51
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
52
|
Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, Vigh-Conrad KA, Worthington RE, Mägi R, Wu X, Aston KI, Atkinson JP, Carrell DT, Hess RA, O'Bryan MK, Conrad DF. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat Commun 2019; 10:4626. [PMID: 31604923 PMCID: PMC6789153 DOI: 10.1038/s41467-019-12522-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ana C Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarja Lepamets
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Katinka A Vigh-Conrad
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Ronald E Worthington
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL, 62025, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas T Carrell
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rex A Hess
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, 61802, USA
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.
| |
Collapse
|
53
|
Abstract
The complement system is a critical component of both the innate and adaptive immune systems that augments the function of antibodies and phagocytes. Antigen-antibody immune complexes, lectin binding, and accelerated C3 tick-over can activate this well-coordinated and carefully regulated process. The importance of this system is highlighted by the disorders that arise when complement components or regulators are deficient or dysregulated. This article describes the pathways involved in complement activation and function, the regulation of these various pathways, and the interpretation of laboratory testing performed for the diagnosis of diseases of complement deficiency, exuberant complement activation, and complement dysregulation.
Collapse
Affiliation(s)
- Morris Ling
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Cox 201, Boston, MA 02114, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 55 Fruit Street, Cox 201, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Cox 201, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 55 Fruit Street, Cox 201, Boston, MA 02114, USA.
| | - Mandakolathur Murali
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Cox 201, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Cox 201, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 55 Fruit Street, Cox 201, Boston, MA 02114, USA
| |
Collapse
|
54
|
Zheng L, Zhang D, Cao W, Song WC, Zheng XL. Synergistic effects of ADAMTS13 deficiency and complement activation in pathogenesis of thrombotic microangiopathy. Blood 2019; 134:1095-1105. [PMID: 31409673 PMCID: PMC6764266 DOI: 10.1182/blood.2019001040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Severe deficiency of plasma ADAMTS13 activity is the primary cause of thrombotic thrombocytopenic purpura (TTP) whereas overwhelming activation of complement via an alternative pathway results in atypical hemolytic uremic syndrome (aHUS), the prototypes of thrombotic microangiopathy (TMA). However, clinical and pathogenic distinctions between TTP and aHUS are often quite challenging. Clinical reports have suggested that complement activation may play a role in the development of TTP, which is caused by severe deficiency of plasma ADAMTS13 activity. However, the experimental evidence to support this hypothesis is still lacking. Here, we show that mice with either Adamts13 -/- or a heterozygous mutation of complement factor H (cfh) at amino acid residue of 1206 (ie, cfh W/R ) alone remain asymptomatic despite the presence of occasional microvascular thrombi in various organ tissues. However, mice carrying both Adamts13 -/- and cfh W/R exhibit thrombocytopenia, low haptoglobin, increased fragmentation of erythrocytes in peripheral blood smear, increased plasma levels of lactate dehydrogenase activity, blood urea nitrogen, and creatinine, as well as an increased mortality rate, consistent with the development of TMA. Moreover, mice with a homozygous mutation of cfh (ie, cfh R/R ) with or without Adamts13 -/- developed severe TMA. The mortality rate in mice with Adamts13 -/- cfh R/R was significantly higher than that in mice with cfh R/R alone. Histological and immunohistochemical analyses demonstrated the presence of disseminated platelet-rich thrombi in terminal arterioles and capillaries of major organ tissues in these mice that were either euthanized or died. Together, our results support a synergistic effect of severe ADAMTS13 deficiency and complement activation in pathogenesis of TMA in mice.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Di Zhang
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - X Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| |
Collapse
|
55
|
Abstract
The thrombotic microangiopathies (TMAs) are a group of diseases characterised by microangiopathic haemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. Traditionally, TMAs have been classified as either thrombotic thrombocytopenic purpura (TTP) or haemolytic uremic syndrome (HUS) based on the clinical presentation, with neurological involvement predominating in the former and acute kidney injury in the latter. However, as our understanding of the pathogenesis of these conditions has increased, it has become clear that this is an over-simplification; there is significant overlap in the clinical presentation of TTP and HUS, there are different forms of HUS, and TMAs can occur in other, diverse clinical scenarios. This review will discuss recent developments in the diagnosis of HUS, focusing on the different forms of HUS and how to diagnose and manage these potentially life-threatening diseases.
Collapse
Affiliation(s)
- Neil S Sheerin
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Emily Glover
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
56
|
Han SR, Cho MH, Moon JS, Ha IS, Cheong HI, Kang HG. Life-Threatening Extrarenal Manifestations in an Infant with Atypical Hemolytic Uremic Syndrome Caused by a Complement 3-Gene Mutation. Kidney Blood Press Res 2019; 44:1300-1305. [PMID: 31522186 DOI: 10.1159/000502289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a rare, life-threatening disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment caused by uncontrolled activation of the complement system. About 20% of patients show extrarenal manifestations, with central nervous system involvement being the most frequent. We described the clinical course and management of aHUS in an infant, that was caused by a complement 3 (C3) gene mutation with severe extrarenal manifestations. CASE PRESENTATION A 4-month-old girl visited our hospital for jaundice and petechiae. Laboratory tests revealed microangiopathic hemolytic anemia, thrombocytopenia, and hyperazotemia. She was diagnosed with aHUS with a C3 p.E1160K mutation. Daily fresh-frozen plasma (FFP) therapy was administered; however, she experienced the severe extrarenal manifestations of pulmonary hemorrhage and gastrointestinal bleeding. With aggressive treatment, supportive care, and daily FFP transfusion, the patient recovered and was discharged after 72 days of hospital stay, on a regular FFP transfusion. Four months after diagnosis, she was switched to eculizumab treatment. Twenty months have passed since then and she has been relapse-free until now. CONCLUSION aHUS is rare but has a devastating course if not properly treated. Severe extrarenal manifestations, such as pulmonary hemorrhage and gastrointestinal bleeding, can develop in aHUS caused by a C3 mutation. In our case, long-term management with eculizumab resulted in relapse-free survival.
Collapse
Affiliation(s)
- Sa Ra Han
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
| | - Myung Hyun Cho
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea, .,Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea,
| |
Collapse
|
57
|
Complement Activation in Progression of Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:423-441. [PMID: 31399977 DOI: 10.1007/978-981-13-8871-2_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is a public health problem worldwide, with increasing incidence and prevalence. The mechanisms underlying the progression to end-stage renal disease (ESRD) is not fully understood. The complement system was traditionally regarded as an important part of innate immunity required for host protection against infection and for maintaining host hemostasis. However, compelling evidence from both clinical and experimental studies has strongly incriminated complement activation as a pivotal pathogenic mediator of the development of multiple renal diseases and progressive replacement of functioning nephrons by fibrosis. Both anaphylatoxins, i.e., C3a and C5a, and membrane attack complex (MAC) contribute to the damage that occurs during chronic renal progression through various mechanisms including direct proinflammatory and fibrogenic activity, chemotactic effect, activation of the renal renin-angiotensin system, and enhancement of T-cell immunity. Evolving understanding of the mechanisms of complement-mediated renal injury has led to the emergence of complement-targeting therapeutics. A variety of specific antibodies and inhibitors targeting complement components have shown efficacy in reducing disease in animal models. Moreover, building on these advances, targeting complement has gained encouraging success in treating patients with renal diseases such as atypical hemolytic uremic syndrome (aHUS). Nevertheless, it still requires a great deal of effort to develop inhibitors that can be applied to treat more patients effectively in routine clinical practice.
Collapse
|
58
|
Mezger M, Nording H, Sauter R, Graf T, Heim C, von Bubnoff N, Ensminger SM, Langer HF. Platelets and Immune Responses During Thromboinflammation. Front Immunol 2019; 10:1731. [PMID: 31402914 PMCID: PMC6676797 DOI: 10.3389/fimmu.2019.01731] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Besides mediating hemostatic functions, platelets are increasingly recognized as important players of inflammation. Data from experiments in mice and men revealed various intersection points between thrombosis, hemostasis, and inflammation, which are addressed and discussed in this review in detail. One such example is the intrinsic coagulation cascade that is initiated after platelet activation thereby further propagating and re-enforcing wound healing or thrombus formation but also contributing to the pathophysiology of severe diseases. FXII of the intrinsic pathway connects platelet activation with the coagulation cascade during immune reactions. It can activate the contact system thereby either creating an inflammatory state or accelerating inflammation. Recent insights into platelet biology could show that platelets are equipped with complement receptors. Platelets are important for tissue remodeling after injury has been inflicted to the endothelial barrier and to the subendothelial tissue. Thus, platelets are increasingly recognized as more than just cells relevant for bleeding arrest. Future insights into platelet biology are to be expected. This research will potentially offer novel opportunities for therapeutic intervention in diseases featuring platelet abundance.
