51
|
Ozcan L, Kasikara C, Yurdagul A, Kuriakose G, Hubbard B, Serrano-Wu MH, Tabas I. Allosteric MAPKAPK2 inhibitors improve plaque stability in advanced atherosclerosis. PLoS One 2021; 16:e0246600. [PMID: 33983975 PMCID: PMC8118275 DOI: 10.1371/journal.pone.0246600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic vascular disease resulting from unstable plaques is the leading cause of morbidity and mortality in subjects with type 2 diabetes (T2D), and thus a major therapeutic goal is to discover T2D drugs that can also promote atherosclerotic plaque stability. Genetic or pharmacologic inhibition of mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2 or MK2) in obese mice improves glucose homeostasis and enhances insulin sensitivity. We developed two novel orally active small-molecule inhibitors of MK2, TBX-1 and TBX-2, and tested their effects on metabolism and atherosclerosis in high-fat Western diet (WD)-fed Ldlr-/- mice. Ldlr-/- mice were first fed the WD to allow atherosclerotic lesions to become established, and the mice were then treated with TBX-1 or TBX-2. Both compounds improved glucose metabolism and lowered plasma cholesterol and triglyceride, without an effect on body weight. Most importantly, the compounds decreased lesion area, lessened plaque necrosis, and increased fibrous cap thickness in the aortic root lesions of the mice. Thus, in a preclinical model of high-fat feeding and established atherosclerosis, MK2 inhibitors improved metabolism and also enhanced atherosclerotic plaque stability, suggesting potential for further clinical development to address the epidemic of T2D associated with atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Arif Yurdagul
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Brian Hubbard
- Tabomedex Biosciences, Boxford, Massachusetts, United States of America
| | | | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
52
|
Abstract
Billions of cells undergo apoptosis daily and are swiftly removed by macrophages through an evolutionarily conserved program termed "efferocytosis". Consequently, macromolecules within an apoptotic cell significantly burden a phagocyte with nutrients, such as lipids, oligonucleotides, and amino acids. In response to this nutrient overload, metabolic reprogramming must occur for the process of efferocytosis to remain non-phlogistic and to execute successive rounds of efferocytosis. The inability to undergo metabolic reprogramming after efferocytosis drives inflammation and impairs its resolution, often promoting many chronic inflammatory diseases. This is particularly evident for atherosclerosis, as metabolic reprogramming alters macrophage function in every stage of atherosclerosis, from the early formation of benign lesions to the progression of clinically relevant atheromas and during atherosclerosis regression upon aggressive lipid-lowering. This Review focuses on the metabolic pathways utilized upon apoptotic cell ingestion, the consequences of these metabolic pathways in macrophage function thereafter, and the role of metabolic reprogramming during atherosclerosis. Due to the growing interest in this new field, I introduce a new term, "efferotabolism", as a means to define the process by which macrophages break down, metabolize, and respond to AC-derived macromolecules. Understanding these aspects of efferotabolism will shed light on novel strategies to combat atherosclerosis and compromised inflammation resolution.
Collapse
|
53
|
Dimethyl Trisulfide Diminishes Traumatic Neuropathic Pain Acting on TRPA1 Receptors in Mice. Int J Mol Sci 2021; 22:ijms22073363. [PMID: 33806000 PMCID: PMC8036544 DOI: 10.3390/ijms22073363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.
Collapse
|
54
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
55
|
Hosseini Z, Marinello M, Decker C, Sansbury BE, Sadhu S, Gerlach BD, Bossardi Ramos R, Adam AP, Spite M, Fredman G. Resolvin D1 Enhances Necroptotic Cell Clearance Through Promoting Macrophage Fatty Acid Oxidation and Oxidative Phosphorylation. Arterioscler Thromb Vasc Biol 2021; 41:1062-1075. [PMID: 33472399 DOI: 10.1161/atvbaha.120.315758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Plaque necrosis is a key feature of defective resolution in atherosclerosis. Recent evidence suggests that necroptosis promotes plaque necrosis; therefore, we sought to determine how necroptotic cells (NCs) impact resolution programs in plaques. Approach and Results: To investigate the role(s) of necroptosis in advanced atherosclerosis, we used mice deficient of Mlkl, an effector of necroptosis. Mlkl-/- mice that were injected with a gain-of-function mutant PCSK9 (AAV8-gof-PCSK9) and fed a Western diet for 16 weeks, showed significantly less plaque necrosis, increased fibrous caps and improved efferocytosis compared with AAV8-gof-PCSK9 injected wt controls. Additionally, hypercholesterolemic Mlkl-/- mice had a significant increase in proresolving mediators including resolvin D1 (RvD1) and a decrease in prostanoids including thromboxane in plaques and in vitro. We found that exuberant thromboxane released by NCs impaired the clearance of both apoptotic cells and NCs through disruption of oxidative phosphorylation in macrophages. Moreover, we found that NCs did not readily synthesize RvD1 and that exogenous administration of RvD1 to macrophages rescued NC-induced defective efferocytosis. RvD1 also enhanced the uptake of NCs via the activation of p-AMPK (AMP-activated protein kinase), increased fatty acid oxidation, and enhanced oxidative phosphorylation in macrophages. CONCLUSIONS These results suggest that NCs derange resolution by limiting key SPMs and impairing the efferocytic repertoire of macrophages. Moreover, these findings provide a molecular mechanism for RvD1 in directing proresolving metabolic programs in macrophages and further suggests RvD1 as a potential therapeutic strategy to limit NCs in tissues. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Zeinab Hosseini
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Michael Marinello
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Brian E Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (B.E.S., M.S.)
