51
|
Shimokawa H, Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol 2020; 127:92-101. [PMID: 31846200 DOI: 10.1111/bcpt.13377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023]
Abstract
The endothelium plays crucial roles in modulating vascular tone by synthesizing and releasing endothelium-derived relaxing factors (EDRFs), including vasodilator prostaglandins, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors. Thus, endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases. Importantly, the contribution of EDRFs to endothelium-dependent vasodilatation varies in a distinct vessel size-dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels (eg epicardial coronary arteries), while EDH factors in small resistance vessels (eg coronary microvessels). Endothelium-derived hydrogen peroxide (H2 O2 ) is a physiological signalling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular diseases. In the clinical settings, therapeutic approaches targeting NO (eg NO donors) or non-specific elimination of reactive oxygen species (eg antioxidant supplements) are disappointingly ineffective for the treatment of various cardiovascular diseases, in which endothelial dysfunction and coronary microvascular dysfunction are substantially involved. These lines of evidence indicate the potential importance of the physiological balance between NO and H2 O2 /EDH factor. Further characterization and better understanding of endothelium-dependent vasodilatations are important to develop novel therapeutic strategies in cardiovascular medicine. In this MiniReview, we will briefly summarize the current knowledge on the emerging regulatory roles of endothelium-dependent vasodilatations in the cardiovascular system, with a special reference to the two major EDRFs, NO and H2 O2 /EDH factor, in health and disease.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
52
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
53
|
Kim YR, Jacobs JS, Li Q, Gaddam RR, Vikram A, Liu J, Kassan M, Irani K, Kumar S. SUMO2 regulates vascular endothelial function and oxidative stress in mice. Am J Physiol Heart Circ Physiol 2019; 317:H1292-H1300. [DOI: 10.1152/ajpheart.00530.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction. NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.
Collapse
Affiliation(s)
- Young-Rae Kim
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Julia S. Jacobs
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Qiuxia Li
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ajit Vikram
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jing Liu
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Modar Kassan
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kaikobad Irani
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| | - Santosh Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
54
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
55
|
Shimokawa H, Nagao T, Komori K. Tribute to Paul M. Vanhoutte, MD, PhD - 1940-2019. Circ J 2019; 83:2391-2393. [PMID: 31656271 DOI: 10.1253/circj.cj-19-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
56
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
57
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
58
|
García-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, González-Blázquez R, Alcalá M, Rodríguez-Rodríguez P, Viana M, Aránguez I, Gollasch M, Somoza B, Fernández-Alfonso MS. Caloric restriction induces H 2O 2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic Biol Med 2019; 139:35-45. [PMID: 31100477 DOI: 10.1016/j.freeradbiomed.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ± 0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ± 0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | | | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
59
|
Vasoreactivity of isolated aortic rings from dyslipidemic and insulin resistant inducible nitric oxide synthase knockout mice. Eur J Pharmacol 2019; 855:90-97. [DOI: 10.1016/j.ejphar.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
|
60
|
Zhu Y, Ni T, Lin J, Zhang C, Zheng L, Luo M. Long non-coding RNA H19, a negative regulator of microRNA-148b-3p, participates in hypoxia stress in human hepatic sinusoidal endothelial cells via NOX4 and eNOS/NO signaling. Biochimie 2019; 163:128-136. [PMID: 31082428 DOI: 10.1016/j.biochi.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Abstract
This study aimed at the participation of lncRNA H19, endothelial NADPH oxidases (NOX4) and miR-148b-3p in hypoxia stress in human hepatic sinusoidal endothelial cells (HHSEC), and clarifying the relationship among them. The expression of lnc H19, NOX4 and miR-148b-3p in cirrhotic patients and hypoxic HHSEC were measured by RT-PCR. The nitric oxide and hydrogen peroxide content in HHSEC were determined using ultraviolet chromatometry. The protein levels of NOX4, endothelial NOS (eNOS) and phosphorylated eNOS (p-eNOS) were measured via western blotting. The interaction between NOX4 promoter and lnc H19/miR-148b-3p was measured by dual-luciferase reporter gene detection system. The present results indicated that the expressions of NOX4 mRNA and lnc H19 were increased but miR-148b-3p was decreased in both cirrhotic patients and hypoxic HHSEC. Further, hypoxia induced the up-regulation of hydrogen peroxide and the down-regulation of eNOS/NO signaling in HHSEC. And these symptoms were ameliorated by lnc H19 shRNA and miR-148b-3p mimics. But the beneficial effects of lnc H19 shRNA and miR-148b-3p mimics were further abolished by miR-148b-3p inhibitor and NOX4 over-expression, respectively. In addition, NOX4 was a direct, negatively regulated target of miR-148b-3p, and miR-148b-3p was negatively regulated by lnc H19. Collectively, lnc H19 is a negatively regulator of microRNA-148b-3p, and participate in hypoxia stress in HHSEC via positively regulating NOX4 and negatively regulating eNOS/NO signaling.
Collapse
Affiliation(s)
- Yiming Zhu
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China
| | - Tao Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People' Hospital, School of Medicine, Shanghai Jiao Tong University, Huangpu, Shanghai, 200011, China.
| |
Collapse
|
61
|
|
62
|
Important Role of Endothelial Caveolin-1 in the Protective Role of Endothelium-dependent Hyperpolarization Against Nitric Oxide-Mediated Nitrative Stress in Microcirculation in Mice. J Cardiovasc Pharmacol 2019; 71:113-126. [PMID: 29419573 DOI: 10.1097/fjc.0000000000000552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) play important roles in maintaining cardiovascular homeostasis. We have previously demonstrated that endothelial NO synthase (eNOS) plays diverse roles depending on vessel size, as a NO generating system in conduit arteries and an EDH-mediated system in resistance arteries, for which caveolin-1 (Cav-1) is involved. However, the physiological role of endothelial Cav-1 in microvessels remains to be elucidated. METHODS AND RESULTS We newly generated endothelium-specific Cav-1-knockout (eCav-1-KO) mice. eCav-1-KO mice showed loss of endothelial Cav-1/eNOS complex and had cardiac hypertrophy despite normal blood pressure. In eCav-1-KO mice, as compared to wild-type controls, the extent of eNOS phosphorylation at inhibitory Thr495 was significantly reduced in mesenteric arteries and the heart. Isometric tension and Langendorff-perfused heart experiments showed that NO-mediated responses were enhanced, whereas EDH-mediated responses were reduced in coronary microcirculation in eCav-1-KO mice. Immunohistochemistry showed increased level of 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), a marker of nitrative stress, in the heart from eCav-1-KO mice. S-guanylation of cardiac H-Ras in eCav-1-KO mice was also significantly increased compared with wild-type controls. CONCLUSIONS These results suggest that eCav-1 is involved in the protective role of EDH against nitrative stress caused by excessive NO to maintain cardiac microvascular homeostasis.
