51
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
52
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
53
|
IL-15 and a Two-Step Maturation Process Improve Bone Marrow-Derived Dendritic Cell Cancer Vaccine. Cancers (Basel) 2019; 11:cancers11010040. [PMID: 30621204 PMCID: PMC6356194 DOI: 10.3390/cancers11010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, dendritic cells (DCs) have been largely used as a platform for therapeutic vaccination in cancer patients. However, despite its proven safety and ability to induce cancer specific immune responses, the clinical benefits of DC-based immunotherapy are currently very limited. Thus, novel approaches are still needed to boost its efficacy. Our group recently showed that squaric acid treatment of antigens is an important adjuvant that can increase vaccine-induced downstream immune responses and therapeutic outcomes. Here we further improved this dendritic cell vaccine formulation by developing a new method for differentiating and maturing DCs from their bone marrow precursors. Our data demonstrate that bone marrow-derived DCs differentiated with GM-CSF and IL-15 and matured with a maturation cocktail in two steps present a more mature and immunogenic phenotype, compared to standard DC preparations. Further suppression of the prostaglandin E₂ pathway achieved even more immunogenic DC phenotypes. This vaccine was more potent at delaying tumor growth, improved animal survival and induced a more immunogenic and Th1-skewed T cell response in an ovarian cancer mouse model. These promising results support future efforts for the clinical translation of this approach.
Collapse
|
54
|
Li J, Aipire A, Zhao H, Yuan P, Li J. Pleurotus ferulae polysaccharides improve the antitumor efficacy of therapeutic human papillomavirus dendritic cell-based vaccine. Hum Vaccin Immunother 2018; 15:611-619. [PMID: 30427754 DOI: 10.1080/21645515.2018.1547604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously found that Pleurotus ferulae polysaccharides (PFPS) improved the maturation and function of dendritic cells (DCs). In this study, we investigated the effects of PFPS on the antitumor efficacy of therapeutic human papillomavirus (HPV) DC-based vaccine. PFPS stimulated DCs pulsed with HPV E6/E7 peptides were used to treat tumor mice on day 5 & 12 (HPV + PFPS-DCs early) and day 12 & 19 (HPV + PFPS-DCs late) after TC-1 cell injection. Compared to control group, both HPV + PFPS-DCs early and HPV + PFPS-DCs late strategies significantly inhibited tumor growth, which was significantly correlated with the increased activation status of both CD4+ and CD8+ T cells, the decreased frequencies of myeloid-derived suppressor cells, and the induction of HPV-specific CD8+ T cell responses. The survival of tumor mice was also greatly improved by HPV + PFPS-DCs early. Moreover, HPV + PFPS-DCs early completely inhibited the growth of second challenged TC-1 cells in tumor free mice. The results showed that PFPS improved the antitumor efficacy of therapeutic HPV DC-based vaccine, suggesting that PFPS might be a potential adjuvant for DC-based vaccines. This study provides a potential strategy for developing the therapeutic DC-based vaccine against cervical cancer.
Collapse
Affiliation(s)
- Jinyu Li
- a College of Life Science , Xinjiang Normal University , Urumqi , Xinjiang , China
| | - Adila Aipire
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| | - Huixin Zhao
- a College of Life Science , Xinjiang Normal University , Urumqi , Xinjiang , China
| | - Pengfei Yuan
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| | - Jinyao Li
- b Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology , Xinjiang University , Urumqi , Xinjiang , China
| |
Collapse
|
55
|
van Gulijk M, Dammeijer F, Aerts JGJV, Vroman H. Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy. Front Immunol 2018; 9:2759. [PMID: 30568653 PMCID: PMC6289976 DOI: 10.3389/fimmu.2018.02759] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
56
|
Won SY, Hunt K, Guak H, Hasaj B, Charland N, Landry N, Ward BJ, Krawczyk CM. Characterization of the innate stimulatory capacity of plant-derived virus-like particles bearing influenza hemagglutinin. Vaccine 2018; 36:8028-8038. [DOI: 10.1016/j.vaccine.2018.10.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/29/2023]
|
57
|
Martin Lluesma S, Graciotti M, Chiang CLL, Kandalaft LE. Does the Immunocompetent Status of Cancer Patients Have an Impact on Therapeutic DC Vaccination Strategies? Vaccines (Basel) 2018; 6:E79. [PMID: 30477198 PMCID: PMC6313858 DOI: 10.3390/vaccines6040079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Although different types of therapeutic vaccines against established cancerous lesions in various indications have been developed since the 1990s, their clinical benefit is still very limited. This observed lack of effectiveness in cancer eradication may be partially due to the often deficient immunocompetent status of cancer patients, which may facilitate tumor development by different mechanisms, including immune evasion. The most frequently used cellular vehicle in clinical trials are dendritic cells (DCs), thanks to their crucial role in initiating and directing immune responses. Viable vaccination options using DCs are available, with a positive toxicity profile. For these reasons, despite their limited therapeutic outcomes, DC vaccination is currently considered an additional immunotherapeutic option that still needs to be further explored. In this review, we propose potential actions aimed at improving DC vaccine efficacy by counteracting the detrimental mechanisms recognized to date and implicated in establishing a poor immunocompetent status in cancer patients.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Michele Graciotti
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Cheryl Lai-Lai Chiang
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| |
Collapse
|
58
|
DE Wolf C, VAN DE Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human dendritic cells used in anti-tumor immunotherapy. Cytotherapy 2018; 20:1289-1308. [PMID: 30327247 DOI: 10.1016/j.jcyt.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/25/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are key connectors between the innate and adaptive immune system and have an important role in modulating other immune cells. Therefore, their therapeutic application to steer immune responses is considered in various disorders, including cancer. Due to differences in the cell source and manufacturing process, each DC medicinal product is unique. Consequently, release tests to ensure consistent quality need to be product-specific. Although general guidance concerning quality control testing of cell-based therapies is available, cell type-specific regulation is still limited. Especially guidance related to potency testing is needed, because developing an in vitro assay measuring cell properties relevant for in vivo functionality is challenging. In this review, we provide DC-specific guidance for development of in vitro potency assays for characterisation and release. We present a broad overview of in vitro potency assays suggested for DC products to determine their anti-tumor functionality. Several advantages and limitations of these assays are discussed. Also, we provide some points to consider for selection and design of a potency test. The ideal functionality assay for anti-tumor products evaluates the capacity of DCs to stimulate antigen-specific T cells. Because this approach may not be feasible for release, use of surrogate potency markers could be considered, provided that these markers are sufficiently linked to the in vivo DC biological activity and clinical response. Further elucidation of the involvement of specific DC subsets in anti-tumor responses will result in improved manufacturing processes for DC-based products and should be considered during potency assay development.
