51
|
Svistunenko DA, Manole A. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? J Biomed Res 2019; 34:281-291. [PMID: 32475850 PMCID: PMC7386409 DOI: 10.7555/jbr.33.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the difficulties in creating a blood substitute on the basis of human haemoglobin (Hb) is the toxic nature of Hb when it is outside the safe environment of the red blood cells. The plasma protein haptoglobin (Hp) takes care of the Hb physiologically leaked into the plasma – it binds Hb and makes it much less toxic while retaining the Hb's high oxygen transporting capacity. We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that the protein bound radical induced by H2O2 in Hb and Hp-Hb complex is formed on the same tyrosine residue(s), but, in the complex, the radical is found in a more hydrophobic environment and decays slower than in unbound Hb, thus mitigating its oxidative capacity. The data obtained in this study might set new directions in engineering blood substitutes for transfusion that would have the oxygen transporting efficiency typical of Hb, but which would be non-toxic.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Biomedical EPR Facility, School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
52
|
Kalapotharakos G, Murtoniemi K, Åkerström B, Hämäläinen E, Kajantie E, Räikkönen K, Villa P, Laivuori H, Hansson SR. Plasma Heme Scavengers Alpha-1-Microglobulin and Hemopexin as Biomarkers in High-Risk Pregnancies. Front Physiol 2019; 10:300. [PMID: 31019465 PMCID: PMC6458234 DOI: 10.3389/fphys.2019.00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
Women with established preeclampsia (PE) have increased plasma concentration of free fetal hemoglobin. We measured two hemoglobin scavenger system proteins, hemopexin (Hpx) and alpha-1-microglobulin (A1M) in maternal plasma using enzyme-linked immunosorbent assay during the late second trimester of pregnancy in women with high and low risk of developing PE. In total 142 women were included in nested case-control study: 42 women diagnosed with PE and 100 controls (49 randomly selected high-risk and 51 low-risk controls). The concentration of plasma A1M in high-risk controls was higher compared to low-risk controls. Women with severe PE had higher plasma A1M levels compared to women with non-severe PE. In conclusion, the concentration of plasma A1M is increased in the late second trimester in high-risk controls, suggesting activation of endogenous protective system against oxidative stress.
Collapse
Affiliation(s)
- Grigorios Kalapotharakos
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Katja Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Bo Åkerström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Esa Hämäläinen
- HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pia Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stefan R Hansson
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden.,Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| |
Collapse
|
53
|
Sambamurthy N, Zhou C, Nguyen V, Smalley R, Hankenson KD, Dodge GR, Scanzello CR. Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis. PLoS One 2018; 13:e0206217. [PMID: 30485272 PMCID: PMC6261538 DOI: 10.1371/journal.pone.0206217] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Objective CD14 is a monocyte/macrophage pattern-recognition receptor that modulates innate inflammatory signaling. Soluble CD14 levels in knee OA synovial fluids are associated with symptoms and progression of disease. Here we investigate the role of this receptor in development of OA using a murine joint injury model of disease. Methods 10-week-old Male C57BL/6 (WT) and CD14-deficient (CD14-/-) mice underwent destabilization of the medial meniscus (DMM) surgery to induce OA. Joint histopathology was used to examine cartilage damage, and microCT to evaluate subchondral bone (SCB) remodeling at 6 and 19 weeks after surgery. Synovial and fat pad expression of macrophage markers (F4/80, CD11c, CD68, iNOS, CCR7, CD163 and CD206) was assessed by flow cytometry and droplet digital (dd)PCR. Changes in locomotive activity indicative of joint pain were evaluated longitudinally up to 16 weeks by automated behavioral analysis. Results Early cartilage damage scores 6 weeks post-DMM were similar in both strains (Mean score ±SEM WT: 4.667±1.38, CD14-/-: 4.6±0.6), but at 19 weeks were less severe in CD14-/- (6.0±0.46) than in WT mice (13.44±2.5, p = 0.0002). CD14-/- mice were protected from both age-related and post-surgical changes in SCB mineral density and trabecular thickness. In addition, CD14-/- mice were protected from decreases in climbing activity (p = 0.015 vs. WT, 8 weeks) observed after DMM. Changes in synovial/fat pad expression of CCR7, a marker of M1 macrophages, were slightly reduced post-DMM in the absence of CD14, while expression of CD68 (pan-macrophage marker) and CD163 (M2 marker) were unchanged. Conclusion CD14 plays an important role in progression of structural and functional features of OA in the DMM model, and may provide a new target for therapeutic development.
Collapse
Affiliation(s)
- Nisha Sambamurthy
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Cheng Zhou
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Vu Nguyen
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
| | - Ryan Smalley
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, Pennsylvania, United States of America
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, Pennsylvania, United States of America
| | - Carla R. Scanzello
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| |
Collapse
|
54
|
Wang A, Singh S, Yu B, Bloch DB, Zapol WM, Kluger R. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation. Transfusion 2018; 59:359-370. [PMID: 30444016 DOI: 10.1111/trf.15003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension. STUDY DESIGN AND METHODS Hemoglobin (Hb) bis-tetramers (bis-tetramers of hemoglobin that are prepared using CuAAC chemistry [BT-Hb] and bis-tetramers of hemoglobin that are specifically acetylated and prepared using CuAAC chemistry [BT-acHb]) can be reliably produced by a bio-orthogonal cyclo-addition approach. We considered that an HBOC derived from chemical coupling of two Hbs would be sufficiently large to avoid NO scavenging and related side effects. The ability of intravenously infused BT-Hb and BT-acHb to remain in the circulation without causing hypertension were determined in wild-type (WT) and diabetic (db/db) mouse models. RESULTS In WT mice, the coupled oxygen-carrying proteins retained their function over several hours after administration. No significant changes in systolic blood pressure from baseline were observed after intravenous infusion of BT-Hb or BT-acHb in awake WT and db/db mice. In contrast, infusion of native Hb or cross-linked Hb tetramers in both animal models induced systemic hypertension. CONCLUSION The results of this study indicate that bis-tetrameric HBOCs derived from the bio-orthogonal cyclo-addition process are likely to overcome clinical issues that arise from NO scavenging by Hb derivatives.
