this track record of failure, it is time to consider the alternative hypothesis—regulation instead of dysregulation—and the possibility that sepsis traits are often functional, and that some physiologic alterations in sepsis do more good than harm, while others are neutral. This review discusses the implications of this perspective for the future of sepsis research.
Collapse
|
66
|
Harrois A, Grillot N, Figueiredo S, Duranteau J. Acute kidney injury is associated with a decrease in cortical renal perfusion during septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:161. [PMID: 29907130 PMCID: PMC6002990 DOI: 10.1186/s13054-018-2067-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/15/2018] [Indexed: 12/12/2022]
Abstract
Background Renal perfusion status remains poorly studied at the bedside during septic shock. We sought to measure cortical renal perfusion in patients with septic shock during their first 3 days of care using renal contrast enhanced ultrasound (CEUS). Methods We prospectively included 20 ICU patients with septic shock and 10 control patients (CL) without septic shock admitted to a surgical ICU. Cortical renal perfusion was evaluated with CEUS during continuous infusion of Sonovue (Milan, Italy) within the first 24 h (day 0), between 24 and 48 h (day 1) and after 72 h (day 3) of care. Each measurement consisted of three destruction replenishment sequences that were recorded for delayed analysis with dedicated software (Vuebox). Renal perfusion was quantified by measuring the mean transit time (mTT) and the perfusion index (PI), which is the ratio of renal blood volume (rBV) to mTT. Results Cortical renal perfusion was decreased in septic shock as attested by a lower PI and a higher mTT in patients with septic shock than in patients of the CL group (p = 0.005 and p = 0.03). PI values had wider range in patients with septic shock (median (min-max) of 74 arbitrary units (a.u.) (3–736)) than in patients of the CL group 228 a.u. (67–440)). Renal perfusion improved over the first 3 days with a PI at day 3 higher than the PI at day 0 (74 (22–120) versus 160 (88–245) p = 0.02). mTT was significantly higher in patients with severe acute kidney injury (AKI) (n = 13) compared with patients with no AKI (n = 7) over time (p = 0.005). The PI was not different between patients with septic shock with severe AKI and those with no AKI (p = 0.29). Conclusions Although hemodynamic macrovascular parameters were restored, the cortical renal perfusion can be decreased, normal or even increased during septic shock. We observed an average decrease in cortical renal perfusion during septic shock compared to patients without septic shock. The decrease in cortical renal perfusion was associated with severe AKI occurrence. The use of renal CEUS to guide renal perfusion resuscitation needs further investigation.
Collapse
Affiliation(s)
- Anatole Harrois
- Anesthesia and Intensive Care Department, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Hôpital De Bicêtre, Assistance Publique Hôpitaux de Paris (APHP), 78, Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Nicolas Grillot
- Anesthesia and Intensive Care Department, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Hôpital De Bicêtre, Assistance Publique Hôpitaux de Paris (APHP), 78, Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Samy Figueiredo
- Anesthesia and Intensive Care Department, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Hôpital De Bicêtre, Assistance Publique Hôpitaux de Paris (APHP), 78, Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Jacques Duranteau
- Anesthesia and Intensive Care Department, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Hôpital De Bicêtre, Assistance Publique Hôpitaux de Paris (APHP), 78, Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.
