51
|
|
52
|
Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for human pluripotent stem cells. Curr Pharm Des 2009; 15:2791-806. [PMID: 19689350 DOI: 10.2174/138161209788923804] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can self-renew indefinitely, while maintaining the capacity to differentiate into useful somatic cell types, including cardiomyocytes. As such, these stem cell types represent an essentially inexhaustible source of committed human cardiomyocytes of potential use in cell-based cardiac therapies, high-throughput screening and safety testing of new drugs, and modeling human heart development. These stem cell-derived cardiomyocytes have an unambiguous cardiac phenotype and proliferate robustly both in vitro and in vivo. Recent transplantation studies in preclinical models have provided exciting proof-of-principle for their use in infarct repair and in the formation of a "biological pacemaker". While these successes give reason for cautious optimism, major challenges remain to the successful application of hESCs (or hiPSCs) to cardiac repair, including the need for preparations of high cardiac purity, improved methods of delivery, and approaches to overcome immune rejection and other causes of graft cell death. In this review, we describe the phenotype of hESC- and hiPSC-derived cardiomyocytes, the state of preclinical transplantation studies with these cells, and potential approaches to overcome the aforementioned hurdles.
Collapse
Affiliation(s)
- Yuji Shiba
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | | | | |
Collapse
|
53
|
Montes R, Ligero G, Sanchez L, Catalina P, de la Cueva T, Nieto A, Melen GJ, Rubio R, García-Castro J, Bueno C, Menendez P. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res 2009; 19:698-709. [PMID: 19308090 DOI: 10.1038/cr.2009.35] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A paracrine regulation was recently proposed in human embryonic stem cells (hESCs) grown in mouse embryonic fibroblast (MEF)-conditioned media (MEF-CM), where hESCs spontaneously differentiate into autologous fibroblast-like cells to maintain culture homeostasis by producing TGF-beta and insulin-like growth factor-II (IGF-II) in response to basic fibroblast growth factor (bFGF). Although the importance of TGF-beta family members in the maintenance of pluripotency of hESCs is widely established, very little is known about the role of IGF-II. In order to ease hESC culture conditions and to reduce xenogenic components, we sought (i) to determine whether hESCs can be maintained stable and pluripotent using CM from human foreskin fibroblasts (HFFs) and human mesenchymal stem cells (hMSCs) rather than MEF-CM, and (ii) to analyze whether the cooperation of bFGF with TGF-beta and IGF-II to maintain hESCs in MEF-CM may be extrapolated to hESCs maintained in allogeneic mesenchymal stem cell (MSC)-CM and HFF-CM. We found that MSCs and HFFs express all FGF receptors (FGFR1-4) and specifically produce TGF-beta in response to bFGF. However, HFFs but not MSCs secrete IGF-II. Despite the absence of IGF-II in MSC-CM, hESC pluripotency and culture homeostasis were successfully maintained in MSC-CM for over 37 passages. Human ESCs derived on MSCs and hESCs maintained in MSC-CM retained hESC morphology, euploidy, expression of surface markers and transcription factors linked to pluripotency and displayed in vitro and in vivo multilineage developmental potential, suggesting that IGF-II may be dispensable for hESC pluripotency. In fact, IGF-II blocking had no effect on the homeostasis of hESC cultures maintained either on HFF-CM or on MSC-CM. These data indicate that hESCs are successfully maintained feeder-free with IGF-II-lacking MSC-CM, and that the previously proposed paracrine mechanism by which bFGF cooperates with TGF-beta and IGF-II in the maintenance of hESCs in MEF-CM may not be fully extrapolated to hESCs maintained in CM from human MSCs.
Collapse
Affiliation(s)
- Rosa Montes
- Andalusian Stem Cell Bank, Instituto de Investigación Biomédica, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Hum Reprod 2009; 24:2567-81. [DOI: 10.1093/humrep/dep232] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
55
|
Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 2009; 3:196-206. [PMID: 18682241 DOI: 10.1016/j.stem.2008.07.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 05/23/2008] [Accepted: 07/01/2008] [Indexed: 01/04/2023]
Abstract
Self-renewal of human embryonic stem cells (ESCs) is promoted by FGF and TGFbeta/Activin signaling, and differentiation is promoted by BMP signaling, but how these signals regulate genes critical to the maintenance of pluripotency has been unclear. Using a defined medium, we show here that both TGFbeta and FGF signals synergize to inhibit BMP signaling; sustain expression of pluripotency-associated genes such as NANOG, OCT4, and SOX2; and promote long-term undifferentiated proliferation of human ESCs. We also show that both TGFbeta- and BMP-responsive SMADs can bind with the NANOG proximal promoter. NANOG promoter activity is enhanced by TGFbeta/Activin and FGF signaling and is decreased by BMP signaling. Mutation of putative SMAD binding elements reduces NANOG promoter activity to basal levels and makes NANOG unresponsive to BMP and TGFbeta signaling. These results suggest that direct binding of TGFbeta/Activin-responsive SMADs to the NANOG promoter plays an essential role in sustaining human ESC self-renewal.
Collapse
Affiliation(s)
- Ren-He Xu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT 06030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Skottman H, Narkilahti S, Hovatta O. Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen Med 2009; 2:265-73. [PMID: 17511563 DOI: 10.2217/17460751.2.3.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Since the establishment of the first human embryonic stem cell (hESC) lines, several groups have described the derivation and culture of hESC lines in various culture conditions. In this review, we describe how hESC lines have been derived from the inner cell mass of blastocysts or morula-stage embryos and the culture conditions used. In order to be used for therapeutic purposes, the pluripotent hESC lines must be established and propagated according to good manufacturing practice quality requirements. In addition, any use of animal-derived components should be avoided to gain safer hESC lines for clinical purposes. Here, we will describe the development in derivation and chemically defined culturing conditions of hESC towards good manufacturing practice and discuss the future challenges for hESCs in clinical use. Similarly, we discuss the challenges and future directions in optimization of standard culture conditions of hESCs for research purposes.
Collapse
Affiliation(s)
- Heli Skottman
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, 33520 Tampere, Finland.
| | | | | |
Collapse
|
57
|
Embryonic stem cells: isolation, characterization and culture. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:173-84. [PMID: 19495683 DOI: 10.1007/10_2008_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.
Collapse
|
58
|
Su Z, Frye C, Bae KM, Kelley V, Vieweg J. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 2008; 14:6207-17. [PMID: 18829500 DOI: 10.1158/1078-0432.ccr-08-0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective of this study was to develop a scalable and broadly applicable active immunotherapy approach against cancer, circumventing the limitations typically encountered with autologous vaccination strategies. We hypothesized that human embryonic stem cells (hESC) can serve as a virtually unlimited source for generating dendritic cells (DC) with potent antigen-presenting function. Here, we investigated the developmental processes and requirements for generating large numbers of mature, antigen-presenting DC from pluripotent hESC. EXPERIMENTAL DESIGN A feeder cell-free culture system was developed to differentiate hESC into mature DC sequentially through hematopoietic and myeloid precursor stages. RESULTS Using this method, we were able to yield large numbers of mature immunostimulatory DC from hESC to enable clinical investigation. Upon activation, the hESC-derived DC secreted interleukin-12p70, migrated in response to MIP-3beta, and exhibited allostimulatory capacity. Most importantly, antigen-loaded, hESC-derived DC were capable of stimulating potent antigen-specific CD8(+) T-cell responses in an HLA class I-matched semiallogeneic assay system. Moreover, HLA class II-mismatched hESC-derived DC induced a potent Th1-type cytokine response without expanding FOXP3(+) regulatory T cells in vitro. CONCLUSIONS These data suggest the development of a novel active immunotherapy platform to stimulate potent T-cell immunity in patients with intractable diseases, such as cancer or viral infection.
