51
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
52
|
Srivastava RAK. New opportunities in the management and treatment of refractory hypercholesterolemia using in vivo CRISPR-mediated genome/base editing. Nutr Metab Cardiovasc Dis 2023; 33:2317-2325. [PMID: 37805309 DOI: 10.1016/j.numecd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/09/2023]
Abstract
AIMS Refractory hypercholesterolemia (RH), caused primarily by the loss-of-function mutation of LDL receptor (LDLR) gene seen in HoFH and HeFH patients, remains a major risk factor for atherosclerotic cardiovascular disease (ASCVD). Statin and ezetimibe combination therapy lower circulating LDL by 30% in HoFH patients. PCSK9 mAB, being an LDLR-dependent therapy, is not effective in HoFH, but lowers LDL by 25% in HeFH patients. A maximum reduction of 50% was noted in HoFH patients treated with ANGPTL3 mAB, which was not enough to achieve therapeutic goal of LDL. Therefore, new approaches are warranted to offer hopes to individuals intolerant to higher dose statins and not able to achieve recommended LDL level. DATA SYNTHESIS New approaches to lower LDL include gene therapy and gene editing. AAV-based gene therapy has shown encouraging results in animal models. Using CRISPR/Cas9-mediated genome/base editing, gain of function and loss of function have been successfully done in animal models. Recent progress in the refinement of genome/base editing has overcome the issues of off-target mutagenesis with ∼1% mutagenesis in case of PCSK9 and almost no off-target mutagenesis in inactivating ANGPTL3 in animal models showing 50% reduction in cholesterol. Current approaches using CRISPR-Cas9 genome/base editing targeting LDLR-dependent and LDLR-independent pathways are underway. CONCLUSIONS The new information on gain of LDLR function and inactivation of ANGPTL3 together with developments in genome/base editing technology to overcome off-target insertion and deletion mutagenesis offer hope to refractory hypercholesterolemic individuals who are at a higher risk of developing ASCVD.
Collapse
|
53
|
Blackler G, Akingbasote J, Cairns E, Howlett C, Kiser P, Barra L. The effect of HLA-DRB1*04:01 on a mouse model of atherosclerosis. J Transl Autoimmun 2023; 7:100203. [PMID: 37408614 PMCID: PMC10318502 DOI: 10.1016/j.jtauto.2023.100203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Objectives HLA-DRB1 is associated with an increased risk of cardiovascular disease in patients with rheumatoid arthritis (RA). This study aimed to determine the effect of HLA-DRB1 on atherosclerotic cardiovascular disease (ASCVD) using a novel mouse model. Methods Mice transgenic for HLA-DRB1*04:01 (DR4tg) were crossed with low density lipoprotein receptor knock-out (Ldlr-/-) mice that develop atherosclerosis when fed a high fat, high cholesterol (HFHC) diet. Male and female DR4tgLdlr-/- (n = 48), Ldlr-/- (n = 24), DR4tg (n = 24), and C57Bl/6 (B6) background (n = 24) mice were fed HFHC or regular diet (RD) for 12 weeks. Blood samples were analyzed for serum lipoproteins using a colorimetric assay. C-reactive protein (CRP) and oxidized LDL (OxLDL) were measured using ELISA. Atherosclerosis in the aortas was assessed using the lipid stain, Sudan IV. The presence of citrulline in atherosclerotic plaque was determined by immunohistochemistry. Results Sera low-density lipoprotein cholesterol (LDL-C) levels were higher in HFHC-fed Ldlr-/- versus DR4tgLdlr-/--; p = 0.0056, but the aortic plaque burden and degree of citrullination in the plaque were similar for these two strains. The ratio of pro-atherogenic OxLDL to LDL levels was higher in DR4tgLdlr-/- than Ldlr-/-mice; p = 0.0017. All mice had an increase in CRP when fed a HFHC diet, most pronounced for DR4tgLdlr-/-; p = 0.0009. There were no significant sex differences for DR4tgLdlr-/- mice; however, male Ldlr-/- mice had worse atherosclerosis. B6 and DR4tg mice did not have significant elevations in serum cholesterol levels and did not develop atherosclerosis. Conclusions Expression of HLA-DRB1 resulted in an elevation of OxLDL and a reduction in the male bias for atherosclerosis, mimicking what is observed in RA.
Collapse
Affiliation(s)
- Garth Blackler
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - James Akingbasote
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ewa Cairns
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Rheumatology, Western University, London, Ontario, Canada
| | - Christopher Howlett
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, London Health Research Centre, London, Ontario, Canada
| | - Patti Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lillian Barra
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Rheumatology, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| |
Collapse
|
54
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
55
|
Preta G. Development of New Genome Editing Tools for the Treatment of Hyperlipidemia. Cells 2023; 12:2466. [PMID: 37887310 PMCID: PMC10605581 DOI: 10.3390/cells12202466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Hyperlipidemia is a medical condition characterized by high levels of lipids in the blood. It is often associated with an increased risk of cardiovascular diseases such as heart attacks and strokes. Traditional treatment approaches for hyperlipidemia involve lifestyle modifications, dietary changes, and the use of medications like statins. Recent advancements in genome editing technologies, including CRISPR-Cas9, have opened up new possibilities for the treatment of this condition. This review provides a general overview of the main target genes involved in lipid metabolism and highlights the progress made during recent years towards the development of new treatments for dyslipidemia.
Collapse
Affiliation(s)
- Giulio Preta
- VU LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania;
- Institute of Biochemistry, Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
56
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
57
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
58
|
Fowler A, Van Rompay KKA, Sampson M, Leo J, Watanabe JK, Usachenko JL, Immareddy R, Lovato DM, Schiller JT, Remaley AT, Chackerian B. A virus-like particle-based bivalent PCSK9 vaccine lowers LDL-cholesterol levels in non-human primates. NPJ Vaccines 2023; 8:142. [PMID: 37770440 PMCID: PMC10539315 DOI: 10.1038/s41541-023-00743-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor in the development of atherosclerotic cardiovascular disease (ASCVD). Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL-C metabolism, have emerged as promising approaches for reducing elevated LDL-C levels. Here, we evaluated the cholesterol-lowering efficacy of virus-like particle (VLP) based vaccines that target epitopes found within the LDL receptor (LDL-R) binding domain of PCSK9. In both mice and non-human primates, a bivalent VLP vaccine targeting two distinct epitopes on PCSK9 elicited strong and durable antibody responses and lowered cholesterol levels. In macaques, a VLP vaccine targeting a single PCSK9 epitope was only effective at lowering LDL-C levels in combination with statins, whereas immunization with the bivalent vaccine lowered LDL-C without requiring statin co-administration. These data highlight the efficacy of an alternative, vaccine-based approach for lowering LDL-C.
Collapse
Affiliation(s)
- Alexandra Fowler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Maureen Sampson
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Javier Leo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jennifer K Watanabe
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Jodie L Usachenko
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Debbie M Lovato
- Clinical and Translational Research Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
59
|
Sato A, Tsukiyama T, Komeno M, Iwatani C, Tsuchiya H, Kawamoto I, Murase M, Nakagawa T, Itagaki I, Seita Y, Matsumoto S, Nakaya M, Shimizu A, Yamada A, Ema M, Ogita H. Generation of a familial hypercholesterolemia model in non-human primate. Sci Rep 2023; 13:15649. [PMID: 37730951 PMCID: PMC10511719 DOI: 10.1038/s41598-023-42763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited autosomal dominant disorder that is associated with a high plasma level of low-density lipoprotein (LDL) cholesterol, leading to an increased risk of cardiovascular diseases. To develop basic and translational research on FH, we here generated an FH model in a non-human primate (cynomolgus monkeys) by deleting the LDL receptor (LDLR) gene using the genome editing technique. Six LDLR knockout (KO) monkeys were produced, all of which were confirmed to have mutations in the LDLR gene by sequence analysis. The levels of plasma cholesterol and triglyceride were quite high in the monkeys, and were similar to those in FH patients with homozygous mutations in the LDLR gene. In addition, periocular xanthoma was observed only 1 year after birth. Lipoprotein profile analysis showed that the plasma very low-density lipoprotein and LDL were elevated, while the plasma high density lipoprotein was decreased in LDLR KO monkeys. The LDLR KO monkeys were also strongly resistant to medications for hypercholesterolemia. Taken together, we successfully generated a non-human primate model of hypercholesterolemia in which the phenotype is similar to that of homozygous FH patients.