| |
Collapse
|
67
|
Honore PM, De Bels D, Spapen HD. BPI fold-containing family a member 2 as a biomarker of acute kidney injury-close but no (clinical) cigar? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:191. [PMID: 29951513 PMCID: PMC5994521 DOI: 10.21037/atm.2018.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 08/30/2023]
Affiliation(s)
- Patrick M. Honore
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - David De Bels
- Department of Intensive Care, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Herbert D. Spapen
- Department of Intensive Care Unit, Universitair Ziekenhuis Brussel, VUB University, Brussels, Belgium
| |
Collapse
|
68
|
Chua HR, Wong WK, Ong VH, Agrawal D, Vathsala A, Tay HM, Mukhopadhyay A. Extended Mortality and Chronic Kidney Disease After Septic Acute Kidney Injury. J Intensive Care Med 2018; 35:527-535. [PMID: 29552953 DOI: 10.1177/0885066618764617] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate 1-year mortality in patients with septic acute kidney injury (AKI) and to determine association between initial AKI recovery patterns (reversal within 5 days, beyond 5 days but recovery, or nonrecovery) and chronic kidney disease (CKD) progression. METHODS Prospective observational study, with retrospective evaluation of initial nonconsenters, of critically ill patients with septic AKI. RESULTS We studied 207 patients (age, mean [SD]: 64 [16] years, 39% males), of which 56 (27%), 18 (9%), and 9 (4%) died in intensive care unit (ICU), post-ICU in hospital, and posthospitalization, respectively. Infections (including pneumonia) and major adverse cardiac events accounted for 64% and 12% of deaths, respectively. Factors independently associated with 1-year mortality include older age, ischemic heart disease, higher Simplified Acute Physiology Score II, central nervous system or musculoskeletal primary infections, higher daily fluid balance (FB), and frusemide administration during ICU stay (all P < .05). Among 63 patients receiving renal replacement therapy (RRT), hospital mortality was higher with cumulative median FB >8 L versus ≤8 L at RRT initiation (57% vs 24%; P = .009); there was trend for less ICU- and RRT-free days at day 28 in patients with higher FB pre-RRT (P = NS). Chronic kidney disease progression over 1 year developed in 21%, 30%, and 79% of 105 initial survivors with AKI reversal, recovery, and nonrecovery, respectively (P < .001). Acute kidney injury nonrecovery during hospitalization independently predicted CKD progression (P = .001). CONCLUSIONS Patients with septic AKI had 40% 1-year mortality, mainly associated with infections. High FB and frusemide administration were modifiable risk factors. Risk of CKD progression is high especially with initial AKI nonrecovery.
Collapse
Affiliation(s)
- Horng-Ruey Chua
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Weng-Kin Wong
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Venetia Huiling Ong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Medical Affairs, National University Hospital, Singapore, Singapore
| | - Dipika Agrawal
- Department of Respiratory Medicine, Ng Teng Fong General Hospital, Singapore
| | - Anantharaman Vathsala
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui-Ming Tay
- Department of Haematology, Singapore General Hospital, Singapore
| | - Amartya Mukhopadhyay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Respiratory Care and Critical Medicine, Department of Medicine, National University Hospital, Singapore
| |
Collapse
|
69
|
Thiamine as a Renal Protective Agent in Septic Shock. A Secondary Analysis of a Randomized, Double-Blind, Placebo-controlled Trial. Ann Am Thorac Soc 2018; 14:737-741. [PMID: 28207287 DOI: 10.1513/annalsats.201608-656bc] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Acute kidney injury (AKI) is common in patients with sepsis and has been associated with high mortality rates. The provision of thiamine to patients with sepsis may reduce the incidence and severity of sepsis-related AKI and thereby prevent renal failure requiring renal replacement therapy (RRT). OBJECTIVES To test the hypothesis that thiamine supplementation mitigates kidney injury in septic shock. METHODS This was a secondary analysis of a single-center, randomized, double-blind trial comparing thiamine to placebo in patients with septic shock. Renal function, need for RRT, timing of hemodialysis catheter placement, and timing of RRT initiation were abstracted. The baseline creatinine and worst creatinine values between 3 and 24 hours, 24 and 48 hours, and 48 and 72 hours were likewise abstracted. RESULTS There were 70 patients eligible for analysis after excluding 10 patients in whom hemodialysis was initiated before study drug administration. Baseline serum creatinine in the thiamine group was 1.2 mg/dl (interquartile range, 0.8-2.5) as compared with 1.8 mg/dl (interquartile range, 1.3-2.7) in the placebo group (P = 0.3). After initiation of the study drug, more patients in the placebo group than in the thiamine group were started on RRT (eight [21%] vs. one [3%]; P = 0.04). In the repeated measures analysis adjusting for the baseline creatinine level, the worst creatinine levels were higher in the placebo group than in the thiamine group (P = 0.05). CONCLUSIONS In this post hoc analysis of a randomized controlled trial, patients with septic shock randomized to receive thiamine had lower serum creatinine levels and a lower rate of progression to RRT than patients randomized to placebo. These findings should be considered hypothesis generating and can be used as a foundation for further, prospective investigation in this area.
