51
|
Zhuang X, Pedroza-Pacheco I, Nawroth I, Kliszczak AE, Magri A, Paes W, Rubio CO, Yang H, Ashcroft M, Mole D, Balfe P, Borrow P, McKeating JA. Hypoxic microenvironment shapes HIV-1 replication and latency. Commun Biol 2020; 3:376. [PMID: 32665623 PMCID: PMC7360605 DOI: 10.1038/s42003-020-1103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Isabel Nawroth
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Hongbing Yang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - David Mole
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter Balfe
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
52
|
Hiura K, Strahan R, Uppal T, Prince B, Rossetto CC, Verma SC. KSHV ORF59 and PAN RNA Recruit Histone Demethylases to the Viral Chromatin during Lytic Reactivation. Viruses 2020; 12:v12040420. [PMID: 32283586 PMCID: PMC7232192 DOI: 10.3390/v12040420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) causes multiple malignancies in immunocompromised individuals. KSHV primarily establishes a lifelong latency in infected humans during which only a subset of viral genes is expressed while most of the viral genome remains transcriptionally silent with condensed chromatin. However, during the lytic phase, the viral genome undergoes dramatic changes in chromatin landscape leading to a transcriptionally active state with the expression of most of the viral genes and production of progeny virions. Multiple cellular and viral factors influence the epigenetic gene regulation and transitioning of virus from latency to the lytic state. We have earlier shown that KSHV ORF59, viral processivity factor, binds to a protein arginine methyl transferase 5 (PRMT5) to alter the histone arginine methylation during reactivation. Additionally, ORF59 has been shown to interact with most abundantly expressed KSHV long noncoding polyadenylated nuclear RNA (PAN RNA), which associates with the viral epigenome during reactivation. Interestingly, PAN RNA interacts with UTX and JMJD3, cellular H3K27me3 demethylases, and removes the repressive marks on the chromatin. In this study, we report that the recruitment of histone demethylases to the viral chromatin is facilitated by the expression of ORF59 protein and PAN RNA. Using biochemical and localization assays including co-immunoprecipitation and immunofluorescence, we demonstate ORF59 localizes with UTX and JMJD3. Our results confirm that PAN RNA enhances the interaction of ORF59 with the chromatin modifying enzymes UTX and JMJD3.
Collapse
|
53
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
54
|
Wang V, Davis DA, Deleage C, Brands C, Choi HS, Haque M, Yarchoan R. Induction of Kaposi's Sarcoma-Associated Herpesvirus-Encoded Thymidine Kinase (ORF21) by X-Box Binding Protein 1. J Virol 2020; 94:e01555-19. [PMID: 31801863 PMCID: PMC7022350 DOI: 10.1128/jvi.01555-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Like other herpesviruses, it has latent and lytic repertoires. However, there is evidence that some lytic genes can be directly activated by certain cellular factors. Cells undergoing endoplasmic reticulum stress express spliced X-box binding protein 1 (XBP-1s). XBP-1s is also present in large amounts in germinal center B cells. XBP-1s can activate the KSHV replication and transcription activator (RTA) and lytic replication. It can also directly activate KSHV-encoded viral interleukin-6 (vIL-6) and, thus, contribute to the pathogenesis of KSHV MCD. KSHV thymidine kinase (TK), the ORF21 gene product, can enhance the production of dTTP and is important for lytic replication. It can also phosphorylate zidovudine and ganciclovir to toxic moieties, enabling treatment of KSHV-MCD with these drugs. We show here that XBP-1s can directly activate ORF21 and that this activation is mediated primarily through two XBP-response elements (XRE) on the ORF21 promoter region. Deletion or mutation of these elements eliminated XBP-1s-induced upregulation of the promoter, and chromatin immunoprecipitation studies provide evidence that XBP-1s can bind to both XREs. Exposure of PEL cells to a chemical inducer of XBP-1s can induce ORF21 within 4 hours, and ORF21 expression in the lymph nodes of patients with KSHV-MCD is predominantly found in cells with XBP-1. Thus, XBP-1s may directly upregulate