Collapse
Affiliation(s)
- Matthias Mezger
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Reinhard Sauter
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Graf
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian Heim
- Department of Cardiac Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Stephan M Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F Langer
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
59
|
Valoti E, Alberti M, Iatropoulos P, Piras R, Mele C, Breno M, Cremaschi A, Bresin E, Donadelli R, Alizzi S, Amoroso A, Benigni A, Remuzzi G, Noris M. Rare Functional Variants in Complement Genes and Anti-FH Autoantibodies-Associated aHUS. Front Immunol 2019; 10:853. [PMID: 31118930 PMCID: PMC6504697 DOI: 10.3389/fimmu.2019.00853] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and renal failure. It is caused by genetic or acquired defects of the complement alternative pathway. Factor H autoantibodies (anti-FHs) have been reported in 10% of aHUS patients and are associated with the deficiency of factor H-related 1 (FHR1). However, FHR1 deficiency is not enough to cause aHUS, since it is also present in about 5% of Caucasian healthy subjects. In this study we evaluated the prevalence of genetic variants in CFH, CD46, CFI, CFB, C3, and THBD in aHUS patients with anti-FHs, using healthy subjects with FHR1 deficiency, here defined “supercontrols,” as a reference group. “Supercontrols” are more informative than general population because they share at least one risk factor (FHR1 deficiency) with aHUS patients. We analyzed anti-FHs in 305 patients and 30 were positive. The large majority were children (median age: 7.7 [IQR, 6.6–9.9] years) and 83% lacked FHR1 (n = 25, cases) due to the homozygous CFHR3-CFHR1 deletion (n = 20), or the compound heterozygous CFHR3-CFHR1 and CFHR1-CFHR4 deletions (n = 4), or the heterozygous CFHR3-CFHR1 deletion combined with a frameshift mutation in CFHR1 that generates a premature stop codon (n = 1). Of the 960 healthy adult subjects 48 had the FHR1 deficiency (“supercontrols”). Rare likely pathogenetic variants in CFH, THBD, and C3 were found in 24% of cases (n = 6) compared to 2.1% of the “supercontrols” (P-value = 0.005). We also found that the CFH H3 and the CD46GGAAC haplotypes are not associated with anti-FHs aHUS, whereas these haplotypes are enriched in aHUS patients without anti-FHs, which highlights the differences in the genetic basis of the two forms of the disease. Finally, we confirm that common infections are environmental factors that contribute to the development of anti-FHs aHUS in genetically predisposed individuals, which fits with the sharp peak of incidence during scholar-age. Further studies are needed to fully elucidate the complex genetic and environmental factors underlying anti-FHs aHUS and to establish whether the combination of anti-FHs with likely pathogenetic variants or other risk factors influences disease outcome and response to therapies.
Collapse
Affiliation(s)
- Elisabetta Valoti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Rossella Piras
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandra Cremaschi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Roberta Donadelli
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Silvia Alizzi
- Azienda Ospedaliera-Universitaria, Città della Salute e della Scienza and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Azienda Ospedaliera-Universitaria, Città della Salute e della Scienza and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
60
|
Ariceta G. Optimal duration of treatment with eculizumab in atypical hemolytic uremic syndrome (aHUS)-a question to be addressed in a scientific way. Pediatr Nephrol 2019; 34:943-949. [PMID: 30693384 DOI: 10.1007/s00467-019-4192-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Gema Ariceta
- Pediatric Nephrology, Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
61
|
Atypical Hemolytic Uremic Syndrome With the p.Ile1157Thr C3 Mutation Successfully Treated With Plasma Exchange and Eculizumab: A Case Report. Crit Care Explor 2019; 1:e0008. [PMID: 32166254 PMCID: PMC7063875 DOI: 10.1097/cce.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. To describe a case of atypical hemolytic uremic syndrome induced by influenza A infection with the p.Ile1157Thr C3 mutation.
Collapse
|
62
|
Atypical hemolytic-uremic syndrome: recurrent phenotypic expression of a patient with MCP gene mutation combined with risk haplotypes. Blood Coagul Fibrinolysis 2019; 30:68-70. [PMID: 30676336 DOI: 10.1097/mbc.0000000000000793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: We bring the case of a 38-year-old man who was presented to the emergency department with nausea, fever, and choluria, 4 days after the ingestion of raw oysters. Analytical study revealed thrombocytopenia and acute kidney injury that were associated to a possible thrombotic microangiopathy. Therapeutic plasma exchange was started and resolution of the manifestations was obtained. To identify the cause of the thrombotic microangiopathy a molecular study was performed and a pathogenic variant in the MCP gene, c.287-2A>G (splice acceptor) in heterozygous state with a concomitant presence of both risk haplotypes, MCPggaac and Complement factor H (CFH)-H3 were identified. These findings make the diagnosis of atypical hemolytic-uremic syndrome (aHUS), and despite a relatively benign course with a positive response to plasma exchange without an evolution to renal failure was evident a recurrent profile of aHUS when associated with an infectious trigger.
Collapse
|
63
|
Chan S, Weinstein AR. Seizure as the Presenting Symptom for Atypical Hemolytic Uremic Syndrome. J Emerg Med 2019; 56:441-443. [PMID: 30826084 DOI: 10.1016/j.jemermed.2018.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a complement-mediated disease manifesting in thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney injury. It has a higher incidence of extrarenal manifestations, including central nervous system findings like seizure or stroke, pancreatitis, and cardiac manifestations. CASE REPORT We present a case of an unimmunized 14-month-old girl presenting with generalized seizure and ultimately diagnosed with aHUS. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: These atypical neurological symptoms can cause the diagnosis to be commonly missed in the emergency department. The etiology of approximately 60% of patients with aHUS can be attributed to genetic mutations in complement regulators including factor H, membrane cofactor protein, factor I, activator factor B, or C3. Although previously treated with plasma transfusion and immunosuppressants, eculizumab is a newer treatment that has been changing prognosis and management of aHUS, but it should be administered within 48 h of symptom onset for best efficacy.