Collapse
Affiliation(s)
- Charlotte DE Wolf
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | - Marja VAN DE Bovenkamp
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| | - Marcel Hoefnagel
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| |
Collapse
|
59
|
Tomasicchio M, Semple L, Esmail A, Meldau R, Randall P, Pooran A, Davids M, Cairncross L, Anderson D, Downs J, Malherbe F, Novitzky N, Panieri E, Oelofse S, Londt R, Naiker T, Dheda K. An autologous dendritic cell vaccine polarizes a Th-1 response which is tumoricidal to patient-derived breast cancer cells. Cancer Immunol Immunother 2018; 68:71-83. [PMID: 30283982 PMCID: PMC6326986 DOI: 10.1007/s00262-018-2238-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer-associated death worldwide. Conventional treatment is associated with substantial toxicity and suboptimal efficacy. We, therefore, developed and evaluated the in vitro efficacy of an autologous dendritic cell (DC) vaccine to treat breast cancer. We recruited 12 female patients with stage 1, 2, or 3 breast cancer and matured their DCs with autologous tumour-specific lysate, a toll-like receptor (TLR)-3 and 7/8 agonist, and an interferon-containing cocktail. The efficacy of the vaccine was evaluated by its ability to elicit a cytotoxic T-lymphocyte response to autologous breast cancer cells in vitro. Matured DCs (≥ 60% upregulation of CD80, CD86, CD83, and CCR7) produced high levels of the Th1 effector cytokine, IL12-p70 (1.2 ng/ml; p < 0.0001), compared to DCs pulsed with tumour lysate, or matured with an interferon-containing cocktail alone. We further showed that matured DCs enhance antigen-specific CD8 + T-cell responses to HER-2 (4.5%; p < 0.005) and MUC-1 (19%; p < 0.05) tetramers. The mature DCs could elicit a robust and dose-dependent antigen-specific cytotoxic T-lymphocyte response (65%) which was tumoricidal to autologous breast cancer cells in vitro compared to T-lymphocytes that were primed with autologous lysate loaded-DCs (p < 0.005). Lastly, we showed that the mature DCs post-cryopreservation maintained high viability, maintained their mature phenotype, and remained free of endotoxins or mycoplasma. We have developed a DC vaccine that is cytotoxic to autologous breast cancer cells in vitro. The tools and technology generated here will now be applied to a phase I/IIa clinical trial.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Lynn Semple
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Aliasgar Esmail
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Richard Meldau
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Philippa Randall
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Anil Pooran
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Malika Davids
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Lydia Cairncross
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - David Anderson
- Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Downs
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Francois Malherbe
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Nicolas Novitzky
- National Health Laboratory Services (NHLS), Groote Schuur Hospital, Haematology, Cape Town, South Africa.,Division of Haematology, University of Cape Town, Cape Town, South Africa
| | - Eugenio Panieri
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Suzette Oelofse
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Rolanda Londt
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa
| | - Thurandrie Naiker
- Department of General Surgery, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Keertan Dheda
- Division of Pulmonology and UCT Lung Institute, Department of Medicine, Centre for Lung Infection and Immunity, Groote Schuur Hospital, University of Cape Town, Old Main Building, H46.41, Groote Schuur Drive, Observatory, Cape Town, 7925, South Africa. .,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
60
|
Yi DH, Stetter N, Jakobsen K, Jonsson R, Appel S. 3-Day monocyte-derived dendritic cells stimulated with a combination of OK432, TLR7/8 ligand, and prostaglandin E 2 are a promising alternative for cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1611-1620. [PMID: 30069688 PMCID: PMC11028251 DOI: 10.1007/s00262-018-2216-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/23/2018] [Indexed: 12/28/2022]
Abstract
Numerous trials using dendritic cell (DC)-based vaccinations for the treatment of cancer are being carried out. However, an improvement of the quality of DC used is highly warranted. We here generated human monocyte-derived dendritic cells using a 3 day protocol and stimulated the cells using a combination of OK432 (Picibanil), TLR7/8 ligand CL097, and reduced amounts of prostaglandin (PG)E2. We analyzed phenotype, migratory, and T-cell stimulatory capacity compared to a cytokine cocktail consisting of IL-1β, IL-6, TNF, and PGE2. The OK432 cocktail stimulated cells had a similar mature phenotype with upregulated co-stimulatory molecules, HLA-DR and CCR7 as the cytokine cocktail-matured cells and a similar cytokine profile except increased amounts of IL-12p70. Chemotaxis towards CCL19 was reduced compared to the cytokine cocktail, but increased compared to OK432 alone. The T-cell stimulatory capacity was similar to the cytokine cocktail stimulated cells. In conclusion, the OK432 cocktail has the advantage of inducing IL-12p70 production without impairing phenotype or T-cell stimulatory capacity of the cells and might, therefore, be an advantageous alternative to be used in DC-based immunotherapy.
Collapse
Affiliation(s)
- Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Nadine Stetter
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Kjerstin Jakobsen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway.
| |
Collapse
|
61
|
Kikete S, Luo L, Jia B, Wang L, Ondieki G, Bian Y. Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity. Cytotechnology 2018; 70:1097-1110. [PMID: 29556897 PMCID: PMC6081929 DOI: 10.1007/s10616-018-0202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
Today, cancers pose a major public health burden. Although a myriad of cancer treatments are available, only a few have achieved clinical efficacy. This is partly attributed to cancers capability to evade host immunity by converting dendritic cells (DCs) from potent stimulators to negative modulators of immunity. Dendritic cell-based immunotherapy attempts to resolve this problem by manipulating the functional characteristics of DCs. Plant-derived polysaccharides (PDPs) can stimulate the maturation of DCs conferring on them the capacity to present internalised tumorigenic antigens to naïve T cells and subsequently priming T cells to eliminate tumours. PDPs have been used as immune modulators and later as anti-cancer agents by Traditional Chinese Medicine practitioners for centuries. They are abundant in nature and form a large group of heterogeneous though structurally related macromolecules that exhibit diverse immunological properties. They can induce antigen pulsed DCs to acquire functional characteristics in vitro which can subsequently be re-introduced into cancer patients. They can also be used as adjuvants in DC-based vaccines or independently for their intrinsic anti-tumour activities. Clinically, some in vitro generated DCs have been shown to be both safe and immunogenic although their clinical application is limited in part by unsatisfactory functional maturation as well as impaired migration to draining lymph nodes where T cells reside. We review the relative potencies of individual PDPs to induce both phenotypic and functional maturation in DCs, their relative abilities to activate anti-cancer immunity, the possible mechanisms by which they act and also the challenges surrounding their clinical application.
Collapse
Affiliation(s)
- Siambi Kikete
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Li Luo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830000, People's Republic of China
| | - Beitian Jia
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Li Wang
- Tianjin Second People's Hospital, Nan Kai District, Tianjin, 300192, People's Republic of China
| | - Gregory Ondieki
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, No. 88, Yuquan Road, Nan Kai District, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
62
|
Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS NANO 2018; 12:5121-5129. [PMID: 29771487 DOI: 10.1021/acsnano.7b09041] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumor vaccines for cancer prevention and treatment have attracted tremendous interests in the area of cancer immunotherapy in recent years. In this work, we present a strategy to construct cancer vaccines by encapsulating immune-adjuvant nanoparticles with cancer cell membranes modified by mannose. Poly(d,l-lactide- co-glycolide) nanoparticles are first loaded with toll-like receptor 7 agonist, imiquimod (R837). Those adjuvant nanoparticles (NP-R) are then coated with cancer cell membranes (NP-R@M), whose surface proteins could act as tumor-specific antigens. With further modification with mannose moiety (NP-R@M-M), the obtained nanovaccine shows enhanced uptake by antigen presenting cells such as dendritic cells, which would then be stimulated to the maturation status to trigger antitumor immune responses. With great efficacy to delay tumor development as a prevention vaccine, vaccination with such NP-R@M-M in combination with checkpoint-blockade therapy further demonstrates outstanding therapeutic efficacy to treat established tumors. Therefore, our work presents an innovative way to fabricate cancer nanovaccines, which in principle may be applied for a wide range of tumor types.
Collapse
Affiliation(s)
- Rong Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Jun Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiaoqi Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuhuan Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
63
|
Qiao D, Liu L, Chen Y, Xue C, Gao Q, Mao HQ, Leong KW, Chen Y. Potency of a Scalable Nanoparticulate Subunit Vaccine. NANO LETTERS 2018; 18:3007-3016. [PMID: 29694053 DOI: 10.1021/acs.nanolett.8b00478] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticulate vaccines can potentiate immune responses by site-specific drainage to lymph nodes (LNs). This approach may benefit from a nanoparticle engineering method with fine control over size and codelivery of antigen and adjuvant. Here, we applied the flash nanocomplexation (FNC) method to prepare nanovaccines via polyelectrolyte complexation of chitosan and heparin to coencapsulate the VP1 protein antigen from enterovirus 71, which causes hand-foot-mouth disease (HFMD), with tumor necrosis factor α (TNF) or CpG as adjuvants. FNC allows for reduction of the nanovaccine size to range from 90 to 130 nm with relatively narrower size distribution and a high payload capacity. These nanovaccines reached both proximal and distal LNs via subcutaneous injection and subsequently exhibited prolonged retention in the LNs. The codelivery induced strong immune activation toward a Th1 response in addition to a potent Th2 response, and conferred effective protection against lethal virus challenge comparable to that of an approved inactivated viral vaccine in mouse models of both passive and active immunization setting. In addition, these nanovaccines also elicited strong IgA titers, which may offer unique advantages for mucosal protection. This study addresses the issues of size control, antigen bioactivity retention, and biomanufacturing to demonstrate the translational potential of a subunit nanovaccine design.