Collapse
|
70
|
|
71
|
Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, Villa G, Fiaccadori E. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 2017; 31:351-359. [PMID: 29273917 DOI: 10.1007/s40620-017-0452-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
Sepsis is a serious medical condition that can lead to multi-organ failure and shock, and it is associated with increased mortality. Acute kidney injury (AKI) is a frequent complication of sepsis in critically ill patients, and often requires renal replacement therapy. The pathophysiology of AKI in sepsis has not yet been fully defined. In the past, classic theories were mainly focused on systemic hemodynamic derangements, underscoring the key role of whole kidney hypoperfusion due to reduced renal blood flow. However, a growing body of experimental and clinical evidence now shows that, at least in the early phase of sepsis-associated AKI, renal blood flow is normal, or even increased. This could suggest a dissociation between renal blood flow and kidney function. In addition, the scant data available from kidney biopsies in human studies do not support diffuse acute tubular necrosis as the predominant lesion. Instead, increasing importance is now attributed to kidney damage resulting from a complex interaction between immunologic mechanisms, inflammatory cascade activation, and deranged coagulation pathways, leading to microvascular dysfunction, endothelial damage, leukocyte/platelet activation with the formation of micro-thrombi, epithelial tubular cell injury and dysfunction. Moreover, the same processes, through maladaptive responses leading to fibrosis acting from the very beginning, may set the stage for progression to chronic kidney disease in survivors from sepsis-associated AKI episodes. The aim of this narrative review is to summarize and discuss the latest evidence on the pathophysiological mechanisms involved in septic AKI, based on the most recent data from the literature.
Collapse
Affiliation(s)
- Filippo Fani
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Regolisti
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Delsante
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont "A. Avogadro", "Maggiore della Carità" University Hospital, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - Gianluca Villa
- Anesthesiology and Intensive Care, University of Florence, Florence, Italy
| | - Enrico Fiaccadori
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
72
|
Affiliation(s)
- Claudia Dos Santos
- 1 Interdepartmental Division of Critical Care Medicine and.,2 Division of Respirology, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada.,3 Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Leo Heunks
- 4 Department of Intensive Care, VU University Medical Centre, Amsterdam, the Netherlands
| | - Hannah Wunsch
- 1 Interdepartmental Division of Critical Care Medicine and.,6 Department of Anesthesiology, University of Toronto, Toronto, Ontario, Canada.,5 Department of Critical Care Medicine, Sunnybrook Hospital, Toronto, Ontario, Canada; and.,7 Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
73
|
Guerci P, Ergin B, Ince C. The macro- and microcirculation of the kidney. Best Pract Res Clin Anaesthesiol 2017; 31:315-329. [PMID: 29248139 DOI: 10.1016/j.bpa.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) remains one of the main causes of morbidity and mortality in the intensive care medicine today. Its pathophysiology and progress to chronic kidney disease is still under investigation. In addition, the lack of techniques to adequately monitor renal function and microcirculation at the bedside makes its therapeutic resolution challenging. In this article, we review current concepts related to renal hemodynamics compromise as being the event underlying AKI. In doing so, we discuss the physiology of the renal circulation and the effects of alterations in systemic hemodynamics that lead to renal injury specifically in the context of reperfusion injury and sepsis. The ultimate key culprit of AKI leading to failure is the dysfunction of the renal microcirculation. The cellular and subcellular components of the renal microcirculation are discussed and how their injury contributes to AKI is described.