Collapse
|
63
|
Abstract
SIGNIFICANCE Angiogenesis is the formation of new vessels that sprout from existing vessels. This process is highly complex and requires a coordinated shift of the endothelial phenotype from a quiescent cell in the vessel wall into a migrating or proliferating cell. Such change in the life of the endothelial cell is induced by a variety of factors such as hypoxia, metabolic changes, or cytokines. Recent Advances: Within the last years, it became clear that the cellular redox state and oxidation of signaling molecules or phosphatases are critical modulators in angiogenesis. CRITICAL ISSUES According to the wide variety of stimuli that induce angiogenesis, a complex signaling network is needed to support a coordinated response of the endothelial cell. Reactive oxygen species (ROS) now are second messengers that either directly oxidize a target molecule or initiate a cascade of redox sensitive steps that transmit the signal. Further Directions: For the understanding of redox signaling, it is essential to recognize and accept that ROS do not represent master regulators of angiogenetic processes. They rather modulate existing signal cascades. This review summarizes some current findings on redox signaling in angiogenesis.
Collapse
Affiliation(s)
- Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,2 German Center for Cardiovascular Research (DZHK), Rhine-Main, Frankfurt, Germany
| |
Collapse
|
64
|
Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, Tang H, Huang F, Zhang F, Fang X, Liu J, Jia N, Chen J, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc 2019; 8:e011704. [PMID: 30755057 PMCID: PMC6405661 DOI: 10.1161/jaha.118.011704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023]
Abstract
Background Endothelial NO synthase plays a central role in regulating vasodilation and blood pressure. Intracellular Ca2+ mobilization is a critical modulator of endothelial NO synthase function, and increased cytosolic Ca2+ concentration in endothelial cells is able to induce endothelial NO synthase phosphorylation. Ca2+ release mediated by 3 subtypes of inositol 1,4,5-trisphosphate receptors ( IP 3Rs) from the endoplasmic reticulum and subsequent Ca2+ entry after endoplasmic reticulum Ca2+ store depletion has been proposed to be the major pathway to mobilize Ca2+ in endothelial cells. However, the physiological role of IP 3Rs in regulating blood pressure remains largely unclear. Methods and Results To investigate the role of endothelial IP 3Rs in blood pressure regulation, we first generated an inducible endothelial cell-specific IP 3R1 knockout mouse model and found that deletion of IP 3R1 in adult endothelial cells did not affect vasodilation and blood pressure. Considering all 3 subtypes of IP 3Rs are expressed in mouse endothelial cells, we further generated inducible endothelial cell-specific IP 3R triple knockout mice and found that deletion of all 3 IP 3R subtypes decreased plasma NO concentration and increased basal blood pressure. Furthermore, IP 3R deficiency reduced acetylcholine-induced vasodilation and endothelial NO synthase phosphorylation at Ser1177. Conclusions Our results reveal that IP 3R-mediated Ca2+ release in vascular endothelial cells plays an important role in regulating vasodilation and physiological blood pressure.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure/physiology
- Calcium/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myography
- Vasodilation/physiology
Collapse
Affiliation(s)
- Qingsong Lin
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Lingyun Zhao
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ran Jing
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Christa Trexler
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Hong Wang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Yali Li
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Huayuan Tang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fang Huang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fei Zhang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Xi Fang
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Jie Liu
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Nan Jia
- Department of CardiologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Kunfu Ouyang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
65
|
Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature 2019; 566:548-552. [DOI: 10.1038/s41586-019-0947-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022]
|
66
|
Ito A, Shiroto T, Godo S, Saito H, Tanaka S, Ikumi Y, Kajitani S, Satoh K, Shimokawa H. Important roles of endothelial caveolin-1 in endothelium-dependent hyperpolarization and ischemic angiogenesis in mice. Am J Physiol Heart Circ Physiol 2019; 316:H900-H910. [PMID: 30707613 DOI: 10.1152/ajpheart.00589.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. We have previously demonstrated that endothelium-derived H2O2 is an endothelium-dependent hyperpolarization (EDH) factor and that loss of endothelial caveolin-1 reduces EDH/H2O2 in the microcirculation. Caveolin-1 (Cav-1) is a scaffolding/regulatory protein that interacts with diverse signaling pathways, including angiogenesis. However, it remains unclear whether endothelial Cav-1 plays a role in ischemic angiogenesis by modulating EDH/H2O2. In the present study, we thus addressed this issue in a mouse model of hindlimb ischemia using male endothelium-specific Cav-1 (eCav-1) knockout (KO) mice. In isometric tension experiments with femoral arteries from eCav-1-KO mice, reduced EDH-mediated relaxations to acetylcholine and desensitization of sodium nitroprusside-mediated endothelium-independent relaxations were noted ( n = 4~6). An ex vivo aortic ring assay also showed that the extent of microvessel sprouting was significantly reduced in eCav-1-KO mice compared with wild-type (WT) littermates ( n = 12 each). Blood flow recovery at 4 wk assessed with a laser speckle flowmeter after femoral artery ligation was significantly impaired in eCav-1-KO mice compared with WT littermates ( n = 10 each) and was associated with reduced capillary density and muscle fibrosis in the legs ( n = 6 each). Importantly, posttranslational protein modifications by reactive nitrogen species and ROS, as evaluated by thiol glutathione adducts and nitrotyrosine, respectively, were both increased in eCav-1-KO mice ( n = 6~7 each). These results indicate that endothelial Cav-1 plays an important role in EDH-mediated vasodilatation and ischemic angiogenesis through posttranslational protein modifications by nitrooxidative stress in mice in vivo. NEW & NOTEWORTHY Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. The present study provides a line of novel evidence that endothelial caveolin-1 plays important roles in endothelium-dependent hyperpolarization and ischemic angiogenesis in hindlimb ischemia in mice through posttranslational protein modifications by reactive nitrogen species and ROS in mice in vivo.
Collapse
Affiliation(s)
- Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine , Sendai , Japan
| |
Collapse
|
67
|
Park HJ, Shin KC, Yoou SK, Kang M, Kim JG, Sung DJ, Yu W, Lee Y, Kim SH, Bae YM, Park SW. Hydrogen peroxide constricts rat arteries by activating Na +-permeable and Ca 2+-permeable cation channels. Free Radic Res 2018; 53:94-103. [PMID: 30526150 DOI: 10.1080/10715762.2018.1556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30 nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.