Collapse
Affiliation(s)
- Sandy Chan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire and Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Adam R Weinstein
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire and Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
64
|
Tseng MH, Tsai JD, Tsai IJ, Huang SM, Huang JL, Fan WL, Lee HJ, Wu TW, Lin SH. Whole-exome sequencing detects mutations in pediatric patients with atypical hemolytic uremic syndrome in Taiwan. Clin Chim Acta 2019; 494:143-150. [PMID: 30905589 DOI: 10.1016/j.cca.2019.03.1623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Although atypical hemolytic uremic syndrome (aHUS) is a genetic disorder, molecular defects are detected in only 60% of patients. We aim to dissect the genetic background by whole exome sequence and the clinical characteristics of pediatric patients with aHUS. Ten patients (6 male and 4 female) with mean age 5.2 ± 5.0 years were enrolled. The age at onset ranged from 2 days to 11 years. Eighteen different mutations (17 missense, 2 nonsense, and 11 novel) on 7 complement and 3 coagulation genes were detected in all patients. The majority of mutation was heterozygous and S1191L on CFH were the recurrent mutation. Sixty percent of patients had multiple genetic mutations. Nine mutations were associated with genes known to be implicated in aHUS (CFH, CFI, CD46, CFHR5, and DGKE), while 4 and 5 mutations were detected on complement- (C8B, C9, and MASP1) and coagulation-associated (VWF and CD36) genes, respectively. CD36 may be a candidate gene act as disease modifier for aHUS through the contribution of thrombosis by impairing the interaction with TSP-1 and ADAMTS 13 shown in simulation model. Genetic defects on both complement and coagulation pathways play pathogenic roles on aHUS. CD36 may be a novel candidate gene act as disease modifier of aHUS.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Xiamen Chang Gung Hospital, Ximen, China
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - I-Jung Tsai
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children Hospital, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, US
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
65
|
Frémeaux-Bacchi V, Sellier-Leclerc AL, Vieira-Martins P, Limou S, Kwon T, Lahoche A, Novo R, Llanas B, Nobili F, Roussey G, Cailliez M, Ulinski T, Deschênes G, Alberti C, Weill FX, Mariani P, Loirat C. Complement Gene Variants and Shiga Toxin-Producing Escherichia coli-Associated Hemolytic Uremic Syndrome: Retrospective Genetic and Clinical Study. Clin J Am Soc Nephrol 2019; 14:364-377. [PMID: 30674459 PMCID: PMC6419292 DOI: 10.2215/cjn.05830518] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Inherited complement hyperactivation is critical for the pathogenesis of atypical hemolytic uremic syndrome (HUS) but undetermined in postdiarrheal HUS. Our aim was to investigate complement activation and variants of complement genes, and their association with disease severity in children with Shiga toxin-associated HUS. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Determination of complement biomarkers levels and next-generation sequencing for the six susceptibility genes for atypical HUS were performed in 108 children with a clinical diagnosis of post-diarrheal HUS (75 Shiga toxin-positive, and 33 Shiga toxin-negative) and 80 French controls. As an independent control cohort, we analyzed the genotypes in 503 European individuals from the 1000 Genomes Project. RESULTS During the acute phase of HUS, plasma levels of C3 and sC5b-9 were increased, and half of patients had decreased membrane cofactor protein expression, which normalized after 2 weeks. Variants with minor allele frequency <1% were identified in 12 Shiga toxin-positive patients with HUS (12 out of 75, 16%), including pathogenic variants in four (four out of 75, 5%), with no significant differences compared with Shiga toxin-negative patients with HUS and controls. Pathogenic variants with minor allele frequency <0.1% were found in three Shiga toxin-positive patients with HUS (three out of 75, 4%) versus only four European controls (four out of 503, 0.8%) (odds ratio, 5.2; 95% confidence interval, 1.1 to 24; P=0.03). The genetic background did not significantly affect dialysis requirement, neurologic manifestations, and sC5b-9 level during the acute phase, and incident CKD during follow-up. However, the only patient who progressed to ESKD within 3 years carried a factor H pathogenic variant. CONCLUSIONS Rare variants and complement activation biomarkers were not associated with severity of Shiga toxin-associated HUS. Only pathogenic variants with minor allele frequency <0.1% are more frequent in Shiga toxin-positive patients with HUS than in controls.
Collapse
Affiliation(s)
- Véronique Frémeaux-Bacchi
- Service d’Immunologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Team “Complement and Disease,” Centre de recherche des Cordeliers, Sorbonne Université, INSERM, Paris, France
| | | | - Paula Vieira-Martins
- Service d’Immunologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Limou
- Institute for Transplantation in Urology and Nephrology, Centre Hospitalo-Universitaire de Nantes, Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé et de la Recherche Médicale U1064, Université de Nantes, Ecole Centrale de Nantes, Nantes, France
| | | | - Annie Lahoche
- Pediatric Nephrology Department, Hôpital Jeanne de Flandre, Centre Hospitalo-Universitaire de Lille, Lille, France
| | - Robert Novo
- Pediatric Nephrology Department, Hôpital Jeanne de Flandre, Centre Hospitalo-Universitaire de Lille, Lille, France
| | - Brigitte Llanas
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - François Nobili
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Besançon, Besançon, France
| | - Gwenaëlle Roussey
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Mathilde Cailliez
- Pediatric Nephrology Department, Centre Hospitalo-Universitaire de Marseille, Marseille, France
| | - Tim Ulinski
- Pediatric Nephrology Department, Hôpital Trousseau, University Pierre and Marie Curie, Assistance Publique-Hôpitaux de Paris, Paris, France; and
| | | | - Corinne Alberti
- Unit of Clinical Epidemiology, Institut National de la Santé et de la Recherche Médicale U1123 and Centre d'Investigation Clinique-Epidémiologie Clinique 1426, and
| | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, France
| | - Patricia Mariani
- Laboratory of Microbiology, Escherichia coli Associated National Reference Center, Hôpital Robert Debré, University Paris Diderot, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
66
|
Ueda Y, Miwa T, Ito D, Kim H, Sato S, Gullipalli D, Zhou L, Golla M, Song D, Dunaief JL, Palmer MB, Song WC. Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation. Kidney Int 2019; 96:67-79. [PMID: 30910380 PMCID: PMC10084839 DOI: 10.1016/j.kint.2019.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/24/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by dysregulated complement activation. Clinically, aHUS is effectively treated by an anti-C5 monoclonal antibody (mAb) but whether the disease is mediated by the C5a receptor (C5aR) or C5b-9 pathway, or both, is unknown. Here we address this in a factor H mutant mouse (FHR/R) which developed complement-mediated TMA as well as macrovascular thrombosis caused by an aHUS-related factor H point mutation (mouse W1206R, corresponding to human W1183R). C5 deficiency and anti-C5 mAb treatment blocked all disease manifestations in FHR/R mice. C5aR1 gene deficiency prevented macrovascular thrombosis in various organs but did not improve survival or reduce renal TMA. Conversely, C6 or C9 deficiency significantly improved survival and markedly diminished renal TMA but did not prevent macrovascular thrombosis. Interestingly, as they aged both FHR/R C6-/- and FHR/R C9-/- mice developed glomerular disease reminiscent of C3 glomerulonephritis. Thus, C5aR and C5b-9 pathways drove different aspects of disease in FHR/R mice with the C5aR pathway being responsible for macrovascular thrombosis and chronic inflammatory injury while the C5b-9 pathway caused renal TMA. Our data provide new understanding of the pathogenesis of complement-mediated TMA and macrovascular thrombosis in FHR/R mice and suggest that C5 blockade is more effective for the treatment of aHUS than selectively targeting the C5aR or C5b-9 pathway alone.
Collapse
Affiliation(s)
- Yoshiyasu Ueda
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daisuke Ito
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hangsoo Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lin Zhou
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delu Song
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
67
|
Monogenic causes of chronic kidney disease in adults. Kidney Int 2019; 95:914-928. [PMID: 30773290 DOI: 10.1016/j.kint.2018.10.031] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.
Collapse
|
68
|
Smith-Jackson K, Yang Y, Denton H, Pappworth IY, Cooke K, Barlow PN, Atkinson JP, Liszewski MK, Pickering MC, Kavanagh D, Cook HT, Marchbank KJ. Hyperfunctional complement C3 promotes C5-dependent atypical hemolytic uremic syndrome in mice. J Clin Invest 2019; 129:1061-1075. [PMID: 30714990 PMCID: PMC6391106 DOI: 10.1172/jci99296] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is frequently associated in humans with loss-of-function mutations in complement-regulating proteins or gain-of-function mutations in complement-activating proteins. Thus, aHUS provides an archetypal complement-mediated disease with which to model new therapeutic strategies and treatments. Herein, we show that, when transferred to mice, an aHUS-associated gain-of-function change (D1115N) to the complement-activation protein C3 results in aHUS. Homozygous C3 p.D1115N (C3KI) mice developed spontaneous chronic thrombotic microangiopathy together with hematuria, thrombocytopenia, elevated creatinine, and evidence of hemolysis. Mice with active disease had reduced plasma C3 with C3 fragment and C9 deposition within the kidney. Therapeutic blockade or genetic deletion of C5, a protein downstream of C3 in the complement cascade, protected homozygous C3KI mice from thrombotic microangiopathy and aHUS. Thus, our data provide in vivo modeling evidence that gain-of-function changes in complement C3 drive aHUS. They also show that long-term C5 deficiency is not accompanied by development of other renal complications (such as C3 glomerulopathy) despite sustained dysregulation of C3. Our results suggest that this preclinical model will allow testing of novel complement inhibitors with the aim of developing precisely targeted therapeutics that could have application in many complement-mediated diseases.