KSHV ORF21 and, thus, contribute to the pathogenesis of KSHV-MCD and the activity of zidovudine and valganciclovir in this disease.IMPORTANCE Spliced X-box binding protein 1 (XBP-1s), part of the unfolded protein response and expressed in developing germinal center B cells, can induce Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication and directly activate viral interleukin-6 (vIL-6). We show here that XBP-1s can also directly activate KSHV ORF21, a lytic gene. ORF21 encodes KSHV thymidine kinase (TK), which increases the pool of dTTP for viral replication and enhances lytic replication. Direct activation of ORF21 by XBP-1s can enhance viral replication in germinal center B cells and contribute to the pathogenesis of KSHV multicentric Castleman disease (MCD). KSHV-MCD is characterized by systemic inflammation caused, in part, by lytic replication and overproduction of KSHV vIL-6 in XBP-1s-expressing lymph node plasmablasts. KSHV thymidine kinase can phosphorylate zidovudine and ganciclovir to toxic moieties, and direct activation of ORF21 by XBP-1s may also help explain the effectiveness of zidovudine and valganciclovir in the treatment of KSHV-MCD.
Collapse
Affiliation(s)
- Victoria Wang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Catherine Brands
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hong S Choi
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Muzammel Haque
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
55
|
Pringle ES, Wertman J, Melong N, Coombs AJ, Young AL, O’Leary D, Veinotte C, Robinson CA, Ha MN, Dellaire G, Druley TE, McCormick C, Berman JN. The Zebrafish Xenograft Platform-A Novel Tool for Modeling KSHV-Associated Diseases. Viruses 2019; 12:v12010012. [PMID: 31861850 PMCID: PMC7019925 DOI: 10.3390/v12010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi’s sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the first in vivo model for a virally induced lymphoma in zebrafish, whereby KSHV-infected PEL tumor cells engraft and proliferate in the yolk sac of zebrafish larvae. Using a PEL cell line engineered to produce the viral lytic switch protein RTA in the presence of doxycycline, we demonstrate drug-inducible reactivation from KSHV latency in vivo, which enabled real-time observation and evaluation of latent and lytic phases of KSHV infection. In addition, we developed a sensitive droplet digital PCR method to monitor latent and lytic viral gene expression and host cell gene expression in xenografts. The zebrafish yolk sac is not well vascularized, and by using fluorogenic assays, we confirmed that this site provides a hypoxic environment that may mimic the microenvironment of some human tumors. We found that PEL cell proliferation in xenografts was dependent on the host hypoxia-dependent translation initiation factor, eukaryotic initiation factor 4E2 (eIF4E2). This demonstrates that the zebrafish yolk sac is a functionally hypoxic environment, and xenografted cells must switch to dedicated hypoxic gene expression machinery to survive and proliferate. The establishment of the PEL xenograft model enables future studies that exploit the innate advantages of the zebrafish as a model for genetic and pharmacologic screens.
Collapse
Affiliation(s)
- Eric S. Pringle
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
| | - Jaime Wertman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Nicole Melong
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andrew J. Coombs
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
| | - Andrew L. Young
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - David O’Leary
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Chansey Veinotte
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Carolyn-Ann Robinson
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Michael N. Ha
- Department of Radiation Oncology, 5820 University Ave, Halifax, NS B3H 1V7, Canada;
| | - Graham Dellaire
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Department of Pathology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Todd E. Druley
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Correspondence: (C.M.); (J.N.B.)
| | - Jason N. Berman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
- Correspondence: (C.M.); (J.N.B.)
