51
|
Baghbanian SM, Asgari N, Sahraian MA, Moghadasi AN. A comparison of pediatric and adult neuromyelitis optica spectrum disorders: A review of clinical manifestation, diagnosis, and treatment. J Neurol Sci 2018; 388:222-231. [DOI: 10.1016/j.jns.2018.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
|
52
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
53
|
Aw M, Armstrong TM, Nawata CM, Bodine SN, Oh JJ, Wei G, Evans KK, Shahidullah M, Rieg T, Pannabecker TL. Body mass-specific Na +-K +-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms. Am J Physiol Regul Integr Comp Physiol 2018; 314:R563-R573. [PMID: 29351422 DOI: 10.1152/ajpregu.00289.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.
Collapse
Affiliation(s)
- Mun Aw
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Tamara M Armstrong
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - C Michele Nawata
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Sarah N Bodine
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Jeeeun J Oh
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Guojun Wei
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Kristen K Evans
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Mohammad Shahidullah
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Thomas L Pannabecker
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| |
Collapse
|
54
|
Zhang D, Yang L, Su W, Zhao Y, Ma X, Zhou H, Xu B, Zhang K, Ma H. Aquaporin-4 Is Downregulated in the Basolateral Membrane of Ileum Epithelial Cells during Enterotoxigenic Escherichia coli-Induced Diarrhea in Mice. Front Microbiol 2018; 8:2655. [PMID: 29375520 PMCID: PMC5767235 DOI: 10.3389/fmicb.2017.02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/20/2017] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are opportunistic pathogens that colonize the small intestine, produce enterotoxins and induce diarrhea. Some aquaporins (AQPs), such as AQP3 and AQP8, have been reported to participate in diarrhea by decreasing cellular influx in the gastrointestinal (GI) tract. AQP4 is another important water channel in the GI tract, but its role in ETEC-induced diarrhea has not been reported. Here, we demonstrated the potential roles of AQP4 in ETEC-induced diarrhea. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that AQP4 was expressed in the mouse ileum, but not in the duodenum or jejunum while immunohistochemical staining showed that AQP4 localized to the basolateral membrane of ileum epithelial cells. Using an ETEC-induced mice diarrhea model, we demonstrated that both AQP4 mRNA level and the AQP4 protein level in the ileum decreased gradually over a time course of 7 days. These results suggest that AQP4 plays a role in the pathogenesis of ETEC-induced diarrhea by mediating water transport.
Collapse
Affiliation(s)
- Di Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Yuan Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhu Zhou
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bo Xu
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kaiqi Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongxia Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
55
|
Xiong R, Li W, Li Y, Zheng K, Zhang T, Gao M, Li Y, Hu L, Hu C. Er Shen Wan extract reduces diarrhea and regulates AQP 4 and NHE 3 in a rat model of spleen-kidney Yang deficiency-induced diarrhea. Biomed Pharmacother 2018; 98:834-846. [PMID: 29571254 DOI: 10.1016/j.biopha.2018.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Er Shen Wan (ESW), a traditional Chinese medicinal formula comprised of Psoraleae Fructus (Babchi seeds, from Psoralea corylifolia Linn.) and Myristicae Semen (Nutmeg, from Myristica fragrans Houtt.), is widely used to treat spleen-kidney Yang deficiency (SKYD)-induced diarrhea. Previous studies have demonstrated preliminarily that the petroleum ether extract of ESW (ESWP) exhibits significant anti-diarrheal activity. The present study aimed to evaluate the anti-diarrhea activity of ESWP and to explore the underlying mechanisms with respect to fluid metabolism in a rat model of SKYD-induced diarrhea. MATERIALS AND METHODS A high-performance liquid chromatography-diode array detector (HPLC-DAD) approach was developed and validated for qualitative and quantitative analyses of the main constituents of ESWP. SKYD model rats were established and treated with an effective dose (3.5?g/kg) of the extract for two weeks. Anti-diarrheal activity and stool properties were observed. After the experiment, the appearance and histology of the intestines were evaluated. Serum levels of neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were also determined. Furthermore, to characterize the regulation of aquaporin-4 (AQP 4) and Na+/H+ exchanger isoform 3 (NHE 3) in the colon, quantitative real-time RT-PCR (qRT-PCR), immunohistochemistry (IHC) and Western blotting (WB) were employed to detect mRNA and protein expression levels. RESULTS In the rat models, oral ESWP administration significantly reduced the diarrhea score and the number and weight of wet stools. Jejunal and ileac histological damage was impeded, and the histology score decreased. Serum VIP levels were significantly decreased, in contrast to NPY levels. In addition, AQP 4 and NHE 3 expression levels increased significantly. CONCLUSIONS These results showed that ESWP's anti-diarrheal effect might at least partially involve the regulation of hormones intimately involved in maintaining fluid and electrolyte levels, as well as by increasing AQP 4 and NHE 3 expression levels and enhancing the absorption of Na+ and water.
Collapse
Affiliation(s)
- Rui Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Wenbing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd., Chengdu, 610081, PR China
| | - Yidan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Kaixuan Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Tingting Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Mingyang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Yun Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, PR China
| | - Lin Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China
| | - Changjiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China; Sichuan Neo-Green Pharmaceutical Technology Development Co., Ltd., Chengdu, 610081, PR China.