Collapse
Affiliation(s)
- Dongdong Qiao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lixin Liu
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yi Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| | - Chenbao Xue
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Qiang Gao
- Sinovac Biotech Co. Ltd , No. 39 Shangdi Xi Road , Beijing 100085 , China
| | - Hai-Quan Mao
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Materials Science and Engineering, and Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kam W Leong
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yongming Chen
- Center for Functional Biomaterials, School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
64
|
Wu L, Blum W, Zhu CQ, Yun Z, Pecze L, Kohno M, Chan ML, Zhao Y, Felley-Bosco E, Schwaller B, de Perrot M. Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma. BMC Cancer 2018; 18:471. [PMID: 29699510 PMCID: PMC5921988 DOI: 10.1186/s12885-018-4354-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to improve the efficacy of treatment in malignant mesothelioma. Methods Murine mesothelioma AB12 and RN5 cells were used to compare tumorigenicity in mice. The expression of CSC-associated genes was evaluated by quantitative real-time PCR in both cell lines treated with chemo-radiation. Stemness properties of MSC-enriched RN5-EOS-Puro2 cells were characterized with flow cytometry and immunostaining. A MSC-specific gene profile was screened by microarray assay and confirmed thereafter. Gene Ontology analysis of the selected genes was performed by GOMiner. Results Tumor growth delay of murine mesothelioma AB12 cells was achieved after each cycle of cisplatin treatment, however, tumors grew back rapidly due to cancer cell repopulation between courses of chemotherapy. Strikingly, a 10-times lower number of irradiated cells in both cell lines led to a similar tumor incidence and growth rate as with untreated cells. The expression of CSC-associated genes such as CD24, CD133, CD90 and uPAR was dramatically up-regulated, while others did not change significantly after chemoradiation. Highly enriched MSC after selection with puromycin displayed an increasing GFP-positive population and showed typical properties of stemness. Comparatively, the proportion of MSC significantly increased after RN5-EOS parental cells were treated with either chemotherapy, γ-ray radiation, or a combination of the two, while MSC showed more resistance to the above treatments. A group of identified genes are most likely MSC-specific, and major pathways related to regulation of cell growth or apoptosis are involved. Upregulation of the gene transcripts Tnfsf18, Serpinb9b, Ly6a, and Nppb were confirmed. Conclusion Putative MSC possess the property of stemness showing more resistance to chemoradiation, suggesting that MSC may play critical roles in cancer cell repopulation. Further identification of selected genes may be used to design novel target therapies against MSC, so as to eliminate cancer cell repopulation in mesothelioma. Electronic supplementary material The online version of this article (10.1186/s12885-018-4354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licun Wu
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Walter Blum
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland.,INSERM, U1162, Génomique Fonctionnelle des Tumeurs Solides, 27 rue Juliette Dodu, 75010, Paris, France
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zhihong Yun
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Laszlo Pecze
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Mikihiro Kohno
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Yidan Zhao
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, University Hospital Zurich, University of Zurich, 8044, Zürich, Switzerland
| | - Beat Schwaller
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Marc de Perrot
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Division of Thoracic Surgery, Toronto Mesothelioma Research Program, Toronto General Hospital, 9N-961, 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
65
|
Liu H, Jia Z, Yang C, Song M, Jing Z, Zhao Y, Wu Z, Zhao L, Wei D, Yin Z, Hong Z. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials 2018; 167:32-43. [PMID: 29554479 DOI: 10.1016/j.biomaterials.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhenghu Jia
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chengmao Yang
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mei Song
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhe Jing
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapu Zhao
- People's Liberation Army No. 254 Hospital, Tianjin, 300142, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liqing Zhao
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongsheng Wei
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology & Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
66
|
λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine. Oncotarget 2018; 8:29996-30007. [PMID: 28404904 PMCID: PMC5444720 DOI: 10.18632/oncotarget.15610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the effect of λ-carrageenan on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We found that λ-carrageenan dose-dependently decreased the endocytosis of DCs, promoted DC maturation and increased cytokine production through TLR4 mediated signaling pathway. λ-carrageenan treatment also enhanced the ability of DCs in the stimulating allogenic splenocyte proliferation. In TC-1 tumor mouse model, HPV peptides pulsed λ-carrageenan-DC (HPV-CGN-DC) significantly inhibited tumor growth compared with control group. The frequencies of CD4+ and CD8+ T cells in spleens of tumor mice and their activation status were significantly increased in HPV-CGN-DC group, but the frequencies of natural regulatory T cells and CD11b+Gr-1+ cells were significantly decreased. Further, HPV-CGN-DC induced strong CD8+ T cell responses, which are negatively correlated with tumor volumes. The results suggested that λ-carrageenan promoted DC maturation through TLR4 signaling pathway and could be used as the adjuvant in DC-based vaccines.
Collapse
|
67
|
Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, Kalinski P. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc 2018; 13:335-357. [PMID: 29345636 DOI: 10.1038/nprot.2017.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol describes how to induce large numbers of tumor-specific cytotoxic T cells (CTLs) in the spleens and lymph nodes of mice receiving dendritic cell (DC) vaccines and how to modulate tumor microenvironments (TMEs) to ensure effective homing of the vaccination-induced CTLs to tumor tissues. We also describe how to evaluate the numbers of tumor-specific CTLs within tumors. The protocol contains detailed information describing how to generate a specialized DC vaccine with augmented ability to induce tumor-specific CTLs. We also describe methods to modulate the production of chemokines in the TME and show how to quantify tumor-specific CTLs in the lymphoid organs and tumor tissues of mice receiving different treatments. The combined experimental procedure, including tumor implantation, DC vaccine generation, chemokine-modulating (CKM) approaches, and the analyses of tumor-specific systemic and intratumoral immunity is performed over 30-40 d. The presented ELISpot-based ex vivo CTL assay takes 6 h to set up and 5 h to develop. In contrast to other methods of evaluating tumor-specific immunity in tumor tissues, our approach allows detection of intratumoral T-cell responses to nonmanipulated weakly immunogenic cancers. This detection method can be performed using basic laboratory skills, and facilitates the development and preclinical evaluation of new immunotherapies.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Urban
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Wieckowski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
68
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
69
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
70
|
Cheng L, Zhang Z, Li G, Li F, Wang L, Zhang L, Zurawski SM, Zurawski G, Levy Y, Su L. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system. Vaccine 2017; 35:6143-6153. [PMID: 28958808 PMCID: PMC5641266 DOI: 10.1016/j.vaccine.2017.09.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 01/04/2023]
Abstract
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4+ T cell response, while only R848 and Poly I:C induced CD8+ cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zheng Zhang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Li Wang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sandra M Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204, United States; Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204, United States; Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est, Faculté de Médecine, INSERM U955, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service d'immunologie clinique, 94010 Créteil, France
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
71
|
Termini JM, Gupta S, Raffa FN, Guirado E, Fischl MA, Niu L, Kanagavelu S, Stone GW. Epstein Barr virus Latent Membrane Protein-1 enhances dendritic cell therapy lymph node migration, activation, and IL-12 secretion. PLoS One 2017; 12:e0184915. [PMID: 28910387 PMCID: PMC5599068 DOI: 10.1371/journal.pone.0184915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/02/2017] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DC) are a promising cell type for cancer vaccines due to their high immunostimulatory capacity. However, improper maturation of DC prior to treatment may account for the limited efficacy of DC vaccine clinical trials. Latent Membrane Protein-1 (LMP1) of Epstein-Barr virus was examined for its ability to mature and activate DC as a gene-based molecular adjuvant for DC vaccines. DC were transduced with an adenovirus 5 vector (Ad5) expressing LMP1 under the control of a Tet-inducible promoter. Ad5-LMP1 was found to mature and activate both human and mouse DC. LMP1 enhanced in vitro migration of DC toward CCL19, as well as in vivo migration of DC to the inguinal lymph nodes of mice following intradermal injection. LMP1-transduced DC increased T cell proliferation in a Pmel-1 adoptive transfer model and enhanced survival in B16-F10 melanoma models. LMP1-DC also enhanced protection in a vaccinia-Gag viral challenge assay. LMP1 induced high levels of IL-12p70 secretion in mouse DC when compared to standard maturation protocols. Importantly, LMP1-transduced human DC retained the capacity to secrete IL-12p70 and TNF in response to DC restimulation. In contrast, DC matured with Monocyte Conditioned Media-Mimic cocktail (Mimic) were impaired in IL-12p70 secretion following restimulation. Overall, LMP1 matured and activated DC, induced migration to the lymph node, and generated high levels of IL-12p70 in a murine model. We propose LMP1 as a promising molecular adjuvant for DC vaccines.