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Brennan D Gerlach
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Ramon Bossardi Ramos
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Alejandro P Adam
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (B.E.S., M.S.)
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, NY (Z.H., M.M., C.D., S.S., B.D.G., R.B.R., A.P.A., G.F.)
| |
Collapse
|
56
|
Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20:589-610. [PMID: 33976384 PMCID: PMC8112476 DOI: 10.1038/s41573-021-00198-1] [Citation(s) in RCA: 523] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk.
Collapse
|
57
|
Liu L, Chan M, Yu L, Wang W, Qiang L. Adipsin deficiency does not impact atherosclerosis development in Ldlr-/- mice. Am J Physiol Endocrinol Metab 2021; 320:E87-E92. [PMID: 33135458 PMCID: PMC8194410 DOI: 10.1152/ajpendo.00440.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is a potent risk factor for atherosclerotic morbidity and mortality. Cytokines secreted from adipose tissue, namely, adipokines, have been suggested to be actively involved in atherosclerosis. One of the most abundant adipokines, adipsin, is downregulated in obesity. It catalyzes the rate-limiting step of alternative complement activation, which is one of the three complement pathways potentially involved in inflammation in atherosclerosis. Interestingly, adipsin has been identified as a novel biomarker in human coronary artery disease. However, its role in the development of atherosclerosis remains unexplored. We crossed adipsin-/- mice onto an Ldlr-/- background [double-knockout (DKO) mice] and induced atherogenesis by high-fat and high-cholesterol feeding. Metabolic profiles were systemically characterized, and atherosclerotic plaques were measured at both aortic root and arch regions. Western blotting was conducted to assess adipsin level and complement activity. The DKO mice exhibited similar sizes of atherosclerotic lesions as Ldlr-/- control mice at both the aortic root and arch regions. Accordingly, they displayed comparable metabolic parameters, including body weight, insulin sensitivity, and lipid profiles, along with compensated complement activity. Adipsin deficiency does not impact the development of atherosclerosis in Ldlr-/- mice despite its crucial function in alternative complement activation. Therefore, it is unlikely to play an important role in mediating the risk of atherosclerotic complications in obesity.NEW & NOTEWORTHY Adipsin deficiency does not impact the development of atherosclerosis in Ldlr-/- mice despite its crucial function in alternative complement activation. Therefore, it is unlikely to play an important role in mediating the risk of atherosclerotic complications in obesity.
Collapse
Affiliation(s)
- Longhua Liu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Naomi Berrie Diabetes Center, New York, New York
| | - Michelle Chan
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Naomi Berrie Diabetes Center, New York, New York
- Department of Biological Sciences, Columbia University, New York, New York
| | - Lexiang Yu
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Naomi Berrie Diabetes Center, New York, New York
| | - Weidong Wang
- Division of Endocrinology, Department of Medicine, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Li Qiang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Naomi Berrie Diabetes Center, New York, New York
| |
Collapse
|
58
|
Chen MF. The role of calmodulin and calmodulin-dependent protein kinases in the pathogenesis of atherosclerosis. Tzu Chi Med J 2021; 34:160-168. [PMID: 35465283 PMCID: PMC9020235 DOI: 10.4103/tcmj.tcmj_119_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that triggers severe thrombotic cardiovascular events, such as stroke and myocardial infarction. In atherosclerotic processes, both macrophages and vascular smooth muscle cells (VSMCs) are essential cell components in atheromata formation through proinflammatory cytokine secretion, defective efferocytosis, cell migration, and proliferation, primarily controlled by Ca2+-dependent signaling. Calmodulin (CaM), as a versatile Ca2+ sensor in diverse cell types, regulates a broad spectrum of Ca2+-dependent cell functions through the actions of downstream protein kinases. Thus, this review focuses on discussing how CaM and CaM-dependent kinases (CaMKs) regulate the functions of macrophages and VSMCs in atherosclerotic plaque development based on literature from open databases. A central theme in this review is a summary of the mechanisms and consequences underlying CaMK-mediated macrophage inflammation and apoptosis, which are the key processes in necrotic core formation in atherosclerosis. Another central theme is addressing the role of CaM and CaMK-dependent pathways in phenotypic modulation, migration, and proliferation of VSMCs in atherosclerotic progression. A complete understanding of CaM and CaMK-controlled individual processes involving macrophages and VSMCs in atherogenesis might provide helpful information for developing potential therapeutic targets and strategies.