Collapse
Affiliation(s)
- Aizhou Wang
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Serena Singh
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ronald Kluger
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
55
|
Redmond AK, Ohta Y, Criscitiello MF, Macqueen DJ, Flajnik MF, Dooley H. Haptoglobin Is a Divergent MASP Family Member That Neofunctionalized To Recycle Hemoglobin via CD163 in Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2483-2491. [PMID: 30194112 PMCID: PMC6179929 DOI: 10.4049/jimmunol.1800508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
In mammals, haptoglobin (Hp) is an acute-phase plasma protein that binds with high affinity to hemoglobin (Hb) released by intravascular hemolysis. The resultant Hp-Hb complexes are bound and cleared by the scavenger receptor CD163, limiting Hb-induced oxidative damage. In this study, we show that Hp is a divergent member of the complement-initiating MASP family of proteins, which emerged in the ancestor of jawed vertebrates. We demonstrate that Hp has been independently lost from multiple vertebrate lineages, that characterized Hb-interacting residues of mammals are poorly conserved in nonmammalian species maintaining Hp, and that the extended loop 3 region of Hp, which mediates CD163 binding, is present only in mammals. We show that the Hb-binding ability of cartilaginous fish (nurse shark, Ginglymostoma cirratum; small-spotted catshark, Scyliorhinus canicula; and thornback ray, Raja clavata) and teleost fish (rainbow trout, Oncorhynchus mykiss) Hp is species specific, and where binding does occur it is likely mediated through a different structural mechanism to mammalian Hp. The continued, high-level expression of Hp in cartilaginous fishes in which Hb binding is not evident signals that Hp has (an)other, yet unstudied, role(s) in these species. Previous work indicates that mammalian Hp also has secondary, immunomodulatory functions that are independent of Hb binding; our work suggests these may be remnants of evolutionary more ancient functions, retained after Hb removal became the primary role of Hp in mammals.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; and
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Marine and Environmental Technology, Baltimore, MD 21202
| |
Collapse
|
56
|
Peng G, Yang W, Jing L, Zhang L, Li Y, Ye L, Li Y, Li J, Fan H, Song L, Zhao X, Zhang F. Iron Deficiency in Patients with Paroxysmal Nocturnal Hemoglobinuria: A Cross-Sectional Survey from a Single Institution in China. Med Sci Monit 2018; 24:7256-7263. [PMID: 30306969 PMCID: PMC6194753 DOI: 10.12659/msm.910614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic disorder that often manifests with chronic intravascular hemolysis. Iron deficiency in patients with PNH is most often due to urinary losses of iron secondary to chronic intravascular hemolysis. Material/Methods This cross-sectional survey assessed the prevalence of iron deficiency in a Chinese population of PNH patients who were enrolled between May 2012 and October 2014. Results A total of 742 PNH cases were selected by FLARE and classified as classical PNH (15.36%), PNH in the setting of another specified bone marrow disorder (12.26%), and subclinical PNH (72.38%). The median age of all the patients was 32 years (range 5–77 years). The overall prevalence of iron deficiency was 17.9% among all the PNH patients enrolled in the survey, 76.3% (87/144) among those with classical PNH, 33.0% (30/91) among those with PNH in the setting of another specified bone marrow disorder, and 3.0% (16/537) among the subclinical PNH patients. The incidence of iron deficiency among classical PNH patients was higher than that in the other 2 subcategories (P-value=0.000). Multivariate analyses showed that age and disease duration were independent risk factors for iron deficiency in classical patients. Conclusions This survey shows that PNH patients were prone to iron deficiency, especially patients with classical PNH.
Collapse
Affiliation(s)
- Guangxin Peng
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Wenrui Yang
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Liping Jing
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Li Zhang
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Yang Li
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Lei Ye
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Yuan Li
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Jianping Li
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Huihui Fan
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Lin Song
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Xin Zhao
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| | - Fengkui Zhang
- Anemia Therapy Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences (PUMC and CAMS), Tianjin, China (mainland)
| |
Collapse
|
57
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
58
|
Lin P, Chang CC, Yuan KC, Yeh HJ, Fang SU, Cheng T, Teng KT, Chao KC, Tang JH, Kao WY, Lin PY, Liu JS, Chang JS. Red Blood Cell Aggregation-Associated Dietary Pattern Predicts Hyperlipidemia and Metabolic Syndrome. Nutrients 2018; 10:E1127. [PMID: 30127325 PMCID: PMC6115951 DOI: 10.3390/nu10081127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) aggregation and iron status are interrelated and strongly influenced by dietary factors, and their alterations pose a great risk of dyslipidemia and metabolic syndrome (MetS). Currently, RBC aggregation-related dietary patterns remain unclear. This study investigated the dietary patterns that were associated with RBC aggregation and their predictive effects on hyperlipidemia and MetS. Anthropometric and blood biochemical data and food frequency questionnaires were collected from 212 adults. Dietary patterns were derived using reduced rank regression from 32 food groups. Adjusted linear regression showed that hepcidin, soluble CD163, and serum transferrin saturation (%TS) independently predicted RBC aggregation (all p < 0.01). Age-, sex-, and log-transformed body mass index (BMI)-adjusted prevalence rate ratio (PRR) showed a significant positive correlation between RBC aggregation and hyperlipidemia (p-trend < 0.05). RBC aggregation and iron-related dietary pattern scores (high consumption of noodles and deep-fried foods and low intake of steamed, boiled, and raw food, dairy products, orange, red, and purple vegetables, white and light-green vegetables, seafood, and rice) were also significantly associated with hyperlipidemia (p-trend < 0.05) and MetS (p-trend = 0.01) after adjusting for age, sex, and log-transformed BMI. Our results may help dieticians develop dietary strategies for preventing dyslipidemia and MetS.
Collapse
Affiliation(s)
- Pei Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Kuo-Ching Yuan
- Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Hsing-Jung Yeh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Sheng-Uei Fang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Tiong Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Kai-Tse Teng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Kuo-Ching Chao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jui-Hsiang Tang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Wei-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Pao-Ying Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ju-Shian Liu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei 11031, Taiwan.
| |
Collapse
|
59
|
Pigs Lacking the Scavenger Receptor Cysteine-Rich Domain 5 of CD163 Are Resistant to Porcine Reproductive and Respiratory Syndrome Virus 1 Infection. J Virol 2018; 92:JVI.00415-18. [PMID: 29925651 PMCID: PMC6069206 DOI: 10.1128/jvi.00415-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/28/2018] [Indexed: 01/12/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 protein is expressed at high levels on the surface of specific macrophage types, and a soluble form is circulating in blood. CD163 has been described as a fusion receptor for PRRSV, with the scavenger receptor cysteine-rich domain 5 (SRCR5) region having been shown to be the interaction site for the virus. As reported previously, we have generated pigs in which exon 7 of the CD163 gene has been deleted using CRISPR/Cas9 editing in pig zygotes. These pigs express CD163 protein lacking SRCR5 (ΔSRCR5 CD163) and show no adverse effects when maintained under standard husbandry conditions. Not only was ΔSRCR5 CD163 detected on the surface of macrophage subsets, but the secreted, soluble protein can also be detected in the serum of the edited pigs, as shown here by a porcine soluble CD163-specific enzyme-linked immunosorbent assay (ELISA). Previous results showed that primary macrophage cells from ΔSRCR5 CD163 animals are resistant to PRRSV-1 subtype 1, 2, and 3 as well as PRRSV-2 infection in vitro Here, ΔSRCR5 pigs were challenged with a highly virulent PRRSV-1 subtype 2 strain. In contrast to the wild-type control group, ΔSRCR5 pigs showed no signs of infection and no viremia or antibody response indicative of a productive infection. Histopathological analysis of lung and lymph node tissue showed no presence of virus-replicating cells in either tissue. This shows that ΔSRCR5 pigs are fully resistant to infection by the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiological agent of PRRS, causing late-term abortions, stillbirths, and respiratory disease in pigs, incurring major economic losses to the worldwide pig industry. The virus is highly mutagenic and can be divided into two species, PRRSV-1 and PRRSV-2, each containing several subtypes. Current control strategies mainly involve biosecurity measures, depopulation, and vaccination. Vaccines are at best only partially protective against infection with heterologous subtypes and sublineages, and modified live vaccines have frequently been reported to revert to virulence. Here, we demonstrate that a genetic-control approach results in complete resistance to PRRSV infection in vivo CD163 is edited so as to remove the viral interaction domain while maintaining protein expression and biological function, averting any potential adverse effect associated with protein knockout. This research demonstrates a genetic-control approach with potential benefits in animal welfare as well as to the pork industry.