Collapse
Affiliation(s)
- James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Elizabeth Guirado
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Margaret A. Fischl
- Department of Medicine and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Liguo Niu
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
72
|
Wu X, Xu F, Liu J, Wang G. Comparative study of dendritic cells matured by using IL-1β, IL-6, TNF-α and prostaglandins E2 for different time span. Exp Ther Med 2017; 14:1389-1394. [PMID: 28810601 PMCID: PMC5526128 DOI: 10.3892/etm.2017.4649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/11/2017] [Indexed: 12/03/2022] Open
Abstract
Interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and prostaglandins E2 is considered as the standard cocktail for maturing dendritic cells (DCs). However, the appropriate time span for DC maturation with the standard cocktail remains unclear. The present study aimed to compare the differences between DCs matured with the standard cocktail for 24 and 48 h, respectively, and determine whether 24-h stimulation was sufficient for DC maturation. The findings demonstrated that, compared with DCs matured for 48 h, the levels of cluster of differentiation (CD)80, CD83, CD86 and programmed death-ligand 1 expression in DCs matured for 24 h were relatively lower. However, with the exception of CD80 whose mean fluorescence intensity (MFI) was higher in DCs matured for 48 h, the MFI values of other surface markers were comparable. Notably, the MFI of CD40 was higher in DCs matured for 24 h. In addition, the viability, T cell stimulatory capacity in allogeneic mixed lymphocyte reaction and cytokine production, including IL-12p40, IL-12p70 and IL-10, were all comparable between DCs matured for 24 and 48 h, respectively. These results indicated that 24-h stimulation may be sufficient for DC maturation when using the standard cocktail.
Collapse
Affiliation(s)
- Xuejie Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinliang Liu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Guiqiang Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
73
|
Lövgren T, Sarhan D, Truxová I, Choudhary B, Maas R, Melief J, Nyström M, Edbäck U, Vermeij R, Scurti G, Nishimura M, Masucci G, Karlsson-Parra A, Lundqvist A, Adamson L, Kiessling R. Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-γ and multiple toll-like receptor agonists. Cancer Immunol Immunother 2017; 66:1333-1344. [PMID: 28601925 PMCID: PMC5626805 DOI: 10.1007/s00262-017-2029-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
Dendritic cell (DC) vaccines have been demonstrated to elicit immunological responses in numerous cancer immunotherapy trials. However, long-lasting clinical effects are infrequent. We therefore sought to establish a protocol to generate DC with greater immunostimulatory capacity. Immature DC were generated from healthy donor monocytes by culturing in the presence of IL-4 and GM-CSF and were further differentiated into mature DC by the addition of cocktails containing different cytokines and toll-like receptor (TLR) agonists. Overall, addition of IFNγ and the TLR7/8 agonist R848 during maturation was essential for the production of high levels of IL-12p70 which was further augmented by adding the TLR3 agonist poly I:C. In addition, the DC matured with IFNγ, R848, and poly I:C also induced upregulation of several other pro-inflammatory and Th1-skewing cytokines/chemokines, co-stimulatory receptors, and the chemokine receptor CCR7. For most cytokines and chemokines the production was even further potentiated by addition of the TLR4 agonist LPS. Concurrently, upregulation of the anti-inflammatory cytokine IL-10 was modest. Most importantly, DC matured with IFNγ, R848, and poly I:C had the ability to activate IFNγ production in allogeneic T cells and this was further enhanced by adding LPS to the cocktail. Furthermore, epitope-specific stimulation of TCR-transduced T cells by peptide- or whole tumor lysate-loaded DC was efficiently stimulated only by DC matured in the full maturation cocktail containing IFNγ and the three TLR ligands R848, poly I:C, and LPS. We suggest that this cocktail is used for future clinical trials of anti-cancer DC vaccines.
Collapse
Affiliation(s)
- Tanja Lövgren
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. .,Cancer Center Karolinska R8:01, Karolinska Universitetssjukhuset Solna, 171 76, Stockholm, Sweden.
| | - Dhifaf Sarhan
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Iva Truxová
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Bhavesh Choudhary
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Roeltje Maas
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Jeroen Melief
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Maria Nyström
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Edbäck
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Renee Vermeij
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Gina Scurti
- Department of Surgery, Loyola University Chicago, Maywood, IL, USA
| | | | - Giuseppe Masucci
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alex Karlsson-Parra
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Lars Adamson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
74
|
Balan S, Finnigan J, Bhardwaj N. Dendritic Cell Strategies for Eliciting Mutation-Derived Tumor Antigen Responses in Patients. Cancer J 2017; 23:131-137. [PMID: 28410301 PMCID: PMC5520811 DOI: 10.1097/ppo.0000000000000251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dendritic cells (DCs) are equipped for sensing danger signals and capturing, processing, and presenting antigens to naive or effector cells and are critical in inducing humoral and adaptive immunity. Successful vaccinations are those that activate DCs to elicit both cellular and humoral responses, as well as long-lasting memory response against the target of interest. Recently, it has become apparent that tumor cells can provide new sources of antigens through nonsynonymous mutations or frame-shift mutations, leading to potentially hundreds of mutation-derived tumor antigens (MTAs) or neoantigens. T cells recognizing MTA have been detected in cancer patients and can even lead to tumor regression. Designing MTA-specific vaccination strategies will have to take into account the adjuvant activity of DC subsets and the best formulation to elicit an effective immune response. We discuss the potential of human DCs to prime MTA-specific responses.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY NY
| | - John Finnigan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY NY
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY NY
| |
Collapse
|
75
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
76
|
Khoury HJ, Collins RH, Blum W, Stiff PS, Elias L, Lebkowski JS, Reddy A, Nishimoto KP, Sen D, Wirth ED, Case CC, DiPersio JF. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer 2017; 123:3061-3072. [PMID: 28411378 DOI: 10.1002/cncr.30696] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Telomerase activity in leukemic blasts frequently is increased among patients with high-risk acute myeloid leukemia (AML). In the current study, the authors evaluated the feasibility, safety, immunogenicity, and therapeutic potential of human telomerase reverse transcriptase (hTERT)-expressing autologous dendritic cells (hTERT-DCs) in adult patients with AML. METHODS hTERT-DCs were produced from patient-specific leukapheresis, electroporated with an mRNA-encoding hTERT and a lysosomal-targeting sequence, and cryopreserved. A total of 22 patients with a median age of 58 years (range, 30-75 years) with intermediate-risk or high-risk AML in first or second complete remission (CR) were enrolled. hTERT-DCs were generated for 24 patients (73%). A median of 17 intradermal vaccinations (range, 6-32 intradermal vaccinations) containing 1×107 cells were administered as 6 weekly injections followed by 6 biweekly injections. A total of 21 patients (16 in first CR, 3 in second CR, and 2 with early disease recurrence) received hTERT-DCs. RESULTS hTERT-DCs were well tolerated with no severe toxicities reported, with the exception of 1 patient who developed idiopathic thrombocytopenic purpura. Of the 19 patients receiving hTERT-DCs in CR, 11 patients (58%) developed hTERT-specific T-cell responses that primarily were targeted toward hTERT peptides with predicted low human leukocyte antigen (HLA)-binding affinities. With a median follow-up of 52 months, 58% of patients in CR (11 of 19 patients) were free of disease recurrence at the time of their last follow-up visit; 57% of the patients who were aged ≥60 years (4 of 7 patients) also were found to be free of disease recurrence at a median follow-up of 54 months. CONCLUSIONS The generation of hTERT-DCs is feasible and vaccination with hTERT-DCs appears to be safe and may be associated with favorable recurrence-free survival. Cancer 2017;123:3061-72. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Hanna J Khoury
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Robert H Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - William Blum
- Department of Hematology, The Ohio State University, Columbus, Ohio
| | - Patrick S Stiff
- Department of Medicine, Loyola University, Maywood, Illinois
| | | | | | | | | | - Debasish Sen
- Asterias Biotherapeutics Inc, Menlo Park, California
| | | | - Casey C Case
- Asterias Biotherapeutics Inc, Menlo Park, California
| | - John F DiPersio
- Department of Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
77
|
Nasi A, Bollampalli VP, Sun M, Chen Y, Amu S, Nylén S, Eidsmo L, Rothfuchs AG, Réthi B. Immunogenicity is preferentially induced in sparse dendritic cell cultures. Sci Rep 2017; 7:43989. [PMID: 28276533 PMCID: PMC5343661 DOI: 10.1038/srep43989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation.