| |
Collapse
|
56
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
57
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
58
|
Hubbard JA, Binder DK. Unaltered Glutamate Transporter-1 Protein Levels in Aquaporin-4 Knockout Mice. ASN Neuro 2017; 9:1759091416687846. [PMID: 28078912 PMCID: PMC5315234 DOI: 10.1177/1759091416687846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maintenance of glutamate and water homeostasis in the brain is crucial to healthy brain activity. Astrocytic glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) are the main regulators of extracellular glutamate and osmolarity, respectively. Several studies have reported colocalization of GLT1 and AQP4, but the existence of a physical interaction between the two has not been well studied. Therefore, we used coimmunoprecipitation to determine whether a strong interaction exists between these two important molecules in mice on both a CD1 and C57BL/6 background. Furthermore, we used Western blot and immunohistochemistry to examine GLT1 levels in AQP4 knockout (AQP4−/−) mice. An AQP4-GLT1 precipitate was not detected, suggesting the lack of a strong physical interaction between AQP4 and GLT1. In addition, GLT1 protein levels remained unaltered in tissue from CD1 and C57BL/6 AQP4−/− mice. Finally, immunohistochemical analysis revealed that AQP4 and GLT1 do colocalize, but only in a region-specific manner. Taken together, these findings suggest that AQP4 and GLT1 do not have a strong physical interaction between them and are, instead, differentially regulated.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Devin K Binder
- 1 Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
59
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
60
|
Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 2017; 6:27679. [PMID: 28826498 PMCID: PMC5578736 DOI: 10.7554/elife.27679] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Collapse
Affiliation(s)
- Alex J Smith
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Xiaoming Yao
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - James A Dix
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Byung-Ju Jin
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
61
|
Yao X, Verkman AS. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 2017; 5:57. [PMID: 28750658 PMCID: PMC5532786 DOI: 10.1186/s40478-017-0462-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/10/2022] Open
Abstract
Pathogenesis in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorders (herein called NMO) involves complement-dependent cytotoxicity initiated by AQP4-IgG binding to astrocyte AQP4. We recently reported that rats lacking complement inhibitor protein CD59 were highly susceptible to development of NMO pathology in brain and spinal cord following direct AQP4-IgG administration (Yao and Verkman, Acta Neuropath Commun 2017, 5:15). Here, we report evidence that CD59 is responsible for protection of peripheral, AQP4-expressing tissues in seropositive NMO. Rats made seropositive by intraperitoneal injection of AQP4-IgG developed marked weakness by 24 h and died soon thereafter. Serum creatine phosphokinase at 24 h was >900-fold greater in seropositive CD59-/- rats than in seropositive CD59+/+ (or control) rats. AQP4-expressing cells in skeletal muscle and kidney, but not in stomach, of seropositive CD59-/- rats showed injury with deposition of AQP4-IgG and activated complement C5b-9, and inflammation. Organ injury in seropositive CD59-/- rats was prevented by a complement inhibitor. Significant pathological changes in seropositive CD59-/- rats were not seen in optic nerve, spinal cord or brain, including circumventricular tissue. These results implicate a major protective role of CD59 outside of the central nervous system in seropositive NMO, and hence offer an explanation as to why peripheral, AQP4-expressing cells are largely unaffected in NMO.
Collapse
|
62
|
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- Mohamed A. El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
63
|
Rakers C, Schmid M, Petzold GC. TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia 2017. [PMID: 28639721 DOI: 10.1002/glia.23183] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stroke is one of the leading causes of death and long-term disability. In the penumbra, that is, the area surrounding the infarct core, peri-infarct depolarizations (PIDs) are accompanied by strong intracellular calcium elevations in astrocytes and neurons, thereby negatively affecting infarct size and clinical outcome. The dynamics of PIDs and the cellular pathways that are involved during PID formation and progression remain incompletely understood. We have previously shown that inositol triphosphate-gated calcium release from internal stores is a major component of PID-related astroglial calcium signals, but whether external calcium influx through membrane-localized channels also contributes to PIDs has remained unclear. In this study, we investigated the role of two astroglial membrane channels, transient receptor vanilloid 4 (TRPV4) channel and aquaporin-4 (AQP4). We combined in vivo multiphoton microscopy, electrophysiology as well as laser speckle contrast imaging with the middle cerebral artery occlusion stroke model. Using knockout mice and pharmacological inhibitors, we found that TRPV4 channels contribute to calcium influx into astrocytes and neurons and subsequent extracellular glutamate accumulation during PIDs. AQP4 neither influenced PID-related calcium signals nor PID-related edema of astrocyte somata. Both channels did not alter the dynamics, frequency and cerebrovascular response of PIDs in the penumbra. These data indicate that TRPV4 channels may represent a potential target to ameliorate the PID-induced calcium overload of astrocytes and neurons during acute stroke.
Collapse
Affiliation(s)
- Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, Bonn, 53127, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, Bonn, 53127, Germany.,Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Sigmund-Freud-Street 25, Bonn, 53127, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, Bonn, 53127, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Street 25, Bonn, 53127, Germany
| |
Collapse
|
64
|
MacManes MD. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am J Physiol Renal Physiol 2017; 313:F262-F272. [PMID: 28381460 DOI: 10.1152/ajprenal.00067.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Animals living in desert environments are forced to survive despite severe heat, intense solar radiation, and both acute and chronic dehydration. These animals have evolved phenotypes that effectively address these environmental stressors. To begin to understand the ways in which the desert-adapted rodent Peromyscus eremicus survives, reproductively mature adults were subjected to 72 h of water deprivation, during which they lost, on average, 23% of their body weight. The animals reacted via a series of changes in the kidney, which included modulating expression of genes responsible for reducing the rate of transcription and maintaining water and salt balance. Extracellular matrix turnover appeared to be decreased, and apoptosis was limited. In contrast to the canonical human response, serum creatinine and other biomarkers of kidney injury were not elevated, suggesting that changes in gene expression related to acute dehydration may effectively prohibit widespread kidney damage in the cactus mouse.
Collapse
Affiliation(s)
- Matthew David MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
65
|
Khoshnoud S, Mohseni Kouchesfahani H, Nabiuni M. Evaluation of The Protective Effect of Hydro-Alcoholic Extract of Raspberry Fruit on Aquaporin1 Expression in Rats Kidney Treated by Methotrexate. CELL JOURNAL 2017; 19:306-313. [PMID: 28670523 PMCID: PMC5412789 DOI: 10.22074/cellj.2016.3957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Methotrexate (MTX) is an antimetabolite drug commonly prescribed for the various cancers and autoimmune diseases. Despite its considerable therapeutic effects, nephrotoxicity is the most important side-effect of treatment with MTX. Aquaporin1 (AQP1) is a water channel proteins which is present in mammalian kidney. Raspberry fruit with antioxidant properties is able to protect biological systems from the harmful effects of free radicals. The purpose of this study was to investigate the effect of raspberry extract on expression of AQP1 and the MTX-induced nephrotoxicity in rats. MATERIALS AND METHODS In this experimental study, 60 adult male Wistar rats were divided into nine groups including control, sham, MTX treated group [single dose of 20 mg/kg of body weight (BW) MTX at the third day], raspberry treated groups [intraperitoneal (I.P) injection of 100, 200, 400 mg/kg of BW raspberry extract for ten consecutive days], MTX and raspberry treated groups. At day 11, rats were sacrificed via chloroform inhalation and kidney tissues were fixed in formalin solution for histological and immunohistochemistry analysis. The serological assays for urea, creatinine, uric acid and interleukin-6 (IL-6) levels were also performed. RESULTS MTX elevated serum level of the urea, creatinine, uric acid, IL-6, renal tissue damage and decreased the AQP1 expression level. Raspberry fruit extract improved the kidney function and reduced side effects of MTX in treated rats. Expression of AQP1, in a dose dependent manner was also ameliorated, as compared to control group. CONCLUSION According to the findings of this study, it can be concluded that biological activity of compounds presented in raspberry fruit extract especially anthocyanins may have chemo-protective effect on kidney function and AQP1 expression in rats treated by MTX.