Collapse
Affiliation(s)
- Philippe Guerci
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Nancy, France; INSERM U1116, University of Lorraine, Vandoeuvre-Les-Nancy, France; Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
74
|
Nilsson KF, Sandin J, Gustafsson LE, Frithiof R. The novel nitric oxide donor PDNO attenuates ovine ischemia-reperfusion induced renal failure. Intensive Care Med Exp 2017; 5:29. [PMID: 28600797 PMCID: PMC5466578 DOI: 10.1186/s40635-017-0143-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/26/2017] [Indexed: 01/18/2023] Open
Abstract
Background Renal ischemia-reperfusion injury is a common cause of acute kidney injury in intensive care and surgery. Recently, novel organic mononitrites of 1,2-propanediol (PDNO) were synthesized and shown to rapidly and controllably deploy nitric oxide in the circulation when administered intravenously. We hypothesized that intravenous infusion of PDNO during renal ischemia reperfusion would improve post-ischemic renal function and microcirculation. Methods Sixteen sheep were anesthetized, mechanically ventilated, and surgically instrumented. The left renal artery was clamped for 90 min, and the effects of ischemia were studied for a total of 8 h. Fifteen minutes prior to the release of the clamp, intravenous infusions of PDNO (n = 8) or vehicle (1,2 propanediol + inorganic nitrite, n = 8) were initiated (180 nmol/kg/min for 30 min, thereafter 60 nmol/kg/min for the remainder of the experiment). Results Renal artery blood flow, cortical and medullary perfusion, and diuresis and creatinine clearance decreased in the left kidney post ischemia. However, in the sheep treated with PDNO, diuresis and creatinine clearance in the left kidney were significantly higher post ischemia compared to vehicle-treated animals (1.7 ± 0.5 vs 0.7 ± 0.3 ml/kg/h, p = 0.04 and 7.5 ± 2.1 vs 1.7 ± 0.6 ml/min, p = 0.02, respectively). Left renal medullary perfusion and oxygen uptake were higher in the PDNO group (73 ± 9 vs 37 ± 5% of baseline, p = 0.004 and 2.6 ± 0.4 vs 1.6 ± 0.3 ml/min, p = 0.02, respectively). PDNO significantly increased renal oxygen consumption and reduced the oxygen utilization for sodium reabsorption (p = 0.03 for both). Mean arterial blood pressure was significantly reduced by PDNO (83 ± 3 vs 94 ± 3 mmHg, p = 0.02) but was still within normal limits. Total renal blood flow was not affected, and there were no signs of increased blood methemoglobin concentrations or tachyphylaxis. Conclusions The novel nitric oxide donor PDNO improved renal function after ischemia. PDNO also prevented the persistent reduction in medullary perfusion during reperfusion and improved renal oxygen utilization without severe side effects.
Collapse
Affiliation(s)
- Kristofer F Nilsson
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - John Sandin
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Gustafsson
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Frithiof
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Section of Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
75
|
Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, Bagshaw SM, Glassford NJ, Lankadeva Y, Vaara ST, Schneider A. Acute kidney injury in sepsis. Intensive Care Med 2017; 43:816-828. [PMID: 28364303 DOI: 10.1007/s00134-017-4755-7] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) and sepsis carry consensus definitions. The simultaneous presence of both identifies septic AKI. Septic AKI is the most common AKI syndrome in ICU and accounts for approximately half of all such AKI. Its pathophysiology remains poorly understood, but animal models and lack of histological changes suggest that, at least initially, septic AKI may be a functional phenomenon with combined microvascular shunting and tubular cell stress. The diagnosis remains based on clinical assessment and measurement of urinary output and serum creatinine. However, multiple biomarkers and especially cell cycle arrest biomarkers are gaining acceptance. Prevention of septic AKI remains based on the treatment of sepsis and on early resuscitation. Such resuscitation relies on the judicious use of both fluids and vasoactive drugs. In particular, there is strong evidence that starch-containing fluids are nephrotoxic and decrease renal function and suggestive evidence that chloride-rich fluid may also adversely affect renal function. Vasoactive drugs have variable effects on renal function in septic AKI. At this time, norepinephrine is the dominant agent, but vasopressin may also have a role. Despite supportive therapies, renal function may be temporarily or completely lost. In such patients, renal replacement therapy (RRT) becomes necessary. The optimal intensity of this therapy has been established, while the timing of when to commence RRT is now a focus of investigation. If sepsis resolves, the majority of patients recover renal function. Yet, even a single episode of septic AKI is associated with increased subsequent risk of chronic kidney disease.