Collapse
Affiliation(s)
- Hyun Ji Park
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Kyung Chul Shin
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Soon-Kyu Yoou
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Myeongsin Kang
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| | - Jae Gon Kim
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Dong Jun Sung
- c Division of Sport and Health Science, College of Biomedical and Health Science , Konkuk University , Chungju , Republic of Korea
| | - Wonjong Yu
- d Department of Physical Therapy , Eulji University , Eulji , Republic of Korea
| | - Youngjin Lee
- e Department of Radiological Science , Gachon University , Yeonsu-gu , Republic of Korea
| | - Sung Hea Kim
- f Department of Cardiology , Konkuk University School of Medicine , Seoul , Republic of Korea
| | - Young Min Bae
- a Department of Physiology, KU Open Innovation Center , Research Institute of Medical Science, Konkuk University School of Medicine , Chungju , Republic of Korea
| | - Sang Woong Park
- b Department of Emergency Medical Services , Eulji University , Seongnam , Republic of Korea
| |
Collapse
|
68
|
Socha MJ, Segal SS. Microvascular mechanisms limiting skeletal muscle blood flow with advancing age. J Appl Physiol (1985) 2018; 125:1851-1859. [PMID: 30412030 PMCID: PMC6737458 DOI: 10.1152/japplphysiol.00113.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
Effective oxygen delivery to active muscle fibers requires that vasodilation initiated in distal arterioles, which control flow distribution and capillary perfusion, ascends the resistance network into proximal arterioles and feed arteries, which govern total blood flow into the muscle. With exercise onset, ascending vasodilation reflects initiation and conduction of hyperpolarization along endothelium from arterioles into feed arteries. Electrical coupling of endothelial cells to smooth muscle cells evokes the rapid component of ascending vasodilation, which is sustained by ensuing release of nitric oxide during elevated luminal shear stress. Concomitant sympathetic neural activation inhibits ascending vasodilation by stimulating α-adrenoreceptors on smooth muscle cells to constrict the resistance vasculature. We hypothesized that compromised muscle blood flow in advanced age reflects impaired ascending vasodilation through actions on both cell layers of the resistance network. In the gluteus maximus muscle of old (24 mo) vs. young (4 mo) male mice (corresponding to mid-60s vs. early 20s in humans) inhibition of α-adrenoreceptors in old mice restored ascending vasodilation, whereas even minimal activation of α-adrenoreceptors in young mice attenuated ascending vasodilation in the manner seen with aging. Conduction of hyperpolarization along the endothelium is impaired in old vs. young mice because of "leaky" membranes resulting from the activation of potassium channels by hydrogen peroxide released from endothelial cells. Exposing the endothelium of young mice to hydrogen peroxide recapitulates this effect of aging. Thus enhanced α-adrenoreceptor activation of smooth muscle in concert with electrically leaky endothelium restricts muscle blood flow by impairing ascending vasodilation in advanced age.
Collapse
Affiliation(s)
- Matthew J Socha
- Biology Department, University of Scranton , Scranton, Pennsylvania
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center , Columbia, Missouri
| |
Collapse
|
69
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
70
|
Rosenblum WI. Endothelium-dependent responses in the microcirculation observed in vivo. Acta Physiol (Oxf) 2018; 224:e13111. [PMID: 29873936 DOI: 10.1111/apha.13111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Endothelium-dependent responses were first demonstrated 40 years ago in the aorta. Since then, extensive research has been conducted in vitro using conductance vessels and materials derived from them. However, the microcirculation controls blood flow to vital organs and has been the focus of in vivo studies of endothelium-dependent dilation beginning immediately after the first in vitro report. Initial in vivo studies employed a light/dye technique for selectively damaging the endothelium to unequivocally prove, in vivo, the existence of endothelium-dependent dilation and in the microvasculature. Endothelium-dependent constriction was similarly proven. Endothelium-dependent agonists include acetylcholine (ACh), bradykinin, arachidonic acid, calcium ionophore A-23187, calcitonin gene-related peptide (CGRP), serotonin, histamine and endothelin-1. Normal and disease states have been studied. Endothelial nitric oxide synthase, cyclooxygenase and cytochrome P450 have been shown to generate the mediators of the responses. Some of the key enzyme systems generate reactive oxygen species (ROS) like superoxide which may prevent EDR. However, one ROS, namely H2 O2 , is one of a number of hyperpolarizing factors that cause dilation initiated by endothelium. Depending upon microvascular bed, a single agonist may use different pathways to elicit an endothelium-dependent response. Interpretation of studies using inhibitors of eNOS is complicated by the fact that these inhibitors may also inhibit ATP-sensitive potassium channels. Other in vivo observations of brain arterioles failed to establish nitric oxide as the mediator of responses elicited by CGRP or by ACh and suggest that a nitrosothiol may be a better fit for the latter.
Collapse
Affiliation(s)
- W. I. Rosenblum
- Department of Pathology; Icahn School of Medicine at Mt Sinai NYC; New York NY USA
| |
Collapse
|
71
|
Ince S. Hiroaki Shimokawa. Circ Res 2018; 123:641-644. [PMID: 30355235 DOI: 10.1161/circresaha.118.313803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Muñoz M, Martínez MP, López-Oliva ME, Rodríguez C, Corbacho C, Carballido J, García-Sacristán A, Hernández M, Rivera L, Sáenz-Medina J, Prieto D. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. Redox Biol 2018; 19:92-104. [PMID: 30125808 PMCID: PMC6105769 DOI: 10.1016/j.redox.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023] Open
Abstract
The role of NADPH oxidase (Nox)-derived reactive oxygen species in kidney vascular function has extensively been investigated in the harmful context of oxidative stress in diabetes and obesity-associated kidney disease. Since hydrogen peroxide (H2O2) has recently been involved in the non-nitric oxide (NO) non-prostanoid relaxations of intrarenal arteries, the present study was sought to investigate whether NADPH oxidases may be functional sources of vasodilator H2O2 in the kidney and to assess their role in the endothelium-dependent relaxations of human and rat intrarenal arteries. Renal interlobar arteries isolated from the kidney of renal tumor patients who underwent nephrectomy, and from the kidney of Wistar rats, were mounted in microvascular myographs to assess function. Superoxide (O2.-) and H2O2 production was measured by chemiluminescence and Amplex Red fluorescence, and Nox2 and Nox4 enzymes were detected by Western blotting and by double inmunolabeling along with eNOS. Nox2 and Nox4 proteins were expressed in the endothelium of renal arterioles and glomeruli co-localized with eNOS, levels of expression of both enzymes being higher in the cortex than in isolated arteries. Pharmacological inhibition of Nox with apocynin and of CYP 2C epoxygenases with sulfaphenazol, but not of the NO synthase (NOS), reduced renal NADPH-stimulated O2.- and H2O2 production. Under conditions of cyclooxygenase and NOS blockade, acetylcholine induced endothelium-dependent relaxations that were blunted by the non-selective Nox inhibitor apocynin and by the Nox2 or the Nox1/4 inhibitors gp91ds-tat and GKT136901, respectively. Acetylcholine stimulated H2O2 production that was reduced by gp91ds-tat and by GKT136901. These results suggest the specific involvement of Nox4 and Nox2 subunits as physiologically relevant endothelial sources of H2O2 generation that contribute to the endothelium-dependent vasodilatation of renal arteries and therefore have a protective role in kidney vasculature.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
73
|
Dunn SM, Hilgers R, Das KC. Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiol Rep 2018; 5:5/23/e13502. [PMID: 29212858 PMCID: PMC5727270 DOI: 10.14814/phy2.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