| |
Collapse
|
56
|
López-Rodríguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathog 2019; 15:e1008192. [PMID: 31809522 PMCID: PMC6975554 DOI: 10.1371/journal.ppat.1008192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/22/2020] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Darlah M. López-Rodríguez
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- IV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Enrique A. Mesri
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samita Andreansky
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
57
|
Wei X, Bai L, Dong L, Liu H, Xing P, Zhou Z, Wu S, Lan K. NCOA2 promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus by enhancing the expression of the master switch protein RTA. PLoS Pathog 2019; 15:e1008160. [PMID: 31751430 PMCID: PMC6894885 DOI: 10.1371/journal.ppat.1008160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/05/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) is important for persistent infection in the host as well as viral oncogenesis. The replication and transcription activator (RTA) encoded by KSHV ORF50 plays a central role in the switch from viral latency to lytic replication. Given that RTA is a transcriptional activator and RTA expression is sufficient to activate complete lytic replication, RTA must possess an elaborate mechanism for regulating its protein abundance. Previous studies have demonstrated that RTA could be degraded through the ubiquitin-proteasome pathway. A protein abundance regulatory signal (PARS), which consists of PARS I and PARS II, at the C-terminal region of RTA modulates its protein abundance. In the present study, we identified a host protein named Nuclear receptor coactivator 2 (NCOA2), which can interact with RTA in vitro and in vivo. We further showed that NCOA2 binds to the PARS II domain of RTA. We demonstrated that NCOA2 enhances RTA stability and prevents the proteasome-mediated degradation of RTA by competing with MDM2, an E3 ubiquitin ligase of RTA that interacts with the PARS II domain. Moreover, overexpression of NCOA2 in KSHV-infected cells significantly enhanced the expression level of RTA, which promotes the expression of RTA downstream viral lytic genes and lytic replication. In contrast, silencing of endogenous NCOA2 downregulated the expression of viral lytic genes and impaired viral lytic replication. Interestingly, we also found that RTA upregulates the expression of NCOA2 during lytic reactivation. Taken together, our data support the conclusion that NCOA2 is a novel RTA-binding protein that promotes RTA-driven lytic reactivation by increasing the stability of RTA, and the RTA-NCOA2 positive feedback regulatory loop plays an important role in KSHV reactivation. Reactivation of KSHV from latency to lytic replication plays an important role in viral spread, establishment of lifelong latent infection and disease progression. RTA, the lytic switch protein, is essential and sufficient for triggering the full viral lytic program. Here, we report a host protein named NCOA2 as a novel RTA-binding protein. Direct interaction of NCOA2 with RTA increased the expression level of RTA. Further study revealed that NCOA2 competes with the E3 ubiquitin ligase of RTA, MDM2, to interact with the PARS II domain of RTA, which inhibits RTA degradation and enhances the stability of RTA. In the context of KSHV-infected cells, we showed that NCOA2 plays an important role in promoting RTA-driven lytic reactivation.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huimei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peidong Xing
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiyao Zhou
- University College London, Gower Street, London, United Kingdom
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
58
|
