51
|
Nakamura-Ishizu A, Morikawa S, Shimizu K, Ezaki T. Characterization of sinusoidal endothelial cells of the liver and bone marrow using an intravital lectin injection method. J Mol Histol 2008; 39:471-9. [PMID: 18751902 DOI: 10.1007/s10735-008-9186-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 07/17/2008] [Indexed: 12/17/2022]
Abstract
The vascular endothelia express a variety of structural and biological phenotypes. We used an intravital injection method of plant derived lectins (Lycopersicon esculentum lectin (LEL), Ricinus communis Agglutinin-I (RCA-I), Ulex europaeus Agglutinin-I (UEA-I) and Concanavalin A (ConA)) to elucidate the morphology and function of the sinusoidal endothelium of the liver and bone marrow. All four lectins stained the sinusoidal endothelia of the liver and bone marrow in a patchy granular pattern which differed from the uniform and smooth staining pattern of non-sinusoidal vessels in other organs. By transmission electron microscopy, the granular pattern was identified as internalization of these lectins and subsequent accumulation within the endothelial cells, suggesting their active endocytosis. The endocytosis of these lectins emphasizes the fact that sinusoidal endothelial cells of the liver and bone marrow belong to the reticuloendothelial system (RES), a cell system characterized by internalization of foreign material. We introduce this intravital lectin injection as a useful technique to discriminate sinusoidal endothelial of the liver and bone marrow from other vascular endothelia.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | | | | | | |
Collapse
|
52
|
Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol 2008; 507:1031-52. [PMID: 18092342 DOI: 10.1002/cne.21570] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.
Collapse
Affiliation(s)
- Richard L Benton
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
53
|
Orth RC, Bankson J, Price R, Jackson EF. Comparison of single- and dual-tracer pharmacokinetic modeling of dynamic contrast-enhanced MRI data using low, medium, and high molecular weight contrast agents. Magn Reson Med 2008; 58:705-16. [PMID: 17899608 DOI: 10.1002/mrm.21411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic parameters corresponding to perfused microvascular volume determined from dynamic contrast-enhanced (DCE) MRI data were compared to immunohistochemical measures of microvascular density (MVD) and perfused microvascular density. DCE MRI data from human mammary tumors (MDA-MB-435) implanted in nude mice using low (Gd-DTPA, MW approximately equal 0.6 kDa), medium (Gadomer-17, MW(eff) approximately equal 35 kDa), and high (PG-Gd-DTPA, MW approximately equal 220 kDa) molecular weight contrast agents were analyzed with single- and dual-tracer pharmacokinetic models. MVD values were determined by two manual counting methods, "hot spot" and summed region of interest (SROI). Pharmacokinetic parameters determined using the single-tracer model (Gd-DTPA [n = 15] and Gadomer-17 [n = 13]) did not correlate with MVD measures using either manual counting method. For dual-tracer studies (Gadomer-17/Gd-DTPA [n = 15] and PG-Gd-DTPA/Gd-DTPA [n = 13]), pharmacokinetic parameters demonstrated a statistically significant correlation with MVD determined by the SROI method, but not the "hot spot" method. Ten mice successfully underwent intravital FITC-labeled lectin perfusion with the hemisphere of highest lectin labeling correlating with pharmacokinetic parameter values in 9 of 10 tumors (single-tracer Gd-DTPA [n = 2], single-tracer Gadomer-17 [n = 3], and dual-tracer Gadomer-17/Gd-DTPA [n = 5]). This study demonstrates that dual-tracer DCE MRI studies yield pharmacokinetic parameters that correlate with immunohistochemical measures of MVD.
Collapse
Affiliation(s)
- Robert C Orth
- Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | |
Collapse
|
54
|
Dickie R, Bachoo RM, Rupnick MA, Dallabrida SM, Deloid GM, Lai J, Depinho RA, Rogers RA. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc Res 2006; 72:20-6. [PMID: 16806289 DOI: 10.1016/j.mvr.2006.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/07/2006] [Accepted: 05/02/2006] [Indexed: 11/22/2022]
Abstract
The three-dimensional architecture of the nascent microvascular network is a critical determinant of vascular perfusion in the setting of regenerative growth, vasculopathies and cancer. Current methods for microvessel visualization are limited by insufficient penetration and instability of endothelial immunolabels, inadequate vascular perfusion by the high-viscosity polymers used for vascular casting, and destruction of tissue stroma during the processing required for scanning electron microscopy. The aim of this study was to develop whole-mount tissue processing methods for 3D in situ visualization of the microvasculature that were also compatible with supplementary labeling for other structures of interest in the tissue microenvironment. Here, we present techniques that allow imaging of the microvasculature by confocal microscopy, to depths of up to 1500 mum below the specimen surface. Our approach includes labeling luminal surfaces of endothelial cells by i.v. injection of fluorescently conjugated lectin and filling the microvasculature with carbon or fluorescent nanoparticles/Mercox, followed by optical clearing of thick tissue sections to reduce light scatter and permit 3D visualization of microvessel morphology deep into the sample. Notably, tissue stroma is preserved, allowing simultaneous labeling of other structures by immunohistochemistry or nuclear dyes. Results are presented for various murine tissues including fat, muscle, heart and brain under conditions of normal health, as well as in the setting of a glioma model growing in the subcutaneous space or orthotopically in the brain parenchyma.