High‐fat sucrose (HFS) diet in aged individuals causes severe weight gain (obesity) with much higher risk of cardiovascular diseases such as hypertension or atherosclerosis. Endothelial dysfunction is a major contributor for these vascular disorders. We hypothesize that prolonged ingestion of HFS diet by aged mice would accentuate endothelial dysfunction in the small resistance arteries. Male C57BL/6J mice at 12 weeks of age were divided into four groups and fed either normal chow (NC) or high‐fat sucrose diet (HFS). Young group received NC for 4 months, and high‐fat diet (HFD) for 3 months and 1 month HFS + 10% Sucrose (HFS diet). Aged mice received NC for 12 months. Aged HFS group received HFD for 4 months + 1 month HFD + 10% sucrose + 8 months HFD. Total body weight, plasma blood glucose levels, and glucose tolerance were determined in all groups. Isolated mesenteric arteries were assessed for arterial remodeling, myogenic tone, and vasomotor responses using pressure and wire myography. Both young and aged HFS mice showed impaired glucose tolerance (Y‐NC, 137 ± 8.5 vs. Y‐NC HFS, 228 ± 11.71; A‐NC, 148 ± 6.42 vs. A‐HFS, 225 ± 10.99), as well as hypercholesterolemia (Y‐NC 99.50 ± 6.35 vs. Y‐HFS 220.40 ± 16.34 mg/dL; A‐NC 108.6 ± vs. A‐HFS 279 ± 21.64) and significant weight gain (Y‐NC 32.13 ± 0.8 g vs. Y‐HFS 47.87 ± 2.18 g; A‐NC 33.72 vs. A‐HFS 56.28 ± 3.47 g) compared to both groups of mice on NC. The mesenteric artery from mice with prolonged HFS diet resulted in outward hypertrophic remodeling, increased stiffness, reduced myogenic tone, impaired vasodilation, increased contractility and blunted nitric oxide (NO) and EDH‐mediated relaxations. Ebselen, a peroxinitrite scavenger rescued the endothelium derived relaxing factor (EDHF)‐mediated relaxations. Our findings suggest that prolonged diet‐induced obesity of aged mice can worsen small resistance artery endothelial dysfunction due to decrease in NO and EDHF‐mediated relaxation, but, EDHF‐mediated relaxation is a major contributor to overall endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon M Dunn
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Kumuda C Das
- The Department of Translational & Vascular Biology, University of Texas Health Sciences Center at Tyler, Tyler, Texas
| |
Collapse
|
74
|
Chennupati R, Meens MJ, Janssen BJ, van Dijk P, Hakvoort TBM, Lamers WH, De Mey JGR, Koehler SE. Deletion of endothelial arginase 1 does not improve vasomotor function in diabetic mice. Physiol Rep 2018; 6:e13717. [PMID: 29890043 PMCID: PMC5995309 DOI: 10.14814/phy2.13717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Endothelial arginase 1 was ablated to assess whether this prevents hyperglycemia-induced endothelial dysfunction by improving arginine availability for nitric oxide production. Endothelial Arg1-deficient mice (Arg1-KOTie2 ) were generated by crossing Arg1fl/fl (controls) with Tie2Cretg/- mice and analyzed by immunohistochemistry, measurements of hemodynamics, and wire myography. Ablation was confirmed by immunohistochemistry. Mean arterial blood pressure was similar in conscious male control and Arg1-KOTie2 mice. Depletion of circulating arginine by intravenous infusion of arginase 1 or inhibition of nitric oxide synthase activity with L-NG -nitro-arginine methyl ester increased mean arterial pressure similarly in control (9 ± 2 and 34 ± 2 mmHg, respectively) and Arg1-KOTie2 mice (11 ± 3 and 38 ± 4 mmHg, respectively). Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Arg1-KOTie2 and control animals by wire myography. Diabetes was induced in 10-week-old control and Arg1-KOTie2 mice with streptozotocin, and vasomotor responses were studied 10 weeks later. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in normoglycemic control and Arg1-KOTie2 mice. The relaxing response to acetylcholine was dependent on the availability of extracellular l-arginine. In the diabetic mice, arterial relaxation responses to endothelium-dependent hyperpolarization and to exogenous nitric oxide were impaired. The data show that endothelial ablation of arginase 1 in mice does not markedly modify smooth muscle and endothelial functions of a resistance artery under normo- and hyperglycemic conditions.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Merlijn J. Meens
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Ben J. Janssen
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Paul van Dijk
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
| | | | - Wouter H. Lamers
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| | - Jo G. R. De Mey
- Department of Pharmacology & ToxicologyMaastricht UniversityMaastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Department of Cardiovascular and Renal ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of CardiacThoracic and Vascular SurgeryOdense University HospitalOdenseDenmark
| | - S. Eleonore Koehler
- Departments of Anatomy & EmbryologyMaastricht UniversityMaastrichtthe Netherlands
- Nutrim ‐ School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtthe Netherlands
| |
Collapse
|
75
|
Chen S, Zhang JH, Hu YY, Hu DH, Gao SS, Fan YF, Wang YL, Jiao Y, Chen ZW. Total Flavones of Rhododendron simsii Planch Flower Protect against Cerebral Ischemia-Reperfusion Injury via the Mechanism of Cystathionine- γ-Lyase-Produced H 2S. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8903849. [PMID: 29955237 PMCID: PMC6000870 DOI: 10.1155/2018/8903849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/04/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Total flavones of Rhododendron simsii Planch flower (TFR) have a significant protective effect against cerebral ischemia-reperfusion injury. However, its mechanism is unclear. This study investigated the protection of TFR against cerebral ischemia-reperfusion injury via cystathionine-γ-lyase- (CSE-) produced H2S mechanism. CSE-/- mice and CSE-siRNA-transfected rat were used. Relaxation of cerebral basilar artery (CBA), H2S, and CSE mRNA were measured. TFR significantly inhibited cerebral ischemia-reperfusion-induced abnormal neurological symptom and cerebral infarct in the normal rats and the CSE+/+ mice, but not in the CSE-/- mice, and the inhibition was markedly attenuated in CSE-siRNA-transfected rat; TFR elicited a significant vasorelaxation in rat CBA, and the relaxation was markedly attenuated by removal of endothelium or CSE-siRNA transfection or coapplication of NO synthase inhibitor L-NAME and PGI2 synthase inhibitor Indo. CSE inhibitor PPG drastically inhibited TFR-evoked vasodilatation resistant to L-NAME and Indo in endothelium-intact rat CBA. TFR significantly increased CSE mRNA expression in rat CBA endothelial cells and H2S production in rat endothelium-intact CBA. The increase of H2S production resistant to L-NAME and Indo was abolished by PPG. Our data indicate that TFR has a protective effect against the cerebral ischemia-reperfusion injury via CSE-produced H2S and endothelial NO and/or PGI2 to relax the cerebral artery.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jian-Hua Zhang
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - You-Yang Hu
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Anesthesiology, Anhui Chest Hospital, Hefei, Anhui 230032, China
| | - Dong-Hua Hu
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shan-Shan Gao
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yi-Fei Fan
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Ling Wang
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yi Jiao
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
76
|
Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation 2018; 24. [PMID: 28480622 DOI: 10.1111/micc.12380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES H2 O2 contributes to FID of human arterioles. This study is designed to examine the roles of mitochondria and NADPH oxidase in modulating the release of ROS and in mediating FID. We tested whether NADPH oxidase contributes to mitochondrial ROS generation in arterioles during CAD. METHODS Visceral adipose arterioles obtained from patients with or without CAD were cannulated and pressurized for videomicroscopic measurement of arteriolar diameters. Dilator responses and ROS production during flow were determined in the presence and absence of the NADPH oxidase inhibitor gp91ds-tat and the mitochondrial electron transport inhibitor rotenone. RESULTS Both dilation and H2 O2 generation during flow were reduced in the presence of rotenone (13.5±8% vs 97±% without rotenone) or gp91ds-tat in patients with CAD, while patients without CAD exhibited H2 O2 -independent dilations. Mitochondrial superoxide production during flow was attenuated by gp91ds-tat in arterioles from CAD patients. CONCLUSIONS These findings indicate that ROS produced by NADPH oxidase are an upstream component of the mitochondria-dependent pathway contributing to flow-dependent H2 O2 generation and dilation in peripheral microvessels from patients with CAD. We conclude that in CAD, both mitochondria and NADPH oxidase contribute to FID through a redox mechanism in visceral arterioles.