Collapse
Affiliation(s)
- Saeideh Khoshnoud
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
66
|
Li Y, Wang W, Jiang T, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:131-148. [PMID: 28258571 DOI: 10.1007/978-94-024-1057-0_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several aquaporin (AQP )-type water channels are expressed in kidney: AQP1 in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2 -6 in the collecting duct; AQP7 in the proximal tubule; AQP8 in the proximal tubule and collecting duct; and AQP11 in the endoplasmic reticulum of proximal tubule cells. AQP2 is the vasopressin-regulated water channel that is important in hereditary and acquired diseases affecting urine-concentrating ability. The roles of AQPs in renal physiology and transepithelial water transport have been determined using AQP knockout mouse models. This chapter describes renal physiologic insights revealed by phenotypic analysis of AQP knockout mice and the prospects for further basic and clinical studies.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Tao Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
67
|
Arnspang EC, Login FH, Koffman JS, Sengupta P, Nejsum LN. AQP2 Plasma Membrane Diffusion Is Altered by the Degree of AQP2-S256 Phosphorylation. Int J Mol Sci 2016; 17:ijms17111804. [PMID: 27801846 PMCID: PMC5133805 DOI: 10.3390/ijms17111804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 01/21/2023] Open
Abstract
Fine tuning of urine concentration occurs in the renal collecting duct in response to circulating levels of arginine vasopressin (AVP). AVP stimulates intracellular cAMP production, which mediates exocytosis of sub-apical vesicles containing the water channel aquaporin-2 (AQP2). Protein Kinase A (PKA) phosphorylates AQP2 on serine-256 (S256), which triggers plasma membrane accumulation of AQP2. This mediates insertion of AQP2 into the apical plasma membrane, increasing water permeability of the collecting duct. AQP2 is a homo-tetramer. When S256 on all four monomers is changed to the phosphomimic aspartic acid (S256D), AQP2-S256D localizes to the plasma membrane and internalization is decreased. In contrast, when S256 is mutated to alanine (S256A) to mimic non-phosphorylated AQP2, AQP2-S256A localizes to intracellular vesicles as well as the plasma membrane, with increased internalization from the plasma membrane. S256 phosphorylation is not necessary for exocytosis and dephosphorylation is not necessary for endocytosis, however, the degree of S256 phosphorylation is hypothesized to regulate the kinetics of AQP2 endocytosis and thus, retention time in the plasma membrane. Using k-space Image Correlation Spectroscopy (kICS), we determined how the number of phosphorylated to non-phosphorylated S256 monomers in the AQP2 tetramer affects diffusion speed of AQP2 in the plasma membrane. When all four monomers mimicked constitutive phosphorylation (AQP2-S256D), diffusion was faster than when all four were non-phosphorylated (AQP2-S256A). AQP2-WT diffused at a speed similar to that of AQP2-S256D. When an average of two or three monomers in the tetramer were constitutively phosphorylated, the average diffusion coefficients were not significantly different to that of AQP2-S256D. However, when only one monomer was phosphorylated, diffusion was slower and similar to AQP2-S256A. Thus, AQP2 with two to four phosphorylated monomers has faster plasma membrane kinetics, than the tetramer which contains just one or no phosphorylated monomers. This difference in diffusion rate may reflect behavior of AQP2 tetramers destined for either plasma membrane retention or endocytosis.
Collapse
Affiliation(s)
- Eva C Arnspang
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jennifer S Koffman
- Department of Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Prabuddha Sengupta
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
68
|
Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema. Int J Mol Sci 2016; 17:ijms17101413. [PMID: 27690011 PMCID: PMC5085613 DOI: 10.3390/ijms17101413] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022] Open
Abstract
Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4.
Collapse
|
69
|
Karwad MA, Macpherson T, Wang B, Theophilidou E, Sarmad S, Barrett DA, Larvin M, Wright KL, Lund JN, O'Sullivan SE. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J 2016; 31:469-481. [PMID: 27623929 DOI: 10.1096/fj.201500132] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022]
Abstract
Cannabinoids modulate intestinal permeability through cannabinoid receptor 1 (CB1). The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability. Transepithelial electrical resistance (TEER) was measured in human Caco-2 cells to assess permeability after application of OEA and PEA and relevant antagonists. Cells treated with OEA and PEA were stained for cytoskeletal F-actin changes and lysed for immunoassay. OEA and PEA were measured by liquid chromatography-tandem mass spectrometry. OEA (applied apically, logEC50 -5.4) and PEA (basolaterally, logEC50 -4.9; apically logEC50 -5.3) increased Caco-2 resistance by 20-30% via transient receptor potential vanilloid (TRPV)-1 and peroxisome proliferator-activated receptor (PPAR)-α. Preventing their degradation (by inhibiting fatty acid amide hydrolase) enhanced the effects of OEA and PEA. OEA and PEA induced cytoskeletal changes and activated focal adhesion kinase and ERKs 1/2, and decreased Src kinases and aquaporins 3 and 4. In Caco-2 cells treated with IFNγ and TNFα, OEA (via TRPV1) and PEA (via PPARα) prevented or reversed the cytokine-induced increased permeability compared to vehicle (0.1% ethanol). PEA (basolateral) also reversed increased permeability when added 48 or 72 h after cytokines (P < 0.001, via PPARα). Cellular and secreted levels of OEA and PEA (P < 0.001-0.001) were increased in response to inflammatory mediators. OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.-Karwad, M. A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.
Collapse
Affiliation(s)
- Mustafa A Karwad
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Tara Macpherson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Bo Wang
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Elena Theophilidou
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Sarir Sarmad
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; and
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; and
| | - Michael Larvin
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Karen L Wright
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Jonathan N Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Saoirse E O'Sullivan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom;
| |
Collapse
|
70
|
Murlidharan G, Crowther A, Reardon RA, Song J, Asokan A. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 2016; 1:e88034. [PMID: 27699236 DOI: 10.1172/jci.insight.88034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4-/- mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4-/- mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.