Collapse
|
60
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
61
|
Byrd AS, Kerns ML, Williams DW, Zarif JC, Rosenberg AZ, Delsante M, Liu H, Dillen CA, Maynard JP, Caffrey JA, Sacks JM, Milner SM, Aliu O, Broderick KP, Lew LS, Miller LS, Kang S, Okoye GA. Collagen deposition in chronic hidradenitis suppurativa: potential role for CD163 + macrophages. Br J Dermatol 2018; 179:792-794. [PMID: 29603182 DOI: 10.1111/bjd.16600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A S Byrd
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - M L Kerns
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - D W Williams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A.,Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - J C Zarif
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - A Z Rosenberg
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - M Delsante
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - H Liu
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - C A Dillen
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - J P Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - J A Caffrey
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - J M Sacks
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - S M Milner
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - O Aliu
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - K P Broderick
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - L S Lew
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - L S Miller
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - S Kang
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| | - G A Okoye
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, U.S.A
| |
Collapse
|
62
|
Kichev A, Baburamani AA, Vontell R, Gressens P, Burkly L, Thornton C, Hagberg H. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia-Ischemia. Front Neurol 2018; 9:230. [PMID: 29706927 PMCID: PMC5906546 DOI: 10.3389/fneur.2018.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI). We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO) animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.
Collapse
Affiliation(s)
- Anton Kichev
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Ana A Baburamani
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Regina Vontell
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Linda Burkly
- Department of Neuroinflammation, Biogen, Cambridge, MA, United States
| | - Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Perinatal Center, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
63
|
The potential adverse effects of haemolysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:218-221. [PMID: 28518048 DOI: 10.2450/2017.0311-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
Abstract
Haemolysis occurs in many haematologic and non-haematologic diseases. Transfusion of packed red blood cells (pRBCs) can result in intravascular haemolysis, in which the RBCs are destroyed within the circulation, and extravascular haemolysis, in which RBCs are phagocytosed in the monocyte-macrophage system. This happens especially after RBCs have been stored under refrigerated conditions for long periods. The clinical implications and the relative contribution of intra- vs extra-vascular haemolysis are still a subject of debate. They have been associated with adverse effects in animal models, but it remains to be determined whether these may be involved in mediating adverse effects in humans.
Collapse
|
64
|
Abstract
Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger signals that are derived from damaged cells and extracellular matrix degradation, capable of triggering innate immune response to promote tissue damage repair. Hemolytic or hemorrhagic episodes are often associated with inflammation, even when infectious agents are absent, suggesting that damaged red blood cells (RBCs) release DAMPs.Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb oxidation occurs outside the protective environment of RBCs, leading to the formation of different Hb oxidation products and heme. Heme acts as a prototypic DAMP participating in toll-like receptor as well as intracellular nucleotide-binding oligomerization domain-like receptor signaling. Oxidized Hb forms also possess some inflammatory actions independently of their heme releasing capability. Non-Hb-derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC membrane-derived microparticles might also contribute to the innate immune response triggered by hemolysis/hemorrhage.In this chapter we will discuss the inflammatory properties of RBC-derived DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the prevention of hemolysis/hemorrhage-associated inflammation.
Collapse
Affiliation(s)
- Viktória Jeney
- Faculty of Medicine, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
65
|
Guerrero-Hue M, Rubio-Navarro A, Sevillano Á, Yuste C, Gutiérrez E, Palomino-Antolín A, Román E, Praga M, Egido J, Moreno JA. Efectos adversos de la acumulación renal de hemoproteínas. Nuevas herramientas terapéuticas. Nefrologia 2018; 38:13-26. [DOI: 10.1016/j.nefro.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
|
66
|
Abstract
Angiogenesis is a hallmark of cancer and is important for tumor growth, development, and metastasis. Leukocytes, including neutrophils, eosinophils, basophils, lymphocytes, and monocytes, are found invading many solid tumors, and this inflammation is often associated with tumorigenesis. Tumor-associated macrophages have been shown to be involved in tumor migration and metastasis and are modulators of tumor vascularization. Tumor-associated macrophages are a source of angiogenic factors, and pro-inflammatory cytokines involved in angiogenesis, lymphangiogenesis, and metastasis. Here we describe a method of quantifying the number of macrophages and their class within tumor tissue which can be compared with tumor blood and lymphatic microvessel density as a measure of angiogenesis and lymphangiogenesis. Although not described in depth, application of the methodology is described for other leukocyte populations, such as tumor-infiltrating lymphocytes.
Collapse
|
67
|
Angell TE, Min L, Wieczorek TJ, Hodi FS. Unique Cytologic Features of Thyroiditis Caused by Immune Checkpoint Inhibitor Therapy for Malignant Melanoma. Genes Dis 2017; 5:46-48. [PMID: 29619406 PMCID: PMC5879785 DOI: 10.1016/j.gendis.2017.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blockade of immune checkpoint molecules to reverse cancer-induced immune suppression can improve anti-tumor immune responses in cancer patients. Monoclonal antibodies targeting two such molecules, Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) have shown clinical benefit in the treatment of advanced malignancies, including metastatic melanoma. Adverse effects of these immune checkpoint inhibitors include immune-related adverse events (irAE) and the inducing of new autoimmunity, of which one of the most common is autoimmune thyroiditis. Though thyroiditis is increasingly recognized, there are no reports of the pathological findings that occur in immunotherapy-induced thyroiditis. We present a case of immunotherapy-induced thyroiditis demonstrating its unique cytopathologic features. A 51-year-old woman with metastatic melanoma was found to have a suppressed TSH and elevated free thyroxine concentration 14 days after starting treatment with nivolumab (PD-1 antagonist) plus ipilimumab (CTLA-4 antagonist) therapy. A thyroid biopsy was performed based on ultrasound findings and cytopathology revealed unique features including abundant clusters of necrotic cells, lymphocytes and CD163-positive histiocytes. This case reports cytopathologic features found in immune checkpoint inhibitor related thyroiditis. These appear to be unique findings and may help inform future research regarding the pathophysiology and mechanisms of this condition.
Collapse
Affiliation(s)
- Trevor E Angell
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Le Min
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Tad J Wieczorek
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
68
|
Costa da Silva M, Breckwoldt MO, Vinchi F, Correia MP, Stojanovic A, Thielmann CM, Meister M, Muley T, Warth A, Platten M, Hentze MW, Cerwenka A, Muckenthaler MU. Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Front Immunol 2017; 8:1479. [PMID: 29167669 PMCID: PMC5682327 DOI: 10.3389/fimmu.2017.01479] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) frequently help to sustain tumor growth and mediate immune suppression in the tumor microenvironment (TME). Here, we identified a subset of iron-loaded, pro-inflammatory TAMs localized in hemorrhagic areas of the TME. The occurrence of iron-loaded TAMs (iTAMs) correlated with reduced tumor size in patients with non-small cell lung cancer. Ex vivo experiments established that TAMs exposed to hemolytic red blood cells (RBCs) were converted into pro-inflammatory macrophages capable of directly killing tumor cells. This anti-tumor effect could also be elicited via iron oxide nanoparticles. When tested in vivo, tumors injected with such iron oxide nanoparticles led to significantly smaller tumor sizes compared to controls. These results identify hemolytic RBCs and iron as novel players in the TME that repolarize TAMs to exert direct anti-tumor effector function. Thus, the delivery of iron to TAMs emerges as a simple adjuvant therapeutic strategy to promote anti-cancer immune responses.