Collapse
Affiliation(s)
- Kate Smith-Jackson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Yi Yang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Harriet Denton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Isabel Y Pappworth
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Cooke
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul N Barlow
- Department of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - John P Atkinson
- Division of Rheumatology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - M Kathryn Liszewski
- Division of Rheumatology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - David Kavanagh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - H Terence Cook
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
69
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
70
|
Vasilev VV, Radanova M, Lazarov VJ, Dragon-Durey MA, Fremeaux-Bacchi V, Roumenina LT. Autoantibodies Against C3b-Functional Consequences and Disease Relevance. Front Immunol 2019; 10:64. [PMID: 30761135 PMCID: PMC6361862 DOI: 10.3389/fimmu.2019.00064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
The complement component C3 is at the heart of the complement cascade. It is a complex protein, which generates different functional activated fragments (C3a, C3b, iC3b, C3c, C3d). C3b is a constituent of the alternative pathway C3 convertase (C3bBb), binds multiple regulators, and receptors, affecting thus the functioning of the immune system. The activated forms of C3 are a target for autoantibodies. This review focuses on the discovery, disease relevance, and functional consequences of the anti-C3b autoantibodies. They were discovered about 70 years ago and named immunoconglutinins. They were found after infections and considered convalescent factors. At the end of the twentieth century IgG against C3b were found in systemic lupus erythematosus and recently in lupus nephritis, correlating with the disease severity and flare. Cases of C3 glomerulopathy and immune complex glomerulonephritis were also reported. These antibodies recognize epitopes, shared between C3(H2O)/C3b/iC3b/C3c and have overt functional activity. They correlate with low plasmatic C3 levels in patients. In vitro, they increase the activity of the alternative pathway C3 convertase, without being C3 nephritic factors. They perturb the binding of the negative regulators Complement Receptor 1 and Factor H. The clear functional consequences and association with disease severity warrant further studies to establish the link between the anti-C3b autoantibodies and tissue injury. Comparative studies with such antibodies, found in patients with infections, may help to uncover their origin and epitopes specificity. Patients with complement overactivation due to presence of anti-C3b antibodies may benefit from therapeutic targeting of C3.
Collapse
Affiliation(s)
- Vasil V Vasilev
- Nephrology Clinic, University Hospital "Tsaritsa Yoanna-ISUL," Medical University-Sofia, Sofia, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Varna, Bulgaria
| | - Valentin J Lazarov
- Nephrology Clinic, University Hospital "Tsaritsa Yoanna-ISUL," Medical University-Sofia, Sofia, Bulgaria
| | - Marie-Agnes Dragon-Durey
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France.,INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
71
|
Clinical and Complement Long-Term Follow-Up of a Pediatric Patient with C3 Mutation-Related Atypical Hemolytic Uremic Syndrome. Case Rep Nephrol 2019; 2018:3810249. [PMID: 30662780 PMCID: PMC6312603 DOI: 10.1155/2018/3810249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 12/02/2022] Open
Abstract
We report a pediatric patient with atypical hemolytic uremic syndrome due to a C3 gain-of-function mutation diagnosed in infancy. She was treated from the start with a constant dose of 300 mg eculizumab every second week from the onset and followed by routine complement analyses for six years. Her complement system was completely inhibited and the dose interval was prolonged from 2 to 3 weeks without alteration of the dose and the complement activity continued to be completely inhibited. Blood samples taken immediately before, immediately after, and between eculizumab doses were analyzed for eculizumab-C5 complexes and percentage of total complement activity, using the Wieslab® test, and compared to a pool of sera from 20 healthy controls. The patient exhibited complete complement inhibition at all three time-points and had no free circulating C5 suggesting there was complete binding to eculizumab. She has now been treated for six years with full complement blockade. We suggest therefore that analysis of complement activity using the Wieslab® test is useful for evaluating the effect of eculizumab when dose intervals are prolonged.
Collapse
|
72
|
Tsai HM. Thrombotic Thrombocytopenic Purpura and Hemolytic-Uremic Syndromes. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of Atypical Hemolytic Uremic Syndrome. J Atheroscler Thromb 2018; 26:99-110. [PMID: 30393246 PMCID: PMC6365154 DOI: 10.5551/jat.rv17026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a type of thrombotic microangiopathy (TMA) defined by thrombocytopenia, microangiopathic hemolytic anemia, and renal failure. aHUS is caused by uncontrolled complement activation in the alternative pathway (AP). A variety of genetic defects in complement-related factors or acquired autoantibodies to the complement regulators have been found in 50 to 60% of all cases. Recently, however, the classification and diagnosis of aHUS are becoming more complicated. One reason for this is that some factors, which have not been regarded as complement-related factors, have been reported as predisposing factors for phenotypic aHUS. Given that genotype is highly correlated with the phenotype of aHUS, careful analysis of underlying genetic abnormalities or acquired factors is needed to predict the prognosis or to decide an optimal treatment for the disease. Another reason is that complement dysregulation in the AP have also been found in a part of other types of TMA such as transplantation-related TMA and pregnancy-related complication. Based on these findings, it is now time to redefine aHUS according to the genetic or acquired background of abnormalities.Here, we review the pathogeneses and the corresponding phenotypes of aHUS and complement-related TMAs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Hideki Kato
- Department of Prevention of Diabetes and Lifestyle-Related Diseases Graduate School of Medicine, the University of Tokyo
| | - Yoichiro Ikeda
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, the University of Tokyo Hospital
| |
Collapse
|
74
|
Zhao W, Ding Y, Lu J, Zhang T, Chen D, Zhang H, Zeng C, Liu Z, Chen H. Genetic analysis of the complement pathway in C3 glomerulopathy. Nephrol Dial Transplant 2018; 33:1919-1927. [PMID: 29566171 DOI: 10.1093/ndt/gfy033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background C3 glomerulopathy often presents with a membranoproliferative glomerulonephritis (MPGN) pattern, and is principally caused by unrestricted activation of the complement alternative pathway. Genetic abnormalities of the complement system critically implicate in the pathogenesis of C3 glomerulopathy, but a systemic profile remains open, especially in Asia. Methods In this study, we completed a comprehensive screen of 11 candidate alternative pathway genes by using targeted genomic enrichment and massively parallel sequencing on 43 patients with sporadic C3 glomerulopathy, which were classified as dense deposit disease (DDD; n = 10) and C3 glomerulonephritis (C3GN; n = 33) cases. An additional 24 patients with immune complex-mediated MPGN were also enrolled. Results In total, 4 novel and 16 rare variants were identified: one was classified as likely pathogenic, and the remaining 19 were of uncertain significance. Three variants reportedly led to functional deficiency with supporting evidences. Variants in the CFH, CFI, CD46 and C3 genes were most frequently detected. A defective control of the complement alternative pathway due to hereditary abnormalities was found at frequencies of 50%, 27% and 17% in DDD, C3GN and immune complex-mediated MPGN, respectively. Irrespective of histological type, the patients with likely pathogenic and uncertain significant variants were clinically similar to those without. Conclusions Accurate genetic screening can give rise to progress in understanding the pathogenesis of C3 glomerulopathy, and the correct assignment of pathogenicity classification is of great importance for better patient care and prognostic or therapeutic advice.
Collapse
Affiliation(s)
- Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yin Ding
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Jianping Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dacheng Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haitao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
75
|
Omoyinmi E, Mohamoud I, Gilmour K, Brogan PA, Eleftheriou D. Cutaneous Vasculitis and Digital Ischaemia Caused by Heterozygous Gain-of-Function Mutation in C3. Front Immunol 2018; 9:2524. [PMID: 30443255 PMCID: PMC6221951 DOI: 10.3389/fimmu.2018.02524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
It is now increasingly recognized that some monogenic autoinflammatory diseases and immunodeficiencies cause vasculitis, although genetic causes of vasculitis are extremely rare. We describe a child of non-consanguineous parents who presented with cutaneous vasculitis, digital ischaemia and hypocomplementaemia. A heterozygous p.R1042G gain-of-function mutation (GOF) in the complement component C3 gene was identified as the cause, resulting in secondary C3 consumption and complete absence of alternative complement pathway activity, decreased classical complement activity, and low levels of serum C3 with normal C4 levels. The same heterozygous mutation and immunological defects were also identified in another symptomatic sibling and his father. C3 deficiency due GOF C3 mutations is thus now added to the growing list of monogenic causes of vasculitis and should always be considered in vasculitis patients found to have persistently low levels of C3 with normal C4.