Collapse
Affiliation(s)
- Zhen Su
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
59
|
Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008; 17:725-36. [PMID: 18788932 DOI: 10.1089/scd.2007.0230] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal, and differentiation into a variety of cell types. They thus represent an attractive source of material for cell therapy. However, little is known about the mechanisms underlying the proliferation of BMMSCs. The purpose of this study was to identify the factors and signaling pathways involved in the proliferation of stem cell antigen-1(+) (Sca-1(+)) BMMSCs. Among the cytokines and growth factors examined in this study, fibroblast growth factor-2 (FGF-2) and FGF-4 significantly stimulated the proliferation of Sca-1(+) BMMSCs, as determined by bromodeoxyuridine incorporation. PI3K-Akt, ERK1/2, and JAK/STAT3 pathways were investigated after stimulation with FGF-2 or FGF-4 via Western blot analysis. No changes were observed in the total ERK1/2 and Akt; however, the pERK1/2 and pAkt levels were upregulated early within 15 min in the FGF-2- or FGF-4-treated Sca-1(+) BMMSCs. Moreover, the pERK1/2 and pAkt upregulation induced by FGF-2 and -4 were completely abolished by treatment with the MEK1/2 inhibitor, U0126 and the PI3K inhibitor, LY294002. However, no change in pJAK2 or total JAK2 levels was observed in the Sca-1(+) BMMSCs induced by FGF-2 or FGF-4. As a consequence of PI3K-Akt and ERK1/2, the upregulation of c-Jun in the Sca-1(+) BMMSCs, after stimulation with FGF-2 or FGF-4, was observed after 12 and 24 h. Moreover, the activation of c-Jun in FGF-2- and FGF-4-treated Sca-1(+) BMMSCs was significantly reduced by U0126. Taken together, these data suggest that FGF-2 and -4 promote the proliferation of Sca-1(+) BMMSCs by activation of the ERK1/2 and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
60
|
Bendall SC, Hughes C, Campbell JL, Stewart MH, Pittock P, Liu S, Bonneil E, Thibault P, Bhatia M, Lajoie GA. An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics 2008; 8:421-32. [PMID: 18936058 DOI: 10.1074/mcp.m800190-mcp200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The derivation and long-term maintenance of human embryonic stem cells (hESCs) has been established in culture formats that are both dependent and independent of support (feeder) cells. However, the factors responsible for preserving the viability of hESCs in a nascent state remain unknown. We describe a mass spectrometry-based method for probing the secretome of the hESC culture microenvironment to identify potential regulating protein factors that are in low abundance. Individual samples were analyzed several times, using successive mass (m/z) and retention time-directed exclusion, without sampling the same peptide ion twice. This iterative exclusion -mass spectrometry (IE-MS) approach more than doubled protein and peptide metrics in comparison to a simple repeat analysis method on the same instrument, even after extensive sample pre-fractionation. Furthermore, implementation of the IE-MS approach was shown to enhance the performance of an older quadrupole time of flight (Q-ToF) MS. The resulting number of identified peptides approached that of a parallel repeat analysis on a newer LTQ-Orbitrap MS. The combination of the results of both instruments proved to be superior to that achieved by a single instrument in the identification of additional proteins. Using the IE-MS strategy, combined with complementary gel- and solution-based fractionation methods, the hESC culture microenvironment was extensively probed. Over 10 to 12 times more extracellular proteins were observed compared with previously published surveys. The detection of previously undetectable growth factors, present at concentrations ranging from 10(-9) to 10(-11) g/ml, highlights the depth of our profiling. The IE-MS approach provides a simple and reliable technique that greatly enhances instrument performance by increasing the effective depth of MS-based proteomic profiling. This approach should be widely applicable to any LC-MS/MS instrument platform or biological system.
Collapse
Affiliation(s)
- Sean C Bendall
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cerdan C, Hong SH, Bhatia M. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.2. [PMID: 18770624 DOI: 10.1002/9780470151808.sc01d02s3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.
Collapse
|
62
|
Innovation in the culture and derivation of pluripotent human stem cells. Curr Opin Biotechnol 2008; 19:527-33. [PMID: 18760357 DOI: 10.1016/j.copbio.2008.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/24/2008] [Accepted: 08/01/2008] [Indexed: 12/17/2022]
Abstract
In recent years, substantial progress has been made in identifying culture conditions and specific molecular factors that maintain human embryonic stem cells (hESCs) in a self-renewing, pluripotent state. As science and medicine move closer to producing viable hESC-based therapeutics, effective methods of isolating and maintaining undifferentiated hESCs using clinically acceptable good manufacturing practices must be developed. In recent years, progress toward this goal has included the identification of molecular factors that induce or repress hESC self-renewal and the development of defined media that support long-term hESC expansion. In addition, the recent discovery of novel means to derive pluripotent cells that avoid embryo destruction, including induced pluripotent stem (iPS cells), may mitigate ethical concerns associated with the use of hESCs.
Collapse
|
63
|
Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 2008; 7:1587-97. [PMID: 18487603 PMCID: PMC2556023 DOI: 10.1074/mcp.m800113-mcp200] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/06/2008] [Indexed: 11/06/2022] Open
Abstract
Recent studies using stable isotope labeling with amino acids in culture (SILAC) in quantitative proteomics have made mention of the problematic conversion of isotope-coded arginine to proline in cells. The resulting converted proline peptide divides the heavy peptide ion signal causing inaccuracy when compared with the light peptide ion signal. This is of particular concern as it can effect up to half of all peptides in a proteomic experiment. Strategies to both compensate for and limit the inadvertent conversion have been demonstrated, but none have been shown to prevent it. Additionally, these methods combined with SILAC labeling in general have proven problematic in their large scale application to sensitive cell types including embryonic stem cells (ESCs) from the mouse and human. Here, we show that by providing as little as 200 mg/liter L-proline in SILAC media, the conversion of arginine to proline can be rendered completely undetectable. At the same time, there was no compromise in labeling with isotope-coded arginine, indicating there is no observable back conversion from the proline supplement. As a result, when supplemented with proline, correct interpretation of "light" and "heavy" peptide ratios could be achieved even in the worst cases of conversion. By extending these principles to ESC culture protocols and reagents we were able to routinely SILAC label both mouse and human ESCs in the absence of feeder cells and without compromising the pluripotent phenotype. This study provides the simplest protocol to prevent proline artifacts in SILAC labeling experiments with arginine. Moreover, it presents a robust, feeder cell-free, protocol for performing SILAC experiments on ESCs from both the mouse and the human.