Collapse
|
59
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Role of Macrophages and RhoA Pathway in Atherosclerosis. Int J Mol Sci 2020; 22:ijms22010216. [PMID: 33379334 PMCID: PMC7796231 DOI: 10.3390/ijms22010216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-001 Warsaw, Poland;
- Cell Cycle Group, Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, Univ Rennes, CNRS, UMR 6290, 35000 Rennes, France
| | - Rafik Mark Ghobrial
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
60
|
Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res 2020; 12:7625-7639. [PMID: 33437349 PMCID: PMC7791482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wei Wang
- Department of Cardiology, Affiliated Taihe Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
61
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
62
|
Cai B, Kasikara C. TAM receptors and their ligand-mediated activation: Role in atherosclerosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:21-33. [PMID: 33234243 DOI: 10.1016/bs.ircmb.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAM family tyrosine kinase receptors including Tyro3, Axl, and MerTK are the key efferocytosis receptors presenting on antigen-presenting cell that mediate the clearance of apoptotic cells. They are thought to regulate inflammatory diseases by modulating inflammatory response and efferocytosis. Recent studies have revealed novel roles of TAM receptors in the biosynthesis of specialized pro-resolving mediators (SPMs) and inflammation resolution. In this chapter, we discuss the central roles of TAM signaling in atherosclerosis focusing on their regulation in efferocytosis and inflammation resolution and highlight the unique therapeutic potential of SPMs in blocking the progression of atherosclerosis.
Collapse
Affiliation(s)
- Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Canan Kasikara
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
63
|
Shen-Hong-Tong-Luo Formula Attenuates Macrophage Inflammation and Lipid Accumulation through the Activation of the PPAR- γ/LXR- α/ABCA1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3426925. [PMID: 33082908 PMCID: PMC7556105 DOI: 10.1155/2020/3426925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Atherosclerosis (AS) is the killer of human health and longevity, which is majorly caused by oxidized lipoproteins that attack macrophages in the endarterium. The Shen-Hong-Tong-Luo (SHTL) formula has shown great clinical efficacy and vascular protective effect for over 30 years in China, to attenuate AS progression. However, its pharmacological mechanism needs more investigation. In this study, we first investigated the chemical composition of SHTL by fingerprint analysis using high-performance liquid chromatography. In primary mouse peritoneal macrophages induced by lipopolysaccharide (LPS), we found that SHTL pretreatment suppressed reactive oxygen species accumulation and reversed the increases of the inflammatory factors, TNF-α and IL-6. Moreover, lipid accumulation induced by oxidized low-density lipoprotein (Ox-LDL) in macrophages was inhibited by SHTL. Additionally, network pharmacology was used to predict the potential targets of SHTL as the PPAR-γ/LXR-α/ABCA1 signaling pathway, which was validated in macrophages and ApoE-/- mice by histopathological staining, qPCR, and Western blot analysis. Importantly, the protective effect of SHTL in the LPS- and Ox-LDL-induced macrophages against inflammation and lipid accumulation was attenuated by GW9662, a PPAR-γ antagonist, which confirmed the prediction results of network pharmacology. In summary, these results indicated that SHTL pretreatment reduced inflammation and lipid accumulation of macrophages by activating the PPAR-γ/LXR-α/ABCA1 pathway, which may provide a new insight into the mechanism of SHTL in the suppression of AS progression.
Collapse
|
64
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
65
|
Mustroph J, Drzymalski M, Baier M, Pabel S, Biedermann A, Memmel B, Durczok M, Neef S, Sag CM, Floerchinger B, Rupprecht L, Schmid C, Zausig Y, Bégis G, Briand V, Ozoux ML, Tamarelle D, Ballet V, Janiak P, Beauverger P, Maier LS, Wagner S. The oral Ca/calmodulin-dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure. ESC Heart Fail 2020; 7:2871-2883. [PMID: 32691522 PMCID: PMC7524064 DOI: 10.1002/ehf2.12895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023] Open
Abstract
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1' χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marzena Drzymalski
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Maria Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Alexander Biedermann
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernadette Memmel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Melanie Durczok
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Can Martin Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernhard Floerchinger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - York Zausig
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | | - Philip Janiak
- Sanofi Research & Development (R&D), Chilly-Mazarin, France
| | | | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| |
Collapse
|
66
|
Tian Z, Song Y, Yao Y, Guo J, Gong Z, Wang Z. Genetic Etiology Shared by Multiple Sclerosis and Ischemic Stroke. Front Genet 2020; 11:646. [PMID: 32719717 PMCID: PMC7348066 DOI: 10.3389/fgene.2020.00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Although dramatic progress has been achieved in the understanding and treatment of multiple sclerosis (MS) and ischemic stroke (IS), more precise and instructive support is required for further research. Recent large-scale genome-wide association studies (GWASs) have already revealed risk variants for IS and MS, but the common genetic etiology between MS and IS remains an unresolved issue. This research was designed to overlapping genes between MS and IS and unmask their transcriptional features. We designed a three-section analysis process. Firstly, we computed gene-based analyses of MS GWAS and IS GWAS data sets by VGEAS2. Secondly, overlapping genes of significance were identified in a meta-analysis using the Fisher’s procedure. Finally, we performed gene expression analyses to confirm transcriptional changes. We identified 24 shared genes with Bonferroni correction (Pcombined < 2.31E-04), and five (FOXP1, CAMK2G, CLEC2D, LBH, and SLC2A4RG) had significant expression differences in MS and IS gene expression omnibus data sets. These meaningful shared genes between IS and MS shed light on the underlying genetic etiologies shared by the diseases. Our results provide a basis for in-depth genomic studies of associations between MS and IS.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Song