Collapse
Affiliation(s)
- Natalya S Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Health and Medicine, Carroll University, Waukesha, WI, USA
| | - Ibra S Fancher
- Department of Physical Therapy, Department of Medicine (Division of Pulmonary, Critical Care, Sleep and Allergy), University of Illinois at Chicago, Chicago, IL, USA
| | - David D Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, Department of Medicine (Division of Endocrinology, Diabetes and Metabolism), Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
77
|
Yada T, Shimokawa H, Tachibana H. Endothelium-dependent hyperpolarization-mediated vasodilatation compensates nitric oxide-mediated endothelial dysfunction during ischemia in diabetes-induced canine coronary collateral microcirculation in vivo. Microcirculation 2018; 25:e12456. [PMID: 29665152 DOI: 10.1111/micc.12456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES It has been previously demonstrated that endothelial caveolin-1 plays crucial roles to produce an endothelium-derived hyperpolarizing factor in mouse mesenteric arteries. We examined whether this mechanism is involved in the endothelium-dependent hyperpolarization-mediated responses to compensate reduced NO-mediated responses in diabetes mellitus during coronary occlusion in dogs in vivo. METHODS Canine subepicardial collateral coronary small arteries (≥100 μm) and arterioles (<100 μm) were observed by an intravital microscope. Experiments were performed during occlusion of the left anterior descending coronary artery (90 minutes) under the following conditions (n = 6 each); (i) control, (ii) diabetes mellitus, and (iii) diabetes mellitus+L-NMMA+KCa channel blockade. Vascular and myocardial levels of caveolin-1, eNOS, and caspase-3 were measured by ELISA. RESULTS Caveolin-1 levels in the ischemic area were greater in coronary microvessels than in conduit arteries in the control group. NO-mediated coronary vasodilatations of small arteries to bradykinin did not increase in diabetes mellitus associated with decreased eNOS phosphorylation at Ser1177 compared with baseline of controls and were restored by compensation of endothelium-dependent hyperpolarization and were suppressed by KCa channel blockade. CONCLUSIONS NO-mediated vasodilatations of small coronary arteries during coronary occlusion are impaired in diabetes mellitus and are compensated by endothelium-dependent hyperpolarization of arterioles in dogs in vivo.
Collapse
Affiliation(s)
- Toyotaka Yada
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan.,Department of Medical Engineering, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Tachibana
- Department of Medical Engineering, Kawasaki University of Medical Welfare, Kurashiki, Japan
| |
Collapse
|
78
|
Rodrigo GC, Herbert KE. Regulation of vascular function and blood pressure by circadian variation in redox signalling. Free Radic Biol Med 2018; 119:115-120. [PMID: 29106991 DOI: 10.1016/j.freeradbiomed.2017.10.381] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
There is accumulating evidence that makes the link between the circadian variation in blood pressure and circadian variations in vascular contraction. The importance of vascular endothelium-derived redox-active and redox-derived species in the signalling pathways involved in controlling vascular smooth muscle contraction are well known, and when linked to the circadian variations in the processes involved in generating these species, suggests a cellular mechanism for the circadian variations in blood pressure that links directly to the peripheral circadian clock. Relaxation of vascular smooth muscle cells involves endothelial-derived relaxing factor (EDRF) which is nitric oxide (NO) produced by endothelial NO synthase (eNOS), and endothelial-derived hyperpolarising factor (EDHF) which includes hydrogen peroxide (H2O2) produced by NADPH oxidase (Nox). Both of these enzymes appear to be under the direct control of the circadian clock mechanism in the endothelial cells, and disruption to the clock results in endothelial and vascular dysfunction. In this review, we focus on EDRF and EDHF and summarise the recent findings on the influence of the peripheral circadian clock mechanism on processes involved in generating the redox species involved and how this influences vascular contractility, which may account for some of the circadian variations in blood pressure and peripheral resistance. Moreover, the direct link between the peripheral circadian clock and redox-signalling pathways in the vasculature, has a bearing on vascular endothelial dysfunction in disease and aging, which are both known to lead to dysfunction of the circadian clock.
Collapse
Affiliation(s)
- Glenn C Rodrigo
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom.
| | - Karl E Herbert
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| |
Collapse
|
79
|
Kadlec AO, Gutterman DD. The Yin and Yang of endothelium-derived vasodilator factors. Am J Physiol Heart Circ Physiol 2018; 314:H892-H894. [PMID: 29351003 PMCID: PMC6008146 DOI: 10.1152/ajpheart.00019.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
80
|
Tanaka S, Shiroto T, Godo S, Saito H, Ikumi Y, Ito A, Kajitani S, Sato S, Shimokawa H. Important role of endothelium-dependent hyperpolarization in the pulmonary microcirculation in male mice: implications for hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2018; 314:H940-H953. [DOI: 10.1152/ajpheart.00487.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelium-dependent hyperpolarization (EDH) plays important roles in the systemic circulation, whereas its role in the pulmonary circulation remains largely unknown. Furthermore, the underlying mechanisms of pulmonary hypertension (PH) also remain to be elucidated. We thus aimed to elucidate the role of EDH in pulmonary circulation in general and in PH in particular. In isolated perfused lung and using male wild-type mice, endothelium-dependent relaxation to bradykinin (BK) was significantly reduced in the presence of Nω-nitro-l-arginine by ~50% compared with those in the presence of indomethacin, and the combination of apamin plus charybdotoxin abolished the residual relaxation, showing the comparable contributions of nitric oxide (NO) and EDH in the pulmonary microcirculation under physiological conditions. Catalase markedly inhibited EDH-mediated relaxation, indicating the predominant contribution of endothelium-derived H2O2. BK-mediated relaxation was significantly reduced at day 1 of hypoxia, whereas it thereafter remained unchanged until day 28. EDH-mediated relaxation was diminished at day 2 of hypoxia, indicating a transition from EDH to NO in BK-mediated relaxation before the development of hypoxia-induced PH. Mechanistically, chronic hypoxia enhanced endothelial NO synthase expression and activity associated with downregulation of caveolin-1. Nitrotyrosine levels were significantly higher in vascular smooth muscle of pulmonary microvessels under chronic hypoxia than under normoxia. A similar transition of the mediators in BK-mediated relaxation was also noted in the Sugen hypoxia mouse model. These results indicate that EDH plays important roles in the pulmonary microcirculation in addition to NO under normoxic conditions and that impaired EDH-mediated relaxation and subsequent nitrosative stress may be potential triggers of the onset of PH. NEW & NOTEWORTHY This study provides novel evidence that both endothelium-dependent hyperpolarization and nitric oxide play important roles in endothelium-dependent relaxation in the pulmonary microcirculation under physiological conditions in mice and that hypoxia first impairs endothelium-dependent hyperpolarization-mediated relaxation, with compensatory upregulation of nitric oxide, before the development of hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Shuhei Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Saito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyo Ito