Collapse
Affiliation(s)
| | - Andrew Crowther
- Neurobiology Curriculum.,University of North Carolina Neuroscience Center
| | | | - Juan Song
- Department of Pharmacology.,University of North Carolina Neuroscience Center
| | - Aravind Asokan
- Gene Therapy Center.,Department of Genetics, and.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
71
|
Aquaporin-4 and Cerebrovascular Diseases. Int J Mol Sci 2016; 17:ijms17081249. [PMID: 27529222 PMCID: PMC5000647 DOI: 10.3390/ijms17081249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Cerebrovascular diseases are conditions caused by problems with brain vasculature, which have a high morbidity and mortality. Aquaporin-4 (AQP4) is the most abundant water channel in the brain and crucial for the formation and resolution of brain edema. Considering brain edema is an important pathophysiological change after stoke, AQP4 is destined to have close relation with cerebrovascular diseases. However, this relation is not limited to brain edema due to other biological effects elicited by AQP4. Till now, multiple studies have investigated roles of AQP4 in cerebrovascular diseases. This review focuses on expression of AQP4 and the effects of AQP4 on brain edema and neural cells injuries in cerebrovascular diseases including cerebral ischemia, intracerebral hemorrhage and subarachnoid hemorrhage. In the current review, we pay more attention to the studies of recent years directly from cerebrovascular diseases animal models or patients, especially those using AQP4 gene knockout mice. This review also elucidates the potential of AQP4as an excellent therapeutic target.
Collapse
|
72
|
MATSUMAE M, SATO O, HIRAYAMA A, HAYASHI N, TAKIZAWA K, ATSUMI H, SORIMACHI T. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurol Med Chir (Tokyo) 2016; 56:416-41. [PMID: 27245177 PMCID: PMC4945600 DOI: 10.2176/nmc.ra.2016-0020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.
Collapse
Affiliation(s)
- Mitsunori MATSUMAE
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | | | - Akihiro HIRAYAMA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Naokazu HAYASHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Ken TAKIZAWA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Hideki ATSUMI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Takatoshi SORIMACHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| |
Collapse
|
73
|
Wu X, Zhang JT, Li D, Zhou J, Yang J, Zheng HL, Chen JG, Wang F. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors. Neuropharmacology 2016; 112:124-134. [PMID: 27373674 DOI: 10.1016/j.neuropharm.2016.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/11/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
Aquaporin-4 (AQP-4) is the predominant water channel in the brain and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. A growing number of evidence shows that AQP-4 plays a potential role in the regulation of astrocyte function. However, little is known about the function of AQP-4 for synaptic plasticity in the hippocampus. Therefore, we evaluated long-term depression (LTD) in the hippocampus and the extinction of fear memory of AQP-4 knockout (KO) and wild-type (WT) mice. We found that AQP-4 deficiency facilitated fear memory extinction and NMDA receptors (NMDARs)-dependent LTD in the CA3-CA1 pathway. Furthermore, AQP-4 deficiency selectively increased GluN2B-NMDAR-mediated excitatory postsynaptic currents (EPSCs). The excessive activation of extrasynaptic GluN2B-NMDAR contributed to the facilitation of NMDAR-dependent LTD and enhancement of fear memory extinction in AQP-4 KO mice. Thus, it appears that AQP-4 may be a potential target for intervention in fear memory extinction. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative Innovation Center for Brain Science, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative Innovation Center for Brain Science, Wuhan, 430030, China.
| |
Collapse
|
74
|
Hubbard JA, Szu JI, Yonan JM, Binder DK. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol 2016; 283:85-96. [PMID: 27155358 DOI: 10.1016/j.expneurol.2016.05.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/23/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
Abstract
Astrocytes regulate extracellular glutamate and water homeostasis through the astrocyte-specific membrane proteins glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4), respectively. The role of astrocytes and the regulation of GLT1 and AQP4 in epilepsy are not fully understood. In this study, we investigated the expression of GLT1 and AQP4 in the intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used real-time polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis at 1, 4, 7, and 30days after kainic acid-induced status epilepticus (SE) to determine hippocampal glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes), GLT1, and AQP4 expression changes during the development of epilepsy (epileptogenesis). Following IHKA, all mice had SE and progressive increases in GFAP immunoreactivity and GFAP protein expression out to 30days post-SE. A significant initial increase in dorsal hippocampal GLT1 immunoreactivity and protein levels were observed 1day post SE and followed by a marked downregulation at 4 and 7days post SE with a return to near control levels by 30days post SE. AQP4 dorsal hippocampal protein expression was significantly downregulated at 1day post SE and was followed by a gradual return to baseline levels with a significant increase in ipsilateral protein levels by 30days post SE. Transient increases in GFAP and AQP4 mRNA were also observed. Our findings suggest that specific molecular changes in astrocyte glutamate transporters and water channels occur during epileptogenesis in this model, and suggest the novel therapeutic strategy of restoring glutamate and water homeostasis.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Department of Biochemistry and Molecular Biology, University of California, Riverside, USA
| | - Jenny I Szu
- Neuroscience Graduate Program, University of California, Riverside, USA
| | - Jennifer M Yonan
- Neuroscience Graduate Program, University of California, Riverside, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, USA; Center for Glial-Neuronal Interactions, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside.