Collapse
Affiliation(s)
- Rinaldo Bellomo
- School of Medicine, The University of Melbourne, Melbourne, Australia.
- Department of Intensive Care, Austin Hospital, Heidelberg, VIC, 3084, Australia.
| | - John A Kellum
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, USA
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
- International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital, Vicenza, Italy
| | - Ron Wald
- Division of Nephrology, St. Michael's Hospital and the University of Toronto, Toronto, Canada
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
| | - Johan Martensson
- Section of Anaesthesia and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Maiden
- Department of Intensive Care, Geelong University Hospital, Geelong, VIC, Australia
- Department of Intensive Care, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Neil J Glassford
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Yugeesh Lankadeva
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Suvi T Vaara
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antoine Schneider
- Adult Intensive Care Unit, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
76
|
Patel A, Prowle JR, Ackland GL. Postoperative goal-directed therapy and development of acute kidney injury following major elective noncardiac surgery: post-hoc analysis of POM-O randomized controlled trial. Clin Kidney J 2017; 10:348-356. [PMID: 28616213 PMCID: PMC5466093 DOI: 10.1093/ckj/sfw118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022] Open
Abstract
Background: The role of goal-directed therapy (GDT) in preventing creatinine rise following noncardiac surgery is unclear. We performed a post-hoc analysis of a randomized controlled trial to assess the relationship between postoperative optimization of oxygen delivery and development of acute kidney injury (AKI)/creatinine rise following noncardiac surgery. Methods: Patients were randomly assigned immediately postoperatively to receive either fluid and/or dobutamine therapy to maintain/restore their preoperative oxygen delivery, or protocolized standard care (oxygen delivery only recorded). Primary end point was serial changes in postoperative creatinine within 48 h postoperatively. Secondary outcomes were development of AKI (KDIGO criteria) and minimal creatinine rise (MCR; no decline from preoperative creatinine), related to all-cause morbidity and length of stay. Results: Postoperative reductions in serum creatinine were similar (P = 0.76) in patients randomized to GDT [10 µmol/L (95% confidence interval, CI: 17 to −1); n = 95] or protocolized care [8 µmol/L (95% CI: 17 to −6); n = 92]. Postoperative haemodynamic management was not associated with the development of MCR [78/187 (41.7%)] or AKI [13/187; (7.0%)]. Intraoperative requirement for norepinephrine was more likely in patients who developed postoperative rises in creatinine [relative risk (RR): 1.66 (95% CI: 1.04–2.67); P = 0.04], despite similar volumes of intraoperative fluid being administered. Persistently higher lactate during the intervention period was associated with AKI (mean difference: 1.15 mmol/L (95% CI: 0.48–1.81); P = 0.01]. Prolonged hospital stay was associated with AKI but not MCR [RR: 2.71 (95% CI: 1.51–4.87); P = 0.0008]. Conclusion: These data provide further insights into how perioperative haemodynamic alterations relate to postoperative increases in creatinine once systemic inflammation is established.
