51
|
Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 2007; 26:503-17. [PMID: 17398124 PMCID: PMC2084390 DOI: 10.1016/j.immuni.2007.03.006] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/30/2007] [Accepted: 02/13/2007] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells are important effector cells in the control of infections. The cellular and molecular signals required for NK cell activation in vivo remain poorly defined. By using a mouse model for the inducible ablation of dendritic cells (DCs), we showed that the in vivo priming of NK cell responses to viral and bacterial pathogens required the presence of CD11c(high) DCs. After peripheral Toll-like receptor (TLR) stimulation, NK cells were recruited to local lymph nodes, and their interaction with DCs resulted in the emergence of effector NK cells in the periphery. NK cell priming was dependent on the recognition of type I IFN signals by DCs and the subsequent production and trans-presentation of IL-15 by DCs to resting NK cells. CD11c(high) DC-derived IL-15 was necessary and sufficient for the priming of NK cells. Our data define a unique in vivo role of DCs for the priming of NK cells, revealing a striking and previously unappreciated homology to T lymphocytes of the adaptive immune system.
Collapse
Affiliation(s)
- Mathias Lucas
- Skirball Institute of Biomolecular Medicine, Program in Molecular Pathogenesis, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - William Schachterle
- Skirball Institute of Biomolecular Medicine, Program in Molecular Pathogenesis, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | - Karin Oberle
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Peter Aichele
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- Skirball Institute of Biomolecular Medicine, Program in Molecular Pathogenesis, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| |
Collapse
|
52
|
Obermeier F, Hausmann M, Kellermeier S, Kiessling S, Strauch UG, Duitman E, Bulfone-Paus S, Herfarth H, Bock J, Dunger N, Stoeck M, Schölmerich J, Falk W, Rogler G. IL-15 protects intestinal epithelial cells. Eur J Immunol 2006; 36:2691-9. [PMID: 16981178 DOI: 10.1002/eji.200535173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-15, a T-cell growth factor, has been shown to be increased in inflammatory bowel disease (IBD). It has been suggested that neutralization of IL-15 could protect from T cell-dependent autoimmune inflammation. On the other hand, an anti-apoptotic effect of IL-15 has been demonstrated in kidney epithelial cells during nephritis. We therefore tested the role of IL-15 in two different experimental models of colitis in vivo, and in models of intestinal epithelial cell (IEC) apoptosis in vitro. IL-15 blockade in chronic dextran sulphate sodium-induced colitis resulted in aggravation of the disease with a significantly 2.1-fold increased epithelial damage score compared to controls. TUNEL staining clearly revealed increased apoptosis. IL-6, TNF and IFN-gamma secretion by mesenteric lymph node cells were increased. In the T cell-dependent SCID transfer model of colitis IL-15 neutralization reduced the inflammatory infiltration and proinflammatory cytokine production. Despite that, the intestinal epithelial damage was not reduced. In vitro, IL-15 pre-incubation prevented up to 75% of CH11 antibody-induced apoptosis in SW-480 cells and reduced caspase-3 activity. According to this, endogenously produced IL-15 in chronic colitis does not only act as a proinflammatory cytokine but has at the same time the potential to reduce mucosal damage by preventing IEC apoptosis.
Collapse
Affiliation(s)
- Florian Obermeier
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Suzuki A, McCall S, Choi SS, Sicklick JK, Huang J, Qi Y, Zdanowicz M, Camp T, Li YX, Diehl AM. Interleukin-15 increases hepatic regenerative activity. J Hepatol 2006; 45:410-8. [PMID: 16781000 DOI: 10.1016/j.jhep.2006.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/17/2006] [Accepted: 04/09/2006] [Indexed: 01/16/2023]
Abstract
BACKGROUND/AIMS Interleukin-15 (IL-15) is expressed in many organs. It generally inhibits apoptosis and increases cellular proliferation and differentiation. However, IL-15's roles in liver are unknown. We aimed to determine if IL-15 influences hepatic integrity and regenerative activity. METHODS Expression of IL-15 and its receptors was evaluated in several liver injury models, primary hepatocytes, and two liver cell lines. Effects of IL-15 on viability, proliferation, and apoptosis were assessed in cultured liver cells, and also in the livers of healthy mice. RESULTS IL-15 and its receptors are expressed constitutively in healthy livers, and ligand expression is induced in injured livers. Cultured primary hepatocytes and liver cell lines express IL-15 and its receptors. Administration of IL-15 has minimal effects on cultured liver cells, but significantly up-regulates oval cell accumulation, cyclin mRNA expression, and mature hepatocyte replication in healthy mice. These effects are associated with focal hepatic inflammation and increased expression of TNF-alpha and IFN-gamma, but not with increased cell death or aminotransferase release. CONCLUSIONS IL-15 expression increases during liver injury and IL-15 treatment induces a wound healing-type response in healthy adult mice. These findings suggest that IL-15 may contribute to regenerative activity in damaged liver.