Collapse
Affiliation(s)
- Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Mitsuru Murase
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Takahiro Nakagawa
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Iori Itagaki
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masataka Nakaya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Yamada
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Masatsugu Ema
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
60
|
Busnelli M, Manzini S, Colombo A, Franchi E, Chiara M, Zaffaroni G, Horner D, Chiesa G. Effect of diet and genotype on the miRNome of mice with altered lipoprotein metabolism. iScience 2023; 26:107615. [PMID: 37664585 PMCID: PMC10474470 DOI: 10.1016/j.isci.2023.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - David Horner
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
61
|
Xie H, Linning-Duffy K, Demireva EY, Toh H, Abolibdeh B, Shi J, Zhou B, Iwase S, Yan L. CRISPR-based Genome Editing of a Diurnal Rodent, Nile Grass Rat ( Arvicanthis niloticus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.553600. [PMID: 37662225 PMCID: PMC10473663 DOI: 10.1101/2023.08.23.553600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Diurnal and nocturnal mammals have evolved distinct pathways to optimize survival for their chronotype-specific lifestyles. Conventional rodent models, being nocturnal, may not sufficiently recapitulate the biology of diurnal humans in health and disease. Although diurnal rodents are potentially advantageous for translational research, until recently, they have not been genetically tractable. Here, we address this major limitation by demonstrating the first successful CRISPR genome editing of the Nile grass rat ( Arvicanthis niloticus ), a valuable diurnal rodent. We establish methods for superovulation; embryo development, manipulation, and culture; and pregnancy maintenance to guide future genome editing of this and other diurnal rodent species.
Collapse
|
62
|
Choi SY, Lee EB, Kim JH, Lee JR. Over-Expression of p190RhoGEF Regulates the Formation of Atherosclerotic Plaques in the Aorta of ApoE -/- Mice via Macrophage Polarization. Int J Mol Sci 2023; 24:12785. [PMID: 37628966 PMCID: PMC10454661 DOI: 10.3390/ijms241612785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The RhoA-specific guanine nucleotide exchange factor p190RhoGEF has been implicated in the control of cell morphology, focal adhesion formation, and cell motility. Previously, we reported that p190RhoGEF is also active in various immune cells. In this study, we examined whether over-expression of p190RhoGEF could affect atherosclerotic plaque formation in mouse aortae. For that purpose, transgenic (TG) mice over-expressing p190RhoGEF were cross-bred with atherosclerosis-prone apolipoprotein E (ApoE)-/- mice to obtain p190RhoGEF-TG mice with ApoE-/- backgrounds (TG/ApoE-/-). Aortic plaque formation was significantly increased in TG/ApoE mice-/- at 30 to 40 weeks of age compared to that in ApoE-/- mice. Serum concentrations of inflammatory cytokines (IL-6 and TNF-α) were greater in TG/ApoE-/- mice than in ApoE-/- mice at ~40 weeks of age. Furthermore, TG/ApoE-/- mice had a greater proportion of peritoneal macrophages within the M1 subset at 30 to 40 weeks of age, together with higher production of inflammatory cytokines and stronger responses to bacterial lipopolysaccharide than ApoE-/- mice. Collectively, these results highlight a crucial role of enhanced p190RhoGEF expression in atherosclerosis progression, including the activation of pro-inflammatory M1 macrophages.
Collapse
Affiliation(s)
- So-Yeon Choi
- Department of Bioinspired Science, The Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun-Bi Lee
- Department of Bioinspired Science, The Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee-Hae Kim
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong Ran Lee
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
63
|
Avagyan S, Zon LI. Clonal hematopoiesis and inflammation - the perpetual cycle. Trends Cell Biol 2023; 33:695-707. [PMID: 36593155 PMCID: PMC10310890 DOI: 10.1016/j.tcb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Acquired genetic or cytogenetic alterations in a blood stem cell that confer clonal fitness promote its relative expansion leading to clonal hematopoiesis (CH). Despite a largely intact hematopoietic output, CH is associated with a heightened risk of progression to hematologic malignancies and with non-hematologic health manifestations, including cardiovascular disease and overall mortality. We focus on the evidence for the role of inflammation in establishing, maintaining and reciprocally being affected by CH. We describe the known pro-inflammatory signals associated with CH and preclinical studies that elucidated the cellular mechanisms involved. We review the evolving literature on early-onset CH in germline predisposition conditions and the possible role of immune dysregulation in this context.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA, USA.
| | - Leonard I Zon
- Boston Children's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
64
|
Hoebinger C, Rajcic D, Silva B, Hendrikx T. Chronic-binge ethanol feeding aggravates systemic dyslipidemia in Ldlr-/- mice, thereby accelerating hepatic fibrosis. Front Endocrinol (Lausanne) 2023; 14:1148827. [PMID: 37560305 PMCID: PMC10407564 DOI: 10.3389/fendo.2023.1148827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Objective Chronic ethanol consumption is known to cause alcohol-associated liver disease, which poses a global health concern as almost a quarter of heavy drinkers develop severe liver damage. Alcohol-induced liver disease ranges from a mild, reversible steatotic liver to alcoholic steatohepatitis and irreversible liver fibrosis and cirrhosis, ultimately requiring liver transplantation. While ethanol consumption is associated with dysregulated lipid metabolism and altered cholesterol homeostasis, the impact of dyslipidemia and pre-existing hypercholesterolemia on the development of alcohol-associated liver disease remains to be elucidated. Design To address the influence of systemic dyslipidemia on ethanol-induced liver disease, chronic-binge ethanol feeding was applied to female C57BL/6J (wild type) mice and mice deficient for the low-density lipoprotein receptor (Ldlr-/-), which display a human-like lipoprotein profile with elevated cholesterol and triglyceride levels in circulation. Respective control groups were pair-fed an isocaloric diet. Results Chronic-binge ethanol feeding did not alter systemic lipid levels in wild type mice. While increased systemic cholesterol levels in Ldlr-/- mice were not affected by ethanol feeding, chronic-binge ethanol diet aggravated elevated plasma triglyceride levels in Ldlr-/- mice. Despite higher circulatory triglyceride levels in Ldlr-/- mice, hepatic lipid levels and the development of hepatic steatosis were not different from wild type mice after ethanol diet, while hepatic expression of genes related to lipid metabolism (Lpl) and transport (Cd36) showed minor changes. Immunohistochemical assessment indicated a lower induction of infiltrating neutrophils in the livers of ethanol-fed Ldlr-/- mice compared to wild type mice. In line, hepatic mRNA levels of the pro-inflammatory genes Ly6g, Cd11b, Ccr2, Cxcl1 and F4/80 were reduced, indicating less inflammation in the livers of Ldlr-/- mice which was associated with reduced Tlr9 induction. While systemic ALT and hepatic MDA levels were not different, Ldlr-deficient mice showed accelerated liver fibrosis development after chronic-binge ethanol diet than wild type mice, as indicated by increased levels of Sirius Red staining and higher expression of pro-fibrotic genes Tgfb, Col1a1 and Col3a1. Ldlr-/- and wild type mice had similar plasma ethanol levels and did not show differences in the hepatic mRNA levels of Adh1 and Cyp2e1, important for ethanol metabolism. Conclusion Our results highlight that chronic-binge ethanol feeding enhances systemic dyslipidemia in Ldlr-/- mice which might accelerate the development of hepatic fibrosis, independent of hepatic lipid levels.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Beatriz Silva
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
65
|