BeltCappellino A, Majerciak V, Lobanov A, Lack J, Cam M, Zheng ZM. CRISPR/Cas9-Mediated Knockout and In Situ Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. J Virol 2019; 93:e00628-19. [PMID: 31413125 PMCID: PMC6803266 DOI: 10.1128/jvi.00628-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed primary effusion lymphoma cell lines contain ∼70 to 150 copies of episomal KSHV genomes per cell and have been widely used for studying the mechanisms of KSHV latency and lytic reactivation. Here, we report the first complete knockout (KO) of viral ORF57 gene from all ∼100 copies of KSHV genome per cell in BCBL-1 cells. This was achieved by a modified CRISPR/Cas9 technology to simultaneously express two guide RNAs (gRNAs) and Cas9 from a single expression vector in transfected cells in combination with multiple rounds of cell selection and single-cell cloning. CRISPR/Cas9-mediated genome engineering induces the targeted gene deletion and inversion in situ We found the inverted ORF57 gene in the targeted site in the KSHV genome in one of two characterized single cell clones. Knockout of ORF57 from the KSHV genome led to viral genome instability, thereby reducing viral genome copies and expression of viral lytic genes in BCBL-1-derived single-cell clones. The modified CRISPR/Cas9 technology was very efficient in knocking out the ORF57 gene in iSLK/Bac16 and HEK293/Bac36 cells, where each cell contains only a few copies of the KSHV genome. The ORF57 KO genome was stable in iSLK/Bac16 cells, and, upon lytic induction, was partially rescued by ectopic ORF57 to express viral lytic gene ORF59 and produce infectious virions. Together, the technology developed in this study has paved the way to express two separate gRNAs and the Cas9 enzyme simultaneously in the same cell and could be efficiently applied to any genetic alterations from various genomes, including those in extreme high copy numbers.IMPORTANCE This study provides the first evidence that CRISPR/Cas9 technology can be applied to knock out the ORF57 gene from all ∼100 copies of the KSHV genome in primary effusion lymphoma (PEL) cells by coexpressing two guide RNAs (gRNAs) and Cas9 from a single expression vector in combination with single-cell cloning. The gene knockout efficiency in this system was evaluated rapidly using a direct cell PCR screening. The current CRISPR/Cas9 technology also mediated ORF57 inversion in situ in the targeted site of the KSHV genome. The successful rescue of viral lytic gene expression and infectious virion production from the ORF57 knockout (KO) genome further reiterates the essential role of ORF57 in KSHV infection and multiplication. This modified technology should be useful for knocking out any viral genes from a genome to dissect functions of individual viral genes in the context of the virus genome and to understand their contributions to viral genetics and the virus life cycle.
Collapse
Affiliation(s)
- Andrew BeltCappellino
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
59
|
Nalwoga A, Cose S, Nash S, Miley W, Asiki G, Kusemererwa S, Yarchoan R, Labo N, Whitby D, Newton R. Relationship Between Anemia, Malaria Coinfection, and Kaposi Sarcoma-Associated Herpesvirus Seropositivity in a Population-Based Study in Rural Uganda. J Infect Dis 2019; 218:1061-1065. [PMID: 29741631 DOI: 10.1093/infdis/jiy274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
We examined anemia and malaria as risk factors for Kaposi sarcoma-associated herpesvirus (KSHV) seropositivity and antibody levels in a long-standing rural Ugandan cohort, in which KSHV is prevalent. Samples from 4134 children, aged 1-17 years, with a sex ratio of 1:1, and 3149 adults aged 18-103 years, 41% of whom were males, were analyzed. Among children, malaria infection was associated with higher KSHV prevalence (61% vs 41% prevalence among malaria infected and uninfected, respectively); malaria was not assessed in adults. Additionally, lower hemoglobin level was associated with an increased prevalence of KSHV seropositivity, both in children and in adults.