Collapse
Affiliation(s)
- Sean C Bendall
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.
Collapse
|
65
|
Cortes JL, Sánchez L, Catalina P, Cobo F, Bueno C, Martínez-Ramirez A, Barroso A, Cabrera C, Ligero G, Montes R, Rubio R, Nieto A, Menendez P. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Stem Cells Dev 2008; 17:255-67. [PMID: 18447641 DOI: 10.1089/scd.2007.0157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The optimization of human embryonic stem (hES) cell line derivation methods is challenging because many worldwide laboratories have neither access to spare human embryos nor ethical approval for using supernumerary human embryos for hES cell derivation purposes. Additionally, studies performed directly on human embryos imply a waste of precious human biological material. In this study, we developed a new strategy based on the combination of whole-blastocyst culture followed by laser drilling destruction of the trophoectoderm for improving the efficiency of inner cell mass (ICM) isolation and ES cell derivation using murine embryos. Embryos were divided into good- and poor-quality embryos. We demonstrate that the efficiency of both ICM isolation and ES cell derivation using this strategy is significantly superior to whole-blastocyst culture or laser drilling technology itself. Regardless of the ICM isolation method, the ES cell establishment depends on a feeder cell growth surface. Importantly, this combined methodology can be successfully applied to poor-quality blastocysts that otherwise would not be suitable for laser drilling itself nor immunosurgery in an attempt to derive ES cell lines due to the inability to distinguish the ICM. The ES cell lines derived by this combined method were characterized and shown to maintain a typical morphology, undifferentiated phenotype, and in vitro and in vivo three germ layer differentiation potential. Finally, all ES cell lines established using either technology acquired an aneuploid karyotype after extended culture periods, suggesting that the method used for ES cell derivation does not seem to influence the karyotype of the ES cells after extended culture. This methodology may open up new avenues for further improvements for the derivation of hES cells, the majority of which are derived from frozen, poor-quality human embryos.
Collapse
Affiliation(s)
- J L Cortes
- Spanish Stem Cell Bank (Andalusian Branch), University of Granada, Instituto de Investigaciones Biomédicas, Parque Tecnológico de la Salud, Avda del Conocimiento s/n, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood 2008; 112:2730-7. [PMID: 18621931 DOI: 10.1182/blood-2008-01-133801] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34(+) cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34(+) cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34(+) cells also did not produce B cells in vitro. In contrast, CD34(+) cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor-induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs.
Collapse
|
67
|
Cobo F, Navarro JM, Herrera MI, Vivo A, Porcel D, Hernández C, Jurado M, García-Castro J, Menendez P. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: toward an implementation of microbiological quality assurance program in stem cell banks. CLONING AND STEM CELLS 2008; 10:65-74. [PMID: 18241120 DOI: 10.1089/clo.2007.0020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human embryonic stem cells (hESCs) are expected to open up new avenues in regenerative medicine by allowing the generation of transplantable cells to be used in future cell replacement therapies. Maintenance of hESCs in the presence of xenogenic compounds is likely to prevent their use in future therapeutic applications in humans. Recently, it has been claimed that human foreskin-derived human embryonic fibroblast (HEFs) and human adult marrow cells have the ability to support prolonged expansion of hESCs in culture similar to murine feeders. Here, to minimize the use of xenogenic components for hESC maintenance, we performed transmission electron microscopy-based microbiological studies in an attempt to implement a microbiological Quality Assurance Program in Stem Cell Banks by determining the potential presence of viral particles in MEFs compared with human HEFs and bone marrow-derived mesenchymal cells. We observed in three out of nine MEF samples (33.3%) viruses belonging to the Retroviridae family. Within the Retroviridae family, these viruses have a C morphology, which indicates they belong to the subfamily Orthoretroviridae. In contrast, no viral particles could be observed in either the HEF samples (n = 5) or the human BM-derived mesenchymal cells (n = 9) analyzed. Based on these experimental microbiological data, we recommend the implementation of microbiological Quality Assurance Programs by means of transmission electron microscopy as a routine technique to assess the potential presence of viral particles in any feeder cell used in stem cell banks and support the use of human cells rather than murine cells as feeders to maintain hESC cultures in an undifferentiated state.
Collapse
Affiliation(s)
- Fernando Cobo
- Stem Cell Bank of Andalucía (Spanish Central Node), Centro de Investigaciones Biomédicas, Parque Tecnológico de las Ciencias de la Salud, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med (Berl) 2008; 86:875-86. [PMID: 18521556 DOI: 10.1007/s00109-008-0356-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/17/2008] [Accepted: 03/31/2008] [Indexed: 02/08/2023]
Abstract
The factors and signaling pathways controlling pluripotent human cell properties, both embryonic and induced, have not been fully investigated. Failure to account for functional heterogeneity within human embryonic stem cell (hESC) cultures has led to inconclusive results in previous work examining extrinsic influences governing hESC fate (self renewal vs. differentiation vs. death). Here, we attempt to reconcile these inconsistencies with recent reports demonstrating that an autologously produced in vitro niche regulates hESCs. Moreover, we focus on the reciprocal paracrine signals within the in vitro hESC niche allowing for the maintenance and/or expansion of the hESC colony-initiating cell (CIC). Based on this, it is clear that separation of hESC-CICs, apart from their differentiated derivatives, will be essential in future studies involving their molecular regulation. Understanding how extrinsic factors control hESC self-renewal and differentiation will allow us to culture and differentiate these pluripotent cells with higher efficiency. This knowledge will be essential for clinical applications using human pluripotent cells in regenerative medicine.
Collapse
|
69
|
McGuckin CP, Forraz N. Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 2008; 41 Suppl 1:31-40. [PMID: 18181943 DOI: 10.1111/j.1365-2184.2008.00490.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
All too often media attention clouds the reality that there are many types of stem cell. The embryos, bone marrow and umbilical cord blood (UCB) are the three most used sources. However, despite what it would appear, embryonic stem cells have not been the first to yield life-saving cures at present. Faster routes to clinical intervention have been using adult stem cells that can be sourced from bone marrow and from cord blood, and that are readily accessible and are more ethically acceptable to the general public. Both these non-embryonic sources have been able to provide sufficient numbers of cells to allow development of clinical translational protocols. Bone marrow-derived cells have been used successfully in myocardial infarct therapy where relining by endothelial tissue has allowed limited reperfusion to damaged cardiac tissue. UCB have also demonstrated significant success for around 20 years in haematotransplantation. With a global human population in excess of 6 billion, births thus UCB, remain the largest untouched source of stem cells available every year. UCB also provide a distinct advantage over other adult stem cells due to the length of the telomere and also due protected immunological status of the developing neonatal environment. The total mutation load in the UCB populations is clearly likely to be significant less than in adult tissues.