Collapse
Affiliation(s)
- R Dickie
- Biomedical Imaging Laboratory, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Rudisch A, Kremser C, Judmaier W, Zunterer H, DeVries AF. Dynamic contrast-enhanced magnetic resonance imaging: a non-invasive method to evaluate significant differences between malignant and normal tissue. Eur J Radiol 2005; 53:514-9. [PMID: 15741027 DOI: 10.1016/j.ejrad.2004.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 04/28/2004] [Accepted: 06/01/2004] [Indexed: 11/18/2022]
Abstract
PURPOSE An ever recurring challenge in diagnostic radiology is the differentiation between non-malignant and malignant tissue. Based on evidence that microcirculation of normal, non-malignant tissue differs from that of malignant tissue, the goal of this study was to assess the reliability of dynamic contrast-enhanced Magnetic Resonance Imaging (dcMRI) for differentiating these two entities. MATERIALS AND METHODS DcMRI data of rectum carcinoma and gluteus maximus muscles were acquired in 41 patients. Using an fast T1-mapping sequence on a 1.5-T whole body scanner, T1-maps were dynamically retrieved before, during and after constant rate i.v. infusion of a contrast medium (CM). On the basis of the acquired data sets, PI-values were calculated on a pixel-by-pixel basis. The relevance of spatial heterogeneities of microcirculation was investigated by relative frequency histograms of the PI-values. RESULTS A statistically significant difference between malignant and normal tissue was found for the mean PI-value (P < 0.001; 8.95 ml/min/100 g +/- 2.45 versus 3.56 ml/min/100 g +/- 1.20). Additionally relative frequency distributions of PI-values with equal class intervals of 2.5 ml/min/100 g revealed significant differences between the histograms of muscles and rectum carcinoma. CONCLUSION We could show that microcirculation differences between malignant and normal, non-malignant tissue can be reliably assessed by non-invasive dcMRI. Therefore, dcMRI holds great promise in the aid of cancer assessment, especially in patients where biopsy is contraindicated.
Collapse
Affiliation(s)
- Ansgar Rudisch
- Department of Radiology, University Hospital of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria, Europe
| | | | | | | | | |
Collapse
|
56
|
Ramsden JD, Buchanan MA, Egginton S, Watkinson JC, Mautner V, Eggo MC. Complete inhibition of goiter in mice requires combined gene therapy modification of angiopoietin, vascular endothelial growth factor, and fibroblast growth factor signaling. Endocrinology 2005; 146:2895-902. [PMID: 15817662 DOI: 10.1210/en.2005-0168] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In goiter, increased expression of growth factors and their receptors occurs. We have inhibited the action of some of these growth factors, alone and in combination, to determine which are important in goitrogenesis. Recombinant adenovirus vectors (RAds) expressing truncated, secreted forms of human Tie2 (RAd-sTie2) and vascular endothelial growth factor receptor 1 (RAd-sVEGFR1) or a truncated, dominant-negative fibroblast growth factor receptor 1 (RAdDN-FGFR1) were used. Goiters in mice were induced by feeding an iodide-deficient diet, containing methimazole and sodium perchlorate. RAds were administered to mice simultaneously with the goitrogenic regimen, which was continued for 14 d. RAd treatment did not significantly affect increases in TSH or reductions in thyroid hormone or thyroid hyperactivity seen in goitrogen-treated controls mice, suggesting no effect on pituitary or thyroid responses to hypothyroidism. In control goiters, a 4-fold increase in vascular volume accompanied a 2-fold increase in thyroid mass. Complete inhibition of these increases was found when animals were treated with the three RAds in combination. In thyroids from three RAd-treated animals, there was marked, significant inhibition of Tie2, FGFR1, VEGFR1, FGF-2, and VEGF expression, compared with control goiters. When used individually, RAdDN-FGFR1 partially prevented goiter and RAd-sVEGFR1 partially reduced vascular volume. Their effects were not additive. RAd-sTie2 did not reduce goiter mass or vascular volume when used alone but was essential for complete goiter inhibition. VEGF and VEGFR1 expression was reduced in these thyroids. Limitation of physiologic organ growth is complex, requiring inhibition of multiple, interdependent growth factor axes.