Collapse
Affiliation(s)
- Angela Nalwoga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,London School of Hygiene and Tropical Medicine, United Kingdom
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,London School of Hygiene and Tropical Medicine, United Kingdom
| | - Stephen Nash
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, MD
| | - Gershim Asiki
- African Population and Health Research Centre, Nairobi, Kenya
| | - Sylvia Kusemererwa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, MD
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, MD
| | - Robert Newton
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,University of York, United Kingdom
| |
Collapse
|
60
|
Singh RK, Lamplugh ZL, Lang F, Yuan Y, Lieberman P, You J, Robertson ES. KSHV-encoded LANA protects the cellular replication machinery from hypoxia induced degradation. PLoS Pathog 2019; 15:e1008025. [PMID: 31479497 PMCID: PMC6743784 DOI: 10.1371/journal.ppat.1008025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/13/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV), like all herpesviruses maintains lifelong persistence with its host genome in latently infected cells with only a small fraction of cells showing signatures of productive lytic replication. Modulation of cellular signaling pathways by KSHV-encoded latent antigens, and microRNAs, as well as some level of spontaneous reactivation are important requirements for establishment of viral-associated diseases. Hypoxia, a prominent characteristic of the microenvironment of cancers, can exert specific effects on cell cycle control, and DNA replication through HIF1α-dependent pathways. Furthermore, hypoxia can induce lytic replication of KSHV. The mechanism by which KSHV-encoded RNAs and antigens regulate cellular and viral replication in the hypoxic microenvironment has yet to be fully elucidated. We investigated replication-associated events in the isogenic background of KSHV positive and negative cells grown under normoxic or hypoxic conditions and discovered an indispensable role of KSHV for sustained cellular and viral replication, through protection of critical components of the replication machinery from degradation at different stages of the process. These include proteins involved in origin recognition, pre-initiation, initiation and elongation of replicating genomes. Our results demonstrate that KSHV-encoded LANA inhibits hypoxia-mediated degradation of these proteins to sustain continued replication of both host and KSHV DNA. The present study provides a new dimension to our understanding of the role of KSHV in survival and growth of viral infected cells growing under hypoxic conditions and suggests potential new strategies for targeted treatment of KSHV-associated cancer. Hypoxia induces cell cycle arrest and DNA replication to minimize energy and macromolecular demands on the ATP stores of cells in this microenvironment. A select set of proteins functions as transcriptional activators in hypoxia. However, transcriptional and translational pathways are negatively regulated in response to hypoxia. This preserves ATP until the cell encounters more favorable conditions. In contrast, the genome of cancer cells replicates spontaneously under hypoxic conditions, and KSHV undergoes enhanced lytic replication. This unique feature by which KSHV genome is reactivated to induce lytic replication is important to elucidate the molecular mechanism by which cells can bypass hypoxia-mediated arrest of DNA replication in cancer cells. Here we provide data which shows that KSHV can manipulate the DNA replication machinery to support replication in hypoxia. We observed that KSHV can stabilize proteins involved in the pre-initiation, initiation and elongation steps of DNA replication. Specifically, KSHV-encoded LANA was responsible for this stabilization, and maintenance of endogenous HIF1α levels was required for stabilization of these proteins in hypoxia. Expression of LANA in KSHV negative cells confers protection of these replication proteins from hypoxia-dependent degradation, and knock-down of LANA or HIF1α showed a dramatic reduction in KSHV-dependent stabilization of replication-associated proteins in hypoxia. These data suggest a role for KSHV-encoded LANA in replication of infected cells, and provides a mechanism for sustained replication of both cellular and viral DNA in hypoxia.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Zachary L. Lamplugh
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yan Yuan
- Department of Microbiology, Levy Building, School of Dental Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Paul Lieberman
- Program in Gene Regulation, The Wistar Institute, Philadelphia, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
61
|