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoko Kajitani
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
81
|
Zhang X, Huo Q, Sun W, Zhang C, Wu Z, Xing B, Li Q. Rs2910164 in microRNA‑146a confers an elevated risk of depression in patients with coronary artery disease by modulating the expression of NOS1. Mol Med Rep 2018; 18:603-609. [PMID: 29749487 DOI: 10.3892/mmr.2018.8929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Depression has been well established as an independent predictor of mortality and cardiac morbidity rates in patients with coronary artery disease (CAD). Evidence has shown that single nucleotide polymorphisms located in pre‑microRNA (miRNA) or mature miRNA may modify various biological processes and affect the process of carcinogenesis, and the downregulation of neuronal nitric oxide synthase 1 (NOS1) can induce depression. It has been shown that NOS1 is the target gene of miR‑146a, and that the rs2910164 G/C polymorphism can downregulate the expression of miR‑146a. In the present study, computational analysis was used to identify the target of miR‑146a, and a luciferase reporter assay system was used to validate NOS1 as a target gene of miR‑146a. In addition, U251 cells were treated with miR‑146a mimics/inhibitors to verify the negative regulatory association between miR‑146a and NOS1. Reverse transcription‑quantitative polymerase chain reaction analysis and western blot analysis were used to estimate the mRNA expression of NOS1 and the expression of miR‑146a. The results showed that the 'seed sequence' was located within the 3'‑untranslated region of NOS1 by searching an online miRNA database (www.mirdb.org), and the luciferase reporter assay confirmed that NOS1 was a direct target gene of miR‑146a. It was also found that the mRNA and protein expression levels of NOS1 in U251 cells treated with miR‑146a mimics and NOS1 small interfering RNA were substantially downregulated, compared with cells treated with the scramble control. The cells treated with miR‑146a inhibitors showed increased expression of NOS1. In addition, the presence of a minor allele of the rs2910164 polymorphism was significantly associated with risk of depression in patients with CAD. Taken together, the findings indicated a decreased risk of depression in the patients with CAD who were carriers of the miR‑146a rs2910164 C allele, and this association may be attributed to its ability to compromise the expression of miR‑146a, and thereby increase the expression of its target gene, NOS1.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qianqian Huo
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wei Sun
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zongyin Wu
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bing Xing
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qiang Li
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
82
|
Mishra JS, More AS, Hankins GDV, Kumar S. Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. Biol Reprod 2018; 96:1221-1230. [PMID: 28486649 DOI: 10.1093/biolre/iox043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are often presented with hyperandrogenemia along with vascular dysfunction and elevated blood pressure. In animal models of PCOS, anti-androgen treatment decreased blood pressure, indicating a key role for androgens in the development of hypertension. However, the underlying androgen-mediated mechanism that contributes to increased blood pressure is not known. This study determined whether elevated androgens affect endothelium-derived hyperpolarizing factor (EDHF)-mediated vascular relaxation responses through alteration in function of gap junctional proteins. Female rats were implanted with placebo or dihydrotestosterone (DHT) pellets (7.5 mg, 90-day release). After 12 weeks of DHT exposure, blood pressure was assessed through carotid arterial catheter and endothelium-dependent mesenteric arterial EDHF relaxation using wire myograph. Connexin expression in mesenteric arteries was also examined. Elevated DHT significantly increased mean arterial pressure and decreased endothelium-dependent EDHF-mediated acetylcholine relaxation. Inhibition of Cx40 did not have any effect, while inhibition of Cx37 decreased EDHF relaxation to a similar magnitude in both controls and DHT females. On the other hand, inhibition of Cx43 significantly attenuated EDHF relaxation in mesenteric arteries of controls but not DHT females. Elevated DHT did not alter Cx37 or Cx40, but decreased Cx43 mRNA and protein levels in mesenteric arteries. In vitro exposure of DHT to cultured mesenteric artery smooth muscle cells dose-dependently downregulated Cx43 expression. In conclusion, increased blood pressure in hyperandrogenic females is due, at least in part, to decreased EDHF-mediated vascular relaxation responses. Decreased Cx43 expression and activity may play a role in contributing to androgen-induced decrease in EDHF function.
Collapse
Affiliation(s)
- Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Gary D V Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Sathish Kumar
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
83
|
Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, Jaffe IZ. Sex-Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. J Am Heart Assoc 2018; 7:JAHA.117.007675. [PMID: 29453308 PMCID: PMC5850194 DOI: 10.1161/jaha.117.007675] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The incidence of obesity is rising, particularly among women. Microvascular dysfunction is more common with female sex, obesity, and hyperlipidemia and predicts adverse cardiovascular outcomes, but the molecular mechanisms are unclear. Because obesity is associated with mineralocorticoid receptor (MR) activation, we tested the hypothesis that MR in endothelial cells contribute to sex differences in resistance vessel dysfunction in response to cardiometabolic risk factors. Methods and Results Male and female endothelial cell–specific MR knockout mice and MR‐intact littermates were randomized to high‐fat‐diet–induced obesity or obesity with hyperlipidemia induced by adeno‐associated virus–based vector targeting transfer of the mutant stable form (DY mutation) of the human PCSK9 (proprotein convertase subtilisin/kexin type 9) gene and compared with control diet. Female but not male mice were sensitive to obesity‐induced endothelial dysfunction, whereas endothelial function was impaired in obese hyperlipidemic males and females. In males, obesity or hyperlipidemia decreased the nitric oxide component of vasodilation without altering superoxide production or endothelial nitric oxide synthase expression or phosphorylation. Decreased nitric oxide content in obese males was overcome by enhanced endothelium‐derived hyperpolarization–mediated relaxation along with increased SK3 expression. Conversely, in females, endothelium‐derived hyperpolarization was significantly impaired by obesity with lower IK1 expression and by hyperlipidemia with lower IK1 and SK3 expression, loss of H2O2‐mediated vasodilation, and increased superoxide production. Endothelial cell–MR deletion prevented endothelial dysfunction induced by risk factors only in females. Rather than restoring endothelium‐derived hyperpolarization in females, endothelial cell–MR deletion enhanced nitric oxide and prevented hyperlipidemia‐induced oxidative stress. Conclusions These data reveal distinct mechanisms driving resistance vessel dysfunction in males versus females and suggest that personalized treatments are needed to prevent the progression of vascular disease in the setting of obesity, depending on both the sex and the metabolic profile of each patient.