| |
Collapse
|
75
|
Herwerth M, Kalluri SR, Srivastava R, Kleele T, Kenet S, Illes Z, Merkler D, Bennett JL, Misgeld T, Hemmer B. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology. Ann Neurol 2016; 79:794-805. [PMID: 26946517 PMCID: PMC5021140 DOI: 10.1002/ana.24630] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/27/2023]
Abstract
Objective Neuromyelitis optica (NMO) is an autoimmune disease of the central nervous system, which resembles multiple sclerosis (MS). NMO differs from MS, however, in the distribution and histology of neuroinflammatory lesions and shows a more aggressive clinical course. Moreover, the majority of NMO patients carry immunoglobulin G autoantibodies against aquaporin‐4 (AQP4), an astrocytic water channel. Antibodies against AQP4 can damage astrocytes by complement, but NMO histopathology also shows demyelination, and — importantly—axon injury, which may determine permanent deficits following NMO relapses. The dynamics of astrocyte injury in NMO and the mechanisms by which toxicity spreads to axons are not understood. Methods Here, we establish in vivo imaging of the spinal cord, one of the main sites of NMO pathology, as a powerful tool to study the formation of experimental NMO‐related lesions caused by human AQP4 antibodies in mice. Results We found that human AQP4 antibodies caused acute astrocyte depletion with initial oligodendrocyte survival. Within 2 hours of antibody application, we observed secondary axon injury in the form of progressive swellings. Astrocyte toxicity and axon damage were dependent on AQP4 antibody titer and complement, specifically C1q. Interpretation In vivo imaging of the spinal cord reveals the swift development of NMO‐related acute axon injury after AQP4 antibody‐mediated astrocyte depletion. This approach will be useful in studying the mechanisms underlying the spread of NMO pathology beyond astrocytes, as well as in evaluating potential neuroprotective interventions. Ann Neurol 2016;79:794–805
Collapse
Affiliation(s)
- Marina Herwerth
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rajneesh Srivastava
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tatjana Kleele
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Selin Kenet
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Zsolt Illes
- Department of Neurology, Division of Clinical and Experimental Neuroimmunology, University of Pecs, Pecs, Hungary.,Department of Neurology and Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.,Department of Neuropathology, University Medical Center, Göttingen, Germany
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado Denver School of Medicine, Aurora, CO
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center of Integrated Protein Science (CIPSM), Munich, Germany.,equal contributing senior authors
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,equal contributing senior authors
| |
Collapse
|
76
|
Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol 2016; 7:23. [PMID: 26903868 PMCID: PMC4749865 DOI: 10.3389/fphar.2016.00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Arginine-vasopressin (AVP) stimulates the redistribution of water channels, aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. By this AVP directs 10% of the water reabsorption from the 170 L of primary urine that the human kidneys produce each day. This review discusses molecular mechanisms underlying the AVP-induced redistribution of AQP2; in particular, it provides an overview over the proteins participating in the control of its localization. Defects preventing the insertion of AQP2 into the plasma membrane cause diabetes insipidus. The disease can be acquired or inherited, and is characterized by polyuria and polydipsia. Vice versa, up-regulation of the system causing a predominant localization of AQP2 in the plasma membrane leads to excessive water retention and hyponatremia as in the syndrome of inappropriate antidiuretic hormone secretion (SIADH), late stage heart failure or liver cirrhosis. This article briefly summarizes the currently available pharmacotherapies for the treatment of such water balance disorders, and discusses the value of newly identified mechanisms controlling AQP2 for developing novel pharmacological strategies. Innovative concepts for the therapy of water balance disorders are required as there is a medical need due to the lack of causal treatments.
Collapse
Affiliation(s)
- Tanja Vukićević
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Maike Schulz
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Dörte Faust
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlin, Germany; German Centre for Cardiovascular ResearchBerlin, Germany
| |
Collapse
|
77
|
Matsuzaki T, Yaguchi T, Shimizu K, Kita A, Ishibashi K, Takata K. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int 2016; 92:187-199. [PMID: 26798062 DOI: 10.1007/s12565-016-0325-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/31/2015] [Indexed: 11/25/2022]
Abstract
The membrane water channel aquaporin (AQP) family is composed of 13 isoforms in mammals, eight of which are reportedly expressed in the kidney: AQP1, 2, 3, 4, 6, 7, 8, and 11. These isoforms are differentially expressed along the renal tubules and collecting ducts. AQP1 and 7 are distributed in the proximal tubules, whereas AQP2, 3, and 4 occur in the collecting duct system. They play important roles in the reabsorption of water and some solutes across the plasma membrane. In contrast to other aquaporins found in the kidney, AQP6, 8, and 11 are localized to the cytoplasm rather than to the apical or basolateral membranes. It is therefore doubtful that these isoforms are directly involved in water or solute reabsorption. AQP6 is localized in acid-secreting type A intercalated cells of the collecting duct. AQP8 has been found in the proximal tubule but its cellular location has not yet been defined by immunohistochemistry. AQP11 seems to be localized in the endoplasmic reticulum (ER) of proximal tubule cells. Interestingly, polycystic kidneys develop in AQP11-null mice. Many vacuole-like structures are seen in proximal tubule cells in kidneys of newborn AQP11-null mice. Subsequently, cysts are generated, and most of the mice die within a month due to severe renal failure. Although ER stress and impairment of polycystin-1, the product of the gene mutated in autosomal-dominant polycystic kidney disease, are possible causes of cystogenesis in AQP11-null mice, the exact mechanism of pathogenesis and the physiological function of AQP11 are yet to be resolved.
Collapse
Affiliation(s)
- Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Tomoyuki Yaguchi
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kinue Shimizu
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Aoi Kita
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Kuniaki Takata
- Gunma Prefectural College of Health Sciences, 323-1 Kamioki-Machi, Maebashi, Gunma, 371-0052, Japan
| |
Collapse
|
78
|
Popescu BFG, Lucchinetti CF. Immunopathology: autoimmune glial diseases and differentiation from multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:95-106. [PMID: 27112673 DOI: 10.1016/b978-0-444-63432-0.00006-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While multiple sclerosis (MS) is often referred to as an autoimmune inflammatory demyelinating disease, neuromyelitis optica (NMO) is currently the only proven and well-characterized autoimmune disease affecting the glial cells. The target antigen is the water channel aquaporin-4 (AQP4), expressed on astrocytes, and antibodies against AQP4 (AQP4-IgG) are present in the serum of NMO patients. Clinical, serologic, cerebrospinal fluid, and neuroimaging criteria help differentiate NMO from other central nervous system inflammatory demyelinating disorders. Pathologically, the presence of dystrophic astrocytes, myelin vacuolation, granulocytic inflammatory infiltrates, vascular hyalinization, macrophages containing glial fibrillary acidic protein-positive debris and/or the absence of Creutzfeldt-Peters cells is more characteristic, but not specific, for NMO. These findings should prompt the neuropathologist to perform AQP4 immunohistochemistry, and recommend serologic testing for AQP4-IgG to exclude a diagnosis of NMO/NMO spectrum disorder (NMOSD). Loss of AQP4 on biopsied active demyelinating lesions and/or seropositivity for AQP4-IgG may confirm the diagnosis of NMO/NMOSD, which is important because treatments that are suitable for MS can aggravate NMO. Few other putative glial antigens have been postulated, but their pathogenic role remains to be demonstrated.