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
67
|
Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front Cardiovasc Med 2020; 7:10. [PMID: 32118048 PMCID: PMC7033616 DOI: 10.3389/fcvm.2020.00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of diabetes worldwide, vascular complications of diabetes are also on the rise. Diabetes results in an increased risk of macrovascular complications, with atherosclerotic cardiovascular disease (CVD) being the leading cause of death in adults with diabetes. The exact mechanisms for how diabetes promotes CVD risk are still unclear, although it is evident that monocytes and macrophages are key players in all stages of atherosclerosis both in the absence and presence of diabetes, and that phenotypes of these cells are altered by the diabetic environment. Evidence suggests that at least five pro-atherogenic mechanisms involving monocytes and macrophages contribute to the accelerated atherosclerotic lesion progression and hampered lesion regression associated with diabetes. These changes include (1) increased monocyte recruitment to lesions; (2) increased inflammatory activation; (3) altered macrophage lipid accumulation and metabolism; (4) increased macrophage cell death; and (5) reduced efferocytosis. Monocyte and macrophage phenotypes and mechanisms have been revealed mostly by different animal models of diabetes. The roles of specific changes in monocytes and macrophages in humans with diabetes remain largely unknown. There is an ongoing debate on whether the changes in monocytes and macrophages are caused by altered glucose levels, insulin deficiency or insulin resistance, lipid abnormalities, or combinations of these factors. Current research in humans and mouse models suggests that reduced clearance of triglyceride-rich lipoproteins and their remnants is one important mechanism whereby diabetes adversely affects macrophages and promotes atherosclerosis and CVD risk. Although monocytes and macrophages readily respond to the diabetic environment and can be seen as protagonists in diabetes-accelerated atherosclerosis, they are likely not instigators of the increased CVD risk.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Cheng-Chieh Hsu
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
68
|
Dai X, Meng J, Deng S, Zhang L, Wan C, Lu L, Huang J, Hu Y, Zhang Z, Li Y, Lovell JF, Wu G, Yang K, Jin H. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel. Am J Cancer Res 2020; 10:3049-3063. [PMID: 32194854 PMCID: PMC7053188 DOI: 10.7150/thno.42385] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Simultaneously targeted treatment of tumor cells and their surrounding growth-supporting immune cells is a promising strategy to reshape immunosuppressive tumor microenvironment (TME) and potentiate host innate and adaptive antitumor immune responses. Methods: We designed a series of melittin-(RADA)n hybrid peptide sequences with varying self-assembling motifs of RADA and screened out a melittin-(RADA)6 peptide that has an optimal gel-formation ability and in vitro antitumor activity. Results: The formed melittin-(RADA)6 (MR52) hydrogel scaffold could be loaded with a specific Ca2+/calmodulin-dependent protein kinase II (CAMKII) inhibitor, KN93, originally found to have both direct tumoricidal activity and macrophages-reprogramming ability, for potent immunotherapy against melanoma and hepatoma ascites in mice models. Our MR52 hydrogel has an interweaving nanofiber-like structure, possesses direct antitumor and controlled drug release properties, and promotes the enhanced intracellular uptake of loaded cargo. Compared to free KN93, the MR52-KN93 hydrogel (MRK) improved the killing effects and levels of immunogenic cell death (ICD) on tumor cells significantly. Due to the dual role of KN93, the injection of the MRK hydrogel retarded the growth of subcutaneous melanoma tumors dramatically and resulted in a high number of mature dendritic cells of draining lymph nodes, significantly enhancing the portion of cytotoxic T cells and reduced number of M2-like tumor-associated macrophages (TAMs) in tumors. Using a mouse model of malignant ascites (MAs), where traditional therapy was ineffective, we demonstrated that the MRK hydrogel treatment offered a significantly prolonged survival compared to controls. Following treatment with the MRK hydrogel, macrophages had elevated programmed cell death protein ligand-1 (PD-L1) expression, promising follow-up combined anti-PD-1 therapy that confers a cure rate of approximately 30% against MAs in mice models. Conclusion: Thus, the MRK hydrogel may serve as a prospective platform for antitumor applications.
Collapse
|
69
|
Abstract
The clearance of apoptotic cells by professional and non-professional phagocytes - a process termed 'efferocytosis' - is essential for the maintenance of tissue homeostasis. Accordingly, defective efferocytosis underlies a growing list of chronic inflammatory diseases. Although much has been learnt about the mechanisms of apoptotic cell recognition and uptake, several key areas remain incompletely understood. This Review focuses on new discoveries related to how phagocytes process the metabolic cargo they receive during apoptotic cell uptake; the links between efferocytosis and the resolution of inflammation in health and disease; and the roles of efferocytosis in host defence. Understanding these aspects of efferocytosis sheds light on key physiological and pathophysiological processes and suggests novel therapeutic strategies for diseases driven by defective efferocytosis and impaired inflammation resolution.