Collapse
Affiliation(s)
- Ayako Suzuki
- Division of Gastroenterology and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Targeting the IL-15 pathway to prevent rejection after organ transplantation. Transplant Rev (Orlando) 2006. [DOI: 10.1016/j.trre.2006.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
56
|
Anolik JH, Aringer M. New treatments for SLE: cell-depleting and anti-cytokine therapies. Best Pract Res Clin Rheumatol 2005; 19:859-78. [PMID: 16150407 DOI: 10.1016/j.berh.2005.05.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although systemic lupus erythematosus (SLE) is indeed a complex autoimmune disease, recent advances in our understanding of lupus pathogenesis have suggested new, targeted approaches to therapy. The purpose of this review is to discuss the underlying scientific rationale and results of first clinical studies of new treatment approaches to SLE, with a focus on cell-depleting therapies and cytokine blockade. It has become clear that the B lymphocyte plays a key role in disease pathogenesis by both autoantibody-dependent and autoantibody-independent mechanisms. Additionally, aberrant interactions between B and T cells are critical to disease emergence and progression. New agents that directly target immune cells abnormal in SLE include the B-cell depleting or modulating antibodies, rituximab (anti-CD20) and epratuzumab (anti-CD22) and the anti-dsDNA tolerogen LJP394. Another promising approach has been to block co-stimulatory interactions between T and B cells, for example by inhibiting the CD40-CD40 ligand pathway with anti-CD40 ligand monoclonal antibody or the B7 pathway with CTLA-4Ig. Immune cells can also be manipulated indirectly through cytokine effects. For B cells, anti-BAFF (B-cell activation factor of the tumor necrosis family) provides an example of this approach. Other, more pleiotropic cytokines can likewise be blocked in SLE. In addition to the blockade of interleukin-10 (IL-10), the first anti-cytokine approach examined, it is mainly anti-tumor necrosis factor therapy that has come into focus, holding promise for some patients with lupus nephritis. The majority of the available data on these new treatment approaches stems from open-label trials, but controlled trials are under way. Moreover, many additional cytokines, such as interleukin (IL)-6, IL-18, and the type I interferons, represent interesting future targets.
Collapse
Affiliation(s)
- Jennifer H Anolik
- Allergy, Immunology, Rheumatology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
57
|
Sparmann G, Glass A, Brock P, Jaster R, Koczan D, Thiesen HJ, Liebe S, Emmrich J. Inhibition of lymphocyte apoptosis by pancreatic stellate cells: impact of interleukin-15. Am J Physiol Gastrointest Liver Physiol 2005; 289:G842-51. [PMID: 16002563 DOI: 10.1152/ajpgi.00483.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is growing evidence that pancreatic stellate cells (PSCs) produce cytokines and take part in the regulation of inflammatory processes in the pancreas. IL-15 inhibits apoptosis of various cell populations. This study was performed to investigate whether PSCs produce IL-15 and thereby can affect lymphocytes. Primary PSCs were isolated from the rat pancreas using density gradient centrifugation. mRNA expression of IL-15 was demonstrated by RT-PCR, and IL-15 protein was analyzed by immunoblotting. Lymphocytes obtained from rat mesenterial lymph nodes were cocultured with in vitro activated PSCs. Apoptosis has been quantified by the binding of annexin V-FITC with a flow cytometer. Proliferation was monitored using [3H]thymidine incorporation. PSCs express two splice variants of IL-15. The protein was detectable only in cell lysates but not in the cell culture supernatant. Cocultivation of lymphocytes with PSCs and IL-15 inhibited spontaneous lymphocyte apoptosis, and this effect was reduced by an anti-IL-15 antibody. Lymphocytes induced vice versa the proliferation and collagen production of PSCs. The inhibition of spontaneous lymphocyte apoptosis in cocultures with PSCs was at least partially mediated by cell-bound IL-15. This effect and the stimulation of PSCs by lymphocytes may lead to a circulus vitiosus, resulting in the persistence of inflammatory processes and the development of fibrosis during chronic pancreatitis.
Collapse
Affiliation(s)
- Gisela Sparmann
- Division of Gastroenterology, Department of Medicine, University of Rostock, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The defense of the host from foreign pathogens is the commonly accepted function of the vertebrate immune system. A complex system consisting of many differing cells and structures communicating by both soluble and cell bound ligands, serves to protect the host from infection, and plays a role in preventing the development of certain types of tumours. Numerous signalling pathways are involved in the coordination of the immune system, serving both to activate and attenuate its responses to attack. The ability of the immune system, specifically those cells involved in acute inflammatory responses, to mediate the directed (and sometimes indirect) killing of cells and pathogens, make it a potential threat to host survival. Furthermore, the production and release of various survival factors such as the pleiotropic cytokine IL-6, a major mediator of inflammation and activator of signal transducer and activator of transcription 3, serves to block apoptosis in cells during the inflammatory process, keeping them alive in very toxic environments. Unfortunately, these same pathways serve also to maintain cells progressing towards neoplastic growth, protecting them from cellular apoptotic deletion and chemotherapeutic drugs. Here, we discuss the relationships between cancer and inflammation, and some of the molecular mechanisms involved in mediating the unintended consequences of host defense and tumour survival.