Collapse
Affiliation(s)
- Bogdan F Gh Popescu
- Department of Anatomy and Cell Biology and Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
79
|
Physiological role of aquaporin 5 in salivary glands. Pflugers Arch 2015; 468:519-39. [DOI: 10.1007/s00424-015-1749-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
|
80
|
Miyazaki-Komine K, Takai Y, Huang P, Kusano-Arai O, Iwanari H, Misu T, Koda K, Mitomo K, Sakihama T, Toyama Y, Fujihara K, Hamakubo T, Yasui M, Abe Y. High avidity chimeric monoclonal antibodies against the extracellular domains of human aquaporin-4 competing with the neuromyelitis optica autoantibody, NMO-IgG. Br J Pharmacol 2015; 173:103-14. [PMID: 26398585 DOI: 10.1111/bph.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Most of the cases of neuromyelitis optica (NMO) are characterized by the presence of an autoantibody, NMO-IgG, which recognizes the extracellular domains of the water channel, aquaporin-4. Binding of NMO-IgG to aquaporin-4 expressed in end-feet of astrocytes leads to complement-dependent disruption of astrocytes followed by demyelination. One therapeutic option for NMO is to prevent the binding of NMO-IgG to aquaporin-4, using high-avidity, non-pathogenic-chimeric, monoclonal antibodies to this water channel. We describe here the development of such antibodies. EXPERIMENTAL APPROACH cDNAs encoding variable regions of heavy and light chains of monoclonal antibodies against the extracellular domains of human aquaporin-4 were cloned from hybridoma total RNA and fused to those encoding constant regions of human IgG1 and Igκ respectively. Then mammalian expression vectors were constructed to establish stable cell lines secreting mature chimeric antibodies. KEY RESULTS Original monoclonal antibodies showed high avidity binding to human aquaporin-4, as determined by ELISA. Live imaging using Alexa-Fluor-555-labelled antibodies revealed that the antibody D15107 more rapidly bound to cells expressing human aquaporin-4 than others and strongly enhanced endocytosis of this water channel, while D12092 also bound rapidly to human aquaporin-4 but enhanced endocytosis to a lesser degree. Chimeric D15107 prevented complement-dependent cytotoxicity induced by NMO-IgG from patient sera in vitro. CONCLUSIONS AND IMPLICATIONS We have established non-pathogenic, high-avidity, chimeric antibodies against the extracellular domains of human aquaporin-4, which provide a novel therapeutic option for preventing the progress and recurrence of NMO/NMO spectrum disorders.
Collapse
Affiliation(s)
- Kaori Miyazaki-Komine
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ping Huang
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Institute of Immunology Co., Ltd., 1-1-10 Koraku, Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tatsuro Misu
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsushi Koda
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Katsuyuki Mitomo
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Toshiko Sakihama
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
81
|
Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro 2015; 7:7/5/1759091415605486. [PMID: 26489685 PMCID: PMC4623559 DOI: 10.1177/1759091415605486] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Mike S Hsu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Marcus M Seldin
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
82
|
Yao X, Smith AJ, Jin BJ, Zador Z, Manley GT, Verkman A. Aquaporin-4 regulates the velocity and frequency of cortical spreading depression in mice. Glia 2015; 63:1860-9. [PMID: 25944186 PMCID: PMC4743984 DOI: 10.1002/glia.22853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K(+) concentration ([K(+)]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K(+)]e and ECS volume affect the velocity, frequency, and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4(+/+)) and AQP4-deficient (AQP4(-/-)) mice. In contrast to initial expectations, both the velocity and the frequency of CSD were significantly reduced in AQP4(-/-) mice when compared with AQP4(+/+) mice, by 22% and 32%, respectively. Measurement of [K(+)]e with K(+)-selective microelectrodes demonstrated an increase to ∼35 mM during spreading depolarizations in both AQP4(+/+) and AQP4(-/-) mice, but the rates of [K(+)]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4(-/-) mice. ECS volume fraction measured by tetramethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4(+/+) mice, and 0.23 to 0.063 in AQP4(-/-) mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4(-/-) mice was primarily a consequence of the slowed increase in [K(+)]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K(+)]e and ECS volume dynamics accelerate CSD propagation.
Collapse
Affiliation(s)
- Xiaoming Yao
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Alex J. Smith
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | - Byung-Ju Jin
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | - Zsolt Zador
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - A.S. Verkman
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
83
|
Jo AO, Ryskamp DA, Phuong TTT, Verkman AS, Yarishkin O, MacAulay N, Križaj D. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia. J Neurosci 2015; 35:13525-37. [PMID: 26424896 PMCID: PMC4588615 DOI: 10.1523/jneurosci.1987-15.2015] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022] Open
Abstract
Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca(2+)]i elevations but only modestly attenuated the amplitude of Ca(2+) signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. Significance statement: We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Daniel A Ryskamp
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, and
| | - Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132,
| |
Collapse
|
84
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
85
|
Beitz E, Golldack A, Rothert M, von Bülow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015; 155:22-35. [PMID: 26277280 DOI: 10.1016/j.pharmthera.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aquaporin (AQP) water and solute channels have basic physiological functions throughout the human body. AQP-facilitated water permeability across cell membranes is required for rapid reabsorption of water from pre-urine in the kidneys and for sustained near isosmolar water fluxes e.g. in the brain, eyes, inner ear, and lungs. Cellular water permeability is further connected to cell motility. AQPs of the aquaglyceroporin subfamily are necessary for lipid degradation in adipocytes and glycerol uptake into the liver, as well as for skin moistening. Modulation of AQP function is desirable in several pathophysiological situations, such as nephrogenic diabetes insipidus, Sjögren's syndrome, Menière's disease, heart failure, or tumors to name a few. Attempts to design or to find effective small molecule AQP inhibitors have yielded only a few hits. Challenges reside in the high copy number of AQP proteins in the cell membranes, and spatial restrictions in the protein structure. This review gives an overview on selected physiological and pathophysiological conditions in which modulation of AQP functions appears beneficial and discusses first achievements in the search of drug-like AQP inhibitors.
Collapse
Affiliation(s)
- Eric Beitz
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany.
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Monja Rothert
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Julia von Bülow
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| |
Collapse
|
86
|
Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly Reduced Brain Swelling and Improved Neurological Outcome in Aquaporin-4 Knockout Mice following Controlled Cortical Impact Brain Injury. J Neurotrauma 2015; 32:1458-64. [PMID: 25790314 DOI: 10.1089/neu.2014.3675] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brain edema following traumatic brain injury (TBI) is associated with considerable morbidity and mortality. Prior indirect evidence has suggested the involvement of astrocyte water channel aquaporin-4 (AQP4) in the pathogenesis of TBI. Here, focal TBI was produced in wild type (AQP4(+/+)) and knockout (AQP4(-/-)) mice by controlled cortical impact injury (CCI) following craniotomy with dura intact (parameters: velocity 4.5 m/sec, depth 1.7 mm, dwell time 150 msec). AQP4-deficient mice showed a small but significant reduction in injury volume in the first week after CCI, with a small improvement in neurological outcome. Mechanistic studies showed reduced intracranial pressure at 6 h after CCI in AQP4(-/-) mice, compared with AQP4(+/+) control mice (11 vs. 19 mm Hg), with reduced local brain water accumulation as assessed gravimetrically. Transmission electron microscopy showed reduced astrocyte foot-process area in AQP4(-/-) mice at 24 h after CCI, with greater capillary lumen area. Blood-brain barrier disruption assessed by Evans blue dye extravasation was similar in AQP4(+/+) and AQP4(-/-) mice. We conclude that the mildly improved outcome in AQP4(-/-) mice following CCI results from reduced cytotoxic brain water accumulation, though concurrent cytotoxic and vasogenic mechanisms in TBI make the differences small compared to those seen in disorders where cytotoxic edema predominates.