Collapse
Affiliation(s)
- Ebun Omoyinmi
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Iman Mohamoud
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kimberly Gilmour
- Clinical Immunology Laboratory, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul A Brogan
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom
| |
Collapse
|
76
|
Bu F, Zhang Y, Wang K, Borsa NG, Jones MB, Taylor AO, Takanami E, Meyer NC, Frees K, Thomas CP, Nester C, Smith RJH. Genetic Analysis of 400 Patients Refines Understanding and Implicates a New Gene in Atypical Hemolytic Uremic Syndrome. J Am Soc Nephrol 2018; 29:2809-2819. [PMID: 30377230 DOI: 10.1681/asn.2018070759] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Genetic variation in complement genes is a predisposing factor for atypical hemolytic uremic syndrome (aHUS), a life-threatening thrombotic microangiopathy, however interpreting the effects of genetic variants is challenging and often ambiguous. METHODS We analyzed 93 complement and coagulation genes in 400 patients with aHUS, using as controls 600 healthy individuals from Iowa and 63,345 non-Finnish European individuals from the Genome Aggregation Database. After adjusting for population stratification, we then applied the Fisher exact, modified Poisson exact, and optimal unified sequence kernel association tests to assess gene-based variant burden. We also applied a sliding-window analysis to define the frequency range over which variant burden was significant. RESULTS We found that patients with aHUS are enriched for ultrarare coding variants in the CFH, C3, CD46, CFI, DGKE, and VTN genes. The majority of the significance is contributed by variants with a minor allele frequency of <0.1%. Disease-related variants tend to occur in specific complement protein domains of FH, CD46, and C3. We observed no enrichment for multiple rare coding variants in gene-gene combinations. CONCLUSIONS In known aHUS-associated genes, variants with a minor allele frequency >0.1% should not be considered pathogenic unless valid enrichment and/or functional evidence are available. VTN, which encodes vitronectin, an inhibitor of the terminal complement pathway, is implicated as a novel aHUS-associated gene. Patients with aHUS are not enriched for multiple rare variants in complement genes. In aggregate, these data may help in directing clinical management of aHUS.
Collapse
Affiliation(s)
- Fengxiao Bu
- Medical Genetics Center, Southwest Hospital, Chongqing, China; and.,Molecular Otolaryngology and Renal Research Laboratories
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories
| | | | | | | | | | - Erika Takanami
- Molecular Otolaryngology and Renal Research Laboratories
| | - Nicole C Meyer
- Molecular Otolaryngology and Renal Research Laboratories
| | - Kathy Frees
- Molecular Otolaryngology and Renal Research Laboratories
| | - Christie P Thomas
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, and
| | - Carla Nester
- Molecular Otolaryngology and Renal Research Laboratories.,Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, and.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, .,Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, and.,Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
77
|
Cavero T, Alonso M. Where are we with haemolytic uremic syndrome? Med Clin (Barc) 2018; 151:329-335. [PMID: 29699703 DOI: 10.1016/j.medcli.2018.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/30/2022]
Abstract
Haemolytic uremic syndrome (HUS) is characterised by microangiopathic haemolytic anaemia with acute kidney injury. It is currently classified into two main categories: Shiga-toxin producing E. coli-hemolytic uremic syndrome (STEC-HUS) and atypical haemolytic uremic syndrome (aHUS). Endothelial cell damage is the common pathway in HUS to developing thrombotic microangiopathy. Atypical HUS includes primary, secondary and aHUS due to metabolic diseases. In the majority of aHUS cases, hyperactivity of the alternative complement pathway plays a central role. Therefore, treatment is based on complement inhibitors like eculizumab, a drug that has revolutionised the natural history of the disease. Relapses are frequent after kidney transplant and thus confer a poor prognosis.
Collapse
Affiliation(s)
- Teresa Cavero
- Servicio de Nefrología, Hospital 12 de Octubre, Madrid, España.
| | - Marina Alonso
- Servicio de Anatomía Patológica, Hospital 12 de Octubre, Madrid, España
| |
Collapse
|
78
|
Baghli S, Abendroth C, Farooq U, Schaub JA. Atypical Presentation of Pregnancy-Related Hemolytic Uremic Syndrome. Am J Kidney Dis 2018; 72:451-456. [DOI: 10.1053/j.ajkd.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023]
|
79
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
80
|
Mohlin FC, Gros P, Mercier E, Gris JCR, Blom AM. Analysis of C3 Gene Variants in Patients With Idiopathic Recurrent Spontaneous Pregnancy Loss. Front Immunol 2018; 9:1813. [PMID: 30131807 PMCID: PMC6090058 DOI: 10.3389/fimmu.2018.01813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
Miscarriage is the most common complication of pregnancy. Approximately 1% of couples trying to conceive will experience recurrent miscarriages, defined as three or more consecutive pregnancy losses and many of these cases remain idiopathic. Complement is implicated both in the physiology and pathology of pregnancy. Therefore, we hypothesized that alterations in the C3 gene could potentially predispose to this disorder. We performed full Sanger sequencing of all exons of C3, in 192 childless women, with at least two miscarriages and without any known risk factors. All exons carrying non-synonymous alterations found in the patients were then sequenced in a control group of 192 women. None of the identified alterations were significantly associated with the disorder. Thirteen identified non-synonymous alterations (R102G, K155Q, L302P, P314L, Y325H, V326A, S327P, V330I, K633R, R735W, R1591G, G1606D, and S1619R) were expressed recombinantly, upon which C3 expression and secretion were determined. The L302P and S327P were not secreted from the cells, likely due to misfolding and intracellular degradation. Y325H, V326A, V3301I, R1591G, and G1606D yielded approximately half C3 concentration in the cell media compared with wild type (WT). We analyzed the hemolytic activity of the secreted C3 variants by reconstituting C3-depleted serum. In this assay, R1591G had impaired hemolytic activity while majority of remaining mutants instead had increased activity. R1591G also yielded more factor B activation in solution compared with WT. R1591G and G1606D showed impaired degradation by factor I, irrespectively if factor H, CD46, or C4b-binding protein were used as cofactors. These two C3 mutants showed impaired binding of the cofactors and/or factor I. Taken together, several alterations in C3 were identified and some of these affected the secretion and/or the function of the protein, which might contribute to the disorder but the degree of association must be evaluated in larger cohorts.
Collapse
Affiliation(s)
- Frida C. Mohlin
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, Netherlands
| | - Eric Mercier
- Laboratory of Hematology, University Hospital, Nimes, France
| | | | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
81
|
Goicoechea de Jorge E, López Lera A, Bayarri-Olmos R, Yebenes H, Lopez-Trascasa M, Rodríguez de Córdoba S. Common and rare genetic variants of complement components in human disease. Mol Immunol 2018; 102:42-57. [PMID: 29914697 DOI: 10.1016/j.molimm.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Genetic variability in the complement system and its association with disease has been known for more than 50 years, but only during the last decade have we begun to understand how this complement genetic variability contributes to the development of diseases. A number of reports have described important genotype-phenotype correlations that associate particular diseases with genetic variants altering specific aspects of the activation and regulation of the complement system. The detailed functional characterization of some of these genetic variants provided key insights into the pathogenic mechanisms underlying these pathologies, which is facilitating the design of specific anti-complement therapies. Importantly, these analyses have sometimes revealed unknown features of the complement proteins. As a whole, these advances have delineated the functional implications of genetic variability in the complement system, which supports the implementation of a precision medicine approach based on the complement genetic makeup of the patients. Here we provide an overview of rare complement variants and common polymorphisms associated with disease and discuss what we have learned from them.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Immunology, Complutense University, Madrid, Spain; Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alberto López Lera
- Research Institute Hospital Universitario La Paz (IdiPaz), Madrid, Spain; Ciber de Enfermedades Raras, Madrid, Spain
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Yebenes
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Santiago Rodríguez de Córdoba
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
82
|
Notaro R, Sica M. C3-mediated extravascular hemolysis in PNH on eculizumab: Mechanism and clinical implications. Semin Hematol 2018; 55:130-135. [PMID: 30032749 DOI: 10.1053/j.seminhematol.2018.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
The introduction of eculizumab, a human monoclonal antibody against the C5 component of complement, has changed radically the management of paroxysmal nocturnal hemoglobinuria (PNH). The blockade of the terminal complement pathway by eculizumab abrogates intravascular hemolysis, reduces the transfusion requirement and the risk of thrombosis in most of hemolytic PNH patients. However, in almost all PNH patients on eculizumab arises a fraction of PNH red cells that bind fragments of C3 and become a potential target of phagocytosis by macrophages. Eventually, this phagocytosis results in a variable degree of extravascular hemolysis that may reduce clinical benefits of eculizumab and, in fact, about one-fourth of patients remain transfusion-dependent. The treatment of the few PNH patients in which this de novo extravascular hemolysis become clinically relevant is still unsatisfactory. Nevertheless, the investigations of the mechanisms responsible of the extravascular hemolysis on eculizumab have resulted in the development of novel strategies for complement blockade that could overcome this condition.