Collapse
|
70
|
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol 2019; 39:25-36. [PMID: 30580568 DOI: 10.1161/atvbaha.118.311022] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
Collapse
Affiliation(s)
- Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Amy Blatchley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Catherine S Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, CA (C.K.)
| | - Chantel McSkimming
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Angela M Taylor
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| |
Collapse
|
71
|
Tajbakhsh A, Kovanen PT, Rezaee M, Banach M, Sahebkar A. Ca 2+ Flux: Searching for a Role in Efferocytosis of Apoptotic Cells in Atherosclerosis. J Clin Med 2019; 8:jcm8122047. [PMID: 31766552 PMCID: PMC6947386 DOI: 10.3390/jcm8122047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
In atherosclerosis, macrophages in the arterial wall ingest plasma lipoprotein-derived lipids and become lipid-filled foam cells with a limited lifespan. Thus, efficient removal of apoptotic foam cells by efferocytic macrophages is vital to preventing the dying foam cells from forming a large necrotic lipid core, which, otherwise, would render the atherosclerotic plaque vulnerable to rupture and would cause clinical complications. Ca2+ plays a role in macrophage migration, survival, and foam cell generation. Importantly, in efferocytic macrophages, Ca2+ induces actin polymerization, thereby promoting the formation of a phagocytic cup necessary for efferocytosis. Moreover, in the efferocytic macrophages, Ca2+ enhances the secretion of anti-inflammatory cytokines. Various Ca2+ antagonists have been seminal for the demonstration of the role of Ca2+ in the multiple steps of efferocytosis by macrophages. Moreover, in vitro and in vivo experiments and clinical investigations have revealed the capability of Ca2+ antagonists in attenuating the development of atherosclerotic plaques by interfering with the deposition of lipids in macrophages and by reducing plaque calcification. However, the regulation of cellular Ca2+ fluxes in the processes of efferocytic clearance of apoptotic foam cells and in the extracellular calcification in atherosclerosis remains unknown. Here, we attempted to unravel the molecular links between Ca2+ and efferocytosis in atherosclerosis and to evaluate cellular Ca2+ fluxes as potential treatment targets in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948, Iran
- Correspondence: or ; Tel.: +98-51-1800-2288; Fax: +98-51-1800-2287
| |
Collapse
|
72
|
Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 2019; 317:H877-H890. [PMID: 31441689 PMCID: PMC6879920 DOI: 10.1152/ajpheart.00223.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
There is substantial evidence that chronic heart failure in humans and in animal models is associated with inflammation. Ischemic interventions such as myocardial infarction lead to necrotic cell death and release of damage associated molecular patterns, factors that signal cell damage and induce expression of proinflammatory chemokines and cytokines. It has recently become evident that nonischemic interventions are also associated with increases in inflammatory genes and immune cell accumulation in the heart and that these contribute to fibrosis and ventricular dysfunction. How proinflammatory responses are elicited in nonischemic heart disease which is not, at least initially, associated with cell death is a critical unanswered question. In this review we provide evidence supporting the hypothesis that cardiomyocytes are an initiating site of inflammatory gene expression in response to nonischemic stress. Furthermore we discuss the role of the multifunctional Ca2+/calmodulin-regulated kinase, CaMKIIδ, as a transducer of stress signals to nuclear factor-κB activation, expression of proinflammatory cytokines and chemokines, and priming and activation of the NOD-like pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes. We summarize recent evidence that subsequent macrophage recruitment, fibrosis and contractile dysfunction induced by angiotensin II infusion or transverse aortic constriction are ameliorated by blockade of CaMKII, of monocyte chemoattractant protein-1/C-C chemokine receptor type 2 signaling, or of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Takeshi Suetomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
73
|
ER-Mitochondria Communication in Cells of the Innate Immune System. Cells 2019; 8:cells8091088. [PMID: 31540165 PMCID: PMC6770024 DOI: 10.3390/cells8091088] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023] Open
Abstract
In cells the interorganelle communication comprises vesicular and non-vesicular mechanisms. Non-vesicular material transfer predominantly takes place at regions of close organelle apposition termed membrane contact sites and is facilitated by a growing number of specialized proteins. Contacts of the endoplasmic reticulum (ER) and mitochondria are now recognized to be essential for diverse biological processes such as calcium homeostasis, phospholipid biosynthesis, apoptosis, and autophagy. In addition to these universal roles, ER-mitochondria communication serves also cell type-specific functions. In this review, we summarize the current knowledge on ER-mitochondria contacts in cells of the innate immune system, especially in macrophages. We discuss ER- mitochondria communication in the context of macrophage fatty acid metabolism linked to inflammatory and ER stress responses, its roles in apoptotic cell engulfment, activation of the inflammasome, and antiviral defense.