Collapse
Affiliation(s)
- C P McGuckin
- Newcastle Centre for Cord Blood, Stem Cell Institute, Medical School, Newcastle upon Tyne, UK.
| | | |
Collapse
|
70
|
TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J 2008; 94:4123-33. [PMID: 18234825 DOI: 10.1529/biophysj.107.119891] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclic biaxial mechanical strain has been reported to inhibit human embryonic stem cell differentiation without selecting against survival of differentiated or undifferentiated cells. We show that TGFbeta/Activin/Nodal signaling plays a crucial role in repression of human embryonic stem cell (hESC) differentiation under mechanical strain. Strain-induced transcription of TGFbeta1, Activin A, and Nodal, and upregulated Similar to Mothers Against Decapentaplegic homolog (Smad)2/3 phosphorylation in undifferentiated hESC. TGFbeta/Activin/Nodal receptor inhibitor SB431542 stimulated differentiation of hESCs cultured under biaxial strain. Exogenous addition of TGFbeta1, Activin A, or Nodal alone was insufficient to stimulate hESC self-renewal to replicate behavior of hESCs in presence of strain. However, exogenous TGFbeta1 and Activin A in combination partially replicated the self-renewing phenotype induced by strain but when combined with strain did not further stimulate self-renewal. In presence of mechanical strain, addition of a neutralizing antibody to TGFbeta1 promoted hESC differentiation whereas inhibition of Activin A by Follistatin promoted hESC differentiation to a lesser extent. Together, these findings show that TGFbeta superfamily activation of Smad2/3 is required for repression of spontaneous differentiation under strain and suggest that strain may induce autocrine or paracrine signaling through TGFbeta superfamily ligands.
Collapse
|
71
|
Adler R. Curing blindness with stem cells: hope, reality, and challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:3-20. [PMID: 18188924 DOI: 10.1007/978-0-387-74904-4_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruben Adler
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
72
|
Nakamura Y. In vitro Production of Transfusable Red Blood Cells. Biotechnol Genet Eng Rev 2008; 25:187-201. [DOI: 10.5661/bger-25-187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res 2007; 331:57-66. [PMID: 17987317 DOI: 10.1007/s00441-007-0530-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/19/2007] [Indexed: 12/19/2022]
Abstract
The identification and characterization of stem cells for various tissues has led to a greater understanding of development, tissue maintenance, and cancer pathology. Stem cells possess the ability to divide throughout their life and to produce differentiated daughter cells while maintaining a population of undifferentiated cells that remain in the stem cell niche and that retain stem cell identity. Many cancers also have small populations of cells with stem cell characteristics. These cells have been called cancer stem cells and are a likely cause of relapse in cancer patients. Understanding the biology of stem cells and cancer stem cells offers great promise in the fields of regenerative medicine and cancer treatment. microRNAs (miRNAs) are emerging as important regulators of post-transcriptional gene expression and are considered crucial for proper stem cell maintenance and function. miRNAs have also been strongly implicated in the development and pathology of cancer. In this review, we discuss the characteristics of various stem cell types, including cancer stem cells, and the importance of miRNAs therein.
Collapse
Affiliation(s)
- Steven Hatfield
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
74
|
Ludwig T, A Thomson J. Defined, feeder-independent medium for human embryonic stem cell culture. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2007; Chapter 1:Unit 1C.2. [PMID: 18785163 DOI: 10.1002/9780470151808.sc01c02s2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The developmental potential of human ES cells makes them an important tool in developmental, pharmacological, and clinical research. For human ES cell technology to be fully exploited, however, culture efficiency must be improved, large-scale culture enabled, and safety ensured. Traditional human ES cell culture systems have relied on serum products and mouse feeder layers, which limit the scale, present biological variability, and expose the cells to potential contaminants. Defined, feeder-independent culture systems improve the safety and efficiency of ES cell technology, enabling translational research. The protocols herein are designed with the standard research laboratory in mind. They contain recipes for the formulation of mTeSR (a defined medium for human ES cell culture) and detailed protocols for the culture, transfer, and passage of cells grown in these feeder-independent conditions. They provide a basis for routine feeder-independent culture, and a starting point for additional optimization of culture conditions.
Collapse
|
75
|
Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bossé M, Lajoie G, Bhatia M. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007; 448:1015-21. [PMID: 17625568 DOI: 10.1038/nature06027] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/18/2007] [Indexed: 02/08/2023]
Abstract
Distinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence. IGF 1 receptor (IGF1R) expression was exclusive to the human ES cells, whereas FGF receptor 1 (FGFR1) expression was restricted to surrounding hdFs. Blocking the IGF-II/IGF1R pathway reduced survival and clonogenicity of human ES cells, whereas inhibition of the FGF pathway indirectly caused differentiation. IGF-II is expressed by hdFs in response to FGF, and alone was sufficient in maintaining human ES cell cultures. Our study demonstrates a direct role of the IGF-II/IGF1R axis on human ES cell physiology and establishes that hdFs produced by human ES cells themselves define the stem cell niche of pluripotent human stem cells.
Collapse
Affiliation(s)
- Sean C Bendall
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, and Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Bendall SC, Booy AT, Lajoie G. Proteomic analysis of pluripotent stem cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2007; Chapter 1:Unit 1B.1. [PMID: 18785159 DOI: 10.1002/9780470151808.sc01b01s2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS)-based proteomics has become one of the most powerful tools for identifying expressed proteins, providing quick insights into molecular and cellular biology. Traditionally, proteins isolated by either one- or two-dimensional gel electrophoresis are digested with a site specific protease. The resulting peptides are subject to one of two forms of analysis: (1) matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, where a "mass fingerprint" of all the peptides in a sample is generated, or (2) electrospray ionization tandem MS (ESI-MS/MS), where a mass fragmentation spectra is generated for each peptide in a sample. The resulting mass information is then compared to that of a theoretical database created with available genomic sequence information. This unit provides protocols for this type of assessment in embryonic stem cells (ESCs).
Collapse
|
77
|
Abstract
Among the major obstacles impeding successful derivation and continuous culture of human embryonic stem cells (hESC) for therapeutic purposes, are the presence of feeder cells and feeder-conditioned media of animal origin. The risk of contamination with xenopathogens makes hESC cultured in this way unsafe for future use in regenerative medicine. A holy grail for investigators in the field will be to establish and maintain new hESC lines in completely feeder-free and serum-free defined conditions. Recently, propagation of hESC has become possible, using mammalian- or human-derived extracellular matrix (ECM) and conditioned medium from feeder cells. In addition, providing a three-dimensional ECM environment can even support the derivation of new hESC. In this review, we examine recent advances in the use and development of substrates suitable for the derivation and maintenance of hESC, and our current understanding of the effects of a three-dimensional ECM milieu on cellular behavior.