Geiger M, Oppi S, Nusser-Stein S, Costantino S, Mohammed SA, Gorica E, Hoogerland JA, Matter CM, Guillaumon AT, Ruschitzka F, Paneni F, Oosterveer MH, Stein S. Genetic deletion of hepatic NCOR1 protects from atherosclerosis by promoting alternative bile acid-metabolism and sterol excretion. Cardiovasc Diabetol 2023; 22:144. [PMID: 37349757 PMCID: PMC10288794 DOI: 10.1186/s12933-023-01865-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| | - Sara Oppi
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
| | - Joanne A Hoogerland
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian M Matter
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sokrates Stein
- Center for Translational and Experimental Cardiology, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
66
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
67
|
Van Skike CE, DeRosa N, Galvan V, Hussong SA. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer's disease. GeroScience 2023; 45:1987-1996. [PMID: 37052770 PMCID: PMC10400743 DOI: 10.1007/s11357-023-00786-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Peripheral artery disease (PAD), defined as reduced blood flow to the lower limbs, is a serious disorder that can lead to loss of function in the lower extremities and even loss of limbs. One of the main risk factors for PAD is age, with up to 25% of adults over the age of 55 and up to 40% over the age of 80 presenting with some form of the disease. While age is the largest risk factor for PAD, other risk factors include atherosclerosis, smoking, hypertension, and diabetes. Furthermore, previous studies have suggested that the incidence of PAD is significantly increased in patients with Alzheimer's disease (AD). Attenuation of mTOR with rapamycin significantly improves cerebral blood flow and heart function in aged rodents as well as in mouse models of atherosclerosis, atherosclerosis-driven cognitive impairment, and AD. In this study, we show that rapamycin treatment improves peripheral blood flow in aged mice and in mouse models of atherosclerosis and AD. Inhibition of mTOR with rapamycin ameliorates deficits in baseline hind paw perfusion in aged mice and restores levels of blood flow to levels indistinguishable from those of young controls. Furthermore, rapamycin treatment ameliorates peripheral blood flow deficits in mouse models of atherosclerosis and AD. These data indicate that mTOR is causally involved in the reduction of blood flow to lower limbs associated with aging, atherosclerosis, and AD-like progression in model mice. Rapamycin or other mTOR inhibitors may have potential as interventions to treat peripheral artery disease and other peripheral circulation-related conditions.
Collapse
Affiliation(s)
- Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Nicholas DeRosa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, OK, 73104, USA
| |
Collapse
|
68
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
69
|
Fowler A, Van Rompay KKA, Sampson M, Leo J, Watanabe JK, Usachenko JL, Immareddy R, Lovato DM, Schiller JT, Remaley AT, Chackerian B. A Virus-like particle-based bivalent PCSK9 vaccine lowers LDL-cholesterol levels in Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540560. [PMID: 37292981 PMCID: PMC10245564 DOI: 10.1101/2023.05.15.540560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor in the development of atherosclerotic cardiovascular disease (ASCVD). Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL-C metabolism, have emerged as promising approaches for reducing elevated LDL-C levels. Here, we evaluated the cholesterol lowering efficacy of virus-like particle (VLP) based vaccines that target epitopes found within the LDL receptor (LDL-R) binding domain of PCSK9. In both mice and non-human primates, a bivalent VLP vaccine targeting two distinct epitopes on PCSK9 elicited strong and durable antibody responses and lowered cholesterol levels. In macaques, a VLP vaccine targeting a single PCSK9 epitope was only effective at lowering LDL-C levels in combination with statins, whereas immunization with the bivalent vaccine lowered LDL-C without requiring statin co-administration. These data highlight the efficacy of an alternative, vaccine-based approach for lowering LDL-C.
Collapse
Affiliation(s)
- Alexandra Fowler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA USA
| | - Maureen Sampson
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Javier Leo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Jennifer K. Watanabe
- California National Primate Research Center, University of California, Davis, CA USA
| | - Jodie L. Usachenko
- California National Primate Research Center, University of California, Davis, CA USA
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, CA USA
| | - Debbie M. Lovato
- Clinical and Translational Research Center, University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM USA
| |
Collapse
|
70
|
Semikasev E, Ahlemeyer B, Acker T, Schänzer A, Baumgart-Vogt E. Rise and fall of peroxisomes during Alzheimer´s disease: a pilot study in human brains. Acta Neuropathol Commun 2023; 11:80. [PMID: 37170361 PMCID: PMC10176950 DOI: 10.1186/s40478-023-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.
Collapse
Affiliation(s)
- Eugen Semikasev
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany
- Department of Neurosurgery, University Hospital of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
71
|
Del Monte-Monge A, Martos-Folgado I, Rodríguez-Ronchel A, Ramiro AR. Assessing the impact of an antigen-specific antibody response on atherosclerosis development in mice. STAR Protoc 2023; 4:102274. [PMID: 37126444 PMCID: PMC10165446 DOI: 10.1016/j.xpro.2023.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
The antibody immune response plays a critical role in atherosclerosis. Here, we present a protocol for assessing the impact of an antigen-specific germinal center antibody response on atherosclerosis development, using a pro-atherogenic mouse model deficient for the production of germinal-center-derived antibodies. We describe steps for bone marrow transfer from donor mice into irradiated recipient mice. We then detail immunization of mouse chimeras with atheroprotective malondialdehyde low-density lipoprotein during high-fat diet feeding and atherosclerosis burden analysis. For complete details on the use and execution of this protocol, please refer to Martos-Folgado et al. (2022).1.
Collapse
Affiliation(s)
- Alberto Del Monte-Monge
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | | | - Ana Rodríguez-Ronchel
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
72
|
Torikai H, Chen MH, Jin L, He J, Angle JF, Shi W. Atherogenesis in Apoe-/- and Ldlr-/- Mice with a Genetically Resistant Background. Cells 2023; 12:1255. [PMID: 37174655 PMCID: PMC10177018 DOI: 10.3390/cells12091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Apoe-deficient (Apoe-/-) and Ldlr-deficient (Ldlr-/-) mice are two common animal models of hypercholesterolemia and atherosclerosis. The two models differ in lipid and glucose metabolism and other mechanisms involved in atherogenesis. Here we examined atherosclerotic lesion formation in the two models with an atherosclerosis-resistant C3H/HeJ (C3H) background. 3-month-old C3H-Ldlr-/- and C3H-Apoe-/- mice developed minimal atherosclerotic lesions in the aortic root when fed a chow diet. After 12 weeks on a Western diet, C3H-Ldlr-/- mice developed 3-fold larger lesions than C3H-Apoe-/- mice in the aortic root (127,386 ± 13,439 vs. 41,542 ± 5075 μm2/section; p = 0.00028), but neither knockout formed any lesion in the carotid artery. After being ligated near its bifurcation, the common carotid artery developed intimal lesions in both knockouts 4 weeks after ligation, significantly larger in C3H-Ldlr-/- than C3H-Apoe-/- mice (68,721 ± 2706 vs. 47,472 ± 8146 μm2/section; p = 0.028). Compared to C3H-Apoe-/- mice, C3H-Ldlr-/- mice showed a 50% reduction in plasma MCP-1 levels, similar levels of malondialdehyde, an oxidative stress biomarker, on both chow and Western diets, but higher small dense LDL levels on the Western diet. These results suggest a more significant role for small dense LDL than inflammation and oxidative stress in the different susceptibility of the mouse models to atherosclerosis.