Collapse
Affiliation(s)
- Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Sitara Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Imran J Anwar
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
85
|
Hellsten Y, Gliemann L. Limb vascular function in women-Effects of female sex hormones and physical activity. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Y. Hellsten
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
86
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
87
|
Szarka N, Pabbidi MR, Amrein K, Czeiter E, Berta G, Pohoczky K, Helyes Z, Ungvari Z, Koller A, Buki A, Toth P. Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H 2O 2 and TRPV4-Dependent Activation of BK ca Channels. J Neurotrauma 2018; 35:930-939. [PMID: 29179622 DOI: 10.1089/neu.2017.5056] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived H2O2 and large-conductance calcium-activated potassium channels (BKCa) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. We found that 24 h post-TBI MCAs exhibited impaired myogenic constriction, which was restored by treatment with a mitochondria-targeted antioxidant (mitoTEMPO), by scavenging of H2O2 (polyethylene glycol [PEG]-catalase) and by blocking both BKCa channels (paxilline) and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels (HC 067047). Further, exogenous administration of H2O2 elicited significant dilation of MCAs, which was inhibited by blocking either BKCa or TRPV4 channels. Vasodilation induced by the TRPV4 agonist GSK1016790A was inhibited by paxilline. In cultured vascular smooth muscle cells H2O2 activated BKCa currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived H2O2 activates BKCa channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.
Collapse
Affiliation(s)
- Nikolett Szarka
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Neurotrauma Research Group, Janos Szentagothai Research Center, Medical School University of Pecs, Pecs. Hungary.,Department of Translational Medicine, Medical School University of Pecs, Pecs. Hungary
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Krisztina Amrein
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Neurotrauma Research Group, Janos Szentagothai Research Center, Medical School University of Pecs, Pecs. Hungary
| | - Endre Czeiter
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Neurotrauma Research Group, Janos Szentagothai Research Center, Medical School University of Pecs, Pecs. Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School University of Pecs, Pecs. Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School University of Pecs, Pecs. Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School University of Pecs, Pecs. Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Akos Koller
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Institute of Natural Sciences, University of Physical Education, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, New York
| | - Andras Buki
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Neurotrauma Research Group, Janos Szentagothai Research Center, Medical School University of Pecs, Pecs. Hungary
| | - Peter Toth
- Cerebrovascular Laboratory, Department of Neurosurgery, Medical School University of Pecs, Pecs. Hungary.,Neurotrauma Research Group, Janos Szentagothai Research Center, Medical School University of Pecs, Pecs. Hungary.,Department of Translational Medicine, Medical School University of Pecs, Pecs. Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.,Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
88
|
Abstract
Thirty years ago, Robert F. Furchgott concluded that nitric oxide, a compound traditionally known to be a toxic component of fuel exhaust, is in fact released from the endothelium, and in a paracrine fashion, induces relaxation of underlying vascular smooth muscle resulting in vasodilation. This discovery has helped pave the way for a more thorough understanding of vascular intercellular and intracellular communication that supports the process of regulating regional perfusion to match the local tissue oxygen demand. Vasoregulation is controlled not only by endothelial release of a diverse class of vasoactive compounds such as nitric oxide, arachidonic acid metabolites, and reactive oxygen species, but also by physical forces on the vascular wall and through electrotonic conduction through gap junctions. Although the endothelium is a critical source of vasoactive compounds, paracrine mediators can also be released from surrounding parenchyma such as perivascular fat, myocardium, and cells in the arterial adventitia to exert either local or remote vasomotor effects. The focus of this review will highlight the various means by which intercellular communication contributes to mechanisms of vasodilation. Paracrine signaling and parenchymal influences will be reviewed as well as regional vessel communication through gap junctions, connexons, and myoendothelial feedback. More recent modes of communication such as vesicular and microRNA signaling will also be discussed.
Collapse
|
89
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
90
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
91
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
92
|
Zaborska KE, Wareing M, Austin C. Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. Br J Pharmacol 2017; 174:3388-3397. [PMID: 27747871 PMCID: PMC5610163 DOI: 10.1111/bph.13648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
The endothelium is an established modulator of vascular tone; however, the recent discovery of the anti-contractile nature of perivascular adipose tissue (PVAT) suggests that the fat, which surrounds many blood vessels, can also modulate vascular tone. Both the endothelium and PVAT secrete vasoactive substances, which regulate vascular function. Many of these factors are common to both the endothelium and PVAT; therefore, this review will highlight the potential shared mechanisms in the modulation of vascular tone. Endothelial dysfunction is a hallmark of many vascular diseases, including hypertension and obesity. Moreover, PVAT dysfunction is now being reported in several cardio-metabolic disorders. Thus, this review will also discuss the mechanistic insights into endothelial and PVAT dysfunction in order to evaluate whether PVAT modulation of vascular contractility is similar to that of the endothelium in health and disease. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- K E Zaborska
- Institute of Cardiovascular SciencesUniversity of ManchesterUK
| | - M Wareing
- Maternal and Fetal Health Research Centre, Institute of Human DevelopmentUniversity of ManchesterUK
| | - C Austin
- Faculty of Health and Social CareEdge Hill UniversityUK
| |
Collapse
|
93
|
Togliatto G, Lombardo G, Brizzi MF. The Future Challenge of Reactive Oxygen Species (ROS) in Hypertension: From Bench to Bed Side. Int J Mol Sci 2017; 18:ijms18091988. [PMID: 28914782 PMCID: PMC5618637 DOI: 10.3390/ijms18091988] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) act as signaling molecules that control physiological processes, including cell adaptation to stress. Redox signaling via ROS has quite recently become the focus of much attention in numerous pathological contexts, including neurodegenerative diseases, kidney and cardiovascular disease. Imbalance in ROS formation and degradation has also been implicated in essential hypertension. Essential hypertension is characterized by multiple genetic and environmental factors which do not completely explain its associated risk factors. Thereby, even if advances in therapy have led to a significant reduction in hypertension-associated complications, to interfere with the unbalance of redox signals might represent an additional therapeutic challenge. The decrease of nitric oxide (NO) levels, the antioxidant activity commonly found in preclinical models of hypertension and the ability of antioxidant approaches to reduce ROS levels have spurred clinicians to investigate the contribution of ROS in humans. Indeed, particular effort has recently been devoted to understanding how redox signaling may contribute to vascular pathobiology in human hypertension. However, although biomarkers of oxidative stress have been found to positively correlate with blood pressure in preclinical model of hypertension, human data are less convincing. We herein provide an overview of the most relevant mechanisms via which oxidative stress might contribute to the pathophysiology of essential hypertension. Moreover, alternative approaches, which are directed towards improving antioxidant machinery and/or interfering with ROS production, are also discussed.
Collapse
Affiliation(s)
- Gabriele Togliatto
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Giusy Lombardo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | | |
Collapse
|
94
|
Abstract
Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2.