Collapse
Affiliation(s)
- Milene Costa da Silva
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal.,Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Margareta P Correia
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Stojanovic
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Maximilian Thielmann
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Arne Warth
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg University, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
69
|
Björnfot Holmström S, Clark R, Zwicker S, Bureik D, Kvedaraite E, Bernasconi E, Nguyen Hoang AT, Johannsen G, Marsland BJ, Boström EA, Svensson M. Gingival Tissue Inflammation Promotes Increased Matrix Metalloproteinase-12 Production by CD200Rlow Monocyte-Derived Cells in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:4023-4035. [DOI: 10.4049/jimmunol.1700672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022]
|
70
|
O'Connell GC, Tennant CS, Lucke-Wold N, Kabbani Y, Tarabishy AR, Chantler PD, Barr TL. Monocyte-lymphocyte cross-communication via soluble CD163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci Rep 2017; 7:12940. [PMID: 29021532 PMCID: PMC5636885 DOI: 10.1038/s41598-017-13291-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
CD163 is a scavenger receptor expressed on innate immune cell populations which can be shed from the plasma membrane via the metalloprotease ADAM17 to generate a soluble peptide with lympho-inhibitory properties. The purpose of this study was to investigate CD163 as a possible effector of stroke-induced adaptive immune system suppression. Liquid biopsies were collected from ischemic stroke patients (n = 39), neurologically asymptomatic controls (n = 20), and stroke mimics (n = 20) within 24 hours of symptom onset. Peripheral blood ADAM17 activity and soluble CD163 levels were elevated in stroke patients relative to non-stroke control groups, and negatively associated with post-stroke lymphocyte counts. Subsequent in vitro experiments suggested that this stroke-induced elevation in circulating soluble CD163 likely originates from activated monocytic cells, as serum from stroke patients stimulated ADAM17-dependant CD163 shedding from healthy donor-derived monocytes. Additional in vitro experiments demonstrated that stroke-induced elevations in circulating soluble CD163 can elicit direct suppressive effects on the adaptive immune system, as serum from stroke patients inhibited the proliferation of healthy donor-derived lymphocytes, an effect which was attenuated following serum CD163 depletion. Collectively, these observations provide novel evidence that the innate immune system employs protective mechanisms aimed at mitigating the risk of post-stroke autoimmune complications driven by adaptive immune system overactivation, and that CD163 is key mediator of this phenomenon.
Collapse
Affiliation(s)
- Grant C O'Connell
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA. .,Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Connie S Tennant
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Noelle Lucke-Wold
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Yasser Kabbani
- Department of Neuroradiology, Ruby Memorial Hospital, Morgantown, WV, USA
| | - Abdul R Tarabishy
- Department of Neuroradiology, Ruby Memorial Hospital, Morgantown, WV, USA
| | - Paul D Chantler
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.,Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Taura L Barr
- Center for Basic and Translational Stroke Research, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA.,School of Nursing, West Virginia University, Morgantown, West Virginia, USA.,Valtari Bio Incorporated, Morgantown, WV, USA
| |
Collapse
|
71
|
Karhu T, Akiyama K, Vuolteenaho O, Bergmann U, Naito T, Tatemoto K, Herzig KH. Isolation of new ligands for orphan receptor MRGPRX1-hemorphins LVV-H7 and VV-H7. Peptides 2017; 96:61-66. [PMID: 28867075 DOI: 10.1016/j.peptides.2017.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Abstract
The human MAS-related G protein-coupled receptor X1 (MRGPRX1) is a member of the GPCR family. The receptor is primate specific and expressed in the sensory neurons of dorsal root ganglion and trigeminal ganglion, where it is considered to be involved in the pain perception. The MRGPRX1 has unusual binding mechanism, as it is activated by several different ligands as well as several different fragments of precursor proteins. Thus, we hypothesize that it is activated by several unknown compounds as well since the receptor is still classified as orphan. Here, we describe the isolation of two novel endogenous ligands for the MRGPRX1 from human platelet preparation. The isolated ligands are hemoglobin β-chain fragments, known members of the hemorphin family.
Collapse
Affiliation(s)
- T Karhu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - K Akiyama
- Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - O Vuolteenaho
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu, Finland
| | - U Bergmann
- Biocenter Oulu, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - T Naito
- Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa, Japan; Research Institute of Natural-Drug Leads, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - K Tatemoto
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - K-H Herzig
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland; Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
72
|
Pentecost AE, Witherel CE, Gogotsi Y, Spiller KL. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater Sci 2017; 5:2131-2143. [PMID: 28875995 PMCID: PMC5719499 DOI: 10.1039/c7bm00294g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.
Collapse
Affiliation(s)
- A E Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
73
|
Al-Samkari H, Berliner N. Hemophagocytic Lymphohistiocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:27-49. [PMID: 28934563 DOI: 10.1146/annurev-pathol-020117-043625] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemophagocytic lymphohistiocytosis is a life-threatening disorder characterized by unbridled activation of cytotoxic T lymphocytes, natural killer (NK) cells, and macrophages resulting in hypercytokinemia and immune-mediated injury of multiple organ systems. It is seen in both children and adults and is recognized as primary (driven by underlying genetic mutations that abolish critical proteins required for normal function of cytotoxic T cells and NK cells) or secondary (resulting from a malignant, infectious, or autoimmune stimulus without an identifiable underlying genetic trigger). Clinical and laboratory manifestations include fever, splenomegaly, neurologic dysfunction, coagulopathy, liver dysfunction, cytopenias, hypertriglyceridemia, hyperferritinemia, hemophagocytosis, and diminished NK cell activity. It is treated with immune suppressants, etoposide, and allogeneic hematopoietic stem cell transplantation; more than 50% of children who undergo transplant survive, but adults have quite poor outcomes even with aggressive management. Newer agents directed at subduing the uncontrolled immune response in a targeted fashion offer promise in this highly morbid disease.
Collapse
Affiliation(s)
| | - Nancy Berliner
- Brigham & Women's Hospital, Boston, Massachusetts 02115;
| |
Collapse
|
74
|
The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. mBio 2017; 8:mBio.01092-17. [PMID: 28811344 PMCID: PMC5559634 DOI: 10.1128/mbio.01092-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis. We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. One-third of the world population may harbor persistent M. tuberculosis, causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis, which can be exploited for the design of new antitubercular therapies.