Collapse
Affiliation(s)
- Hideyuki Torikai
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Jin
- Orthopedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - John F. Angle
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
73
|
Canepari C, Cantore A. Gene transfer and genome editing for familial hypercholesterolemia. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140997. [PMID: 39086674 PMCID: PMC11285693 DOI: 10.3389/fmmed.2023.1140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by high circulating low-density lipoprotein (LDL) cholesterol. High circulating LDL cholesterol in FH is due to dysfunctional LDL receptors, and is mainly expressed by hepatocytes. Affected patients rapidly develop atherosclerosis, potentially leading to myocardial infarction and death within the third decade of life if left untreated. Here, we introduce the disease pathogenesis and available treatment options. We highlight different possible targets of therapeutic intervention. We then review different gene therapy strategies currently under development, which may become novel therapeutic options in the future, and discuss their advantages and disadvantages. Finally, we briefly outline the potential applications of some of these strategies for the more common acquired hypercholesterolemia disease.
Collapse
Affiliation(s)
- Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
74
|
Parsamanesh N, Kooshkaki O, Siami H, Santos RD, Jamialahmadi T, Sahebkar A. Gene and cell therapy approaches for familial hypercholesterolemia: An update. Drug Discov Today 2023; 28:103470. [PMID: 36572377 DOI: 10.1016/j.drudis.2022.103470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Familial hypercholesterolemia (FH) is a common autosomal codominant hereditary illness marked by the heightened risk of early atherosclerotic cardiovascular disease and high blood levels of low-density lipoprotein cholesterol (LDL-C). FH patients can have homozygous or heterozygous variants. This condition has been linked to variations in the genes for the LDL receptor (LDLR), apolipoprotein B, proprotein convertase subtilisin/Kexin 9 (PCSK9), and LDLR adaptor protein 1. Drugs such as statins, ezetimibe, and PCSK9 inhibitors are currently widely available, allowing for the theoretical normalization of plasma LDL-C levels mostly in patients with heterozygous FH. However, homozygous FH patients usually have a poor response to traditional lipid-lowering therapy and may have a poor prognosis at a young age. LDL apheresis and novel pharmacological therapies such as microsomal transfer protein inhibitors or anti-angiopoietin-like protein 3 monoclonal antibodies are extremely expensive and unavailable in most regions of the world. Therefore, the unmet need persists for these patients. In this review, we discuss the numerous gene delivery, gene editing, and stem cell manipulation techniques used in this study to correct FH-causing LDLR gene variations in vitro, ex vivo, and in vivo. Finally, we looked at a variety of studies that corrected genetic defects that caused FH using the ground-breaking clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
75
|
Takahashi Y, Morales Valencia M, Yu Y, Ouchi Y, Takahashi K, Shokhirev MN, Lande K, Williams AE, Fresia C, Kurita M, Hishida T, Shojima K, Hatanaka F, Nuñez-Delicado E, Esteban CR, Izpisua Belmonte JC. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023; 186:715-731.e19. [PMID: 36754048 DOI: 10.1016/j.cell.2022.12.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Collapse
Affiliation(s)
- Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Mariana Morales Valencia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Yang Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yasuo Ouchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Kazuki Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathryn Lande
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chiara Fresia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA.
| |
Collapse
|
76
|
Fuller MT, Dadoo O, Xiong T, Chivukula P, MacDonald ME, Lee SK, Austin RC, Igdoura SA, Trigatti BL. Extensive diet-induced atherosclerosis in scavenger receptor class B type 1-deficient mice is associated with substantial leukocytosis and elevated vascular cell adhesion molecule-1 expression in coronary artery endothelium. Front Physiol 2023; 13:1023397. [PMID: 36714321 PMCID: PMC9877335 DOI: 10.3389/fphys.2022.1023397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
High levels of low density lipoprotein (LDL) cholesterol and low levels of high density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease. Mice that lack genes involved in the clearance of LDL from the bloodstream, such as the LDL receptor and apolipoprotein E, are widely used models of experimental atherosclerosis. Conversely, mice that lack the HDL receptor, scavenger receptor class B type I, and therefore have disrupted HDL functionality, also develop diet-inducible atherosclerosis but are a seldom-used disease model. In this study, we compared atherosclerosis and associated phenotypes in scavenger receptor class B type I knockout mice with those of wild type, LDL receptor knockout, and apolipoprotein E knockout mice after 20 weeks of being fed an atherogenic diet containing sodium cholate. We found that while scavenger receptor class B type I knockout mice had substantially lower plasma cholesterol than LDL receptor and apolipoprotein E knockout mice, they developed atherosclerotic plaques with similar sizes and compositions in their aortic sinuses, and more extensive atherosclerosis in their descending aortas and coronary arteries. This was associated with elevated tumor necrosis factor alpha levels in scavenger receptor class B type I knockout mice compared to wild type and LDL receptor knockout mice, and lymphocytosis, monocytosis, and elevated vascular cell adhesion molecule expression in coronary artery endothelial cells compared to the other mice examined. We conclude that extensive atherosclerosis in arteries that are not generally susceptible to atherosclerosis in scavenger receptor class B type I knockout mice is driven by factors in addition to hypercholesterolemia, including inflammation, dysregulation of the immune system and increased sensitivity of endothelial cells in arteries that are normally resistant to atherosclerosis. Scavenger receptor class B type I knockout mice fed a cholate containing atherogenic diet may prove to be a useful model to study mechanisms of atherosclerosis and evaluate treatments that rely on intact LDL clearance pathways.
Collapse
Affiliation(s)
- Mark T. Fuller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Omid Dadoo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Ting Xiong
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Pardh Chivukula
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Melissa E. MacDonald
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Samuel K. Lee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Richard C. Austin
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada,Department of Medicine, Division of Nephrology, The Research Institute of St. Joe’s Hamilton and the Hamilton Center for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada,*Correspondence: Bernardo L. Trigatti,
| |
Collapse
|
77
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
78
|
Sreekumar PG, Su F, Spee C, Araujo E, Nusinowitz S, Reddy ST, Kannan R. Oxidative Stress and Lipid Accumulation Augments Cell Death in LDLR-Deficient RPE Cells and Ldlr-/- Mice. Cells 2022; 12:43. [PMID: 36611838 PMCID: PMC9818299 DOI: 10.3390/cells12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid peroxidation from oxidative stress is considered a major contributor to age-related macular degeneration (AMD). The retina is abundant with circulating low-density lipoproteins (LDL), which are taken up by LDL receptor (LDLR) in the RPE and Müller cells. The purpose of this study is to investigate the role of LDLR in the NaIO3-induced model of dry AMD. Confluent primary human RPE (hRPE) and LDLR-silenced ARPE-19 cells were stressed with 150 µM tert-butyl hydroperoxide (tBH) and caspase 3/7 activation was determined. WT and Ldlr-/- mice were administered NaIO3 (20 mg/kg) intravenously. On day 7, fundus imaging, OCT, ERG, and retinal thickness were measured. Histology, TUNEL, cleaved caspase 3 and lipid accumulation were assessed. Treatment of hRPE with tBH markedly decreased LDLR expression. Caspase 3/7 activation was significantly increased in LDLR-silenced ARPE-19 cells treated with tBH. In Ldlr-/- mice, NaIO3 administration resulted in significant (a) retinal thinning, (b) compromised photoreceptor function, (c) increased percentage of cleaved caspase 3 positive and apoptotic cells, and (d) increased lipid droplet accumulation in the RPE, Bruch membrane, choroid, and sclera, compared to WT mice. Our findings imply that LDLR loss leads to lipid accumulation and impaired retinal function, which may contribute to the development of AMD.