The Kaposi's Sarcoma-Associated Herpesvirus ORF34 Protein Interacts and Stabilizes HIF-2α via Binding to the HIF-2α bHLH and PAS Domains. J Virol 2019; 93:JVI.00764-19. [PMID: 31189709 DOI: 10.1128/jvi.00764-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Hypoxia and hypoxia inducible factors (HIFs) play important roles in the Kaposi's sarcoma-associated herpesvirus (KSHV) life cycle. KSHV is the causative agent of Kaposi's sarcoma (KS) and other AIDS-related malignancies. Kaposi's sarcoma is a highly vascular tumor, which preferentially develops in the lower extremities of the body where blood vessels are often poorly oxygenated. The main cellular responses to hypoxia are mediated mainly by two isoforms of HIF, HIF-1α and HIF-2α. HIF-1α and HIF-2α have common as well as distinct functions, although they are similar in structure and function. Previously, we showed that the KSHV ORF34 protein binds HIF-1α and facilitates its degradation through the ubiquitin-proteasome pathway causing negative regulation of HIF-1α-dependent genes (Haque and Kousoulas, J Virol 87:2164-2173, 2013, https://www.doi.org/10.1128/JVI.02460-12). Herein, we show that the ORF34 gene is involved in the regulation of KSHV lytic gene expression, since deletion of ORF34 resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. Coimmunoprecipitation experiments revealed that the ORF34 protein physically interacted with HIF-2α in transfected as well as in KSHV-infected cells. Utilization of ORF34 truncations revealed that three distinct domains bind HIF-2α and that both bHLH and PAS domains of HIF-2α interacted with ORF34. Unlike HIF-1α, dose-dependent coexpression of ORF34 stabilized the HIF-2α protein, ensuring HIF-2α-dependent transcriptional activity. The ORF34 protein enhanced HIF-2α ubiquitination at the bHLH and PAS domains. The results show that the KSHV ORF34 protein is involved in the KSHV life cycle by regulating the expression of HIF-1α and HIF-2α proteins.IMPORTANCE Hypoxia inducible factor 1α (HIF-1α) and HIF-2α are transcription factors which play important roles in the Kaposi's sarcoma-associated herpesvirus (KSHV) latent and lytic gene replication. Herein, we show that the ORF34 gene is involved in the regulation of KSHV lytic gene expression, since deletion of ORF34 resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. In addition, we demonstrate that the KSHV ORF34 protein binds and stabilizes HIF-2α, in contrast to its role in binding HIF-1α and causing its degradation via the proteasome pathway. Thus, the KSHV ORF34 protein plays a regulatory role in the KSHV life cycle by regulating HIF-1α and HIF-2α expression.
Collapse
|
62
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
63
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
64
|
Koch S, Damas M, Freise A, Hage E, Dhingra A, Rückert J, Gallo A, Kremmer E, Tegge W, Brönstrup M, Brune W, Schulz TF. Kaposi's sarcoma-associated herpesvirus vIRF2 protein utilizes an IFN-dependent pathway to regulate viral early gene expression. PLoS Pathog 2019; 15:e1007743. [PMID: 31059555 PMCID: PMC6522069 DOI: 10.1371/journal.ppat.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/16/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi’s sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1–4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression. The life cycle of Kaposi Sarcoma herpesvirus involves both persistence in a latent form and productive replication to generate new viral particles. How the virus switches between latency and productive (‘lytic’) replication is only partially understood. Here we show that a viral homologue of interferon regulatory factors, vIRF2, antagonizes lytic protein expression in endothelial cells. It does this by inducing the expression of cellular interferon-regulated genes such as IFIT 1–3, which in turn dampens early viral gene expression. This observation suggests that vIRF2 allows KSHV to harness the interferon pathway to regulate early viral gene expression in endothelial cells.
Collapse
Affiliation(s)
- Sandra Koch
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Modester Damas
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Anika Freise
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Elias Hage
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Akshay Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Antonio Gallo
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Brune
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Thomas F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
65
|