Collapse
Affiliation(s)
- Rosario Notaro
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy.
| | - Michela Sica
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| |
Collapse
|
83
|
Ueda Y, Miwa T, Gullipalli D, Sato S, Ito D, Kim H, Palmer M, Song WC. Blocking Properdin Prevents Complement-Mediated Hemolytic Uremic Syndrome and Systemic Thrombophilia. J Am Soc Nephrol 2018; 29:1928-1937. [PMID: 29858280 DOI: 10.1681/asn.2017121244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background Properdin (P) is a positive regulator of the alternative pathway of complement activation. Although P inhibition is expected and has been shown to ameliorate the alternative pathway of complement-mediated tissue injury in several disease models, it unexpectedly exacerbated renal injury in a murine model of C3 glomerulopathy. The role of P in atypical hemolytic uremic syndrome (aHUS) is uncertain.Methods We blocked P function by genetic deletion or mAb-mediated inhibition in mice carrying a factor H (FH) point mutation, W1206R (FHR/R), that causes aHUS and systemic thrombophilia with high mortality.Results P deficiency completely rescued FHR/R mice from premature death and prevented thrombocytopenia, hemolytic anemia, and renal disease. It also eliminated macrovessel thrombi that were prevalent in FHR/R mice. All mice that received a function-blocking anti-P mAb for 8 weeks survived the experimental period and appeared grossly healthy. Platelet counts and hemoglobin levels were significantly improved in FHR/R mice after 4 weeks of anti-P mAb treatment. One half of the FHR/R mice treated with an isotype control mAb but none of the anti-P mAb-treated mice developed stroke-related neurologic disease. Anti-P mAb-treated FHR/R mice showed largely normal renal histology, and residual liver thrombi were detected in only three of 15 treated mice.Conclusions These results contrast with the detrimental effect of P inhibition observed in a murine model of C3 glomerulopathy and suggest that P contributes critically to aHUS pathogenesis. Inhibition of P in aHUS may be of therapeutic benefit.
Collapse
Affiliation(s)
- Yoshiyasu Ueda
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Takashi Miwa
- Departments of Systems Pharmacology and Translational Therapeutics and
| | | | - Sayaka Sato
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Daisuke Ito
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Hangsoo Kim
- Departments of Systems Pharmacology and Translational Therapeutics and
| | - Matthew Palmer
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wen-Chao Song
- Departments of Systems Pharmacology and Translational Therapeutics and
| |
Collapse
|
84
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
85
|
Sartain SE, Turner NA, Moake JL. Brain microvascular endothelial cells exhibit lower activation of the alternative complement pathway than glomerular microvascular endothelial cells. J Biol Chem 2018; 293:7195-7208. [PMID: 29555686 DOI: 10.1074/jbc.ra118.002639] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) and bone marrow transplantation-associated thrombotic microangiopathy (TA-TMA) are associated with excessive activation of the alternative complement pathway (AP) and with severe renal, but rarely cerebral, microvascular damage. Here, we compared AP activation and regulation in human glomerular and brain microvascular endothelial cells (GMVECs and BMVECs, respectively) unstimulated or stimulated by the proinflammatory cytokine, tumor necrosis factor (TNF). Compared with GMVECs and under both experimental conditions, BMVECs had increased gene expression of the AP-related genes C3, CFB, and C5 and decreased expression of CFD This was associated with increased expression in BMVECs (relative to GMVECs) of the genes for surface and soluble regulatory molecules (CD46, THBD, CD55, CFI, and CFH) suppressing formation of the AP C3 and C5 convertases. Of note, unlike GMVECs, BMVECs generated extremely low levels of C3a and C5a and displayed decreased activation of the AP (as measured by a lower percentage of Ba generation than GMVECs). Moreover, BMVECs exhibited increased function of CD141, mediating activation of the natural anticoagulant protein C, compared with GMVECs. We also found that the C3a receptor (C3aR) is present on both cell types and that TNF greatly increases C3AR1 expression in GMVECs, but only slightly in BMVECs. Higher AP activation and C3a generation in GMVECs than in BMVECs, coupled with an increase in C3aR production in TNF-stimulated GMVECs, provides a possible explanation for the predominance of renal damage, and the absence of cerebral injury, in individuals with episodes of aHUS and TA-TMA.
Collapse
Affiliation(s)
- Sarah E Sartain
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas 77030.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, Texas 77005
| |
Collapse
|
86
|
Wong EKS, Kavanagh D. Diseases of complement dysregulation-an overview. Semin Immunopathol 2018; 40:49-64. [PMID: 29327071 PMCID: PMC5794843 DOI: 10.1007/s00281-017-0663-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and paroxysmal nocturnal hemoglobinuria (PNH) are prototypical disorders of complement dysregulation. Although complement overactivation is common to all, cell surface alternative pathway dysregulation (aHUS), fluid phase alternative pathway dysregulation (C3G), or terminal pathway dysregulation (PNH) predominates resulting in the very different phenotypes seen in these diseases. The mechanism underlying the dysregulation also varies with predominant acquired autoimmune (C3G), somatic mutations (PNH), or inherited germline mutations (aHUS) predisposing to disease. Eculizumab has revolutionized the treatment of PNH and aHUS although has been less successful in C3G. With the next generation of complement therapeutic in late stage development, these archetypal complement diseases will provide the initial targets.
Collapse
Affiliation(s)
- Edwin K S Wong
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK. .,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
87
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
88
|
Langer HF, Verschoor A. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2017; 110:910-9. [DOI: 10.1160/th13-02-0102] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
SummaryPlatelets have a central function in repairing vascular damage and stopping acute blood loss. They are equally central to thrombus formation in cardiovascular diseases such as myocardial infarction and ischaemic stroke. Beyond these classical prothrombotic diseases, immune mediated pathologies such as haemolytic uraemic syndrome (HUS) or paroxysmal nocturnal haemoglobinuria (PNH) also feature an increased tendency to form thrombi in various tissues. It has become increasingly clear that the complement system, part of the innate immune system, has an important role in the pathophysiology of these diseases. Not only does complement influence prothrombotic disease, it is equally involved in idiopathic thrombocytopenic purpura (ITP), an autoimmune disease characterised by thrombocytopenia. Thus, there are complex interrelationships between the haemostatic and immune systems, and platelets and complement in particular. Not only does complement influence platelet diseases such as ITP, HUS and PNH, it also mediates interaction between microbes and platelets during systemic infection, influencing the course of infection and development of protective immunity. This review aims to provide an integrative overview of the mechanisms underlying the interactions between complement and platelets in health and disease.