Collapse
Affiliation(s)
| | - Feng Su
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | - Eduardo Araujo
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
79
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
80
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
81
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
82
|
Dog models of human atherosclerotic cardiovascular diseases. Mamm Genome 2022:10.1007/s00335-022-09965-w. [PMID: 36243810 DOI: 10.1007/s00335-022-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Eighty-five percent of CVD-associated deaths are due to heart attacks and stroke. Atherosclerosis leads to heart attack and stroke through a slow progression of lesion formation and luminal narrowing of arteries. Dogs are similar to humans in terms of their cardiovascular physiology, size, and anatomy. Dog models have been developed to recapitulate the complex phenotype of human patients and understand the underlying mechanism of CVD. Different methods, including high-fat, high-cholesterol diet and genetic modification, have been used to generate dog models of human CVD. Remarkably, the location and severity of atherosclerotic lesions in the coronary arteries and branches of the carotid arteries of dog models closely resemble those of human CVD patients. Overt clinical manifestations such as stroke caused by plaque rupture and thrombosis were observed in dog models. Thus, dog models can help define the pathophysiological mechanisms of atherosclerosis and develop potential strategy for preventing and treating CVD. In this review, we summarize the progress in generating and characterizing canine models to investigate CVD and discuss the advantages and limitations of canine CVD models.
Collapse
|
83
|
Aerobic Exercise Training Reduces Atherogenesis Induced by Low-Sodium Diet in LDL Receptor Knockout Mice. Antioxidants (Basel) 2022; 11:antiox11102023. [PMID: 36290746 PMCID: PMC9598599 DOI: 10.3390/antiox11102023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the efficacy of aerobic exercise training (AET) in the prevention of dyslipidemia, insulin resistance (IR), and atherogenesis induced by severe low-sodium (LS) diet. LDL receptor knockout (LDLR KO) mice were fed a low-sodium (LS) (0.15% NaCl) or normal-sodium (NS; 1.27% NaCl) diet, submitted to AET in a treadmill, 5 times/week, 60 min/day, 15 m/min, for 90 days, or kept sedentary. Blood pressure (BP), plasma total cholesterol (TC) and triglyceride (TG) concentrations, lipoprotein profile, and insulin sensitivity were evaluated at the end of the AET protocol. Lipid infiltration, angiotensin II type 1 receptor (AT1), receptor for advanced glycation end products (RAGE), carboxymethyllysine (CML), and 4-hydroxynonenal (4-HNE) contents as well as gene expression were determined in the brachiocephalic trunk. BP and TC and gene expression were similar among groups. Compared to the NS diet, the LS diet increased vascular lipid infiltration, CML, RAGE, 4-HNE, plasma TG, LDL-cholesterol, and VLDL-TG. Conversely, the LS diet reduced vascular AT1 receptor, insulin sensitivity, HDL-cholesterol, and HDL-TG. AET prevented arterial lipid infiltration; increases in CML, RAGE, and 4-HNE contents; and reduced AT1 levels and improved LS-induced peripheral IR. The current study showed that AET counteracted the deleterious effects of chronic LS diet in an atherogenesis-prone model by ameliorating peripheral IR, lipid infiltration, CML, RAGE, 4-HNE, and AT1 receptor in the intima-media of the brachiocephalic trunk. These events occurred independently of the amelioration of plasma-lipid profile, which was negatively affected by the severe dietary-sodium restriction.
Collapse
|
84
|
Orecchioni M, Matsunami H, Ley K. Olfactory receptors in macrophages and inflammation. Front Immunol 2022; 13:1029244. [PMID: 36311776 PMCID: PMC9606742 DOI: 10.3389/fimmu.2022.1029244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Olfactory receptors (ORs) that bind odorous ligands are the largest family of G-protein-coupled receptors. In the olfactory epithelium, approximately 400 and 1,100 members are expressed in humans and mice, respectively. Growing evidence suggests the extranasal functions of ORs. Here, we review OR expression and function in macrophages, specialized innate immune cells involved in the detection, phagocytosis, and destruction of cellular debris and pathogens as well as the initiation of inflammatory responses. RNA sequencing data in mice suggest that up to 580 ORs may be expressed in macrophages. Macrophage OR expression is increased after treatment with the Toll-like receptor 4 ligand lipopolysaccharide, which also induces the transcription of inflammasome components. Triggering human OR6A2 or its mouse orthologue Olfr2 with their cognate ligand octanal induces inflammasome assembly and the secretion of IL-1β, which exacerbates atherosclerosis. Octanal is positively correlated with blood lipids like low-density lipoprotein -cholesterol in humans. Another OR, Olfr78, is activated by lactate, which promotes the generation of tumor-associated macrophages that dampen the immune response and promote tumor progression. Olfactory receptors in macrophages are a rich source of untapped opportunity for modulating inflammation. It is not known which of the many ORs expressed in macrophages promote or modulate inflammation. Progress in this area also requires deorphanizing more ORs and determining the sources of their ligands.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Klaus Ley
- Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States,Immunology Center of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Marco Orecchioni, ; Klaus Ley,
| |
Collapse
|
85
|
Macabrey D, Joniová J, Gasser Q, Bechelli C, Longchamp A, Urfer S, Lambelet M, Fu CY, Schwarz G, Wagnières G, Déglise S, Allagnat F. Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization. Front Cardiovasc Med 2022; 9:965965. [PMID: 36262202 PMCID: PMC9575962 DOI: 10.3389/fcvm.2022.965965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Therapies to accelerate vascular repair are currently lacking. Pre-clinical studies suggest that hydrogen sulfide (H2S), an endogenous gasotransmitter, promotes angiogenesis. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source of H2S, would stimulate angiogenesis and vascular repair. STS stimulated neovascularization in WT and LDLR receptor knockout mice following hindlimb ischemia as evidenced by increased leg perfusion assessed by laser Doppler imaging, and capillary density in the gastrocnemius muscle. STS also promoted VEGF-dependent angiogenesis in matrigel plugs in vivo and in the chorioallantoic membrane of chick embryos. In vitro, STS and NaHS stimulated human umbilical vein endothelial cell (HUVEC) migration and proliferation. Seahorse experiments further revealed that STS inhibited mitochondrial respiration and promoted glycolysis in HUVEC. The effect of STS on migration and proliferation was glycolysis-dependent. STS probably acts through metabolic reprogramming of endothelial cells toward a more proliferative glycolytic state. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases.