Collapse
|
74
|
Cimen I, Yildirim Z, Dogan AE, Yildirim AD, Tufanli O, Onat UI, Nguyen U, Watkins SM, Weber C, Erbay E. Double bond configuration of palmitoleate is critical for atheroprotection. Mol Metab 2019; 28:58-72. [PMID: 31422082 PMCID: PMC6822256 DOI: 10.1016/j.molmet.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Saturated and trans fat consumption is associated with increased cardiovascular disease (CVD) risk. Current dietary guidelines recommend low fat and significantly reduced trans fat intake. Full fat dairy can worsen dyslipidemia, but recent epidemiological studies show full-fat dairy consumption may reduce diabetes and CVD risk. This dairy paradox prompted a reassessment of the dietary guidelines. The beneficial metabolic effects in dairy have been claimed for a ruminant-derived, trans fatty acid, trans-C16:1n-7 or trans-palmitoleate (trans-PAO). A close relative, cis-PAO, is produced by de novo lipogenesis and mediates inter-organ crosstalk, improving insulin-sensitivity and alleviating atherosclerosis in mice. These findings suggest trans-PAO may be a useful substitute for full fat dairy, but a metabolic function for trans-PAO has not been shown to date. METHODS Using lipidomics, we directly investigated trans-PAO's impact on plasma and tissue lipid profiles in a hypercholesterolemic atherosclerosis mouse model. Furthermore, we investigated trans-PAO's impact on hyperlipidemia-induced inflammation and atherosclerosis progression in these mice. RESULTS Oral trans-PAO supplementation led to significant incorporation of trans-PAO into major lipid species in plasma and tissues. Unlike cis-PAO, however, trans-PAO did not prevent organelle stress and inflammation in macrophages or atherosclerosis progression in mice. CONCLUSIONS A significant, inverse correlation between circulating trans-PAO levels and diabetes incidence and cardiovascular mortality has been reported. Our findings show that trans-PAO can incorporate efficiently into the same pools that its cis counterpart is known to incorporate into. However, we found trans-PAO's anti-inflammatory and anti-atherosclerotic effects are muted due to its different structure from cis-PAO.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany
| | - Zehra Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Ekin Dogan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Dilber Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ozlem Tufanli
- New York University, Lagone Medical Center, New York, NY 10016, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey
| | | | | | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ebru Erbay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
75
|
Effects of icariin on long noncoding RNA and mRNA expression profile in the aortas of apoE-deficient mice. Biosci Rep 2019; 39:BSR20190855. [PMID: 31296789 PMCID: PMC6658818 DOI: 10.1042/bsr20190855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: The beneficial effects of icariin (ICA) in ameliorating atherosclerosis (AS) are well known, but the underlying protective mechanism has not been fully elucidated. The present study aimed to investigate altered long noncosing RNA (lncRNA) and mRNA expression profiles in ApoE−/− mice after ICA treatment. Method: The atherosclerotic plaque area was evaluated on high-fat diet (HFD)-induced ApoE−/− mice treated with either ICA or vehicle. LncRNA and mRNA integrated microarrays was performed on aortic tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were utilized to explore the significant function and pathway of the differentially expressed (DE) mRNAs, global signal transduction network were constructed to select key mRNAs, and lncRNA–mRNA co-expression network was built to find out the interactions between lncRNA and mRNA. Quantitative real-time PCR (qPCR) was used to further validate the expressions of selected lncRNAs and mRNAs. Results: Administration of ICA significantly reduced plaque size after 12 weeks (P<0.05). A total of 1512 DE lncRNAs and 2059 DE mRNAs were identified. The mRNAs: protein kinase C, β (Prkcb), Cyp2c65, Mapk10, Calmodulin 5 (Calm5), Calmodulin-like 3 (Calml3) and Camk4 were selected as hub mRNAs, the correlated lncRNAs in co-expression network were identified as important regulatory lncRNAs. The identified target pairs such as lncRNA-NONMMUT000659/Prkcb may play critical roles in AS development mediated by ICA. Conclusion: Taken together, our study highlights a panel of DE lncRNAs and mRNAs that could explain the molecular mechanism of ICA’s anti-atherosclerotic effects. The work lays a foundation for subsequent genes functional researches, which could contribute to provide new therapeutic targets for AS.
Collapse
|
76
|
Yang S, Xia YP, Luo XY, Chen SL, Li BW, Ye ZM, Chen SC, Mao L, Jin HJ, Li YN, Hu B. Exosomal CagA derived from Helicobacter pylori-infected gastric epithelial cells induces macrophage foam cell formation and promotes atherosclerosis. J Mol Cell Cardiol 2019; 135:40-51. [PMID: 31352044 DOI: 10.1016/j.yjmcc.2019.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Seroepidemiological studies have highlighted a positive relation between CagA-positive Helicobacter pylori (H. pylori), atherosclerosis and related clinic events. However, this link has not been well validated. The present study was designed to explore the role of H. pylori PMSS1 (a CagA-positive strain that can translocate CagA into host cells) and exosomal CagA in the progression of atherosclerosis. METHODS To evaluate whether H. pylori accelerates or even induces atherosclerosis, H. pylori-infected C57/BL6 mice and ApoE-/- mice were maintained under different dietary conditions. To identify the role of H. pylori-infected gastric epithelial cells-derived exosomes (Hp-GES-EVs) and exosomal CagA in atherosclerosis, ApoE-/- mice were given intravenous or intraperitoneal injections of saline, GES-EVs, Hp-GES-EVs, and recombinant CagA protein (rCagA). FINDINGS CagA-positive H. pylori PMSS1 infection does not induce but promotes macrophage-derived foam cell formation and augments atherosclerotic plaque growth and instability in two animal models. Meanwhile, circulating Hp-GES-EVs are taken up in aortic plaque, and CagA is secreted in Hp-GES-EVs. Furthermore, the CagA-containing EVs and rCagA exacerbates macrophage-derived foam cell formation and lesion development in vitro and in vivo, recapitulating the pro-atherogenic effects of CagA-positive H. pylori. Mechanistically, CagA suppresses the transcription of cholesterol efflux transporters by downregulating the expression of transcriptional factors PPARγ and LXRα and thus enhances foam cell formation. INTERPRETATION These results may provide new insights into the role of exosomal CagA in the pathogenesis of CagA-positive H. pylori infection-related atherosclerosis. It is suggested that preventing and eradicating CagA-positive H. pylori infection could reduce the incidence of atherosclerosis and related events.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Ying Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Li Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo-Wei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ming Ye
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng-Cai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
77
|
McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in cardiovascular disease. Cardiovasc Res 2019; 115:1286-1295. [PMID: 30980657 PMCID: PMC6587925 DOI: 10.1093/cvr/cvz100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The TAM receptors are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl, and MerTK. Since their discovery in the early 1990s, they have been studied for their ability to influence numerous diseases, including cancer, chronic inflammatory and autoimmune disorders, and cardiovascular diseases. The TAM receptors demonstrate an ability to influence multiple aspects of cardiovascular pathology via their diverse effects on cells of both the vasculature and the immune system. In this review, we will explore the various functions of the TAM receptors and how they influence cardiovascular disease through regulation of vascular remodelling, efferocytosis and inflammation. Based on this information, we will suggest areas in which further research is required and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ira Tabas
- Departments of Medicine, Physiology, and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mariola Kurowska-Stolarska
- Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, UK,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Department of Pharmacy, University of Naples Federico II, Naples, Italy,Corresponding authors. Tel: +44 141 330 7142; E-mail: (P.M.) Tel: +44 141 330 6085; E-mail: (M.K.-S.)