Collapse
Affiliation(s)
- Dusko Ilic
- StemLifeLine Inc., San Carlos, CA 94070, USA.
| |
Collapse
|
78
|
Establishment and characterization of two new human embryonic stem cell lines, SYSU-1 and SYSU-2. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200704010-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
79
|
Menendez P, Bueno C, Wang L. Human embryonic stem cells: A journey beyond cell replacement therapies. Cytotherapy 2007; 8:530-41. [PMID: 17148029 DOI: 10.1080/14653240601026654] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Success in the derivation of human embryonic stem cell (hESC) lines has opened up a new area of research in biomedicine. Human ESC not only raise hope for cell replacement therapies but also provide a potential novel system to better understand early human normal development, model human abnormal development and disease, and perform drug-screening and toxicity studies. The realization of these potentials, however, depends on expanding our knowledge about the cellular and molecular mechanisms that regulate self-renewal and lineage specification. Here, we briefly highlight the potential applications of hESC and review how flow cytometry has contributed to the initial characterization of both undifferentiated hESC cultures and hematopoietic development arising from hESC. We envision that a combination of state-of-the-art technologies, including cytomics, proteomics and genomics, will be instrumental in moving the field forward, ultimately lending invaluable knowledge to research areas such as human embryology, oncology and immunology.
Collapse
Affiliation(s)
- P Menendez
- Section of Hemato-Oncology, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|
80
|
Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007; 75:299-307. [PMID: 17286604 DOI: 10.1111/j.1432-0436.2006.00143.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MEK/ERK signaling plays a crucial role in a diverse set of cellular functions including cell proliferation, differentiation and survival, and recently has been reported to negatively regulate mouse embryonic stem cell (mESC) self-renewal by antagonizing STAT3 activity. However, its role in human ESCs (hESCs) remains unclear. Here we investigated the functions of MEK/ERK in controlling hESC activity. We demonstrated that MEK/ERK kinases were targets of fibroblast growth factor (FGF) pathway in hESCs. Surprisingly, we found that, in contrast to mESCs, high basal MEK/ERK activity was required for maintaining hESCs in an undifferentiated state. Inhibition of MEK/ERK activity by specific MEK inhibitors PD98059 and U0126, or by RNA interference, rapidly caused the loss of self-renewal capacity. We also showed that MEK/ERK signaling cooperated with phosphoinositide 3-kinase (PI3K)/AKT signaling in maintaining hESC pluripotency. However, MEK/ERK signaling had little or no effect on regulating hESC proliferation and survival, in contrast to PI3K/AKT signaling. Taken together, these findings reveal the unique and crucial role of MEK/ERK signaling in the determination of hESC cell fate and expand our understanding of the molecular mechanisms behind the FGF pathway maintenance of hESC pluripotency. Importantly, these data make evident the striking differences in the control of self-renewal between hESCs and mESCs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Vallier L, Pedersen RA. Human embryonic stem cells: an in vitro model to study mechanisms controlling pluripotency in early mammalian development. ACTA ACUST UNITED AC 2007; 1:119-30. [PMID: 17142846 DOI: 10.1385/scr:1:2:119] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The property of pluripotency confers the capacity for differentiation into a large number of cell types including extra-embryonic, somatic and germinal cells. During normal development, pluripotency is acquired by the cells of the early embryo, which shortly thereafter undergo differentiation, whereas embryonic stem cells (ESCs) uniquely maintain pluripotency while undergoing extensive in vitro proliferation. Studies using ESCs have begun to unravel the network of cytokines and transcription factors responsible for their maintenance of pluripotency. Surprisingly, mouse and human ESCs display significant differences in such mechanisms despite their similar embryonic origins. In this review, we compare the properties of pluripotent embryonic cells with those of ESCs to establish a general model for the mechanisms maintaining pluripotency. We first consider whether mouse and human ESCs represent comparable stages of early embryonic development. We then describe how human embryoid body (EB) differentiation could be used as a model of embryonic development. Finally, to concretely illustrate the discussion, we discuss our recent results concerning Nodal function in controlling cell fate at early stages of human EB development. With the new perspective of these findings, we suggest a previously unrecognized role of TGF-beta pathway signaling in maintaining pluripotency at early stages of mammalian embryonic development.
Collapse
Affiliation(s)
- Ludovic Vallier
- Department of Surgery and Cambride Institute for Medical Research Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
82
|
Cai L, Ye Z, Zhou BY, Mali P, Zhou C, Cheng L. Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res 2007; 17:62-72. [PMID: 17211448 DOI: 10.1038/sj.cr.7310138] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously showed that Wnt3a could stimulate human embryonic stem (hES) cell proliferation and affect cell fate determination. In the absence of feeder cell-derived factors, hES cells cultured under a feeder-free condition survived and proliferated poorly. Adding recombinant Wnt3a in the absence of feeder cell derived-factors stimulated hES cell proliferation but also differentiation. In the present study, we further extended our analysis to other Wnt ligands such as Wnt1 and Wnt5a. While Wnt1 displayed a similar effect on hES cells as Wnt3a, Wnt5a had little effect in this system. Wnt3a and Wnt1 enhanced proliferation of undifferentiated hES cells when feeder-derived self-renewal factors and bFGF are also present. To explore the possibility to promote the proliferation of undifferentiated hES cells by activating the Wnt signaling, we overexpressed Wnt3a or Wnt1 gene in immortalized human adult fibroblast (HAFi) cells that are superior in supporting long-term growth of undifferentiated hES cells than primary mouse embryonic fibroblasts. HAFi cells with or without a Wnt transgene can be propagated indefinitely. Over-expression of the Wnt3a gene significantly enhanced the ability of HAFi feeder cells to support the undifferentiated growth of 3 different hES cell lines we tested. Co-expression of three commonly-used drug selection genes in Wnt3a-overpressing HAFi cells further enabled us to select rare hES clones after stable transfection or transduction. These immortalized engineered feeder cells (W3R) that co-express growth-promoting genes such as Wnt3a and three drug selection genes should empower us to efficiently make genetic modified hES cell lines for basic and translational research.
Collapse
Affiliation(s)
- Liuhong Cai
- Institute for Cell Engineering, Department of Gynecology & Obstetrics, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Human embryonic stem cells (HESCs) are characterized by their ability to self-renew and capacity to differentiate into almost every cell type. As a result, they have enormous potential for use in tissue engineering and transplantation therapy. If these cells can be induced to differentiate into a particular cell type, they may provide an almost unlimited source of cells for transplantation for treating certain diseases where normal cell function is impaired. The challenge lies in the development of techniques to induce differentiation into a specific cell type, to enrich for that population, and to isolate it. It is essential that the starting material, the undifferentiated embryonic stem cell line, is growing under optimal conditions that preserve its pluripotent potential and maintain a stable karyotype. This review will discuss methods for the growth, maintenance, and spontaneous differentiation of HESCs and methods to genetically manipulate them.
Collapse
|
84
|
Abstract
AbstractThe most common human cell-based therapy applied today is hematopoietic stem cell (HSC) transplantation. HSCs can be defined by two essential properties: self-renewal and multilineage hematopoietic differentiation. These combined HSC properties allow them to differentiate into all blood cell types (multilineage) in a sustained manner for the lifetime of the animal, which requires their ability to make cellular copies of themselves (self-renewal). These features can be tested by transplantation from donor to recipient and provide a functional basis to define and identify HSCs. Currently, human bone marrow (BM), mobilized peripheral blood, and umbilical cord blood (CB) represent the major sources of transplantable HSCs, but their availability for use is limited by both quantity and compatibility. Although increasing evidence suggests that somatic HSCs can be expanded to meet current needs, their in vivo potential is concomitantly compromised after ex vivo culture. Pluripotent human embryonic stem cells (hESCs) may provide an alternative. hESCs possess indefinite proliferative capacity in vitro, and have been shown to differentiate into the hematopoietic cell fate, giving rise to erythroid, myeloid, and lymphoid lineages using a variety of differentiation procedures. In most cases, hESC-derived hematopoietic cells show similar clonogenic progenitor capacity and primitive phenotype to somatic sources of hematopoietic progenitors, but possess limited in vivo repopulating capacity when transplanted into immunodeficient mice. Although this suggests HSC function can be derived from hESCs, the efficiency and quality of these cells must be characterized using surrogate models for potential clinical applications.