Collapse
Affiliation(s)
- David R Hodge
- Laboratory of Molecular Immunoregulation, Cytokine Molecular Mechanisms Section, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
59
|
Du C, Guan Q, Yin Z, Zhong R, Jevnikar AM. IL-2-mediated apoptosis of kidney tubular epithelial cells is regulated by the caspase-8 inhibitor c-FLIP. Kidney Int 2005; 67:1397-409. [PMID: 15780092 DOI: 10.1111/j.1523-1755.2005.00217.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tubular epithelial cells (TECs) are essential in the maintenance of kidney function. Apoptosis of TECs occur during acute and chronic renal allograft rejection as well as other forms of renal injury, including autoimmune nephritis. The regulation of TEC apoptosis by proinflammatory cytokines associated with renal inflammation [e.g., interleukin (IL)-2 and interferon-gamma (IFN-gamma)] has not been extensively investigated. METHODS Apoptosis in murine TECs was determined by FACS with annexin-V or ligation-mediated-polymerase chain reaction (LM-PCR) and mRNA levels by reverse transcription (RT)-PCR or Northern blot. Protein expression was observed using Western blot. RESULTS IL-2R (CD25) was expressed by murine TECs and up-regulated by IL-2. Both IL-2 and IFN-gamma induced TEC apoptosis and activated caspase-8. Apoptosis with IL-2 was concentration-dependent and blocked by z-IETD-fmk, a specific caspase-8 inhibitor. Apoptosis with IFN-gamma was associated with increased surface expression of Fas, while IL-2 had no effect on Fas. IL-2 did not induce apoptosis in Fas-deficient TECs (M3.1-lpr) suggesting IL-2 regulation of caspase-8 activity requires Fas. Consistent with this, IL-2 but not IFN-gamma was found to decrease mRNA and protein expression of c-FLIP, an endogenous caspase-8 inhibitor in murine TECs. Overexpression of c-FLIP in TECs (CS3.7-FLIP) blocked apoptosis and caspase-8 activation with both IFN-gamma and IL-2. c-FLIP expression was found in kidney cortex, primary and cloned TECs, suggesting c-FLIP is likely a key regulator of caspase-8-mediated apoptosis in vivo. CONCLUSION This is the first report of c-FLIP regulation by IL-2 in renal TECs. Augmentation of c-FLIP in TECs may enhance an endogenous mechanism by which TECs normally resist injury to caspase-8-mediated apoptosis and thus may be a useful and novel strategy to prevent tubular injury in transplant rejection and autoimmune nephritis.
Collapse
Affiliation(s)
- Caigan Du
- Department of Medicine, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
60
|
Kim JH, Ha IS, Hwang CI, Lee YJ, Kim J, Yang SH, Kim YS, Cao YA, Choi S, Park WY. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease. Kidney Int 2005; 66:1826-37. [PMID: 15496153 DOI: 10.1111/j.1523-1755.2004.00956.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. METHODS Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. RESULTS Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. CONCLUSION We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory renal disease.
Collapse
Affiliation(s)
- Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Budagian V, Bulanova E, Orinska Z, Ludwig A, Rose-John S, Saftig P, Borden EC, Bulfone-Paus S. Natural Soluble Interleukin-15Rα Is Generated by Cleavage That Involves the Tumor Necrosis Factor-α-converting Enzyme (TACE/ADAM17). J Biol Chem 2004; 279:40368-75. [PMID: 15215246 DOI: 10.1074/jbc.m404125200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.