| |
Collapse
|
78
|
Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li BW, Chen SL, Luo XY, Mao L, Li Y, Jin H, Qin C, Hu B. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 2019; 10:138. [PMID: 30755588 PMCID: PMC6372637 DOI: 10.1038/s41419-019-1409-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerotic cardio-cerebrovascular disease and death remain the leading cause of morbidity and mortality worldwide. Defective efferocytosis, the clearance of apoptotic cells by macrophages, is thought to lead to increased inflammation and necrotic core formation in atherosclerotic lesions. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here we show that lncRNA myocardial infarction associated transcript (MIAT) was markedly elevated in the serum of patients with symptoms of vulnerable atherosclerotic plaque and the macrophages of necrotic cores in an advanced atherosclerosis mouse model. MIAT knockdown attenuated atherosclerosis progression, reduced necrotic core size, and increased plaque stability in vivo. Furthermore, MIAT knockdown promoted clearance of apoptotic cells by macrophages in vivo and in vitro. Mechanistic studies revealed that MIAT acted as a micro RNA (miRNA) sponge to positively modulate the expression of anti-phagocytic molecule CD47 through sponging miR-149-5p. Together, these findings identified a macrophage MIAT/miR-149-5p /CD47 pathway as a key factor in the development of necrotic atherosclerotic plaques.
Collapse
Affiliation(s)
- Zi-Ming Ye
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Rui-Ting Hu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Bo-Wei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shao-Li Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xue-Ying Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
79
|
Helmke A, Casper J, Nordlohne J, David S, Haller H, Zeisberg EM, Vietinghoff S. Endothelial‐to‐mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB J 2018; 33:2278-2289. [DOI: 10.1096/fj.201801238r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandra Helmke
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Janis Casper
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Johannes Nordlohne
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Sascha David
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Hermann Haller
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Sibylle Vietinghoff
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| |
Collapse
|
80
|
Cai B, Kasikara C, Doran AC, Ramakrishnan R, Birge RB, Tabas I. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal 2018; 11:eaar3721. [PMID: 30254055 PMCID: PMC6171110 DOI: 10.1126/scisignal.aar3721] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation resolution counterbalances excessive inflammation and restores tissue homeostasis after injury. Failure of resolution contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated by endogenous specialized proresolving mediators (SPMs), which are derived from long-chain fatty acids by lipoxygenase (LOX) enzymes. 5-LOX plays a critical role in the biosynthesis of two classes of SPMs: lipoxins and resolvins. Cytoplasmic localization of the nonphosphorylated form of 5-LOX is essential for SPM biosynthesis, whereas nuclear localization of phosphorylated 5-LOX promotes proinflammatory leukotriene production. We previously showed that MerTK, an efferocytosis receptor on macrophages, promotes SPM biosynthesis by increasing the abundance of nonphosphorylated, cytoplasmic 5-LOX. We now show that activation of MerTK in human macrophages led to ERK-mediated expression of the gene encoding sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), which decreased the cytosolic Ca2+ concentration and suppressed the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). This, in turn, reduced the activities of the mitogen-activated protein kinase (MAPK) p38 and the kinase MK2, resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX and enhanced SPM biosynthesis. In a zymosan-induced peritonitis model, an inflammatory setting in which macrophage MerTK activation promotes resolution, inhibition of ERK activation delayed resolution, which was characterized by an increased number of neutrophils and decreased amounts of SPMs in tissue exudates. These findings contribute to our understanding of how MerTK signaling induces 5-LOX-derived SPM biosynthesis and suggest a therapeutic strategy to boost inflammation resolution in settings where defective resolution promotes disease progression.