Collapse
Affiliation(s)
- Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Quentin Gasser
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Severine Urfer
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Chun-Yu Fu
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine, Cologne University, Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine, Cologne University, Cologne, Germany
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland,*Correspondence: Florent Allagnat,
| |
Collapse
|
86
|
Martos-Folgado I, del Monte-Monge A, Lorenzo C, Busse CE, Delgado P, Mur SM, Cobos-Figueroa L, Escolà-Gil JC, Martín-Ventura JL, Wardemann H, Ramiro AR. MDA-LDL vaccination induces athero-protective germinal-center-derived antibody responses. Cell Rep 2022; 41:111468. [DOI: 10.1016/j.celrep.2022.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
|
87
|
Leikin-Frenkel A, Cohen H, Keshet R, Shnerb-GanOr R, Kandel-Kfir M, Harari A, Hollander KS, Shaish A, Harats D, Kamari Y. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102475. [PMID: 35940045 DOI: 10.1016/j.plefa.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of maternal perinatal dietary ALA enrichment on the high fat diet (HFD)-induced lipid disarray in the adult offspring of low density lipoprotein receptor knock-out (LDLRKO) mice. Female LDLRKO mice received, during pregnancy and lactation, isocaloric diets with either corn oil, RD, or flax oil, ALA. The weaning offspring was given a regular chow diet for a washout period of eight weeks, which was followed by HFD for eight weeks. Plasma and liver lipids and SCD1 activity were then analyzed. The HFD-fed RD adult offspring had substantially higher plasma cholesterol levels than the HFD-fed ALA offspring (15.7 versus 9.7 mmole/l, p<0.00001) and non-alcoholic fatty liver disease (NAFLD) (65.0 versus 23.9 mg/g lipids, p<0.00001). Liver lipids oleic acid (OA) content and monounsaturated to saturated fatty acids (MUFA/SAT) ratio, were two times lower in RD compared to ALA (p<0.0001). The threefold HFD-induced SCD1 raised activity (p<0.00001), and OA produced from SA, observed in RD adult offspring were prevented by perinatal ALA. In conclusion, the resilience of SCD1 to HFD- induced increased activity may account for the beneficial effects of perinatal ALA dietary enrichment in preventing NAFLD and hypercholesterolemia from occurring in adult LDLRKO offspring mice.
Collapse
Affiliation(s)
- A Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | - H Cohen
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - R Keshet
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - R Shnerb-GanOr
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - M Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - A Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - K S Hollander
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - A Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Achva Academic College, Israel
| | - D Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Y Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
88
|
Muthuramu I, Mishra M, De Geest B. Increased Remnant Lipoproteins in Apo E Deficient Mice Induce Coronary Atherosclerosis following Transverse Aortic Constriction and Aggravate the Development of Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure. Biomedicines 2022; 10:biomedicines10071592. [PMID: 35884897 PMCID: PMC9312863 DOI: 10.3390/biomedicines10071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Murine coronary arteries are very resistant to the development of atherosclerosis, which may be related to their intramyocardial course. Blood pressure promotes atherosclerotic plaque formation by acting as a physical force that potentiates the migration of pro-atherogenic lipoproteins across the endothelium. C57BL/6N apolipoprotein (apo) E deficient mice have increased remnant lipoproteins that are a risk factor for coronary atherosclerosis. In this study, our aim was to quantify coronary atherosclerosis and artery remodeling following transverse aortic constriction (TAC) in C57BL/6N apo E−/− mice and to evaluate the impact of increased remnant lipoproteins on the development of pressure overload-induced cardiac hypertrophy and heart failure. Advanced atherosclerotic lesions were observed in the left coronary artery of C57BL/6N apo E−/− TAC mice but not in C57BL/6N TAC mice. Pressure overload resulted in markedly increased cardiac hypertrophy and more pronounced heart failure in C57BL/6N apo E−/− TAC mice in comparison to C57BL/6N TAC mice. Pathological hypertrophy, as evidenced by increased myocardial fibrosis and capillary rarefaction, was more prominent in C57BL/6N TAC apo E−/− than in C57BL/6N TAC mice and led to more marked cardiac dysfunction. In conclusion, TAC in apo E deficient mice induces coronary atherosclerosis and aggravates the development of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, 3508 GA Utrecht, The Netherlands
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Correspondence: ; Tel.: +32-16-372059; Fax: +32-16-345990
| |
Collapse
|
89
|
Kasahara K, Sasaki N, Amin HZ, Tanaka T, Horibe S, Yamashita T, Hirata KI, Rikitake Y. Depletion of Foxp3 + regulatory T cells augments CD4 + T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon 2022; 8:e09981. [PMID: 35898604 PMCID: PMC9309665 DOI: 10.1016/j.heliyon.2022.e09981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
Abstract
Compelling evidence suggests a crucial role for Foxp3+ regulatory T cells (Tregs) in the control of atherosclerosis. Although suppression of pro-inflammatory CD4+ T cell immune responses is supposed to be important for athero-protective action of Foxp3+ Tregs, few studies have provided direct evidence for this protective mechanism. We investigated the impact of Foxp3+ Treg depletion on CD4+ T cell immune responses and the development of atherosclerosis under hypercholesterolemia. We employed DEREG (depletion of regulatory T cells) mice on an atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr -/-) background, which carry a diphtheria toxin (DT) receptor under the control of the foxp3 gene locus. In these mice, DT injection led to efficient depletion of Foxp3+ Tregs in spleen, lymph nodes and aorta. Depletion of Foxp3+ Tregs augmented CD4+ effector T cell immune responses and aggravated atherosclerosis without affecting plasma lipid profile. Notably, the proportion of pro-inflammatory IFN-γ-producing T cells were increased in spleen and aorta following Foxp3+ Treg depletion, implying that Foxp3+ Tregs efficiently regulate systemic and aortic T cell-mediated inflammatory responses under hypercholesterolemia. Unexpectedly, Foxp3+ Treg depletion resulted in an increase in anti-inflammatory IL-10-producing T cells, which was not sufficient to suppress the augmented proinflammatory T cell immune responses caused by reduced numbers of Foxp3+ Tregs. Our data indicate that Foxp3+ Tregs suppress pro-inflammatory CD4+ T cell immune responses to control atherosclerosis under hypercholesterolemia.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Hilman Zulkifli Amin
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
90
|
Steffensen LB, Larsen JH, Hansen DR, Tha TML, Larsen NS, Beck HC, Rasmussen LM, Overgaard M. Profiling the Plasma Apolipoproteome of Normo- and Hyperlipidemic Mice by Targeted Mass Spectrometry. J Proteome Res 2022; 22:1385-1393. [PMID: 35700353 DOI: 10.1021/acs.jproteome.2c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. For decades, mouse modeling of atherosclerosis has been the mainstay for preclinical testing of genetic and pharmacological intervention. Mouse models of atherosclerosis depend on supraphysiological levels of circulating cholesterol carried in lipoprotein particles. Lipoprotein particles vary in atherogenicity, and it is critical to monitor lipoprotein levels during preclinical interventions in mice. Unfortunately, the small plasma volumes typically harvested during preclinical experiments limit analyses to measuring total cholesterol and triglyceride levels. Here we developed a high-throughput, low-cost targeted multiple reaction monitoring (MRM) stable isotope dilution (SID) mass spectrometry assay for simultaneous relative quantification of nine apolipoproteins using a few microliters of mouse plasma. We applied the MRM assay to investigate the plasma apolipoproteome of two atherosclerosis models: the widely used ApoE knockout model and the emerging recombinant adeno-associated virus-mediated hepatic Pcsk9 overexpression model. By applying the assay on size-exclusion chromatography-separated plasma pools, we provide in-depth characterization of apolipoprotein distribution across lipoprotein species in these models, and finally, we use the assay to quantify apolipoprotein deposition in mouse atherosclerotic plaques. Taken together, we report development and application of an MRM assay that can be adopted by fellow researchers to monitor the mouse plasma apolipoproteome during preclinical investigations.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jannik Hjortshøj Larsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.,Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark
| | - Didde Riisager Hansen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Thi My Linh Tha
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Niels Strømvig Larsen
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, 5000 Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
91
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
92
|
Chao de la Barca JM, Richard A, Robert P, Eid M, Fouquet O, Tessier L, Wetterwald C, Faure J, Fassot C, Henrion D, Reynier P, Loufrani L. Metabolomic Profiling of Angiotensin-II-Induced Abdominal Aortic Aneurysm in Ldlr -/- Mice Points to Alteration of Nitric Oxide, Lipid, and Energy Metabolisms. Int J Mol Sci 2022; 23:ijms23126387. [PMID: 35742839 PMCID: PMC9223449 DOI: 10.3390/ijms23126387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Aneurysm is the second-most common disease affecting the aorta worldwide after atherosclerosis. While several clinical metabolomic studies have been reported, no study has reported deep metabolomic phenotyping in experimental animal models of aortic aneurysm. We performed a targeted metabolomics study on the blood and aortas of an experimental mice model of aortic aneurysm generated by high-cholesterol diet and angiotensin II in Ldlr−/− mice. The mice model showed a significant increase in media/lumen ratio and wall area, which is associated with lipid deposition within the adventitia, describing a hypertrophic remodeling with an aneurysm profile of the abdominal aorta. Altered aortas showed increased collagen remodeling, disruption of lipid metabolism, decreased glucose, nitric oxide and lysine metabolisms, and increased polyamines and asymmetric dimethylarginine (ADMA) production. In blood, a major hyperlipidemia was observed with decreased concentrations of glutamine, glycine, taurine, and carnitine, and increased concentrations of the branched amino acids (BCAA). The BCAA/glycine and BCAA/glutamine ratios discriminated with very good sensitivity and specificity between aneurysmatic and non-aneurysmatic mice. To conclude, our results reveal that experimental induction of aortic aneurysms causes a profound alteration in the metabolic profile in aortas and blood, mainly centered on an alteration of NO, lipid, and energetic metabolisms.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Alexis Richard
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Pauline Robert
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Maroua Eid
- Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire (CHU), 49100 Angers, France; (M.E.); (O.F.)