Collapse
Affiliation(s)
- Vadim Budagian
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Budagian V, Bulanova E, Orinska Z, Pohl T, Borden EC, Silverman R, Bulfone-Paus S. Reverse signaling through membrane-bound interleukin-15. J Biol Chem 2004; 279:42192-201. [PMID: 15284244 DOI: 10.1074/jbc.m403182200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The results from this study implicate membrane-anchored interleukin (IL)-15 constitutively expressed on the cell surface of PC-3 human prostate carcinoma cells and interferon-gamma-activated human monocytes in reverse signaling upon stimulation with soluble IL-15 receptor-alpha or anti-IL-15 antibodies, mediating the outside-to-inside signal transduction that involves the activation of members of the MAPK family (ERK and p38) and focal adhesion kinase. The presence of membrane-bound IL-15 was not dependent on the expression of the trimeric IL-15 receptor complex by these cells and resisted treatment with acidic buffer or trypsin. Reverse signaling through membrane-bound IL-15 considerably increased the production of several pro-inflammatory cytokines by monocytes, such as IL-6, IL-8, and tumor necrosis factor-alpha, thereby indicating the relevance of this process to the complex immunomodulatory function of these cells. Furthermore, stimulation of transmembrane IL-15 also enhanced the transcription of IL-6 and IL-8 in the PC-3 cell line and promoted migration of PC-3 cells as well as LNCaP human prostate carcinoma cells stably expressing IL-15 on the cell surface. Thus, IL-15 can exist as a biologically active transmembrane molecule that possesses dual ligand-receptor qualities with a potential to induce bidirectional signaling. This fact highlights a new level of complexity in the biology of IL-15 and offers novel important insights into our understanding of the cellular responses modulated by this pleiotropic cytokine.
Collapse
Affiliation(s)
- Vadim Budagian
- Department of Immunology and Cell Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Lesur O, Brisebois M, Thibodeau A, Chagnon F, Lane D, Füllöp T. Role of IFN-gamma and IL-2 in rat lung epithelial cell migration and apoptosis after oxidant injury. Am J Physiol Lung Cell Mol Physiol 2004; 286:L4-L14. [PMID: 12922984 DOI: 10.1152/ajplung.00367.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, IFN-gamma exposure to primary cultures of rat type II epithelial cells (TIIP) upregulated membrane expression of the common gamma-chain of the IL-2 receptor (approximately 2.5- to 4-fold increase) and redistributed receptor affinity in TIIP, as assessed by Western blot, cell, and tissue histochemistry and Scatchard analysis. As for restitution processes of the lung epithelium, functionality of IL-2R on TIIP was conditional to IFN-gamma exposure: 1) IFN-gamma priming promoted a fivefold increase of IL-2-driven TIIP locomotion (P < 0.05 vs. control at 100 U/ml) and 2) IFN-gamma coincubation with IL-2 reduced bleomycin-induced TIIP apoptosis in vitro by 25% (caspase-3 activity) and by approximately 70% (TdT-mediated dUTP nick end labeling/4',6'-diamidino-2-phenylindole assay) as well as in vivo by approximately 90% (caspase-3 activity; P < 0.05 vs. control). Sustained p42/44 extracellular signal-regulated kinase activity played a protective role in this process, whereas specific inhibition by PD-98059 (50 microM) significantly reversed bleomycin-induced TIIP apoptosis (P < 0.05 vs. control). From these in vitro and in vivo data, it is proposed that combinations of IFN-gamma and IL-2 can drive repair activity of TIIP by stimulating migration and preventing programmed cell death, both of which are speculated to be very fast restitution events after oxidant-induced acute lung injury.
Collapse
Affiliation(s)
- Olivier Lesur
- Groupe de Recherche en Physiopathologie Respiratoire, and Soins Intensif Médicaux, Université de Sherbrooke, Québec, Canada, J1H 5N4.
| | | | | | | | | | | |
Collapse
|
64
|
Robertson H, Kirby JA. Post-transplant renal tubulitis: the recruitment, differentiation and persistence of intra-epithelial T cells. Am J Transplant 2003; 3:3-10. [PMID: 12492703 DOI: 10.1034/j.1600-6143.2003.30102.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tubulitis is used by the Banff protocol as a major criterion to grade acute renal allograft rejection. This review integrates results from in vitro and in vivo studies to develop a chronological model to explain the development and functions of tubular inflammation during the rejection process. Proteoglycan-immobilized chemokines are the primary motivators for the vectorial recruitment of specific immune cell populations from the blood, through the endothelium and interstitial tissues to the renal tubules. After penetration of the basement membrane, T cells encounter TGF-beta that can induce expression of the alphaEbeta7 integrin on proliferating cells. This allows adhesion to E-cadherin on the baso-lateral surfaces of tubular epithelial cells and provides an explanation for the epithelial-specific cytotoxicity observed during acute rejection. Tubular epithelium is also a rich source of IL-15 that can stimulate IL-15 receptor-expressing intratubular CD8+ T cells. This anti-apoptotic microenvironment may explain the long-term persistence of cycling T cells within intact tubules after episodes of acute rejection. These memory-like T cells may have local immunoregulatory properties, including the production of additional TGF-beta, but could also modify normal tubular homeostasis resulting in epithelial to mesenchymal transdifferentiation, tubulointerstitial fibrosis and, ultimately, graft failure.
Collapse
Affiliation(s)
- Helen Robertson
- Department of Surgery, The Medical School, University of Newcastle, Newcastle upon Tyne, UK
| | | |
Collapse
|