Collapse
|
89
|
Midterm Outcomes of 12 Renal Transplant Recipients Treated With Eculizumab to Prevent Atypical Hemolytic Syndrome Recurrence. Transplantation 2017; 101:2924-2930. [DOI: 10.1097/tp.0000000000001909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
90
|
|
91
|
Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet 2017; 390:681-696. [PMID: 28242109 DOI: 10.1016/s0140-6736(17)30062-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Haemolytic uraemic syndrome is a form of thrombotic microangiopathy affecting predominantly the kidney and characterised by a triad of thrombocytopenia, mechanical haemolytic anaemia, and acute kidney injury. The term encompasses several disorders: shiga toxin-induced and pneumococcus-induced haemolytic uraemic syndrome, haemolytic uraemic syndrome associated with complement dysregulation or mutation of diacylglycerol kinase ɛ, haemolytic uraemic syndrome related to cobalamin C defect, and haemolytic uraemic syndrome secondary to a heterogeneous group of causes (infections, drugs, cancer, and systemic diseases). In the past two decades, experimental, genetic, and clinical studies have helped to decipher the pathophysiology of these various forms of haemolytic uraemic syndrome and undoubtedly improved diagnostic approaches. Moreover, a specific mechanism-based treatment has been made available for patients affected by atypical haemolytic uraemic syndrome due to complement dysregulation. Such treatment is, however, still absent for several other disease types, including shiga toxin-induced haemolytic uraemic syndrome.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, and INSERM UMR S1064, Nantes, France
| | - Julien Zuber
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology and Renal Transplantation, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Department of Biological Immunology, Hôpital Européen Georges Pompidou, and INSERM UMR S1138, Complément et Maladies, Centre de Recherche des Cordeliers, Paris, France
| | - Chantal Loirat
- Assistance Publique-Hôpitaux de Paris, Department of Pediatric Nephrology, Hôpital Robert Debré, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
92
|
Bruel A, Kavanagh D, Noris M, Delmas Y, Wong EKS, Bresin E, Provôt F, Brocklebank V, Mele C, Remuzzi G, Loirat C, Frémeaux-Bacchi V, Fakhouri F. Hemolytic Uremic Syndrome in Pregnancy and Postpartum. Clin J Am Soc Nephrol 2017; 12:1237-1247. [PMID: 28596415 PMCID: PMC5544502 DOI: 10.2215/cjn.00280117] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pregnancy is associated with various forms of thrombotic microangiopathy, including hemolytic uremic syndrome. A previous small French study suggested that pregnancy-associated hemolytic uremic syndrome was to be included in the spectrum of atypical hemolytic uremic syndrome linked to complement alternative pathway dysregulation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We sought to retrospectively analyze the presentation, outcome, and frequency of complement alternative pathway gene variants in a larger international (France, United Kingdom, Italy) cohort of patients with pregnancy-associated hemolytic uremic syndrome. RESULTS Eighty-seven patients with pregnancy-associated hemolytic uremic syndrome were included. Hemolytic uremic syndrome occurred mainly during the first pregnancy (58%) and in the postpartum period (76%). At diagnosis, 56 (71%) patients required dialysis. Fifty-six (78%) patients underwent plasma exchanges, 21 (41%) received plasma infusions, and four (5%) received eculizumab. During follow-up (mean duration of 7.2 years), 41 (53%) patients reached ESRD, 15 (19%) had CKD, and 18 (28%) patients experienced hemolytic uremic syndrome relapse. Twenty-four patients (27%) received a kidney transplant and a recurrence of hemolytic uremic syndrome occurred in 13 (54%) patients. Variants in complement genes were detected in 49 (56%) patients, mainly in the CFH (30%) and CFI genes (9%). CONCLUSIONS Pregnancy-associated hemolytic uremic syndrome and atypical hemolytic uremic syndrome nonrelated to pregnancy have the same severity at onset and during follow-up and the same frequency of complement gene variants.
Collapse
Affiliation(s)
- Alexandra Bruel
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
94
|
Peng M, Niu D, Chen Z, Lan T, Dong Z, Tran TN, Li J. Expression of a novel complement C3 gene in the razor clam Sinonovacula constricta and its role in innate immune response and hemolysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:184-192. [PMID: 28377201 DOI: 10.1016/j.dci.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Complement component 3 (C3) is a core component of the complement system, and directly participates in immune regulation and immune defense. Isoforms of C3 have been reported in several species of vertebrate, but invertebrates, and more specifically clams, have been less well studied. An isoform of C3, named ScC3-2, was identified in Sinonovacula constricta (Chinese razor clam). ScC3-2 included eight conserved regions, a thioester bond and two predicted junction sites (α-β and α-γ). The gene was expressed in the liver, gill, foot, hemolymph, mantle, gonad and siphon tissues. The gene was significantly upregulated in umbo larvae, suggesting that initial larval immunity may develop in umbo larvae. Moreover, the ScC3-2 mRNA expression patterns after challenge with Vibrio parahemolyticus and Micrococcus lysodeikticus exhibited an obvious upregulation at 8 h in the hemolymph and at 4 h in the liver, respectively. Furthermore, ScC3-2 showed effective membrane rupture of heterologous rabbit erythrocytes. The ScC3-2 protein was located on the surface of the cells during the process of hemolysis. After a comparative analysis, we suggest that the major structure and function of ScC3 and ScC3-2 are analogous. Our findings suggest that ScC3-2 plays an important immune function, and an intricate complement response may exist in S. constricta.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Zhiyi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyi Lan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Thi-Nga Tran
- Research Institute for Aquaculture No.1, Dinh Bang, Tu Son, Bac Ninh, Viet Nam
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
95
|
Brocklebank V, Johnson S, Sheerin TP, Marks SD, Gilbert RD, Tyerman K, Kinoshita M, Awan A, Kaur A, Webb N, Hegde S, Finlay E, Fitzpatrick M, Walsh PR, Wong EKS, Booth C, Kerecuk L, Salama AD, Almond M, Inward C, Goodship TH, Sheerin NS, Marchbank KJ, Kavanagh D. Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland. Kidney Int 2017; 92:1261-1271. [PMID: 28750931 PMCID: PMC5652378 DOI: 10.1016/j.kint.2017.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/23/2023]
Abstract
Factor H autoantibodies can impair complement regulation, resulting in atypical hemolytic uremic syndrome, predominantly in childhood. There are no trials investigating treatment, and clinical practice is only informed by retrospective cohort analysis. Here we examined 175 children presenting with atypical hemolytic uremic syndrome in the United Kingdom and Ireland for factor H autoantibodies that included 17 children with titers above the international standard. Of the 17, seven had a concomitant rare genetic variant in a gene encoding a complement pathway component or regulator. Two children received supportive treatment; both developed established renal failure. Plasma exchange was associated with a poor rate of renal recovery in seven of 11 treated. Six patients treated with eculizumab recovered renal function. Contrary to global practice, immunosuppressive therapy to prevent relapse in plasma exchange-treated patients was not adopted due to concerns over treatment-associated complications. Without immunosuppression, the relapse rate was high (five of seven). However, reintroduction of treatment resulted in recovery of renal function. All patients treated with eculizumab achieved sustained remission. Five patients received renal transplants without specific factor H autoantibody-targeted treatment with recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate eculizumab therapy for treatment of factor H autoantibody-mediated atypical hemolytic uremic syndrome rather than plasma exchange with or without immunosuppression. Based on this retrospective analysis we see no suggestion of inferior treatment, albeit the strength of our conclusions is limited by the small sample size.
Collapse
Affiliation(s)
- Vicky Brocklebank
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Sally Johnson
- Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle, UK
| | - Thomas P Sheerin
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen D Marks
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rodney D Gilbert
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kay Tyerman
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Meredith Kinoshita
- The Department for Paediatric Nephrology & Transplantation, The Children's University Hospital, Dublin, Ireland
| | - Atif Awan
- The Department for Paediatric Nephrology & Transplantation, The Children's University Hospital, Dublin, Ireland
| | - Amrit Kaur
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicholas Webb
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Eric Finlay
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Patrick R Walsh
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edwin K S Wong
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | - Larissa Kerecuk
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Alan D Salama
- UCL Centre for Nephrology, Royal Free London NHS Foundation Trust, Rowland Hill Street, London, UK
| | - Mike Almond
- Southend University Hospital, Prittlewell Chase, Westcliff-on-Sea, UK
| | - Carol Inward
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | - Timothy H Goodship
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
96
|
Rafat C, Coppo P, Fakhouri F, Frémeaux-Bacchi V, Loirat C, Zuber J, Rondeau E. [Hemolytic and uremic syndrome and related thrombotic microangiopathies: Epidemiology, pathophysiology and clinics]. Rev Med Interne 2017; 38:817-824. [PMID: 28711159 DOI: 10.1016/j.revmed.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 01/25/2023]
Abstract
Thrombotic microangiopathies (TMA) represent an eclectic group of conditions, which share hemolytic anemia and thrombocytopenia as a common defining basis. Remarkable breakthroughs in the physiopathological setting have allowed for a thorough recomposition of the disparate syndromes, which form the constellation of TMA. In this view, clinicians now discriminate thrombocytopenic thrombotic purpura (TTP) defined by a severe deficiency in ADAMTS13, which is rarely associated with a severe renal involvement and the hemolytic and uremic syndrome (HUS) in which renal impairment is the most prominent clinical feature. HUS can result from toxins stemming from bacterial infections of the digestive tract, alternate complement pathway abnormalities, metabolic or coagulation disorders or, lastly, drug and various toxic compounds. The diverse forms of HUS reflect the insights gained in the understanding of the pathophysiological mechanisms underpinning TMA. In this first part, a broad overview of the epidemiological, physiopathological and clinical aspects of HUS and related TMA syndromes is presented.