Collapse
Affiliation(s)
- Xiaoming Yao
- 1 Department of Neurological Surgery, University of California , San Francisco, California.,2 Departments of Medicine and Physiology, University of California , San Francisco, California
| | - Kazuyoshi Uchida
- 1 Department of Neurological Surgery, University of California , San Francisco, California
| | - Marios C Papadopoulos
- 3 Academic Neurosurgery Unit, University of London , Tooting, London, United Kingdom
| | - Zsolt Zador
- 1 Department of Neurological Surgery, University of California , San Francisco, California
| | - Geoffrey T Manley
- 1 Department of Neurological Surgery, University of California , San Francisco, California
| | - Alan S Verkman
- 2 Departments of Medicine and Physiology, University of California , San Francisco, California
| |
Collapse
|
87
|
|
88
|
Assentoft M, Larsen BR, MacAulay N. Regulation and Function of AQP4 in the Central Nervous System. Neurochem Res 2015; 40:2615-27. [PMID: 25630715 DOI: 10.1007/s11064-015-1519-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/09/2023]
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. Based on studies on AQP4(-/-) mice, AQP4 has been assigned physiological roles in stimulus-induced K(+) clearance, paravascular fluid flow, and brain edema formation. Conflicting data have been presented on the role of AQP4 in K(+) clearance and associated extracellular space shrinkage and on the stroke-induced alterations of AQP4 expression levels during edema formation, raising questions about the functional importance of AQP4 in these (patho)physiological aspects. Phosphorylation-dependent gating of AQP4 has been proposed as a regulatory mechanism for AQP4-mediated osmotic water transport. This paradigm was, however, recently challenged by experimental evidence and molecular dynamics simulations. Regulatory patterns and physiological roles for AQP4 thus remain to be fully explored.
Collapse
Affiliation(s)
- Mette Assentoft
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 12.6, 2200, Copenhagen, Denmark.
| |
Collapse
|
89
|
Yao X, Derugin N, Manley GT, Verkman AS. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci Lett 2014; 584:368-72. [PMID: 25449874 DOI: 10.1016/j.neulet.2014.10.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022]
Abstract
Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.
Collapse
Affiliation(s)
- Xiaoming Yao
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; Brain and Spinal Injury Center, University of California, San Francisco, CA 94143, USA; Departments of Medicine and Physiology, University of California, San Francisco, CA 94143, USA.
| | - Nikita Derugin
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; Brain and Spinal Injury Center, University of California, San Francisco, CA 94143, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; Brain and Spinal Injury Center, University of California, San Francisco, CA 94143, USA
| | - A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
90
|
Marlar S, Arnspang EC, Pedersen GA, Koffman JS, Nejsum LN. Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2404-11. [DOI: 10.1016/j.bbamem.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 11/17/2022]
|
91
|
Akdemir G, Ratelade J, Asavapanumas N, Verkman AS. Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neurosci Lett 2014; 574:70-5. [PMID: 24717641 DOI: 10.1016/j.neulet.2014.03.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Astrocyte water channel aquaporin-4 (AQP4) facilitates water movement across the blood-brain barrier and into injured astrocytes. We previously showed reduced cytotoxic brain edema with improved neurological outcome in AQP4 knockout mice in water intoxication, infection and cerebral ischemia. Here, we established a 4-vessel transient occlusion model to test the hypothesis that AQP4 deficiency in mice could improve neurological outcome following severe global cerebral ischemia as occurs in cardiac arrest/resuscitation. Mice were subjected to 10-min transient bilateral carotid artery occlusion at 24h after bilateral vertebral artery cauterization. Cerebral blood flow was reduced during occlusion by >94% in both AQP4(+/+) and AQP4(-/-) mice. The primary outcome, neurological score, was remarkably better at 3 and 5 days after occlusion in AQP4(-/-) than in AQP4(+/+) mice, and survival was significantly improved as well. Brain water content was increased by 2.8±0.4% in occluded AQP4(+/+) mice, significantly greater than that of 0.3±0.6% in AQP4(-/-) mice. Histological examination and immunofluorescence of hippocampal sections at 5 days showed significantly greater neuronal loss in the CA1 region of hippocampus in AQP4(+/+) than AQP4(-/-) mice. The neuroprotection in mice conferred by AQP4 deletion following severe global cerebral ischemia provides proof-of-concept for therapeutic AQP4 inhibition to improve neurological outcome in cardiac arrest.
Collapse
Affiliation(s)
- Gökhan Akdemir
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA; Selçuk University, Medical Faculty, Department of Neurosurgery, Alaaddin Keykubat Campusö Selçuklu, Konya 42075, Turkey
| | - Julien Ratelade
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Nithi Asavapanumas
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - A S Verkman
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
92
|
GATA2 regulates body water homeostasis through maintaining aquaporin 2 expression in renal collecting ducts. Mol Cell Biol 2014; 34:1929-41. [PMID: 24636993 DOI: 10.1128/mcb.01659-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transcription factor GATA2 plays pivotal roles in early renal development, but its distribution and physiological functions in adult kidney are largely unknown. We examined the GATA2 expression pattern in the adult kidney by tracing green fluorescent protein (GFP) fluorescence in Gata2(GFP/+) mice that recapitulate endogenous GATA2 expression and found a robust GFP expression specifically in the renal medulla. Upon purification of the GFP-positive cells, we found that collecting duct (CD)-specific markers, including aquaporin 2 (Aqp2), an important channel for water reabsorption from urine, were abundantly expressed. To address the physiological function of GATA2 in the CD cells, we generated renal tubular cell-specific Gata2-deficient mice (Gata2-CKO) by crossing Gata2 floxed mice with inducible Pax8-Cre mice. We found that the Gata2-CKO mice showed a significant decrease in Aqp2 expression. The Gata2-CKO mice exhibited high 24-h urine volume and low urine osmolality, two important signs of diabetes insipidus. We introduced biotin-tagged GATA2 into a mouse CD-derived cell line and conducted chromatin pulldown assays, which revealed direct GATA2 binding to conserved GATA motifs in the Aqp2 promoter region. A luciferase reporter assay using an Aqp2 promoter-reporter showed that GATA2 trans activates Aqp2 through the GATA motifs. These results demonstrate that GATA2 regulates the Aqp2 gene expression in CD cells and contributes to the maintenance of the body water homeostasis.