Collapse
|
95
|
Godo S, Shimokawa H. Divergent roles of endothelial nitric oxide synthases system in maintaining cardiovascular homeostasis. Free Radic Biol Med 2017; 109:4-10. [PMID: 27988339 DOI: 10.1016/j.freeradbiomed.2016.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has demonstrated the importance of reactive oxygen species (ROS) as an essential second messenger in health and disease. Endothelial dysfunction is the hallmark of atherosclerotic cardiovascular diseases, in which pathological levels of ROS are substantially involved. The endothelium plays a crucial role in modulating tone of underlying vascular smooth muscle by synthesizing and releasing nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size-dependent manner through the diverse roles of the endothelial NO synthases (NOSs) system. Endothelium-derived hydrogen peroxide (H2O2) is a physiological signaling molecule serving as one of the major EDH factors especially in microcirculations and has gained increasing attention in view of its emerging relevance for cardiovascular homeostasis. In the clinical settings, it has been reported that antioxidant supplements are unexpectedly ineffective to prevent cardiovascular events. These lines of evidence indicate the potential importance of the physiological balance between NO and H2O2/EDH through the diverse functions of endothelial NOSs system in maintaining cardiovascular homeostasis. A better understanding of cardiovascular redox signaling is certainly needed to develop novel therapeutic strategies in cardiovascular medicine. In this review, we will briefly summarize the current knowledge on the emerging regulatory roles of redox signaling pathways in cardiovascular homeostasis, with particular focus on the two endothelial NOSs-derived mediators, NO and H2O2/EDH.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
96
|
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 2017; 175:1279-1292. [PMID: 28430357 DOI: 10.1111/bph.13828] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
ROS are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. In the vascular system, physiological levels of ROS are essential for normal vascular functions including endothelial homeostasis and smooth muscle cell contraction. In contrast, uncontrolled overproduction of ROS resulting from an imbalance of ROS generation and elimination leads to the development of vascular diseases. Excessive ROS cause vascular cell damage, the recruitment of inflammatory cells, lipid peroxidation, activation of metalloproteinases and deposition of extracellular matrix, collectively leading to vascular remodelling. Evidence from a large number of studies has revealed that ROS and oxidative stress are involved in the initiation and progression of numerous vascular diseases including hypertension, atherosclerosis, restenosis and abdominal aortic aneurysm. Furthermore, considerable research has been implemented to explore antioxidants that can reduce ROS production and oxidative stress in order to ameliorate vascular diseases. In this review, we will discuss the nature and sources of ROS, their roles in vascular homeostasis and specific vascular diseases and various antioxidants as well as some of the pharmacological agents that are capable of reducing ROS and oxidative stress. The aim of this review is to provide information for developing promising clinical strategies targeting ROS to decrease cardiovascular risks. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
97
|
Greven J, Pfeifer R, Zhi Q, Pape HC. Update on the role of endothelial cells in trauma. Eur J Trauma Emerg Surg 2017; 44:667-677. [PMID: 28674817 DOI: 10.1007/s00068-017-0812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE This review gives an overview of physiological processes, mainly regarding vascular endothelial cells and their important role in hemostasis, information processing, and communication during trauma. An insight is given into molecules and cells involved in the first innate immune response through to the behavior of endothelial cells in developing trauma. The goal of this review is to show the overlap of crucial factors related to the endothelium and the development of trauma. METHODS A systemic literature search was performed using Google scholar and PubMed. RESULTS The results of the literature search showed that the endothelium, especially the vascular endothelium, is involved in various cellular and subcellular pathways of activation, suppression, and transfer of information. A variety of molecules and cells are orchestrated, subsequently the endothelium gets in contact with a traumatizing event. CONCLUSION The endothelium is one of the first barriers that comes into contact with exo- and endogenous trauma-related signals and is a pivotal point in activating subsequent pathways and cascades by transfer of information.
Collapse
Affiliation(s)
- J Greven
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany.
| | - R Pfeifer
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Q Zhi
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany
| | - H C Pape
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
98
|
Harvey AP, Montezano AC, Hood KY, Lopes RA, Rios F, Ceravolo G, Graham D, Touyz RM. Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sci 2017; 179:110-119. [PMID: 28478264 PMCID: PMC5446265 DOI: 10.1016/j.lfs.2017.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Abstract
AIMS We questioned whether aldosterone and oxidative stress play a role in vascular damage in severe hypertension and investigated the role of Nox1 in this process. MATERIALS AND METHODS We studied mesenteric arteries, aortas and vascular smooth muscle cells (VSMC) from WKY and SHRSP rats. Vascular effects of eplerenone or canrenoic acid (CA) (mineralocorticoid receptor (MR) blockers), ML171 (Nox1 inhibitor) and EHT1864 (Rac1/2 inhibitor) were assessed. Nox1-knockout mice were also studied. Vessels and VSMCs were probed for Noxs, reactive oxygen species (ROS) and pro-fibrotic/inflammatory signaling. KEY FINDINGS Blood pressure and plasma levels of aldosterone and galectin-3 were increased in SHRSP versus WKY. Acetylcholine-induced vasorelaxation was decreased (61% vs 115%) and phenylephrine-induced contraction increased in SHRSP versus WKY (Emax 132.8% vs 96.9%, p<0.05). Eplerenone, ML171 and EHT1864 attenuated hypercontractility in SHRSP. Vascular expression of collagen, fibronectin, TGFβ, MCP-1, RANTES, MMP2, MMP9 and p66Shc was increased in SHRSP versus WKY. These changes were associated with increased ROS generation, 3-nitrotyrosine expression and Nox1 upregulation. Activation of vascular p66Shc and increased expression of Nox1 and collagen I were prevented by CA in SHRSP. Nox1 expression was increased in aldosterone-stimulated WKY VSMCs, an effect that was amplified in SHRSP VSMCs (5.2vs9.9 fold-increase). ML171 prevented aldosterone-induced VSMC Nox1-ROS production. Aldosterone increased vascular expression of fibronectin and PAI-1 in wild-type mice but not in Nox1-knockout mice. SIGNIFICANCE Our findings suggest that aldosterone, which is increased in SHRSP, induces vascular damage through MR-Nox1-p66Shc-mediated processes that modulate pro-fibrotic and pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Katie Y Hood
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rheure A Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Graziela Ceravolo
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
99
|
Tomita K, Kuwahara Y, Takashi Y, Tsukahara T, Kurimasa A, Fukumoto M, Nishitani Y, Sato T. Sensitivity of mitochondrial DNA depleted ρ0 cells to H 2O 2 depends on the plasma membrane status. Biochem Biophys Res Commun 2017; 490:330-335. [PMID: 28619507 DOI: 10.1016/j.bbrc.2017.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 11/16/2022]
Abstract
To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H2O2), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H2O2, radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H2O2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H2O2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H2O2 amount significantly increased only in ρ0 cells after 50 μM H2O2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H2O2. As a consequence, ρ0 cells have a higher H2O2 sensitivity than the parental cells.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan
| | - Yoshikazu Kuwahara
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan; Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi, 9818558, Japan; Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Yuko Takashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan
| | - Takao Tsukahara
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan
| | - Akihiro Kurimasa
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi, 9818558, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Miyagi, 9808575, Japan; Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 1608402, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan.
| |
Collapse
|
100
|
Diniz MC, Olivon VC, Tavares LD, Simplicio JA, Gonzaga NA, de Souza DG, Bendhack LM, Tirapelli CR, Bonaventura D. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life Sci 2017; 176:26-34. [DOI: 10.1016/j.lfs.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023]
|