Collapse
Affiliation(s)
- Bishuang Cai
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| | - Canan Kasikara
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Amanda C Doran
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | | | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Ira Tabas
- Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
81
|
Affiliation(s)
- Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
82
|
Lacy M, Atzler D, Liu R, de Winther M, Weber C, Lutgens E. Interactions between dyslipidemia and the immune system and their relevance as putative therapeutic targets in atherosclerosis. Pharmacol Ther 2018; 193:50-62. [PMID: 30149100 DOI: 10.1016/j.pharmthera.2018.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of death worldwide with atherosclerosis being the major underlying pathology. The interplay between lipids and immune cells is believed to be a driving force in the chronic inflammation of the arterial wall during atherogenesis. Atherosclerosis is initiated as lipid particles accumulate and become trapped in vessel walls. The subsequent immune response, involving both adaptive and immune cells, progresses plaque development, which may be exacerbated under dyslipidemic conditions. Broad evidence, especially from animal models, clearly demonstrates the effect of lipids on immune cells from their development in the bone marrow to their phenotypic switching in circulation. Interestingly, recent research has also shown a long-lasting epigenetic signature from lipids on immune cells. Traditionally, cardiovascular therapies have approached atherosclerosis through lipid-lowering medications because, until recently, anti-inflammatory therapies have been largely unsuccessful in clinical trials. However, the recent Canakinumab Antiinflammatory Thrombosis Outcomes Study (CANTOS) provided pivotal support of the inflammatory hypothesis of atherosclerosis in man spurring on anti-inflammatory strategies to treat atherosclerosis. In this review, we describe the interactions between lipids and immune cells along with their specific outcomes as well as discuss their future perspective as potential cardiovascular targets.
Collapse
Affiliation(s)
- Michael Lacy
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Rongqi Liu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Menno de Winther
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
83
|
Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest 2018; 128:2713-2723. [PMID: 30108191 PMCID: PMC6025992 DOI: 10.1172/jci97950] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-resolving inflammation drives the development of clinically dangerous atherosclerotic lesions by promoting sustained plaque inflammation, large necrotic cores, thin fibrous caps, and thrombosis. Resolution of inflammation is not merely a passive return to homeostasis, but rather an active process mediated by specific molecules, including fatty acid-derived specialized pro-resolving mediators (SPMs). In advanced atherosclerosis, there is an imbalance between levels of SPMs and proinflammatory lipid mediators, which results in sustained leukocyte influx into lesions, inflammatory macrophage polarization, and impaired efferocytosis. In animal models of advanced atherosclerosis, restoration of SPMs limits plaque progression by suppressing inflammation, enhancing efferocytosis, and promoting an increase in collagen cap thickness. This Review discusses the roles of non-resolving inflammation in atherosclerosis and highlights the unique therapeutic potential of SPMs in blocking the progression of clinically dangerous plaques.
Collapse
Affiliation(s)
| | | | | | - Ira Tabas
- Department of Medicine
- Department of Physiology, and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
84
|
Affiliation(s)
| | - Alan Daugherty
- Graduate Center for Nutritional Sciences
- Saha Cardiovascular Research Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Lu
- Graduate Center for Nutritional Sciences
- Saha Cardiovascular Research Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
- Hong Lu, MD, PhD, Saha Cardiovascular Research Center , University of Kentucky, 741 South Limestone, BBSRB, Room 249, Lexington, KY 40536-0509, USA, Phone: +1 859 323 4639, Fax: +1 859 257 3235,
| |
Collapse
|
85
|
Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK, Liu YY, Qiu JP, Li DJ, Zhu XY. IL-33/ST2 axis affects the polarization and efferocytosis of decidual macrophages in early pregnancy. Am J Reprod Immunol 2018; 79:e12836. [PMID: 29500844 DOI: 10.1111/aji.12836] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
PROBLEM To explore whether IL-33/ST2 axis modulates the polarization and efferocytosis of decidual macrophages (dMφs). METHOD OF STUDY The phenotype characteristics of dMφs from both normal pregnant women and recurrent spontaneous abortion (RSA) patients were determined by real-time polymerase chain reaction (RT-PCR) and flow cytometry (FCM). Then, the efferocytosis and expression of IL-33 and its receptor (ST2) in dMφs were analyzed by FCM. Finally, the effects of sST2, a decoy receptor for IL-33 that inhibits the IL-33/ST2 signaling pathway, on the polarization and efferocytosis of dMφs and human macrophage cell line U937 were investigated. RESULTS Compared with normal pregnancy, dMφs from RSA patients presented a M1 phenotype with high secretion of IL-33, whereas the expression of ST2 decreased. However, dMφs from RSA patients possessed a more powerful efferocytosis ability to clear the apoptotic decidual stromal cells (DSCs) compared with dMφs from normal pregnancy patients. Treatment with recombinant human sST2 led to the up-regulation of M1 bias and efferocytosis ability of both normal dMφs and U937. CONCLUSION This study indicates that IL-33 secreted by dMφs promotes M2 bias at the feto-maternal interface, and as a result, RSA might attribute to the disturbance of IL-33/ST2 axis and the enhancement of efferocytosis of dMφs subsequently.
Collapse
Affiliation(s)
- Yan-Ran Sheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Chun-Yan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling-Li Tang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Yin Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jian-Ping Qiu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|