Collapse
Affiliation(s)
- James D Ramsden
- Division of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
57
|
Geng L, Osusky K, Konjeti S, Fu A, Hallahan D. Radiation-guided drug delivery to tumor blood vessels results in improved tumor growth delay. J Control Release 2005; 99:369-81. [PMID: 15451595 DOI: 10.1016/j.jconrel.2004.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 07/16/2004] [Indexed: 11/24/2022]
Abstract
Tumor blood vessels are biological targets for cancer therapy. In this study, a tumor vasculature targeting system that consisted of liposomes and lectin (WGA) was built. Liposomes were used to carry a number of liposome-friendly anti-tumoral agents along with WGA, a lectin which posseses a specific affinity for binding to inflamed endothelial cells. In order to target tumor vasculature, inflammation of endothelial cells was induced by radiation. Because ionizing radiation induces an inflammatory response in tumor vasculature, lectin-conjugates were utilized to determine whether radiation can be used to target drug delivery to tumor vessels. Wheat germ agglutinin (WGA) is one such lectin that binds to inflamed microvasculature. WGA was conjugated to liposomes containing cisplatin and administered to tumor bearing mice. Tumor growth delay was used to analyze the efficacy of cytotoxicity. FITC-conjugated WGA accumulated within irradiated tumor microvasculature. WGA was conjugated to liposomes and labeled with 111In. This demonstrated radiation-inducible tumor-selective binding. WGA-liposome-conjugates were loaded with Cisplatin and administered to mice bearing irradiated tumors. Tumors treated with a combination of liposome encapsulated cisplatin together with radiation showed a significant increase in tumor growth delay as compared to radiation alone. These findings demonstrate that ionizing radiation can be used to guide drug delivery to tumor microvasculature.
Collapse
Affiliation(s)
- Ling Geng
- Department of Radiation Oncology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
58
|
Wieser E, Strohmeyer D, Rogatsch H, Horninger W, Bartsch G, Debbage P. Access of tumor-derived macromolecules and cells to the blood: an electron microscopical study of structural barriers in microvessel clusters in highly malignant primary prostate carcinomas. Prostate 2005; 62:123-32. [PMID: 15389798 DOI: 10.1002/pros.20129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The neo-angiogenetic microvessels forming a major reactive stromal element in highly malignant prostate neoplasms may exhibit fine-structural features relevant to our understanding of the passage of macromolecules from tumor to blood, on the one hand, and of events facilitating the metastatic cascade, on the other hand. METHODS Ensuring rapid, optimal fixation in buffered glutaraldehyde was a foremost concern. Thin parings from radical prostatectomy specimens of Gleason scores (GS) 5-9 were taken from the tumor and from the contralateral side of the gland, glutaraldehyde-fixed, diced to smaller than 1 mm(3), postfixed in osmium tetroxide, embedded in Epon, ultrathin-sectioned, contrasted with lead and uranyl salts, and viewed in a transmission electron microscope. RESULTS In dysplastic tissue areas, intraductal microvessels located in gland ducts were occasionally observed, and found to be aggressively invasive and highly active in producing neo-angiogenetic sprouts. Closely spaced microvessel clusters contained almost exclusively neo-angiogenetic microvessels, which were in cell-cell contact with numerous ameboid migratory cells, some of which were likely to be tumor cells. In these microvessel clusters, all structural barriers hindering passage of tumor-derived molecules or cells to the blood were eliminated. CONCLUSION In microvessel clusters, the ultrastructural equivalent of microvascular hotspots, tumor invasion of microvessels is facilitated, but equally microvessels are observed invading the gland duct epithelial walls. This reciprocal invasivity of tumor cells and microvascular endothelial cells generates ideal conditions for tumor products and metastatic cells to enter the blood.
Collapse
Affiliation(s)
- Elisabeth Wieser
- Institute of Histology and Molecular Cell Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Magnetic resonance imaging (MRI) is widely applied for functional imaging of the microcirculation and for functional and structural studies of the microvasculature. The interest in the capabilities of MRI in noninvasively monitoring changes in vascular structure and function expanded over the past years, with specific efforts directed toward the development of novel imaging methods for quantification of angiogenesis. Molecular imaging approaches hold promise for further expansion of the ability to characterize the microvasculature. Exciting applications for MRI are emerging in the study of the biology of microvessels and in the evaluation of potential pharmaceutical modulators of vascular function and development, and preclinical MRI tools can serve for the design of mechanism-of-action-based noninvasive clinical methods for monitoring response to therapy. The aim of this review is to provide a current snapshot of recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
60
|
Lavigne AC, Carrière V, Amalric F, Girard JP, M’Rini C. Apports de la microscopie réaliséein situsur animal vivant dans l’étude du cancer. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002182217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
61
|
Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1363-80. [PMID: 10751361 PMCID: PMC1876882 DOI: 10.1016/s0002-9440(10)65006-7] [Citation(s) in RCA: 1148] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2-2 microm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 microm. Some branched cells were separated by intercellular openings (mean diameter 1.7 microm; range, 0.3-4.7 microm). Transcellular holes (mean diameter 0.6 microm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells.
Collapse
Affiliation(s)
- H Hashizume
- Cardiovascular Research Institute and Department of Anatomy, University of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | | | | | |
Collapse
|