Collapse
|
93
|
Abstract
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators.
Collapse
|
94
|
Asavapanumas N, Ratelade J, Papadopoulos MC, Bennett JL, Levin MH, Verkman AS. Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. J Neuroinflammation 2014; 11:16. [PMID: 24468108 PMCID: PMC3909205 DOI: 10.1186/1742-2094-11-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/13/2014] [Indexed: 11/14/2022] Open
Abstract
Background Although optic neuritis (ON) is a defining feature of neuromyelitis optica (NMO), appropriate animal models of NMO ON are lacking. Most NMO patients are seropositive for immunoglobulin G autoantibodies (NMO-IgG) against the astrocyte water channel aquaporin-4 (AQP4). Methods Several approaches were tested to develop a robust, passive-transfer mouse model of NMO ON, including NMO-IgG and complement delivery by: (i) retrobulbar infusion; (ii) intravitreal injection; (iii) a single intracranial injection near the optic chiasm; and (iv) 3-days continuous intracranial infusion near the optic chiasm. Results Little ON or retinal pathology was seen using approaches (i) to (iii). Using approach (iv), however, optic nerves showed characteristic NMO pathology, with loss of AQP4 and glial fibrillary acidic protein immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, demyelination and axonal injury. Even more extensive pathology was created in mice lacking complement inhibitor protein CD59, or using a genetically modified NMO-IgG with enhanced complement effector function, including significant loss of retinal ganglion cells. In control studies, optic nerve pathology was absent in treated AQP4-deficient mice, or in wild-type mice receiving control (non-NMO) IgG and complement. Conclusion Passive transfer of NMO-IgG and complement by continuous infusion near the optic chiasm in mice is sufficient to produce ON with characteristic NMO pathology. The mouse model of NMO ON should be useful in further studies of NMO pathogenesis mechanisms and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Alan S Verkman
- Department of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| |
Collapse
|
95
|
Marlar S, Arnspang EC, Koffman JS, Løcke EM, Christensen BM, Nejsum LN. Elevated cAMP increases aquaporin-3 plasma membrane diffusion. Am J Physiol Cell Physiol 2014; 306:C598-606. [PMID: 24452376 DOI: 10.1152/ajpcell.00132.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water exits via basolateral AQP3 and AQP4. Upon long-term stimulation with AVP or during thirst, expression levels of both AQP2 and AQP3 are increased; however, there is so far no evidence for short-term AVP regulation of AQP3 or AQP4. To facilitate the increase in transepithelial water transport, AQP3 may be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58% from 0.0147 ± 0.0082 μm(2)/s (control) to 0.0232 ± 0.0085 μm(2)/s (forskolin, P < 0.05). Quantum dot-conjugated antibody labeling also revealed a significant increase in AQP3 diffusion upon forskolin treatment by 44% [0.0104 ± 0.0040 μm(2)/s (control) vs. 0.0150 ± 0.0016 μm(2)/s (forskolin, P < 0.05)]. Immunoelectron microscopy showed no obvious difference in AQP3-EGFP expression levels or localization in the plasma membrane upon forskolin stimulation. Thus AQP3-EGFP diffusion is altered upon increased cAMP, which may correspond to basolateral adaptations in response to the increased apical water readsorption.
Collapse
Affiliation(s)
- Saw Marlar
- Institute of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; and
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
|
97
|
Kortenoeven MLA, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta Gen Subj 2013; 1840:1533-49. [PMID: 24342488 DOI: 10.1016/j.bbagen.2013.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
98
|
Abstract
Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest that AQP4 is involved in such diverse functions as regulation of extracellular space volume, potassium buffering, cerebrospinal fluid circulation, interstitial fluid resorption, waste clearance, neuroinflammation, osmosensation, cell migration, and Ca(2+) signaling. AQP4 is also required for normal function of the retina, inner ear, and olfactory system. A review will be provided of the physiological roles of AQP4 in brain and of the growing list of data that emphasize the polarized nature of astrocytes.
Collapse
|
99
|
Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure. Neurobiol Dis 2013; 63:222-8. [PMID: 24321433 DOI: 10.1016/j.nbd.2013.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/05/2013] [Accepted: 11/26/2013] [Indexed: 01/23/2023] Open
Abstract
Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF.
Collapse
|
100
|
Katada R, Akdemir G, Asavapanumas N, Ratelade J, Zhang H, Verkman AS. Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia. FASEB J 2013; 28:705-14. [PMID: 24186965 DOI: 10.1096/fj.13-231274] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aquaporin-4 (AQP4), the principal water channel in astrocytes, is involved in brain water movement, inflammation, and neuroexcitation. In this study, there was strong neuroprotection in mice lacking AQP4 in a model of global cerebral ischemia produced by transient, bilateral carotid artery occlusion (BCAO). Survival and neurological outcome were greatly improved in the AQP4(-/-) vs. AQP4(+/+) mice after occlusion, with large and robust differences in both outbred (CD1) and inbred (C57bl/6) mouse strains without or with mechanical ventilation. Improved survival was also seen in mice lacking the scaffold protein α-syntrophin, which manifest reduced astrocyte water permeability secondary to defective AQP4 plasma membrane targeting. Intracranial pressure elevation and brain water accumulation were much reduced in the AQP4(-/-) vs. AQP4(+/+) mice after carotid artery occlusion, as were blood-brain barrier (BBB) disruption and neuronal loss. Brain slices from AQP4(-/-) mice showed significantly reduced cell swelling and cytotoxicity in response to oxygen-glucose deprivation, compared with slices from AQP4(+/+) mice. Our findings suggest that the neuroprotective effect of AQP4 deletion in global cerebral ischemia involves reduced astrocyte swelling and brain water accumulation, resulting in reduced BBB disruption, inflammation, and neuron death. AQP4 water transport inhibition may improve survival and neurological outcome after cardiac arrest and in other conditions associated with global cerebral ischemia.
Collapse
Affiliation(s)
- Ryuichi Katada
- 1University of California, 1246 Health Sciences East Tower, Box 0521, San Francisco, CA 94143-0521, USA;
| | | | | | | | | | | |
Collapse
|