Collapse
Affiliation(s)
- Aikaterini Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Meng Sun
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Yang Chen
- Department of Medicine, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Sylvie Amu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | | | - Bence Réthi
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| |
Collapse
|
78
|
Aipire A, Li J, Yuan P, He J, Hu Y, Liu L, Feng X, Li Y, Zhang F, Yang J, Li J. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine. Sci Rep 2017; 7:43796. [PMID: 28272545 PMCID: PMC5341557 DOI: 10.1038/srep43796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.
Collapse
Affiliation(s)
- Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiang He
- Key laboratory of Xinjiang Uighur Medicine, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumqi 830004, China
| | - Yelang Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lu Liu
- XinJiang DingJu Biotech CO., LTD, 181 Xicai Road, Urumqi 830000, China
| | - Xiaoli Feng
- XinJiang DingJu Biotech CO., LTD, 181 Xicai Road, Urumqi 830000, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jianhua Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, TX 77030, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
79
|
Espinoza-Sánchez NA, Chimal-Ramírez GK, Mantilla A, Fuentes-Pananá EM. IL-1β, IL-8, and Matrix Metalloproteinases-1, -2, and -10 Are Enriched upon Monocyte-Breast Cancer Cell Cocultivation in a Matrigel-Based Three-Dimensional System. Front Immunol 2017; 8:205. [PMID: 28337194 PMCID: PMC5340783 DOI: 10.3389/fimmu.2017.00205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains the first cancer-related cause of death in women worldwide, particularly in developing countries in which most cases are diagnosed in late stages. Although most cancer studies are based in the genetic or epigenetic changes of the tumor cells, immune cells within the tumor stroma often cooperate with cancer progression. Particularly, monocytes are attracted to the tumor primary site in which they are differentiated into tumor-associated macrophages that facilitate tumor cell invasion and metastasis. In this study, we used three-dimensional cultures to form acini-like structures to analyze the inflammatory secretion profile of tumor cells individually or in co-culture with monocytes. Breast cancer cell lines and primary isolates from eight Mexican patients with breast cancer were used. We found high levels of RANTES/CCL5, MCP-1/CCL2, and G-CSF in the breast cancer individual cultures, supporting an important recruitment capacity of monocytes, but also of neutrophils. The co-cultures of the tumor cells and monocytes were significantly enriched with the potent pro-inflammatory cytokines interleukin (IL)-1β and IL-8, known to support malignant progression. We also found that the interaction of tumor cells with monocytes promoted high levels of matrix metalloproteinases (MMP)-1, MMP-2, and MMP-10. Our study supports that a key event for malignant progression is the recruitment of different immune cell populations, which help to sustain and enhance a chronic inflammatory microenvironment that highly favors tumor malignancy.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México; Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gloria Karina Chimal-Ramírez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez , Ciudad de México , México
| | - Alejandra Mantilla
- Departamento de Patología, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Ciudad de México , México
| | | |
Collapse
|
80
|
Persano S, Guevara ML, Li Z, Mai J, Ferrari M, Pompa PP, Shen H. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials 2017; 125:81-89. [PMID: 28231510 DOI: 10.1016/j.biomaterials.2017.02.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
mRNA-based vaccines have the benefit of triggering robust anti-cancer immunity without the potential danger of genome integration from DNA vaccines or the limitation of antigen selection from peptide vaccines. Yet, a conventional mRNA vaccine comprising of condensed mRNA molecules in a positively charged protein core structure is not effectively internalized by the antigen-presenting cells. It cannot offer sufficient protection for mRNA molecules from degradation by plasma and tissue enzymes either. Here, we have developed a lipopolyplex mRNA vaccine that consists of a poly-(β-amino ester) polymer mRNA core encapsulated into a 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000 (EDOPC/DOPE/DSPE-PEG) lipid shell. This core-shell structured mRNA vaccine enters dendritic cells through macropinocytosis. It displayed intrinsic adjuvant activity by potently stimulating interferon-β and interleukin-12 expression in dendritic cells through Toll-like receptor 7/8 signaling. Dendritic cells treated with the mRNA vaccine displayed enhanced antigen presentation capability. Mice bearing lung metastatic B16-OVA tumors expressing the ovalbumin antigen were treated with the lipopolyplex mRNA, and over 90% reduction of tumor nodules was observed. Collectively, this core-shell structure offers a promising platform for mRNA vaccine development.
Collapse
Affiliation(s)
- Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy; Università del Salento, Via Provinciale Monteroni, 73100, Lecce, Italy
| | - Maria L Guevara
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | - Zhaoqi Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, 1330 York Ave, New York, NY, 10065, USA
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, 1330 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
81
|
Castiello L, Sabatino M, Ren J, Terabe M, Khuu H, Wood LV, Berzofsky JA, Stroncek DF. Expression of CD14, IL10, and Tolerogenic Signature in Dendritic Cells Inversely Correlate with Clinical and Immunologic Response to TARP Vaccination in Prostate Cancer Patients. Clin Cancer Res 2017; 23:3352-3364. [PMID: 28073842 DOI: 10.1158/1078-0432.ccr-16-2199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Purpose: Despite the vast number of clinical trials conducted so far, dendritic cell (DC)-based cancer vaccines have mostly shown unsatisfactory results. Factors and manufacturing procedures essential for these therapeutics to induce effective antitumor immune responses have yet to be fully characterized. We here aimed to identify DC markers correlating with clinical and immunologic response in a prostate carcinoma vaccination regimen.Experimental Design: We performed an extensive characterization of DCs used to vaccinate 18 patients with prostate carcinoma enrolled in a pilot trial of T-cell receptor gamma alternate reading frame protein (TARP) peptide vaccination (NCT00908258). Peptide-pulsed DC preparations (114) manufactured were analyzed by gene expression profiling, cell surface marker expression and cytokine release secretion, and correlated with clinical and immunologic responses.Results: DCs showing lower expression of tolerogenic gene signature induced strong antigen-specific immune response and slowing in PSA velocity, a surrogate for clinical response. These DCs were also characterized by lower surface expression of CD14, secretion of IL10 and MCP-1, and greater secretion of MDC. When combined, these four factors were able to remarkably discriminate DCs that were sufficiently potent to induce strong immunologic response.Conclusions: DC factors essential for the activation of immune responses associated with TARP vaccination in prostate cancer patients were identified. This study highlights the importance of in-depth characterization of DC vaccines and other cellular therapies, to understand the critical factors that hinder potency and potential efficacy in patients. Clin Cancer Res; 23(13); 3352-64. ©2017 AACR.
Collapse
Affiliation(s)
- Luciano Castiello
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland.