Collapse
|
85
|
Cerdan C, Bendall SC, Wang L, Stewart M, Werbowetski T, Bhatia M. Complement targeting of nonhuman sialic acid does not mediate cell death of human embryonic stem cells. Nat Med 2006; 12:1113-4; author reply 1115. [PMID: 17024197 DOI: 10.1038/nm1006-1113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
86
|
Abstract
Organ and tissue dysfunction which is readily observable during aging results from a loss of cellular homeostasis and reduced stem cell self-renewal. Over the past 10 years, studies have been aimed at delineating growth factors that will sustain and promote the self-renewal potential of stem cells and support the expansion of primitive stem cells in vitro and in vivo. Recently, strong evidence is emerging indicating that fibroblast growth factors (FGFs) play a crucial role in stem cell maintenance. FGFs belong to a family of polypeptide growth factors that are involved in multiple functions including cell proliferation, differentiation, survival and motility. In this review, we discuss the regulatory role of FGFs on hematopoietic stem cells (HSCs), neural stem cells (NSCs) and embryonic stem (ES) cells in maintaining stem cell self-renewal. These findings are useful and important to further our knowledge in stem cell biology and for therapeutic approaches.
Collapse
Affiliation(s)
- Joyce S G Yeoh
- Department of Cell Biology, Section Stem Cell Biology, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | |
Collapse
|
87
|
Abstract
Human embryonic stem cell (hESC) lines have been derived and cultured in variable conditions. The idea behind derivation of hESC lines is to use them in human cell transplantation after differentiation, but already now these cells are widely used for research purposes. Despite similarities among the established lines, important differences have been reported between them, and it has been difficult to compare the results obtained using different lines. Recent optimization of hESC culture conditions has moved from cultures on mouse embryonic fibroblasts (MEFs) in fetal bovine serum-containing medium towards feeder-free culture methods using more defined animal substance-free cultures. The aim has been to establish robust and cost-effective systems for culturing these cells and eliminate the risk of infection transmitted by animal pathogens and immunoreactions caused by animal substances in cell cultures before clinical treatment. It is important to take these modifications into account when carrying out research using these cells. It is known that culture conditions influence gene expression and, hence, probably many properties of the cells. Optimization and standardization of culture methods is needed for research as well as for clinical purposes.
Collapse
Affiliation(s)
- Heli Skottman
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
88
|
Greber B, Lehrach H, Adjaye J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 2006; 25:455-64. [PMID: 17038665 DOI: 10.1634/stemcells.2006-0476] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is known to promote self-renewal of human embryonic stem cells (hESCs). In addition, it has been shown that transforming growth factor beta (TGFbeta) signaling is crucial in that the TGFbeta/Activin/Nodal branch of the pathway needs to be activated and the bone morphogenic protein (BMP)/GDF branch repressed to prevent differentiation. This holds particularly true for Serum Replacement-based medium containing BMP-like activity. We have reinvestigated a widely used protocol for conditioning hESC medium with mouse embryonic fibroblasts (MEFs). We show that FGF2 acts on MEFs to release supportive factors and reduce differentiation-inducing activity. FGF2 stimulation experiments with supportive and nonsupportive MEFs followed by genome-wide expression profiling revealed that FGF2 regulates the expression of key members of the TGFbeta pathway, with Inhba, Tgfb1, Grem1, and Bmp4 being the most likely candidates orchestrating the above activities. In addition, restimulation experiments in hESCs combined with global expression analysis revealed downstream targets of FGF2 signaling in these cells. Among these were the same factors previously identified in MEFs, thus suggesting that FGF2, at least in part, promotes self-renewal of hESCs by modulating the expression of TGFbeta ligands, which, in turn, act on hESCs in a concerted and autocrine manner.
Collapse
Affiliation(s)
- Boris Greber
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin D-14195, Germany
| | | | | |
Collapse
|
89
|
Stewart MH, Bossé M, Chadwick K, Menendez P, Bendall SC, Bhatia M. Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 2006; 3:807-15. [PMID: 16990813 DOI: 10.1038/nmeth939] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/18/2006] [Indexed: 12/22/2022]
Abstract
Human embryonic stem cell (hESC) lines are known to be morphologically and phenotypically heterogeneous. The functional nature and relationship of cells residing within hESC cultures, however, has not been evaluated because isolation of single hESCs is limited to drug or manual selection. Here we provide a quantitative method using flow cytometry to isolate and clonally expand hESCs based on undifferentiated markers, alone or in combination with a fluorescent reporter. This method allowed for isolation of stage-specific embryonic antigen-3-positive (SSEA-3+) and SSEA-3- cells from hESC cultures. Although both SSEA-3+ and SSEA-3- cells could initiate pluripotent hESC cultures, we show that they possess distinct cell-cycle properties, clonogenic capacity and expression of ESC transcription factors. Our study provides formal evidence for heterogeneity among self-renewing pluripotent hESCs, illustrating that this isolation technique will be instrumental in further dissecting the biology of hESC lines.
Collapse
Affiliation(s)
- Morag H Stewart
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario L9G 4L6, Canada
| | | | | | | | | | | |
Collapse
|
90
|
Cameron CM, Hu WS, Kaufman DS. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 2006; 94:938-48. [PMID: 16547998 DOI: 10.1002/bit.20919] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cells (hESCs) represent an important resource for novel cell-based regenerative medical therapies. hESCs are known to differentiate into mature cells of defined lineages through the formation of embryoid bodies (EBs) which are amenable to suspension culture for several weeks. However, EBs derived from hESCs in standard static cultures are typically non-homogeneous, leading to inefficient cellular development. Here, we systematically compare the formation, growth, and differentiation capabilities of hESC-derived EBs in stirred and static suspension cultures. A 15-fold expansion in total number of EB-derived cells cultured for 21 days in a stirred flask was observed, compared to a fourfold expansion in static (non-stirred) cultures. Additionally, stirred vessel mediated cultures have a more homogeneous EB morphology and size. Importantly, the EBs cultivated in spinner flasks retained comparable ability to produce hematopoietic progenitor cells as those grown in static culture. These results demonstrate the decoupling between EB cultivation method and EB-derived cells' ability to form hematopoietic progenitors, and will allow for improved production of scalable quantities of hematopoietic cells or other differentiated cell lineages from hESCs in a controlled environment.