Collapse
|
75
|
Cheng Z, Zhang D, Gong B, Wang P, Liu F. CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer. Oncotarget 2017; 8:87244-87262. [PMID: 29152078 PMCID: PMC5675630 DOI: 10.18632/oncotarget.20244] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
CD163 is a member of the scavenger receptor cysteine-rich superfamily, and has been widely used to identify M2 type macrophage. However, the expression of CD163 in gastric cancer and its regulatory mechanism are still unclear. Here we show that CD163 is elevated in gastric cancer tissues. High expression of CD163 is a potential indicator to evaluate the status of tumor associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and cancer associated fibroblasts (Cafs). Besides, more CD163 positive macrophages and CD163 expressing gastric cancer cells are associated with tumor invasion and poor prognosis. Knocking-down CD163 in cancer cells could inhibit tumor growth in vivo. We also find various immune molecules which are correlated with CD163 in gastric cancer tissues and cell lines have positive staining in the cancer cells of clinical sample. Finally, we confirm CD163 is a novel target gene of STAT3 (signal transducer and activator of transcription 3) in gastric cancer. Our data indicate that CD163 may be a potential poor prognostic marker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zhenguo Cheng
- National Center for The International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Danhua Zhang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baocheng Gong
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Pengliang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Funan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
76
|
REG γ Contributes to Regulation of Hemoglobin and Hemoglobin δ Subunit. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7295319. [PMID: 28798860 PMCID: PMC5534318 DOI: 10.1155/2017/7295319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/22/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
Hemoglobin (Hb) is a family of proteins in red blood cells responsible for oxygen transport and vulnerable for oxidative damage. Hemoglobin δ subunit (HBD), a member of Hb family, is normally expressed by cells of erythroid lineage. Expression of Hb genes has been previously reported in nonerythroid and hematopoietic stem cells. Here, we report that Hb and HBD can be degraded via REGγ proteasome in hemopoietic tissues and nonerythroid cells. For this purpose, bone marrow, liver, and spleen hemopoietic tissues from REGγ+/+ and REGγ−/− mice and stable REGγ knockdown cells were evaluated for the degradation of Hb and HBD via REGγ. Western blot and immunohistochemical analyses exhibited downregulation of Hb in REGγ wild-type mouse tissues. This was validated by dynamic analysis following blockade of de novo synthesis of proteins with CHX. Degradation of HBD only occurred in REGγ WT cells but not in REGγN151Y, a dominant-negative REGγ mutant cell. Notably, downregulation of HBD was found in HeLa shN cells with stimulation of phenylhydrazine, an oxidation inducer, suggesting that the REGγ proteasome may target oxidatively damaged Hbs. In conclusion, our findings provide important implications for the degradation of Hb and HBD in hemopoietic tissues and nonerythroid cells via the REGγ proteasome.
Collapse
|
77
|
Chintagari NR, Jana S, Alayash AI. Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells. Am J Respir Cell Mol Biol 2017; 55:288-98. [PMID: 26974230 DOI: 10.1165/rcmb.2015-0197oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lung alveoli are lined by alveolar type (AT) 1 cells and cuboidal AT2 cells. The AT1 cells are likely to be exposed to cell-free hemoglobin (Hb) in multiple lung diseases; however, the role of Hb redox (reduction-oxidation) reactions and their precise contributions to AT1 cell injury are not well understood. Using mouse lung epithelial cells (E10) as an AT1 cell model, we demonstrate here that higher Hb oxidation states, ferric Hb (HbFe(3+)) and ferryl Hb (HbFe(4+)) and subsequent heme loss play a central role in the genesis of injury. Exposures to HbFe(2+) and HbFe(3+) for 24 hours induced expression of heme oxygenase (HO)-1 protein in E10 cells and HO-1 translocation in the purified mitochondrial fractions. Both of these effects were intensified with increasing oxidation states of Hb. Next, we examined the effects of Hb oxidation and free heme on mitochondrial bioenergetic function by measuring changes in the mitochondrial transmembrane potential and oxygen consumption rate. In contrast to HbFe(2+), HbFe(3+) reduced basal oxygen consumption rate, indicating compromised mitochondrial activity. However, HbFe(4+) exposure not only induced early expression of HO-1 but also caused mitochondrial dysfunction within 12 hours when compared with HbFe(2+) and HbFe(3+). Exposure to HbFe(4+) for 24 hours also caused mitochondrial depolarization in E10 cells. The deleterious effects of HbFe(3+) and HbFe(4+) were reversed by the addition of scavenger proteins, haptoglobin and hemopexin. Collectively, these data establish, for the first time, a central role for cell-free Hb in lung epithelial injury, and that these effects are mediated through the redox transition of Hb to higher oxidation states.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
78
|
Knutson MD. Iron transport proteins: Gateways of cellular and systemic iron homeostasis. J Biol Chem 2017; 292:12735-12743. [PMID: 28615441 DOI: 10.1074/jbc.r117.786632] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular iron homeostasis is maintained by iron and heme transport proteins that work in concert with ferrireductases, ferroxidases, and chaperones to direct the movement of iron into, within, and out of cells. Systemic iron homeostasis is regulated by the liver-derived peptide hormone, hepcidin. The interface between cellular and systemic iron homeostasis is readily observed in the highly dynamic iron handling of four main cell types: duodenal enterocytes, erythrocyte precursors, macrophages, and hepatocytes. This review provides an overview of how these cell types handle iron, highlighting how iron and heme transporters mediate the exchange and distribution of body iron in health and disease.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611-03170.
| |
Collapse
|
79
|
Antigenic and Biological Characterization of ORF2-6 Variants at Early Times Following PRRSV Infection. Viruses 2017; 9:v9050113. [PMID: 28509878 PMCID: PMC5454425 DOI: 10.3390/v9050113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) challenges efforts to develop effective and broadly acting vaccines. Although genetic variation in PRRSV has been extensively documented, the effects of this variation on virus phenotype are less well understood. In the present study, PRRSV open reading frame (ORF)2-6 variants predominant during the first six weeks following experimental infection were characterized for antigenic and replication phenotype. There was limited genetic variation during these early times after infection; however, distinct ORF2-6 haplotypes that differed from the NVSL97-7895 inoculum were identified in each of the five pigs examined. Chimeric viruses containing all or part of predominant ORF2-6 haplotypes were constructed and tested in virus neutralization and in vitro replication assays. In two pigs, genetic variation in ORF2-6 resulted in increased resistance to neutralization by autologous sera. Mapping studies indicated that variation in either ORF2-4 or ORF5-6 could confer increased neutralization resistance, but there was no single amino acid substitution that was predictive of neutralization phenotype. Detailed analyses of the early steps in PRRSV replication in the presence and absence of neutralizing antibody revealed both significant inhibition of virion attachment and, independently, a significant delay in the appearance of newly synthesized viral RNA. In all pigs, genetic variation in ORF2-6 also resulted in significant reduction in infectivity on MARC-145 cells, suggesting variation in ORF2-6 may also be important for virus replication in vivo. Together, these data reveal that variation appearing early after infection, though limited, alters important virus phenotypes and contributes to antigenic and biologic diversity of PRRSV.
Collapse
|
80
|
Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal 2017; 26:814-831. [PMID: 27650279 DOI: 10.1089/ars.2016.6793] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin (Hp) is an abundant human plasma protein that tightly captures hemoglobin (Hb) during hemolysis. The Hb-Hp complex formation reduces the oxidative properties of heme/Hb and promotes recognition by the macrophage scavenger receptor CD163. This leads to Hb-Hp breakdown and heme catabolism by heme oxygenase and biliverdin reductase. Gene duplications of a part of or the entire Hp gene in the primate evolution have led to variant Hp gene products that collectively may be designated "the haptoglobins (Hps)" as they all bind Hb. These variant products include the human-specific multimeric Hp phenotypes in individuals, which are hetero- or homozygous for an Hp2 gene allele. The Hp-related protein (Hpr) is another Hp duplication product in humans and other primates. Alternative functions of the variant Hps are indicated by numerous reports on association between Hp phenotypes and disease as well as the elucidation of a specific role of Hpr in the innate immune defense. Recent Advances: Recent functional and structural information on Hp and receptor systems for Hb removal now provides insight on how Hp carries out essential functions such as the Hb detoxification/removal, and how Hpr, by acting as an Hp-lookalike, can sneak a lethal toxin into trypanosome parasites that cause mammalian sleeping sickness. Critical Issues and Future Directions: The new structural insight may facilitate ongoing attempts of developing Hp derivatives for prevention of Hb toxicity in hemolytic diseases such as sickle cell disease and other hemoglobinopathies. Furthermore, the new structural knowledge may help identifying yet unknown functions based on other disease-relevant biological interactions involving Hps. Antioxid. Redox Signal. 26, 814-831.