Collapse
Affiliation(s)
- C Rafat
- Urgences néphrologiques et transplantation rénale, hôpital Tenon, Assistance publique des Hôpitaux de Paris, Paris, France; Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France.
| | - P Coppo
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service d'hématologie, hôpital Saint-Antoine, Assistance publique des Hôpitaux de Paris, Paris, France; Unité Inserm UMR 1170, Villejuif, France
| | - F Fakhouri
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de néphrologie et d'immunologie, unité Inserm UMR 643, centre hospitalo-universitaire de Nantes, Nantes, France
| | - V Frémeaux-Bacchi
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Laboratoire d'immunologie, hôpital européen Georges-Pompidou, Assistance publique des Hôpitaux de Paris, Paris, France
| | - C Loirat
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de néphrologie pédiatrique, hôpital Robert-Debré, Assistance publique des Hôpitaux de Paris, Paris, France
| | - J Zuber
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Service de transplantation rénale, unité Inserm UMR_S1163, institut imagine, hôpital Necker, Assistance publique des Hôpitaux de Paris, Paris, France
| | - E Rondeau
- Centre national de référence des microangiopathies thrombotiques (CNR-MAT), AP-HP, Paris, France; Urgences néphrologiques et transplantation rénale, unité Inserm UMR 1155, hôpital Tenon, Assistance publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|
97
|
Bettoni S, Galbusera M, Gastoldi S, Donadelli R, Tentori C, Spartà G, Bresin E, Mele C, Alberti M, Tortajada A, Yebenes H, Remuzzi G, Noris M. Interaction between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1021-1040. [PMID: 28652401 DOI: 10.4049/jimmunol.1601121] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
von Willebrand factor (VWF), a multimeric protein with a central role in hemostasis, has been shown to interact with complement components. However, results are contrasting and inconclusive. By studying 20 patients with congenital thrombotic thrombocytopenic purpura (cTTP) who cannot cleave VWF multimers because of genetic ADAMTS13 deficiency, we investigated the mechanism through which VWF modulates complement and its pathophysiological implications for human diseases. Using assays of ex vivo serum-induced C3 and C5b-9 deposits on endothelial cells, we documented that in cTTP, complement is activated via the alternative pathway (AP) on the cell surface. This abnormality was corrected by restoring ADAMTS13 activity in cTTP serum, which prevented VWF multimer accumulation on endothelial cells, or by an anti-VWF Ab. In mechanistic studies we found that VWF interacts with C3b through its three type A domains and initiates AP activation, although assembly of active C5 convertase and formation of the terminal complement products C5a and C5b-9 occur only on the VWF-A2 domain. Finally, we documented that in the condition of ADAMTS13 deficiency, VWF-mediated formation of terminal complement products, particularly C5a, alters the endothelial antithrombogenic properties and induces microvascular thrombosis in a perfusion system. Altogether, the results demonstrated that VWF provides a platform for the activation of the AP of complement, which profoundly alters the phenotype of microvascular endothelial cells. These findings link hemostasis-thrombosis with the AP of complement and open new therapeutic perspectives in cTTP and in general in thrombotic and inflammatory disorders associated with endothelium perturbation, VWF release, and complement activation.
Collapse
Affiliation(s)
- Serena Bettoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Miriam Galbusera
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Sara Gastoldi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Roberta Donadelli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Chiara Tentori
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Giuseppina Spartà
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Elena Bresin
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Caterina Mele
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Marta Alberti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Agustin Tortajada
- Department of Immunology, Complutense University, Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Hugo Yebenes
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biologicas, 28040 Madrid, Spain
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy; .,Unità di Nefrologia e Dialisi, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy; and.,Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| |
Collapse
|
98
|
Blaum BS. The lectin self of complement factor H. Curr Opin Struct Biol 2017; 44:111-118. [DOI: 10.1016/j.sbi.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 01/15/2023]
|
99
|
Volokhina E, Wijnsma K, van der Molen R, Roeleveld N, van der Velden T, Goertz J, Sweep F, Brüggemann RJ, Wetzels J, van de Kar N, van den Heuvel L. Eculizumab Dosing Regimen in Atypical HUS: Possibilities for Individualized Treatment. Clin Pharmacol Ther 2017; 102:671-678. [DOI: 10.1002/cpt.686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 01/30/2023]
Affiliation(s)
- E Volokhina
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - K Wijnsma
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
| | - R van der Molen
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - N Roeleveld
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
- Department of Health Evidence; Radboud University Medical Center; Nijmegen The Netherlands
| | - T van der Velden
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
| | - J Goertz
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - F Sweep
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - RJ Brüggemann
- Department of Pharmacy; Radboud University Medical Center; Nijmegen The Netherlands
| | - J Wetzels
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - N van de Kar
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
| | - L van den Heuvel
- Department of Pediatric Nephrology; Amalia Children's Hospital, Radboud University Medical Center; Nijmegen The Netherlands
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
- Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| |
Collapse
|
100
|
Azoulay E, Knoebl P, Garnacho-Montero J, Rusinova K, Galstian G, Eggimann P, Abroug F, Benoit D, von Bergwelt-Baildon M, Wendon J, Scully M. Expert Statements on the Standard of Care in Critically Ill Adult Patients With Atypical Hemolytic Uremic Syndrome. Chest 2017; 152:424-434. [PMID: 28442312 DOI: 10.1016/j.chest.2017.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022] Open
Abstract
A typical hemolytic uremic syndrome (aHUS) presents similarly to thrombotic thrombocytopenic purpura (TTP) and other causes or conditions with thrombotic microangiopathy (TMA), such as disseminated intravascular coagulation or sepsis. Similarity in clinical presentation may hinder diagnosis and optimal treatment selection in the urgent setting in the ICU. However, there is currently no consensus on the diagnosis or treatment of aHUS for ICU specialists. This review aims to summarize available data on the diagnosis and treatment strategies of aHUS in the ICU to enhance the understanding of aHUS diagnosis and outcomes in patients managed in the ICU. To this end, a review of the recent literature (January 2009-March 2016) was performed to select the most relevant articles for ICU physicians. Based on the paucity of adult aHUS cases overall and within the ICU, no specific recommendations could be formally graded for the critical care setting. However, we recognize a core set of skills required by intensivists for diagnosing and managing patients with aHUS: recognizing thrombotic microangiopathies, differentiating aHUS from related conditions, recognizing involvement of other organ systems, understanding the pathophysiology of aHUS, knowing the diagnostic workup and relevant outcomes in critically ill patients with aHUS, and knowing the standard of care for patients with aHUS based on available data and guidelines. In conclusion, managing critically ill patients with aHUS requires basic skills that, in the absence of sufficient data from patients treated within the ICU, can be gleaned from an increasingly relevant literature outside the ICU. More data on critically ill patients with aHUS are needed to validate these conclusions within the ICU setting.
Collapse
Affiliation(s)
- Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, Paris, France.
| | - Paul Knoebl
- Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | | | - Katerina Rusinova
- University Hospital, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | - Fekri Abroug
- Fattouma Bourguiba Teaching Hospital Monastir, Tunisia
| | | | | | | | | |
Collapse
|