Collapse
Affiliation(s)
- C M Cameron
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
91
|
Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods 2006; 3:637-46. [PMID: 16862139 DOI: 10.1038/nmeth902] [Citation(s) in RCA: 483] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tenneille E Ludwig
- Genome Center of Wisconsin, University of Wisconsin-Madison, 425 Henry Mall, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Lensch MW, Daheron L, Schlaeger TM. Pluripotent stem cells and their niches. ACTA ACUST UNITED AC 2006; 2:185-201. [PMID: 17625255 DOI: 10.1007/s12015-006-0047-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/04/2023]
Abstract
The ability of stem cells to self-renew and to replace mature cells is fundamental to ontogeny and tissue regeneration. Stem cells of the adult organism can be categorized as mono-, bi-, or multipotent, based on the number of mature cell types to which they can give rise. In contrast, pluripotent stem cells of the early embryo have the ability to form every cell type of the adult body. Permanent lines of pluripotent stem cells have been derived from preimplantation embryos (embryonic stem cells), fetal primordial germ cells (embryonic germ cells), and malignant teratocarcinomas (embryonal carcinoma cells). Cultured pluripotent stem cells can easily be manipulated genetically, and they can be matured into adult-type stem cells and terminally differentiated cell types in vitro, thereby, providing powerful model systems for the study of mammalian embryogenesis and disease processes. In addition, human embryonic stem cell lines hold great promise for the development of novel regenerative therapies. To fully utilize the potential of these cells, we must first understand the mechanisms that control pluripotent stem cell fate and function. In recent decades, the microenvironment or niche has emerged as particularly critical for stem cell regulation. In this article, we review how pluripotent stem cell signal transduction mechanisms and transcription factor circuitries integrate information provided by the microenvironment. In addition, we consider the potential existence and location of adult pluripotent stem cell niches, based on the notion that a revealing feature indicating the presence of stem cells in a given tissue is the occurrence of tumors whose characteristics reflect the normal developmental potential of the cognate stem cells.
Collapse
Affiliation(s)
- M William Lensch
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
93
|
Hasegawa K, Fujioka T, Nakamura Y, Nakatsuji N, Suemori H. A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells 2006; 24:2649-60. [PMID: 16931777 DOI: 10.1634/stemcells.2005-0657] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) exhibit pluripotency and indefinite proliferation and are a potential source of cells for transplantation therapies and drug discovery. These applications will require large amounts of hESCs. However, hESCs are difficult to culture and maintain at larger scales, in part because of their low resistance to dissociation during passaging. To circumvent this, we developed a simple and easy method for establishing hESC sublines tolerant of complete dissociation. These cells exhibit high replating efficiency and also high cloning efficiency, and they maintain their ability to differentiate into the three germ layers. Several sublines have no detectable abnormalities in their karyotypes, and they retained their characteristics under feeder-free culture conditions and after freeze-thawing. Thus, these hESC sublines would be valuable for hESC applications.
Collapse
Affiliation(s)
- Kouichi Hasegawa
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
94
|
Dai W, Kloner RA. Myocardial regeneration by embryonic stem cell transplantation: present and future trends. Expert Rev Cardiovasc Ther 2006; 4:375-83. [PMID: 16716098 DOI: 10.1586/14779072.4.3.375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic stem cells are a promising source for myocardial regeneration due to their pluripotency and plasticity. In theory, embryonic stem cells are capable of self-renewal in an unlimited fashion, and can differentiate into any cell type required for cell-based therapy, including cardiac myocytes. In recent years, embryonic stem cells have been transplanted for cardiac regeneration in animal models, and the results are encouraging. However, there are still many hurdles to be overcome for the clinical application of embryonic stem cells.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of the Keck School of Medicine at University of Southern California, Los Angeles, CA 90017-2395, USA.
| | | |
Collapse
|
95
|
Mishra S, Zhang B, Cunnick JM, Heisterkamp N, Groffen J. Resistance to imatinib of bcr/abl p190 lymphoblastic leukemia cells. Cancer Res 2006; 66:5387-93. [PMID: 16707466 DOI: 10.1158/0008-5472.can-05-3058] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Around 20% of patients with acute lymphoblastic leukemia are Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia) and express the Bcr/Abl tyrosine kinase. Treatment with the tyrosine kinase inhibitor Imatinib is currently standard for chronic myelogenous leukemia, which is also caused by Bcr/Abl. However, Imatinib has shown limited efficacy for treating Ph-positive acute lymphoblastic leukemia. In our study, we have investigated the effect of Imatinib therapy on murine P190 Bcr/Abl lymphoblastic leukemia cells. Three of four cultures were very sensitive to treatment with 5 mumol/L Imatinib. Significant cell death also initially occurred when the same cultures were treated in the presence of stromal support. However, after 6 days, remaining cells started to proliferate vigorously. The Bcr/Abl tyrosine kinase present in the cells that were now able to multiply in the presence of 5 mumol/L Imatinib was still inhibited by the drug. In concordance with this, the Abl ATP-binding pocket domain of Bcr/Abl in the resistant cells did not contain point mutations which would make the protein Imatinib resistant. The effect of stroma in selecting Imatinib-resistant lymphoblasts did not require direct cell-cell contact. SDF-1alpha could substitute for the presence of stromal cells. Our results show that stroma selects Imatinib-resistant Bcr/Abl P190 lymphoblasts that are less dependent on Bcr/Abl tyrosine kinase activity. Therefore, therapy for Ph-positive acute lymphoblastic leukemia, aimed at interfering with the protective effect of stroma in combination with Imatinib, could be of benefit for the eradication of the leukemic cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Benzamides
- Cell Line, Tumor
- Chemokine CXCL12
- Chemokines, CXC/administration & dosage
- Chemokines, CXC/pharmacology
- Drug Resistance, Neoplasm
- Female
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Mice, Nude
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Point Mutation
- Protein Structure, Tertiary
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Stromal Cells/pathology
Collapse
Affiliation(s)
- Suparna Mishra
- Division of Hematology/Oncology, Section of Molecular Carcinogenesis, Childrens Hospital of Los Angeles Research Institute, Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
96
|
Hiroyama T, Miharada K, Aoki N, Fujioka T, Sudo K, Danjo I, Nagasawa T, Nakamura Y. Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells. Exp Hematol 2006; 34:760-9. [PMID: 16728281 DOI: 10.1016/j.exphem.2006.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Induction of hematopoietic cells from human embryonic stem (ES) cells has been reported recently. However, before cells derived from human ES cells can be used in the clinic, preclinical studies using these cells in experimental primates will be necessary. Therefore, we attempted to establish a method to induce hematopoietic cells robustly and abundantly from primate ES cells. METHODS A primate ES cell line, CMK-6, derived from the cynomolgus monkey was used in this study. We adapted a method to induce hematopoiesis from CMK-6 cells on feeder cells, and tested the effectiveness of three kinds of feeder cell lines (OP9, C2C12, and C3H10T1/2). In addition, we tested the effect of vascular endothelial growth factor (VEGF) and insulin-like growth factor-II (IGF-II) on hematopoiesis induction from CMK-6 cells. RESULTS VEGF and IGF-II showed an extremely strong synergistic effect to induce hematopoiesis from CMK-6 cells. C3H10T1/2 cells proved to be very useful for the induction of hematopoiesis from CMK-6 cells, and the production of blood cells on C3H10T1/2 cells has been maintained as long as 5 months. During this long period, ES cell derivatives continuously produced mature blood cells, including terminally differentiated cells. CONCLUSION We have developed an original method to produce enriched blood cells abundantly from primate ES cells for an extremely long period. This method may represent a good in vitro model for studying primate hematopoiesis and related diseases. Furthermore, our method may be useful for preclinical studies of transfusion therapy using blood cells derived from ES cells in experimental primate systems.