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marianna Sabatino
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Jiaqiang Ren
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hanh Khuu
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Lauren V Wood
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
82
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
83
|
Dillman RO, Nistor GI, Cornforth AN. Dendritic cell vaccines for melanoma: past, present and future. Melanoma Manag 2016; 3:273-289. [PMID: 30190899 PMCID: PMC6094661 DOI: 10.2217/mmt-2016-0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Administering dendritic cells (DC) loaded with tumor-associated antigens (TAA) ex vivo is a promising strategy for therapeutic vaccines in advanced melanoma. To date the induction of immune responses to specific TAA has been more impressive than clinical benefit because of TAA limitations, suboptimal DC and possibly immune-checkpoint inhibition. Various products, antigen-loading techniques, treatment schedules, routes of administration and adjunctive agents continue to be explored. Biologic heterogeneity suggests autologous tumor as the optimal TAA source to induce immune responses to the entire repertoire of unique patient-specific neoantigens. Many questions remain regarding the optimal preparation of DC and strategies for antigen loading. Effective DC vaccines should result in additive or synergistic effects when combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert O Dillman
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| | - Gabriel I Nistor
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| | - Andrew N Cornforth
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| |
Collapse
|
84
|
Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol 2016; 37:855-865. [PMID: 27793569 DOI: 10.1016/j.it.2016.09.006] [Citation(s) in RCA: 588] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are central regulators of the adaptive immune response, and as such are necessary for T-cell-mediated cancer immunity. In particular, antitumoral responses depend on a specialized subset of conventional DCs that transport tumor antigens to draining lymph nodes and cross-present antigen to activate cytotoxic T lymphocytes. DC maturation is necessary to provide costimulatory signals to T cells, but while DC maturation occurs within tumors, it is often insufficient to induce potent immunity, particularly in light of suppressive mechanisms within tumors. Bypassing suppressive pathways or directly activating DCs can unleash a T-cell response, and although clinical efficacy has proven elusive, therapeutic targeting of DCs continues to hold translational potential in combinatorial approaches.
Collapse
Affiliation(s)
- Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
85
|
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016; 7:13193. [PMID: 27767031 PMCID: PMC5078754 DOI: 10.1038/ncomms13193] [Citation(s) in RCA: 1076] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours. Photothermal therapy can induce an anti-tumour immune response by producing tumour-associated antigens. Here, the authors design a nanoparticle that simultaneously acts as a photothermal agent and an immune-adjuvant and demonstrate the anti-tumour efficacy in combination with anti-CTLA4 therapy in preclinical murine cancer models.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
86
|
Collignon A, Perles-Barbacaru AT, Robert S, Silvy F, Martinez E, Crenon I, Germain S, Garcia S, Viola A, Lombardo D, Mas E, Béraud E. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination. Oncotarget 2016; 6:23462-79. [PMID: 26405163 PMCID: PMC4695130 DOI: 10.18632/oncotarget.4359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC.
Collapse
Affiliation(s)
- Aurélie Collignon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Adriana Teodora Perles-Barbacaru
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Stéphane Robert
- Aix-Marseille Université, VRCM, Vascular Research Center of Marseilles, Marseille, France.,Inserm, UMR_S_1076, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Sébastien Germain
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Stéphane Garcia
- APHM, Hôpital Nord, Laboratoire d'Anatomie-Pathologie, Marseille, France.,Aix-Marseille Université, Marseille, France
| | - Angèle Viola
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Evelyne Béraud
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| |
Collapse
|
87
|
Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met Ö, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 2016; 5:e1207842. [PMID: 27757300 DOI: 10.1080/2162402x.2016.1207842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Vaccination with dendritic cells (DCs) has generally not fulfilled its promise in cancer immunotherapy due to ineffective translation of immune responses into clinical responses. A proposed reason for this is intrinsic immune regulatory mechanisms, such as regulatory T cells (Tregs). A metronomic regimen of cyclophosphamide (mCy) has been shown to selectively deplete Tregs. To test this in a clinical setting, we conducted a phase I trial to evaluate the feasibility and safety of vaccination with DCs transfected with mRNA in combination with mCy in patients with metastatic malignant melanoma (MM). In addition, clinical and immunological effect of the treatment was evaluated. EXPERIMENTAL DESIGN Twenty-two patients were enrolled and treated with six cycles of cyclophosphamide 50 mg orally bi-daily for a week every second week (day 1-7). During the six cycles patients received at least 5 × 106 autologous DCs administered by intradermal (i.d.) injection in the week without chemotherapy. Patients were evaluated 12 and 27 weeks and every 3rd mo thereafter with CT scans according to RECIST 1.0. Blood samples for immune monitoring were collected at baseline, at the time of 4th and 6th vaccines. Immune monitoring consisted of IFNγ ELISpot assay, proliferation assay, and flow cytometry for enumeration of immune cell subsets. RESULTS Toxicity was manageable. Eighteen patients were evaluable after six cycles. Of these, nine patients had progressive disease as best response and nine patients achieved stable disease. In three patients minor tumor regression was observed. By IFNγ ELISpot and proliferation assay immune responses were seen in 6/17 and 4/17 patients, respectively; however, no correlation with clinical response was found. The percentage of Tregs was unchanged during treatment. CONCLUSION Treatment with autologous DCs transfected with mRNA in combination with mCy was feasible and safe. Importantly, mCy did not alter the percentage of Tregs in our patient cohort. There was an indication of clinical benefit; however, more knowledge is needed in order for DCs to be exploited as a therapeutic option.
Collapse
Affiliation(s)
- Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lotte Engell-Noerregaard
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Trine Zeeberg Iversen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
88
|
Li J, Li J, Aipire A, Luo J, Yuan P, Zhang F. The combination of Pleurotus ferulae water extract and CpG-ODN enhances the immune responses and antitumor efficacy of HPV peptides pulsed dendritic cell-based vaccine. Vaccine 2016; 34:3568-75. [PMID: 27211038 DOI: 10.1016/j.vaccine.2016.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
Our previous study reported that the combination of Pleurotus ferulae water extract (PFWE) and CpG (PFWE+CpG) enhanced the maturation and function of dendritic cells (DCs). Here, we investigated the effects of PFWE+CpG on the immune responses and antitumor efficacy of DC-based vaccine. We observed that all of HPV E6 and E7 peptides pulsed DCs (HPV-immature DCs, HPV+PFWE-, +CpG- or +PFWE+CpG-DCs) induced antigen-specific CD8(+) T cell responses and HPV+PFWE+CpG-DCs induced highest level of CD8(+) T cell responses. The antitumor efficacy of HPV-DCs vaccines was evaluated in TC-1 tumor mouse model. The early therapeutic study showed that HPV+PFWE-, +CpG- and +PFWE+CpG-DCs greatly inhibited tumor growth. Moreover, HPV+PFWE+CpG-DCs controlled tumor growth at a faster rate compared to other groups. These three groups induced HPV-specific CD8(+) T cell responses and significantly decreased the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)). However, only HPV+PFWE+CpG-DCs significantly decreased the frequency of natural Tregs (nTregs: CD4(+)CD25(+)Fopx3(+)). Furthermore, HPV+PFWE+CpG-DCs also significantly inhibited tumor growth in the late therapeutic study. The results showed that PFWE+CpG enhanced the immune responses and antitumor efficacy of DC-based vaccine, suggesting that PFWE+CpG might be the potential candidate for the generation of clinical-grade mature DCs.