Collapse
Affiliation(s)
| | | | - Kirstine Lindhardt Sæderup
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Anne Kuhlee
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Stefan Raunser
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Jonas H Graversen
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Søren Kragh Moestrup
- 1 Department of Biomedicine, University of Aarhus , Aarhus C, Denmark .,2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark .,4 Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense C, Denmark
| |
Collapse
|
81
|
Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 2017; 13:e1006206. [PMID: 28231264 PMCID: PMC5322883 DOI: 10.1371/journal.ppat.1006206] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages. Porcine Reproductive and Respiratory Syndrome is an endemic infectious disease of pigs, manifesting differently in pigs of different ages but primarily causing late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV only infects a specific subset of cells of the innate immune system of the monocyte/macrophage lineage. Previous research found that the virus needs a specific receptor, CD163, in order to make its own membrane fuse with the host cell membrane in an uptake vesicle to release the viral genetic information into the cytosol and achieve a successful infection. CD163 has a pearl-on-a-string structure, whereby the “pearl”/ domain number 5 was found to interact with the virus and allow it to infect a cell. Here we describe how we generated pigs lacking the CD163 subdomain 5 using so-called CRISPR/Cas9 gene editing in zygotes. The pigs were healthy under normal husbandry conditions and other biological functions conducted by the CD163 were found to be intact. We isolated a variety of monocyte and macrophage cells from these pigs and found them to be completely resistant to PRRSV infection.
Collapse
Affiliation(s)
- Christine Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Simon G. Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Elizabeth Reid
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | | | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
82
|
Genetic engineering alveolar macrophages for host resistance to PRRSV. Vet Microbiol 2017; 209:124-129. [PMID: 28215617 DOI: 10.1016/j.vetmic.2017.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
Standard strategies for control of porcine reproductive and respiratory syndrome virus (PRRSV) have not been effective, as vaccines have not reduced the prevalence of disease and many producers depopulate after an outbreak. Another method of control would be to prevent the virus from infecting the pig. The virus was thought to infect alveolar macrophages by interaction with a variety of cell surface molecules. One popular model had PRRSV first interacting with heparin sulfate followed by binding to sialoadhesin and then being internalized into an endosome. Within the endosome, PRRSV was thought to interact with CD163 to uncoat the virus so the viral genome could be released into the cytosol and infect the cell. Other candidate receptors have included vimentin, CD151 and CD209. By using genetic engineering, it is possible to test the importance of individual entry mediators by knocking them out. Pigs engineered by knockout of sialoadhesin were still susceptible to infection, while CD163 knockout resulted in pigs that were resistant to infection. Genetic engineering is not only a valuable tool to determine the role of specific proteins in infection by PRRSV (in this case), but also provides a means to create animals resistant to disease. Genetic engineering of alveolar macrophages can also illuminate the role of other proteins in response to infection. We suggest that strategies to prevent infection be pursued to reduce the reservoir of virus.
Collapse
|
83
|
Etzerodt A, Berg RMG, Plovsing RR, Andersen MN, Bebien M, Habbeddine M, Lawrence T, Møller HJ, Moestrup SK. Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of 'soluble CD163' in plasma. Sci Rep 2017; 7:40286. [PMID: 28084321 PMCID: PMC5234032 DOI: 10.1038/srep40286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
CD163 is the macrophage receptor for uptake of hemoglobin-haptoglobin complexes. The human receptor can be shed from the macrophage surface owing to a cleavage site for the inflammation-inducible TACE/ADAM17 enzyme. Accordingly, plasma ‘soluble CD163’ (sCD163) has become a biomarker for macrophage activity and inflammation. The present study disclosed that 10% of sCD163 in healthy persons is actually extracellular vesicle (EV)-associated CD163 not being cleaved and shed. Endotoxin injection of human volunteers caused a selective increase in the ectodomain CD163, while septic patients exhibited high levels of both soluble ectodomain CD163 and extracellular vesicle (EV) CD163, the latter representing up 60% of total plasma CD163. A poor prognosis of septic patients measured as the sequential organ failure assessment (SOFA) score correlated with the increase in membrane-associated CD163. Our results show that soluble ectodomain CD163 and EV CD163 in plasma are part of separate macrophage response in the context of systemic inflammation. While that soluble ectodomain CD163 is released during the acute systemic inflammatory response, this is not the case for EV CD163 that instead may be released during a later phase of the inflammatory response. A separate measurement of the two forms of CD163 constituting ‘soluble CD163’ in plasma may therefore add to the diagnostic and prognostic value.
Collapse
Affiliation(s)
- Anders Etzerodt
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Ronan M G Berg
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Ronni R Plovsing
- Department of Intensive Care, Rigshospitalet, Copenhagen, Denmark
| | - Morten N Andersen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Magali Bebien
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Mohamed Habbeddine
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Søren K Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Denmark
| |
Collapse
|
84
|
Singhal R, Chawla S, Rathore DK, Bhasym A, Annarapu GK, Sharma V, Seth T, Guchhait P. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders. Clin Immunol 2016; 175:133-142. [PMID: 28039017 DOI: 10.1016/j.clim.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 12/03/2016] [Indexed: 01/31/2023]
Abstract
Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14+CD16hi) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14+ cells were transformed into the CD14+CD16hi subset after engulfing Hb-activated platelets. The CD14+CD16hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14+CD16hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14+CD16hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD.
Collapse
Affiliation(s)
- Rashi Singhal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Sheetal Chawla
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Deepak K Rathore
- Translational Health Science & Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Angika Bhasym
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Gowtham K Annarapu
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Vandana Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
85
|
Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke. NPJ Genom Med 2016; 1:16038. [PMID: 29263821 PMCID: PMC5685316 DOI: 10.1038/npjgenmed.2016.38] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Early and accurate diagnosis of stroke improves the probability of positive outcome. The objective of this study was to identify a pattern of gene expression in peripheral blood that could potentially be optimised to expedite the diagnosis of acute ischaemic stroke (AIS). A discovery cohort was recruited consisting of 39 AIS patients and 24 neurologically asymptomatic controls. Peripheral blood was sampled at emergency department admission, and genome-wide expression profiling was performed via microarray. A machine-learning technique known as genetic algorithm k-nearest neighbours (GA/kNN) was then used to identify a pattern of gene expression that could optimally discriminate between groups. This pattern of expression was then assessed via qRT-PCR in an independent validation cohort, where it was evaluated for its ability to discriminate between an additional 39 AIS patients and 30 neurologically asymptomatic controls, as well as 20 acute stroke mimics. GA/kNN identified 10 genes (ANTXR2, STK3, PDK4, CD163, MAL, GRAP, ID3, CTSZ, KIF1B and PLXDC2) whose coordinate pattern of expression was able to identify 98.4% of discovery cohort subjects correctly (97.4% sensitive, 100% specific). In the validation cohort, the expression levels of the same 10 genes were able to identify 95.6% of subjects correctly when comparing AIS patients to asymptomatic controls (92.3% sensitive, 100% specific), and 94.9% of subjects correctly when comparing AIS patients with stroke mimics (97.4% sensitive, 90.0% specific). The transcriptional pattern identified in this study shows strong diagnostic potential, and warrants further evaluation to determine its true clinical efficacy.