Collapse
Affiliation(s)
- Takashi Hiroyama
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S, Wang G, Ding M, Deng H. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 2006; 346:131-9. [PMID: 16753134 DOI: 10.1016/j.bbrc.2006.05.086] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/14/2006] [Indexed: 01/08/2023]
Abstract
Traditionally, undifferentiated human embryonic stem cells (hESCs) are maintained on mouse embryonic fibroblast (MEF) cells or on matrigel with an MEF-conditioned medium (CM), which hampers the clinical applications of hESCs due to the contamination by animal pathogens. Here we report a novel chemical-defined medium using DMEM/F12 supplemented with N2, B27, and basic fibroblast growth factor (bFGF) [termed NBF]. This medium can support prolonged self-renewal of hESCs. hESCs cultured in NBF maintain an undifferentiated state and normal karyotype, are able to form embryoid bodies in vitro, and differentiate into three germ layers and extraembryonic cells. Furthermore, we find that hESCs cultured in NBF possess a low apoptosis rate and a high proliferation rate compared with those cultured in MEF-CM. Our findings provide a novel, simplified chemical-defined culture medium suitable for further therapeutic applications and developmental studies of hESCs.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Anderson JS, Bandi S, Kaufman DS, Akkina R. Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology 2006; 3:24. [PMID: 16623949 PMCID: PMC1462997 DOI: 10.1186/1742-4690-3-24] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/19/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many novel studies and therapies are possible with the use of human embryonic stem cells (hES cells) and their differentiated cell progeny. The hES cell derived CD34 hematopoietic stem cells can be potentially used for many gene therapy applications. Here we evaluated the capacity of hES cell derived CD34 cells to give rise to normal macrophages as a first step towards using these cells in viral infection studies and in developing novel stem cell based gene therapy strategies for AIDS. RESULTS Undifferentiated normal and lentiviral vector transduced hES cells were cultured on S17 mouse bone marrow stromal cell layers to derive CD34 hematopoietic progenitor cells. The differentiated CD34 cells isolated from cystic bodies were further cultured in cytokine media to derive macrophages. Phenotypic and functional analyses were carried out to compare these with that of fetal liver CD34 cell derived macrophages. As assessed by FACS analysis, the hES-CD34 cell derived macrophages displayed characteristic cell surface markers CD14, CD4, CCR5, CXCR4, and HLA-DR suggesting a normal phenotype. Tests evaluating phagocytosis, upregulation of the costimulatory molecule B7.1, and cytokine secretion in response to LPS stimulation showed that these macrophages are also functionally normal. When infected with HIV-1, the differentiated macrophages supported productive viral infection. Lentiviral vector transduced hES cells expressing the transgene GFP were evaluated similarly like above. The transgenic hES cells also gave rise to macrophages with normal phenotypic and functional characteristics indicating no vector mediated adverse effects during differentiation. CONCLUSION Phenotypically normal and functionally competent macrophages could be derived from hES-CD34 cells. Since these cells are susceptible to HIV-1 infection, they provide a uniform source of macrophages for viral infection studies. Based on these results, it is also now feasible to transduce hES-CD34 cells with anti-HIV genes such as inhibitory siRNAs and test their antiviral efficacy in down stream differentiated cells such as macrophages which are among the primary cells that need to be protected against HIV-1 infection. Thus, the potential utility of hES derived CD34 hematopoietic cells for HIV-1 gene therapy can be evaluated.
Collapse
Affiliation(s)
- Joseph S Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sriram Bandi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Dan S Kaufman
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
99
|
Lu J, Hou R, Booth CJ, Yang SH, Snyder M. Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:5688-93. [PMID: 16595624 PMCID: PMC1458634 DOI: 10.1073/pnas.0601383103] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into any tissue in the human body; therefore, they are a valuable resource for regenerative medicine, drug screening, and developmental studies. However, the clinical application of hESCs is hampered by the difficulties of eliminating animal products in the culture medium and/or the complexity of conditions required to support hESC growth. We have developed a simple medium [termed hESC Cocktail (HESCO)] containing basic fibroblast growth factor, Wnt3a, April (a proliferation-inducing ligand)/BAFF (B cell-activating factor belonging to TNF), albumin, cholesterol, insulin, and transferrin, which is sufficient for hESC self-renewal and proliferation. Cells grown in HESCO were maintained in an undifferentiated state as determined by using six different stem cell markers, and their genomic integrity was confirmed by karyotyping. Cells cultured in HESCO readily form embryoid bodies in tissue culture and teratomas in mice. In both cases, the cells differentiated into each of the three cell lineages, ectoderm, endoderm, and mesoderm, indicating that they maintained their pluripotency. The use of a minimal medium sufficient for hESC growth is expected to greatly facilitate clinical application and developmental studies of hESCs.
Collapse
Affiliation(s)
- Jean Lu
- Departments of *Molecular, Cellular, and Developmental Biology and
| | - Runhua Hou
- Department of Medicine, Hospital of Saint Raphael, New Haven, CT 06511
| | | | - Shih-Hung Yang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Michael Snyder
- Departments of *Molecular, Cellular, and Developmental Biology and
- **Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
- To whom correspondence should be addressed at:
Department of Molecular, Cellular, and Developmental Biology, P.O. Box 208103, Yale University, New Haven, CT 06520-8103. E-mail:
| |
Collapse
|
100
|
Ding V, Choo ABH, Oh SKW. Deciphering the Importance of Three Key Media Components in Human Embryonic Stem Cell Cultures. Biotechnol Lett 2006; 28:491-5. [PMID: 16614931 DOI: 10.1007/s10529-006-0005-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/06/2006] [Indexed: 12/21/2022]
Abstract
Development of a serum free, feeder-free (SFFF) culture platform for human embryonic stem cells (hESC) will be important for the expansion of hESC for future cell therapy applications. However, currently, culture of hESC consists of a combination of basal media, basic fibroblast growth factor (bFGF), serum replacer (SR) and conditioned media (CM) from feeders, and it is unclear which components of the mixture are absolutely critical in the maintenance of hESC. To evaluate the relative contributions of these media components in the development of SFFF culture, each was systematically eliminated and pluripotency assayed by dual embryonic stem cell markers, Oct-4 and TRA-1-60. We concluded that SR was the most critical component in the platform, followed by bFGF and CM produced by feeders, where down-regulation of Oct-4 occurred after 2, 5 and 5 passages, respectively, upon their withdrawal from the complete media.
Collapse
Affiliation(s)
- Vanessa Ding
- Stem Cell Group, Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, 138668, Singapore, Singapore
| | | | | |
Collapse
|