Collapse
Affiliation(s)
- Amour Patel
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - John R Prowle
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Gareth L Ackland
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | |
Collapse
|
77
|
Zafrani L, Ergin B, Kapucu A, Ince C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:406. [PMID: 27993148 PMCID: PMC5168817 DOI: 10.1186/s13054-016-1581-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022]
Abstract
Background The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Results Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Conclusions Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1581-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Zafrani
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Intensive Care, Erasmus MC, University of Medical Center, Rotterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University of Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
78
|
Peters E, Ergin B, Kandil A, Gurel-Gurevin E, van Elsas A, Masereeuw R, Pickkers P, Ince C. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury. Toxicol Appl Pharmacol 2016; 313:88-96. [DOI: 10.1016/j.taap.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 01/24/2023]
|
79
|
Abstract
Over a decade ago, it was proposed that the regulation of tubular repair in the kidney might involve the recapitulation of developmental pathways. Although the kidney cannot generate new nephrons after birth, suggesting a low level of regenerative competence, the tubular epithelial cells of the nephrons can proliferate to repair the damage after AKI. However, the debate continues over whether this repair involves a persistent progenitor population or any mature epithelial cell remaining after injury. Recent reports have highlighted the expression of Sox9, a transcription factor critical for normal kidney development, during postnatal epithelial repair in the kidney. Indeed, the proliferative response of the epithelium involves expression of several pathways previously described as being involved in kidney development. In some instances, these pathways are also apparently involved in the maladaptive responses observed after repeated injury. Whether development and repair in the kidney are the same processes or we are misinterpreting the similar expression of genes under different circumstances remains unknown. Here, we review the evidence for this link, concluding that such parallels in expression may more correctly represent the use of the same pathways in a distinct context, likely triggered by similar stressors.
Collapse
Affiliation(s)
- Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Australia; and .,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Pamela Kairath
- Murdoch Children's Research Institute, Melbourne, Australia; and.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
80
|
Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int 2016; 91:45-60. [PMID: 27692561 DOI: 10.1016/j.kint.2016.07.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
Abstract
The pathogenesis of sepsis-associated acute kidney injury is complex and likely involves perfusion alterations, a dysregulated inflammatory response, and bioenergetic derangements. Although global renal hypoperfusion has been the main target of therapeutic interventions, its role in the development of renal dysfunction in sepsis is controversial. The implications of renal hypoperfusion during sepsis probably extend beyond a simple decrease in glomerular filtration pressure, and targeting microvascular perfusion deficits to maintain tubular epithelial integrity and function may be equally important. In this review, we provide an overview of macro- and microcirculatory dysfunction in experimental and clinical sepsis and discuss relationships with kidney oxygenation, metabolism, inflammation, and function.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, School of Medicine, The University of Melbourne, Parkville, Melbourne, Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
81
|
Schulte K, Linkermann A. Welcome to the Jungle: The Kidney during Sepsis. Am J Respir Crit Care Med 2016; 194:649-50. [DOI: 10.1164/rccm.201603-0550ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
82
|
Post EH, Su F, Hosokawa K, Taccone FS, Herpain A, Creteur J, Vincent JL, De Backer D. Changes in kidney perfusion and renal cortex metabolism in septic shock: an experimental study. J Surg Res 2016; 207:145-154. [PMID: 27979471 DOI: 10.1016/j.jss.2016.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The etiology of renal dysfunction in sepsis is currently attributed to altered perfusion, microcirculatory abnormalities and cellular alterations. To clarify these mechanisms, we characterized the changes in renal perfusion and cortex metabolism in a large animal model of sepsis. METHODS We studied 12 adult female sheep randomized to peritonitis-induced sepsis (n = 8) or to sham procedure (n = 4). A flow probe was positioned around the renal artery to measure renal blood flow (RBF). Laser Doppler was used to measure regional flow in the kidney cortex and medulla. A microdialysis probe was inserted into the renal cortex to measure cortical glucose, lactate, and pyruvate. Fluid resuscitation was provided to keep pulmonary artery occlusion pressure at baseline levels. All animals were observed for 18 h. RESULTS Hypotension occurred after 9 h in the septic animals (P = 0.02 versus baseline). RBF and cortical flow were significantly lower than at baseline from 12 h in the septic animals (P = 0.01 and P = 0.03, respectively). Cortical lactate and pyruvate levels increased in the septic animals from 3 and from 6 h, respectively (both P = 0.02 versus baseline), and the L/P ratio from 15 h (P = 0.01). There was a correlation between cortical flow and cortical L/P ratio after shock onset (r = -0.60, P = 0.002) but not before. CONCLUSIONS In this peritonitis model, sepsis was associated with metabolic alterations that may reflect early induction of cortical glycolysis. Septic shock was associated with reduced renal perfusion and decreased cortical and medullary blood flow, followed by signs of anaerobic metabolism in the cortex when flow reductions became critical.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Koji Hosokawa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|