Collapse
|
86
|
Ji X, Feng Y, Tian H, Meng W, Wang W, Liu N, Zhang J, Wang L, Wang J, Gao H. The Mechanism of Proinflammatory HDL Generation in Sickle Cell Disease Is Linked to Cell-Free Hemoglobin via Haptoglobin. PLoS One 2016; 11:e0164264. [PMID: 27716784 PMCID: PMC5055316 DOI: 10.1371/journal.pone.0164264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
In sickle cell disease (SCD), the inflammatory properties of high-density lipoprotein (HDL) can be changed by cell-free hemoglobin (Hb), which is released into the blood during hemolysis. Hb in the plasma of SCD patients or mice can bind with HDL specifically inducing an inflammatory reaction. In our study, we found increased amounts of inflammatory factor proteins in the chronic oxidative state of SCD with higher levels of Hb, haptoglobin (Hp) and hemopexin (Hx) in the apolipoprotein A-I (ApoA-1) particles of HDL and the role of HDL is changed from being anti-inflammatory to proinflammatory. Our results also suggest Hp and Hx, the scavengers of Hb in HDL, are positively associated with inflammatory levels in SCD patients. HDL retained its inflammatory inhibition role in Hp−/− mice, with less Hb accumulation. Hx may further prevent inflammatory reaction because its level will be even higher when lack of Hx. We therefore demonstrated that Hp is indispensable during the process whereby Hb associates with HDL and plays a clear proinflammatory role. Therefore, it is essential to break the binding between Hb and Hp for treatment. The dissociation of Hb/Hp/Hx complexes may also play an important role in the study of other inflammatory angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xiang Ji
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Yimin Feng
- Clinical Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Hui Tian
- ICU, The Affiliated Hospital of Qiingdao University, Qingdao 266012, Shandong, China
| | - Wei Meng
- Cardiology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Weiling Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Na Liu
- Pharmacological Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jun Zhang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Lingshu Wang
- Endocrinology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jian Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Haiqing Gao
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
- * E-mail:
| |
Collapse
|
87
|
Pannell M, Labuz D, Celik MÖ, Keye J, Batra A, Siegmund B, Machelska H. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. J Neuroinflammation 2016; 13:262. [PMID: 27717401 PMCID: PMC5055715 DOI: 10.1186/s12974-016-0735-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Methods Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 105 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Results Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1–17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the fluorescently labeled M0, M1, and M2 cells ex vivo showed that they remained in the nerve and preserved their phenotype. Conclusions Perineural transplantation of M2 macrophages resulted in opioid-mediated amelioration of neuropathy-induced mechanical hypersensitivity, while M1 macrophages did not exacerbate pain. Therefore, rather than focusing on macrophage-induced pain generation, promoting opioid-mediated M2 actions may be more relevant for pain control.
Collapse
Affiliation(s)
- Maria Pannell
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Dominika Labuz
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Melih Ö Celik
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jacqueline Keye
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Arvind Batra
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Halina Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
88
|
Genetic Modifiers of White Blood Cell Count, Albuminuria and Glomerular Filtration Rate in Children with Sickle Cell Anemia. PLoS One 2016; 11:e0164364. [PMID: 27711207 PMCID: PMC5053442 DOI: 10.1371/journal.pone.0164364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
Abstract
Discovery and validation of genetic variants that influence disease severity in children with sickle cell anemia (SCA) could lead to early identification of high-risk patients, better screening strategies, and intervention with targeted and preventive therapy. We hypothesized that newly identified genetic risk factors for the general African American population could also impact laboratory biomarkers known to contribute to the clinical disease expression of SCA, including variants influencing the white blood cell count and the development of albuminuria and abnormal glomerular filtration rate. We first investigated candidate genetic polymorphisms in well-characterized SCA pediatric cohorts from three prospective NHLBI-supported clinical trials: HUSTLE, SWiTCH, and TWiTCH. We also performed whole exome sequencing to identify novel genetic variants, using both a discovery and a validation cohort. Among candidate genes, DARC rs2814778 polymorphism regulating Duffy antigen expression had a clear influence with significantly increased WBC and neutrophil counts, but did not affect the maximum tolerated dose of hydroxyurea therapy. The APOL1 G1 polymorphism, an identified risk factor for non-diabetic renal disease, was associated with albuminuria. Whole exome sequencing discovered several novel variants that maintained significance in the validation cohorts, including ZFHX4 polymorphisms affecting both the leukocyte and neutrophil counts, as well as AGGF1, CYP4B1, CUBN, TOR2A, PKD1L2, and CD163 variants affecting the glomerular filtration rate. The identification of robust, reliable, and reproducible genetic markers for disease severity in SCA remains elusive, but new genetic variants provide avenues for further validation and investigation.
Collapse
|
89
|
Leaf DE, Swinkels DW. Catalytic iron and acute kidney injury. Am J Physiol Renal Physiol 2016; 311:F871-F876. [PMID: 27534995 DOI: 10.1152/ajprenal.00388.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/16/2016] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) is a common and often devastating condition among hospitalized patients and is associated with markedly increased hospital length of stay, mortality, and cost. The pathogenesis of AKI is complex, but animal models support an important role for catalytic iron in causing AKI. Catalytic iron, also known as labile iron, is a transitional pool of non-transferrin-bound iron that is readily available to participate in redox cycling. Initial findings related to catalytic iron and animal models of kidney injury have only recently been extended to human AKI. In this review, we discuss the role of catalytic iron in human AKI, focusing on recent translational studies in humans, assay considerations, and potential therapeutic targets for future interventional studies.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
90
|
Shi PA, Choi E, Chintagari NR, Nguyen J, Guo X, Yazdanbakhsh K, Mohandas N, Alayash AI, Manci EA, Belcher JD, Vercellotti GM. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br J Haematol 2016; 175:714-723. [PMID: 27507623 DOI: 10.1111/bjh.14280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction.
Collapse
Affiliation(s)
- Patricia A Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Erika Choi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Julia Nguyen
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xinhua Guo
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Narla Mohandas
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Abdu I Alayash
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth A Manci
- Department of Pathology, University of South Alabama School of Medicine, Birmingham, AL, USA
| | - John D Belcher
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
91
|
Chen-Roetling J, Regan RF. Haptoglobin increases the vulnerability of CD163-expressing neurons to hemoglobin. J Neurochem 2016; 139:586-595. [PMID: 27364920 DOI: 10.1111/jnc.13720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Haptoglobin (Hp) binds hemoglobin (Hb) with high affinity and provides the primary defense against its toxicity after intravascular hemolysis. Neurons are exposed to extracellular Hb after CNS hemorrhage, and a therapeutic effect of Hp via Hb sequestration has been hypothesized. In this study, we tested the hypothesis that Hp protects neurons from Hb in primary mixed cortical cell cultures. Treatment with low micromolar concentrations of human Hb for 24 h resulted in loss of 10-20% of neurons without injuring glia. Concomitant treatment with Hp surprisingly increased neuronal loss five-sevenfold, with similar results produced by Hp 1-1 and 2-2 phenotypes. Consistent with a recent in vivo observation, neurons expressed the CD163 receptor for Hb and the Hb-Hp complex in these cultures. Hp reduced overall Hb uptake, directed it away from the astrocyte-rich CD163-negative glial monolayer, and decreased induction of the iron-binding protein ferritin. Hb-Hp complex neuronal toxicity, like that of Hb per se, was iron-dependent and reduced by deferoxamine and 2,2' bipyridyl. These results suggest that Hp increases the vulnerability of CD163+ neurons to Hb by permitting Hb uptake while attenuating the protective response of ferritin induction by glial cells. Cover Image for this issue: doi: 10.1111/jnc.13342.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
92
|
Glushakov AV, Arias RA, Tolosano E, Doré S. Age-Dependent Effects of Haptoglobin Deletion in Neurobehavioral and Anatomical Outcomes Following Traumatic Brain Injury. Front Mol Biosci 2016; 3:34. [PMID: 27486583 PMCID: PMC4949397 DOI: 10.3389/fmolb.2016.00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Cerebral hemorrhages are common features of traumatic brain injury (TBI) and their presence is associated with chronic disabilities. Recent clinical and experimental evidence suggests that haptoglobin (Hp), an endogenous hemoglobin-binding protein most abundant in blood plasma, is involved in the intrinsic molecular defensive mechanism, though its role in TBI is poorly understood. The aim of this study was to investigate the effects of Hp deletion on the anatomical and behavioral outcomes in the controlled cortical impact model using wildtype (WT) C57BL/6 mice and genetically modified mice lacking the Hp gene (Hp(-∕-)) in two age cohorts [2-4 mo-old (young adult) and 7-8 mo-old (older adult)]. The data obtained suggest age-dependent significant effects on behavioral and anatomical TBI outcomes and recovery from injury. Moreover, in the adult cohort, neurological deficits in Hp(-∕-) mice at 24 h were significantly improved compared to WT, whereas there were no significant differences in brain pathology between these genotypes. In contrast, in the older adult cohort, Hp(-∕-) mice had significantly larger lesion volumes compared to WT, but neurological deficits were not significantly different. Immunohistochemistry for ionized calcium-binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) revealed significant differences in microglial and astrocytic reactivity between Hp(-∕-) and WT in selected brain regions of the adult but not the older adult-aged cohort. In conclusion, the data obtained in the study provide clarification on the age-dependent aspects of the intrinsic defensive mechanisms involving Hp that might be involved in complex pathways differentially affecting acute brain trauma outcomes.