| | - Olivier Fouquet
- Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire (CHU), 49100 Angers, France; (M.E.); (O.F.)
| | - Lydie Tessier
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Céline Wetterwald
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Justine Faure
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Celine Fassot
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
| | - Daniel Henrion
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Angers University Hospital (CHU), 49100 Angers, France
| | - Pascal Reynier
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Service de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49000 Angers, France; (L.T.); (C.W.); (J.F.)
| | - Laurent Loufrani
- UMR CNRS 6015—INSERM U1083, IRIS2, 3 rue Roger Amsler, 49100 Angers, France; (J.M.C.d.l.B.); (A.R.); (P.R.); (C.F.); (D.H.); (P.R.)
- INSERM U1083, 49100 Angers, France
- Mitovasc Institute, Université d’Angers, 49100 Angers, France
- Correspondence: ; Tel.: +33-244688263
| |
Collapse
|
93
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
94
|
Braun H, Hauke M, Eckenstaler R, Petermann M, Ripperger A, Kühn N, Schwedhelm E, Ludwig-Kraus B, Kraus FB, Dubourg V, Zernecke A, Schreier B, Gekle M, Benndorf RA. The F2-isoprostane 8-iso-PGF 2α attenuates atherosclerotic lesion formation in Ldlr-deficient mice - Potential role of vascular thromboxane A 2 receptors. Free Radic Biol Med 2022; 185:36-45. [PMID: 35470061 DOI: 10.1016/j.freeradbiomed.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The F2-isoprostane 8-iso-PGF2α (also known as 15-F2t-isoprostane, iPF2α-III, 8-epi PGF2α, 15(S)-8-iso-PGF2α, or 8-Isoprostane), a thromboxane A2 receptor (TP) agonist, stable biomarker of oxidative stress, and risk marker of cardiovascular disease, has been proposed to aggravate atherogenesis in genetic mouse models of atherosclerotic vascular disease. Moreover, the TP plays an eminent role in the pathophysiology of endothelial dysfunction, atherogenesis, and cardiovascular disease. Yet it is unknown, how the TP expressed by vascular cells affects atherogenesis or 8-iso-PGF2α-related effects in mouse models of atherosclerosis. We studied Ldlr-deficient vascular endothelial-specific (EC) and vascular smooth muscle cell (VSMC)-specific TP knockout mice (TPECKO/Ldlr KO; TPVSMCKO/Ldlr KO) and corresponding wild-type littermates (TPWT/Ldlr KO). The mice were fed a Western-type diet for eight weeks and received either 8-iso-PGF2α or vehicle infusions via osmotic pumps. Subsequently, arterial blood pressure, atherosclerotic lesion formation, and lipid profiles were analyzed. We found that VSMC-, but not EC-specific TP deletion, attenuated atherogenesis without affecting blood pressure or plasma lipid profiles of the mice. In contrast to a previous report, 8-iso-PGF2α tended to reduce atherogenesis in TPWT/Ldlr KO and TPEC KO/Ldlr KO mice, again without significantly affecting blood pressure or lipid profiles of these mice. However, no further reduction in atherogenesis was observed in 8-iso-PGF2α-treated TPVSMC KO/Ldlr KO mice. Our work suggests that the TP expressed in VSMC but not the TP expressed in EC is involved in atherosclerotic lesion formation in Ldlr-deficient mice. Furthermore, we report an inhibitory effect of 8-iso-PGF2α on atherogenesis in this experimental atherosclerosis model, which paradoxically appears to be related to the presence of the TP in VSMC.
Collapse
Affiliation(s)
- Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Petermann
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Niklas Kühn
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
95
|
Chen PY, Qin L, Simons M. Imaging and Analysis of Oil Red O-Stained Whole Aorta Lesions in an Aneurysm Hyperlipidemia Mouse Model. J Vis Exp 2022:10.3791/61277. [PMID: 35575528 PMCID: PMC10697070 DOI: 10.3791/61277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (Apoe)- or low density lipoprotein receptor (Ldlr)-deficient hyperlipidemic mice are the two most commonly used models for atherosclerosis research. They are used to study the impact of a various genetic factors and different cell types on atherosclerotic lesion formation and as well as test the development of new therapies. Isolation, excision of the whole aorta, and quantification of Oil Red O-stained atherosclerotic lesions are basic morphometric methods used to evaluate atherosclerotic burden. The goal of this protocol is to describe an optimized, step-by-step surgical method to dissect, perfuse-fix, isolate, stain, image and analyze atherosclerotic lesions in mouse aortas with Oil Red O. Because atherosclerotic lesions can form anywhere in the entire aortic tree, this whole aorta Oil Red O staining method has the advantage of evaluating lipid-laden plaques in the entire aorta and all branches in a single mouse. In addition to Oil Red O staining, fresh isolated whole aortas can be used for variety of in vitro and in vivo experiments and cell isolations.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine;
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine;
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine; Department of Cell Biology, Yale University School of Medicine;
| |
Collapse
|
96
|
Liang G, Wang S, Shao J, Jin Y, Xu L, Yan Y, Günther S, Wang L, Offermanns S. Tenascin-X Mediates Flow-Induced Suppression of EndMT and Atherosclerosis. Circ Res 2022; 130:1647-1659. [PMID: 35443807 DOI: 10.1161/circresaha.121.320694] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been identified as a critical driver of vascular inflammation and atherosclerosis, and TGF-β (transforming growth factor β) is a key mediator of EndMT. Both EndMT and atherosclerosis are promoted by disturbed flow, whereas unidirectional laminar flow limits EndMT and is atheroprotective. How EndMT and endothelial TGF-β signaling are regulated by different flow patterns is, however, still poorly understood. METHODS Flow chamber experiments in vitro and endothelium-specific knockout mice were used to study the role of tenascin-X in the regulation of EndMT and atherosclerosis as well as the underlying mechanisms. RESULTS In human endothelial cells as well as in human and mouse aortae, unidirectional laminar flow but not disturbed flow strongly increased endothelial expression of the extracellular matrix protein TN-X (tenascin-X) in a KLF4 (Krüppel-like factor 4) dependent manner. Mice with endothelium-specific loss of TN-X (EC-Tnxb-KO) showed increased endothelial TGF-β signaling as well as increased endothelial expression of EndMT and inflammatory marker genes. When EC-Tnxb-KO mice were subjected to partial carotid artery ligation, we observed increased vascular remodeling. EC-Tnxb-KO mice crossed to low-density lipoprotein receptor-deficient mice showed advanced atherosclerotic lesions after being fed a high-fat diet. Treatment of EC-Tnxb-KO mice with an anti-TGF-beta antibody or additional endothelial loss of TGF-beta receptors 1 and 2 normalized endothelial TGF-beta signaling and prevented EndMT. In in vitro studies, we found that TN-X through its fibrinogen-like domain directly interacts with TGF-β and thereby interferes with its binding to the TGF-β receptor. CONCLUSIONS In summary, we show that TN-X is a central mediator of flow-induced inhibition of EndMT, endothelial inflammation and atherogenesis, which functions by binding to and by blocking the activity of TGF-β. Our data identify a novel mechanism of flow-dependent regulation of vascular TGF-β, which holds promise for generating new strategies to prevent vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Jingchen Shao
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - YoungJune Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China (Y.Y.)