Collapse
Affiliation(s)
- Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - JiaoJiao Luo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
89
|
Drakes ML, Stiff PJ. Understanding dendritic cell immunotherapy in ovarian cancer. Expert Rev Anticancer Ther 2016; 16:643-52. [DOI: 10.1080/14737140.2016.1178576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
90
|
Macatangay BJC, Riddler SA, Wheeler ND, Spindler J, Lawani M, Hong F, Buffo MJ, Whiteside TL, Kearney MF, Mellors JW, Rinaldo CR. Therapeutic Vaccination With Dendritic Cells Loaded With Autologous HIV Type 1-Infected Apoptotic Cells. J Infect Dis 2016; 213:1400-9. [PMID: 26647281 PMCID: PMC4813736 DOI: 10.1093/infdis/jiv582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We report the results of a phase I/II, open-label, single-arm clinical trial to evaluate the safety and anti-human immunodeficiency virus type 1 (HIV-1) efficacy of an autologous dendritic cell (DC)-based HIV-1 vaccine loaded with autologous HIV-1-infected apoptotic cells. METHODS Antiretroviral therapy (ART)-naive individuals were enrolled, and viremia was suppressed by ART prior to delivery of 4 doses of DC-based vaccine. Participants underwent treatment interruption 6 weeks after the third vaccine dose. The plasma HIV-1 RNA level 12 weeks after treatment interruption was compared to the pre-ART (ie, baseline) level. RESULTS The vaccine was safe and well tolerated but did not prevent viral rebound during treatment interruption. Vaccination resulted in a modest but significant decrease in plasma viremia from the baseline level (from 4.53 log10 copies/mL to 4.27 log10 copies/mL;P= .05). Four of 10 participants had a >0.70 log10 increase in the HIV-1 RNA load in plasma following vaccination, despite continuous ART. Single-molecule sequencing of HIV-1 RNA in plasma before and after vaccination revealed increases in G>A hypermutants in gag and pol after vaccination, which suggests cytolysis of infected cells. CONCLUSIONS A therapeutic HIV-1 vaccine based on DCs loaded with apoptotic bodies was safe and induced T-cell activation and cytolysis, including HIV-1-infected cells, in a subset of study participants. CLINICAL TRIALS REGISTRATION NCT00510497.
Collapse
Affiliation(s)
| | - Sharon A Riddler
- Division of Infectious Diseases, University of Pittsburgh School of Medicine
| | - Nicole D Wheeler
- Division of Infectious Diseases, University of Pittsburgh School of Medicine
| | - Jonathan Spindler
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mariam Lawani
- Division of Infectious Diseases, University of Pittsburgh School of Medicine
| | - Feiyu Hong
- Division of Infectious Diseases, University of Pittsburgh School of Medicine
| | - Mary J Buffo
- Hillman Cancer Center, University of Pittsburgh Medical Center
| | | | - Mary F Kearney
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh School of Medicine
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| |
Collapse
|
91
|
Pérez-Torres A, Vera-Aguilera J, Sahaza JH, Vera-Aguilera C, Moreno-Aguilera E, Pulido-Camarillo E, Nuñez-Ochoa L, Jeganathan P. Hematological Effects, Serum, and Pulmonary Cytokine Profiles in a Melanoma Mouse Model Treated with GK1. Cancer Biother Radiopharm 2016; 30:247-54. [PMID: 26181852 DOI: 10.1089/cbr.2015.1835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In a previous study, we demonstrated the therapeutic efficacy of a subcutaneous injection of GK1 peptide in a melanoma mouse model, effectively increasing the mean survival time by 42.58%, delaying tumor growth, and increasing intratumoral necrosis compared with the control. As a first approach to investigate the anti-melanoma effect of GK1, this study was carried out to determine the hematological effects along with both serum and lung cytokine profiles in a melanoma lung metastatic model. MATERIALS AND METHODS Thirteen C57BL6 female mice were transfected in the lateral tail vein with 2×10(5) B16-F0 melanoma cells. After 7 days, mice were separated in two different groups and treatments were initiated (day 0): The GK1-treated group (seven mice) were injected every 5 days intravenously with GK1 (10 μg) in the lateral tail vein, and the control group (six mice) were injected every 5 days with intravenous saline solution. Blood samples were collected every 5 days from day 0; tumor samples were obtained for cytokine measurements on the day of sacrifice. RESULTS In the peripheral blood, mice treated with GK1 presented a statistically significant decrease in IFN-γ (p<0.05), and lymphocytes tended to be lower compared with the control mice (p=0.06). Lung metastatic analysis demonstrated a significant increase in IFN-γ and IL-12p70 (p<0.05); a significant decrease in IL-17, IL-4, IL-22, IL-23, and IL-12p40 (p<0.05); and a marginal decrease in IL-1β (p=0.07) compared with the control. DISCUSSION Our results suggest that an intratumoral increase of cytokines with antitumor activity along with an intratumoral decrease of cytokines with protumor activity could explain, in part, the anti-melanoma effects of GK1 in a lung metastatic melanoma mouse model. Further studies must be performed to elucidate the precise mechanisms of action for GK1 peptide against melanoma, and their eventual application in humans.
Collapse
Affiliation(s)
- Armando Pérez-Torres
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | | | - Jorge H Sahaza
- 3 Corporación para Investigaciones Biológicas (CIB) , Unidad de Micología Médica y Experimental, Medellín, Colombia
| | - Carlos Vera-Aguilera
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | - Eduardo Moreno-Aguilera
- 4 Servicio de Gastrocirugía, Hospital de Especialidades , Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México DF, México
| | - Evelyn Pulido-Camarillo
- 1 Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México , México City, México
| | - Luis Nuñez-Ochoa
- 5 Departamento de Patología Clínica/Oncología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México , México City, México
| | - Pratheepa Jeganathan
- 6 Department of Mathematics and Statistics, Texas Tech University , Lubbock, Texas
| |
Collapse
|
92
|
Raïch-Regué D, Fabian KP, Watson AR, Fecek RJ, Storkus WJ, Thomson AW. Intratumoral delivery of mTORC2-deficient dendritic cells inhibits B16 melanoma growth by promoting CD8(+) effector T cell responses. Oncoimmunology 2016; 5:e1146841. [PMID: 27471613 DOI: 10.1080/2162402x.2016.1146841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses. In cancer, DC-based vaccines have proven to be safe and to elicit protective and therapeutic immunological responses. Recently, we showed that specific mTORC2 (mechanistic target of rapamycin complex 2) deficiency in DC enhances their ability to promote Th1 and Th17 responses after LPS stimulation. In the present study, bone marrow-derived mTORC2-deficient (Rictor(-/-)) DC were evaluated as a therapeutic modality in the murine B16 melanoma model. Consistent with their pro-inflammatory profile (enhanced IL-12p70 production and low PD-L1 expression versus control DC), intratumoral (i.t.) injection of LPS-activated Rictor(-/-) DC slowed B16 melanoma growth markedly in WT C57BL/6 recipient mice. This antitumor effect was abrogated when Rictor(-/-) DC were injected i.t. into B16-bearing Rag(-/-) mice, and also after selective CD8(+) T cell depletion in wild-type hosts in vivo, indicating that CD8(+) T cells were the principal regulators of tumor growth after Rictor(-/-) DC injection. I.t. administration of Rictor(-/-) DC also reduced the frequency of myeloid-derived suppressor cells within tumors, and enhanced numbers of IFNγ(+) and granzyme-B(+) cytotoxic CD8(+) T cells both in the spleens and tumors of treated animals. These data suggest that selective inhibition of mTORC2 activity in activated DC augments their pro-inflammatory and T cell stimulatory profile, in association with their enhanced capacity to promote protective CD8(+) T cell responses in vivo, leading to slowed B16 melanoma progression. These novel findings may contribute to the design of more effective DC-based vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Kellsye P Fabian
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Alicia R Watson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA, US
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, US; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, US; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
93
|
Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators Inflamm 2016; 2016:5740373. [PMID: 26980946 PMCID: PMC4766350 DOI: 10.1155/2016/5740373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8+ effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.
Collapse
|
94
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
95
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
96
|
Vandenberk L, Belmans J, Van Woensel M, Riva M, Van Gool SW. Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines. Front Immunol 2016; 6:663. [PMID: 26834740 PMCID: PMC4712296 DOI: 10.3389/fimmu.2015.00663] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/26/2015] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy is currently the hottest topic in the oncology field, owing predominantly to the discovery of immune checkpoint blockers. These promising antibodies and their attractive combinatorial features have initiated the revival of other effective immunotherapies, such as dendritic cell (DC) vaccinations. Although DC-based immunotherapy can induce objective clinical and immunological responses in several tumor types, the immunogenic potential of this monotherapy is still considered suboptimal. Hence, focus should be directed on potentiating its immunogenicity by making step-by-step protocol innovations to obtain next-generation Th1-driving DC vaccines. We review some of the latest developments in the DC vaccination field, with a special emphasis on strategies that are applied to obtain a highly immunogenic tumor cell cargo to load and to activate the DCs. To this end, we discuss the effects of three immunogenic treatment modalities (ultraviolet light, oxidizing treatments, and heat shock) and five potent inducers of immunogenic cell death [radiotherapy, shikonin, high-hydrostatic pressure, oncolytic viruses, and (hypericin-based) photodynamic therapy] on DC biology and their application in DC-based immunotherapy in preclinical as well as clinical settings.