Collapse
Affiliation(s)
- Alexander V Glushakov
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Rodrigo A Arias
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Emanuela Tolosano
- Departments of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of MedicineGainesville, FL, USA; Departments of Anesthesiology, Neurology, Psychiatry, Psychology, Pharmaceutics and Neuroscience, University of Florida College of MedicineGainesville, FL, USA
| |
Collapse
|
93
|
Nybakken G, Gratzinger D. Myelodysplastic syndrome macrophages have aberrant iron storage and heme oxygenase-1 expression. Leuk Lymphoma 2016; 57:1893-902. [DOI: 10.3109/10428194.2015.1121259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
94
|
Filipek A, Czerwińska ME, Kiss AK, Wrzosek M, Naruszewicz M. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1255-1261. [PMID: 26655408 DOI: 10.1016/j.phymed.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Oleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity. PURPOSE In this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages. METHODS Effect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA). RESULTS Oleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed. CONCLUSION Our results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis.
Collapse
Affiliation(s)
- Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Pharmacogenomics, Division of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
95
|
Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 2015; 34:20-2. [PMID: 26641533 DOI: 10.1038/nbt.3434] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Catherine L Ewen
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Benjamin R Trible
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Maureen A Kerrigan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Melissa S Samuel
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | | | | | | | - Kevin D Wells
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
96
|
Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep 2015; 16:1482-500. [PMID: 26474900 DOI: 10.15252/embr.201540558] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbes exert a major impact on human health and disease by either promoting or disrupting homeostasis, in the latter instance leading to the development of infectious diseases. Such disparate outcomes are driven by the ever-evolving genetic diversity of microbes and the countervailing host responses that minimize their pathogenic impact. Host defense strategies that limit microbial pathogenicity include resistance mechanisms that exert a negative impact on microbes, and disease tolerance mechanisms that sustain host homeostasis without interfering directly with microbes. While genetically distinct, these host defense strategies are functionally integrated, via mechanisms that remain incompletely defined. Here, we explore the general principles via which host adaptive responses regulating iron (Fe) metabolism impact on resistance and disease tolerance to infection.
Collapse
Affiliation(s)
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University, Innsbruck, Austria
| |
Collapse
|
97
|
Taguchi K, Yamasaki K, Seo H, Otagiri M. Potential Use of Biological Proteins for Liver Failure Therapy. Pharmaceutics 2015; 7:255-74. [PMID: 26404356 PMCID: PMC4588199 DOI: 10.3390/pharmaceutics7030255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) in the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Hakaru Seo
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| |
Collapse
|
98
|
Rubio-Navarro A, Amaro Villalobos JM, Lindholt JS, Buendía I, Egido J, Blanco-Colio LM, Samaniego R, Meilhac O, Michel JB, Martín-Ventura JL, Moreno JA. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm. Int J Cardiol 2015; 201:66-78. [PMID: 26296046 DOI: 10.1016/j.ijcard.2015.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/21/2015] [Accepted: 08/02/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD163 expressing macrophages ex vivo, in vitro and in human AAA. METHODS AND RESULTS CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent to neoangiogenic microvessels. Dual CD14/CD163 expression was observed in recently infiltrated monocytes surrounding microvessels. A higher release of soluble CD163 was observed in the conditioned medium from AAA (AAA-CM, n=10), mainly in the adventitial layer. Similar to Hb, AAA-CM induced CD163-dependent monocyte chemotaxis, especially on circulating monocytes from AAA patients. Hb or AAA-CM promoted differentiation towards CD163(high)/HLA-DR(low)-expressing macrophages, with enhanced Hb uptake, increased anti-inflammatory IL-10 secretion and decreased pro-inflammatory IL-12p40 release. All these effects were partially suppressed when Hb was removed from AAA-CM. Separate analysis on circulating monocytes reported increased percentage of pre-infiltrating CD14(++)CD16(+) monocytes in patients with AAA (n=21), as compared to controls (n=14). A significant increase in CD163 expression in CD14(++)CD16(+) monocyte subpopulation was observed in AAA patients. CONCLUSIONS The presence of Hb in the adventitial AAA-wall promotes the migration and differentiation of activated circulating monocytes in AAA patients, explaining the existence of a protective CD163-macrophage phenotype that could take up the Hb present in the AAA-wall, avoiding its injurious effects.
Collapse
Affiliation(s)
- Alfonso Rubio-Navarro
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | | | - Jes S Lindholt
- Elitary Research Centre of Individualized Medicine in Arterial Disease (CIMA), Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark
| | - Irene Buendía
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Jesús Egido
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Luis Miguel Blanco-Colio
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Rafael Samaniego
- Confocal Microscopy Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Olivier Meilhac
- INSERM U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, Saint-Denis, France
| | - Jean Baptiste Michel
- INSERM UMRS 1148 Laboratory for Vascular Translational Science, Bichat Hospital, Paris, France
| | - José Luis Martín-Ventura
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Juan Antonio Moreno
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.
| |
Collapse
|
99
|
Graversen JH, Moestrup SK. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163. MEMBRANES 2015; 5:228-52. [PMID: 26111002 PMCID: PMC4496642 DOI: 10.3390/membranes5020228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches.
Collapse
Affiliation(s)
- Jonas Heilskov Graversen
- Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 5000-Odense C, Denmark.
| | - Søren Kragh Moestrup
- Institute of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 5000-Odense C, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000-Odense C, Denmark.
| |
Collapse
|
100
|
Meng Z, Meng L, Wang K, Li J, Cao X, Wu J, Hu Y. Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur J Pharm Sci 2015; 73:35-43. [DOI: 10.1016/j.ejps.2015.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 01/22/2023]
|