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Germany (S.G.)
| | - Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.).,Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.).,Cardiopulmonary Institute (CPI), Frankfurt/Bad Nauheim, Germany (S.O.).,German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany (S.O.)
| |
Collapse
|
97
|
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, Jirmo AC, Halle S, Ricke-Hoch M, Adams RH, Engel DR, von Vietinghoff S, Förster R, Hilfiker-Kleiner D, Haller H, Petrova TV, Limbourg FP. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun 2022; 13:2022. [PMID: 35440634 PMCID: PMC9018798 DOI: 10.1038/s41467-022-29701-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation. Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Collapse
Affiliation(s)
- Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Department of Geriatric Medicine (Medical Clinic VI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Jeremiah Bernier-Latmani
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Julia K Lill
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Tania Wyss
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Anne M Hüsing
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Esther Bovay
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Division of Medicine I, Nephrology section, UKB Bonn University Hospital, Bonn, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.,Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, 35037, Marburg, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
98
|
Macabrey D, Longchamp A, MacArthur MR, Lambelet M, Urfer S, Deglise S, Allagnat F. Sodium thiosulfate acts as a hydrogen sulfide mimetic to prevent intimal hyperplasia via inhibition of tubulin polymerisation. EBioMedicine 2022; 78:103954. [PMID: 35334307 PMCID: PMC8941337 DOI: 10.1016/j.ebiom.2022.103954] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/06/2022] Open
Abstract
Background Intimal hyperplasia (IH) remains a major limitation in the long-term success of any type of revascularisation. IH is due to vascular smooth muscle cell (VSMC) dedifferentiation, proliferation and migration. The gasotransmitter Hydrogen Sulfide (H2S), mainly produced in blood vessels by the enzyme cystathionine- γ-lyase (CSE), inhibits IH in pre-clinical models. However, there is currently no H2S donor available to treat patients. Here we used sodium thiosulfate (STS), a clinically-approved source of sulfur, to limit IH. Methods Low density lipoprotein receptor deleted (LDLR−/−), WT or Cse-deleted (Cse−/−) male mice randomly treated with 4 g/L STS in the water bottle were submitted to focal carotid artery stenosis to induce IH. Human vein segments were maintained in culture for 7 days to induce IH. Further in vitro studies were conducted in primary human vascular smooth muscle cells (VSMCs). Findings STS inhibited IH in WT mice, as well as in LDLR−/− and Cse−/− mice, and in human vein segments. STS inhibited cell proliferation in the carotid artery wall and in human vein segments. STS increased polysulfides in vivo and protein persulfidation in vitro, which correlated with microtubule depolymerisation, cell cycle arrest and reduced VSMC migration and proliferation. Interpretation STS, a drug used for the treatment of cyanide poisoning and calciphylaxis, protects against IH in a mouse model of arterial restenosis and in human vein segments. STS acts as an H2S donor to limit VSMC migration and proliferation via microtubule depolymerisation. Funding This work was supported by the Swiss National Science Foundation (grant FN-310030_176158 to FA and SD and PZ00P3-185927 to AL); the Novartis Foundation to FA; and the Union des Sociétés Suisses des Maladies Vasculaires to SD, and the Fondation pour la recherche en chirurgie vasculaire et thoracique.
Collapse
|
99
|
Luquero A, Vilahur G, Casani L, Badimon L, Borrell-Pages M. Differential cholesterol uptake in liver cells: A role for PCSK9. FASEB J 2022; 36:e22291. [PMID: 35344222 DOI: 10.1096/fj.202101660rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022]
Abstract
The clearance of low-density lipoprotein (LDL) particles from the circulation is regulated by the LDL receptor (LDLR) and proprotein convertase subtilisin/kexin 9 (PCSK9) interaction. Its disruption reduces blood cholesterol levels and delays atherosclerosis progression. Whether other members of the LDLR superfamily are in vivo targets of PCSK9 has been poorly explored. The aim of this work was to study the interaction between PCSK9 and members of the LDLR superfamily in the regulation of liver cholesterol homeostasis in an in vivo low-density lipoprotein receptor related protein 5 (LRP5) deficient mice model challenged with high-fat diet. Our results show that Wt and Lrp5-/- mice fed a hypercholesterolemic diet (HC) have increased cholesterol ester accumulation and decreased liver LDLR and LRP5 gene and protein expression. Very low-density lipoprotein receptor (VLDLR), LRP6, LRP2, and LRP1 expression levels were analyzed in liver samples and show that they do not participate in Lrp5-/- liver cholesterol uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in liver-specific fat-storing stellate cells but not in structural HepG2 cells. Hepatic stellate cells silenced for LRP5 and/or PCSK9 expression and challenged with lipids show reduced cholesterol ester accumulation, indicating that both proteins are involved in lipid processing in the liver. Our results indicate that cholesterol esters accumulate in livers of Wt mice in a LDLR-family-members dependent manner as VLDLR, LRP2, and LRP6 show increased expression in HC mice. However, this increase is lost in livers of Lrp5-/- mice, where scavenger receptors are involved in cholesterol uptake. PCSK9 expression is strongly downregulated in mice livers after HC feeding. However PCSK9 and LRP5 bind in the cytoplasm of fat storing liver cells, indicating that this PCSK9-LRP5 interaction is cell-type specific and that both proteins contribute to lipid uptake.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| | - Laura Casani
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, Barcelona, Spain.,CIBER-CV, Instituto de Salud Carlos III, Spain
| |
Collapse
|
100
|
Rocha CP, Maciel CMT, Valenti WC, Moraes-Valenti P, Sampaio I, Maciel CR. Prospection of putative genes for digestive enzymes based on functional genome of the hepatopancreas of Amazon river prawn. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.53894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over recent years, Macrobrachium amazonicum has become a popular species for shrimp farming due to their fast growth, high survival rates, and marketability. Several studies have focused on the development of new technology for the culture of this species, but many aspects of their nutrition and physiology remain unknown. Thus, the goal of the present study was to obtain transcripts of putative genes encoding digestive enzymes, based on a library of the cDNA from the hepatopancreas of M. amazonicum, sequenced in the Ion TorrentTM platform. We identified fragments of nine genes related to digestive enzymes, acting over proteins, carbohydrates and lipids. Endo and exoproteases were also recorded in the hepatopancreas, indicating adaptation to the digestion of protein-rich foods. Nonetheless, the enzymes involved in the carbohydrate metabolism formed the largest functional group in M. amazonicum, including enzymes related to the digestion of starch, chitin, and cellulose. These findings indicate that the species has a genetic apparatus of a well-adapted omnivorous animal. This information may provide important insights for the selection of ingredients for the formulation of a more appropriate diet to the enzymatic repertoire of M. amazonicum.
Collapse
|