Collapse
Affiliation(s)
- Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven , Leuven , Belgium
| | - Jochen Belmans
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven , Leuven , Belgium
| | - Matthias Van Woensel
- Laboratory of Experimental and Neuroanatomy, Department of Neurosciences, KU Leuven University of Leuven, Leuven, Belgium; Laboratory of Pharmaceutics and Biopharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Riva
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Department of Neurosurgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Stefaan W Van Gool
- Laboratory of Pediatric Immunology, Department of Immunology and Microbiology, KU Leuven University of Leuven, Leuven, Belgium; Kinderklinik, RWTH, Aachen, Germany; Immunologic-Oncologic Centre Cologne (IOZK), Köln, Germany
| |
Collapse
|
97
|
Mahmood S, Upreti D, Sow I, Amari A, Nandagopal S, Kung SK. Bidirectional interactions of NK cells and dendritic cells in immunotherapy: current and future perspective. Immunotherapy 2016; 7:301-8. [PMID: 25804481 DOI: 10.2217/imt.14.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NK cells and dendritic cells (DC) are innate cellular components that regulate adaptive immune responses in the immune surveillance of cancer and infections. Interactions of NK and DC are bidirectional. In this mini review, we summarized how NK cells regulate immature DC editing and maturation, how DC regulate NK-cell functions reciprocally in the NK-DC crosstalk, and the importance of NK-DC crosstalk in antitumor immunity. Enhancing NK-DC crosstalk by cellular factor(s), antibodies or creating a microenvironment that promote NK activations, DC maturation and NK-DC crosstalk will provide new insights into future development of DC-based immunotherapy.
Collapse
Affiliation(s)
- Sajid Mahmood
- Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada
| | | | | | | | | | | |
Collapse
|
98
|
Radiation Inhibits Interleukin-12 Production via Inhibition of C-Rel through the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Signaling Pathway in Dendritic Cells. PLoS One 2016. [PMID: 26745884 DOI: 10.1371/journal.pone.0146463.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy (RT) is a potent anti-tumor modality. However, unwanted effects including increased recurrence and metastasis that involve factors such as cytokines, which induce complex molecular mechanisms, have also been reported. In a previous study, we showed that interleukin (IL)-12 and radiotherapy combination treatment suppressed tumor growth and metastasis in a hepatoma mouse model. In this study, we investigated the mechanism underlying the IL-12 anti-tumor effect during radiotherapy. In tumor-bearing mice, irradiation decreased IL-12 expression in the tumors and spleens. However, a number of dendritic cells infiltrated into the tumors in which IL-12 expression did not decrease. To further study the underlying detailed mechanism for this decrease in IL-12, LPS-stimulated bone marrow-derived dendritic cells (BMDCs) were irradiated, and then IL-12- and IL-6-associated molecules were examined in irradiated tumors and BMDCs. Irradiation resulted in IL-12 suppression and IL-6 increase. IL-6 and signal transducer and activator of transcription 3 (STAT3) inhibitors restored the irradiation-induced IL-12 decrease via suppression of C-Rel activation. Taken together, our study suggests that irradiation-induced IL-6 can decrease IL-12 production through the inhibition of C-Rel phosphorylation by the IL-6/STAT3 signaling pathway.
Collapse
|
99
|
Lee EJ, Lee SJ, Kim JH, Kim KJ, Yang SH, Jeong KY, Seong J. Radiation Inhibits Interleukin-12 Production via Inhibition of C-Rel through the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Signaling Pathway in Dendritic Cells. PLoS One 2016; 11:e0146463. [PMID: 26745884 PMCID: PMC4706448 DOI: 10.1371/journal.pone.0146463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT) is a potent anti-tumor modality. However, unwanted effects including increased recurrence and metastasis that involve factors such as cytokines, which induce complex molecular mechanisms, have also been reported. In a previous study, we showed that interleukin (IL)-12 and radiotherapy combination treatment suppressed tumor growth and metastasis in a hepatoma mouse model. In this study, we investigated the mechanism underlying the IL-12 anti-tumor effect during radiotherapy. In tumor-bearing mice, irradiation decreased IL-12 expression in the tumors and spleens. However, a number of dendritic cells infiltrated into the tumors in which IL-12 expression did not decrease. To further study the underlying detailed mechanism for this decrease in IL-12, LPS-stimulated bone marrow–derived dendritic cells (BMDCs) were irradiated, and then IL-12– and IL-6–associated molecules were examined in irradiated tumors and BMDCs. Irradiation resulted in IL-12 suppression and IL-6 increase. IL-6 and signal transducer and activator of transcription 3 (STAT3) inhibitors restored the irradiation-induced IL-12 decrease via suppression of C-Rel activation. Taken together, our study suggests that irradiation-induced IL-6 can decrease IL-12 production through the inhibition of C-Rel phosphorylation by the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Seo Jin Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Ji-Hye Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Kyoung-Jin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Seung-Hyun Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Keun-Yeong Jeong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
- * E-mail:
| |
Collapse
|
100
|
Hjálmsdóttir Á, Bühler C, Vonwil V, Roveri M, Håkerud M, Wäckerle-Men Y, Gander B, Johansen P. Cytosolic Delivery of Liposomal Vaccines by Means of the Concomitant Photosensitization of Phagosomes. Mol Pharm 2016; 13:320-9. [PMID: 26704885 DOI: 10.1021/acs.molpharmaceut.5b00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the greatest pharmaceutical challenges in vaccinology is the delivery of antigens to the cytosol of antigen-presenting cells (APCs) in order to allow for the stimulation of major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell responses, which may act on intracellular infections or cancer. Recently, we described a novel method for cytotoxic T-lymphocyte (CTL) vaccination by combining antigens with a photosensitizer and light for cytosolic antigen delivery. The goal of the current project was to test this immunization method with particle-based formulations. Liposomes were prepared from dipalmitoylphosphatidylcholine and cholesterol, and the antigen ovalbumin (OVA) or the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) was separately encapsulated. C57BL/6 mice were immunized intradermally with OVA liposomes or a combination of OVA and TPCS2a liposomes, and light was applied the next day for activation of the photosensitizer resulting in cytosolic release of antigen from phagosomes. Immune responses were tested both after a prime only regime and after a prime-boost scheme with a repeat immunization 2 weeks post priming. Antigen-specific CD8(+) T-cell responses and antibody responses were analyzed ex vivo by flow cytometry and ELISA methods. The physicochemical stability of liposomes upon storage and light exposure was analyzed in vitro. Immunization with both TPCS2a- and OVA-containing liposomes greatly improved CD8(+) T-cell responses as compared to immunization without TPCS2a and as measured by proliferation in vivo and cytokine secretion ex vivo. In contrast, OVA-specific antibody responses (IgG1 and IgG2c) were reduced after immunization with TPCS2a-containing liposomes. The liposomal formulation protected the photosensitizer from light-induced inactivation during storage. In conclusion, the photosensitizer TPCS2a was successfully formulated in liposomes and enabled a shift from MHC class II to MHC class I antigen processing and presentation for stimulation of strong CD8(+) T-cell responses. Therefore, photosensitive particulate vaccines may have the potential to add to current vaccine practice a new method of vaccination that, as opposed to current vaccines, can stimulate strong CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Ásdís Hjálmsdóttir
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Céline Bühler
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vera Vonwil
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Maurizio Roveri
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Monika Håkerud
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland.,Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital , Montebello, 0310 Oslo, Norway
| | - Ying Wäckerle-Men
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| |
Collapse
|