Development of an ORF45-Derived Peptide To Inhibit the Sustained RSK Activation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2019; 93:JVI.02154-18. [PMID: 30842327 DOI: 10.1128/jvi.02154-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) requires sustained extracellular signal-regulated kinase (ERK)-p90 ribosomal S6 kinase (RSK) activation, which is induced by an immediate early (IE) gene-encoded tegument protein called ORF45, to promote the late transcription and translation of viral lytic genes. An ORF45-null or single-point F66A mutation in ORF45 abolishes ORF45-RSK interaction and sustained ERK-RSK activation during lytic reactivation and subsequently results in a significant decrease in late lytic gene expression and virion production, indicating that ORF45-mediated RSK activation plays a critical role in KSHV lytic replication. Here, we demonstrate that a short ORF45-derived peptide in the RSK-binding region is sufficient for disrupting ORF45-RSK interaction, consequently suppressing lytic gene expression and virion production. We designed a nontoxic cell-permeable peptide derived from ORF45, TAT-10F10, which is composed of the ORF45 56 to 76 amino acid (aa) region and the HIV Tat protein transduction domain, and this peptide markedly inhibits KSHV lytic replication in iSLK.219 and BCBL1 cells. Importantly, this peptide enhances the inhibitory effect of rapamycin on KSHV-infected cells and decreases spontaneous and hypoxia-induced lytic replication in KSHV-positive lymphoma cells. These findings suggest that a small peptide that disrupts ORF45-RSK interaction might be a promising agent for controlling KSHV lytic infection and pathogenesis.IMPORTANCE ORF45-induced RSK activation plays an essential role in KSHV lytic replication, and ORF45-null or ORF45 F66A mutagenesis that abolishes sustained RSK activation and RSK inhibitors significantly decreases lytic replication, indicating that the ORF45-RSK association is a unique target for KSHV-related diseases. However, the side effects, low affinity, and poor efficacy of RSK modulators limit their clinical application. In this study, we developed a nontoxic cell-permeable ORF45-derived peptide from the RSK-binding region to disrupt ORF45-RSK associations and block ORF45-induced RSK activation without interfering with S6K1 activation. This peptide effectively suppresses spontaneous, hypoxia-induced, or chemically induced KSHV lytic replication and enhances the inhibitory effect of rapamycin on lytic replication and sensitivity to rapamycin in lytic KSHV-infected cells. Our results reveal that the ORF45-RSK signaling axis and KSHV lytic replication can be effectively targeted by a short peptide and provide a specific approach for treating KSHV lytic and persistent infection.
Collapse
|
66
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
67
|
Pellett Madan R, Hand J. Human herpesvirus 6, 7, and 8 in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13518. [PMID: 30844089 DOI: 10.1111/ctr.13518] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of HHV-6A, HHV-6B, HHV-7, and HHV-8 in the pre- and post-transplant period. The majority of HHV-6 (A and B) and HHV-7 infections in transplant recipients are asymptomatic; symptomatic disease is reported infrequently across organs. Routine screening for HHV-6 and 7 DNAemia is not recommended in asymptomatic patients, nor is prophylaxis or preemptive therapy. Detection of viral nucleic acid by quantitative PCR in blood or CSF is the preferred method for diagnosis of HHV-6 and HHV-7 infection. The possibility of chromosomally integrated HHV-6 DNA should be considered in individuals with persistently high viral loads. Antiviral therapy should be initiated for HHV-6 encephalitis and should be considered for other manifestations of disease. HHV-8 causes Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease and is also associated with hemophagocytic syndrome and bone marrow failure. HHV-8 screening and monitoring may be indicated to prevent disease. Treatment of HHV-8 related disease centers on reduction of immunosuppression and conversion to sirolimus, while chemotherapy may be needed for unresponsive disease. The role of antiviral therapy for HHV-8 infection has not yet been defined.
Collapse
Affiliation(s)
- Rebecca Pellett Madan
- Department of Pediatrics, New York University Langone School of Medicine, New York City, New York
| | - Jonathan Hand
- Department of Infectious Diseases, Ochsner Clinical School, Ochsner Medical Center, The University of Queensland School of Medicine, New Orleans, Louisiana
| | | |
Collapse
|
68
|
Gao R, Li T, Tan B, Ramos da Silva S, Jung JU, Feng P, Gao SJ. FoxO1 Suppresses Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication and Controls Viral Latency. J Virol 2019; 93:JVI.01681-18. [PMID: 30404794 PMCID: PMC6340022 DOI: 10.1128/jvi.01681-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases, both of which contribute to the development of KSHV-induced malignancies. Among the numerous factors identified to regulate the KSHV life cycle, oxidative stress, caused by imbalanced clearing and production of reactive oxygen species (ROS), has been shown to robustly disrupt KSHV latency and induce viral lytic replication. In this study, we identified an important role of the antioxidant defense factor forkhead box protein O1 (FoxO1) in the KSHV life cycle. Either chemical inhibition of the FoxO1 function or knockdown of FoxO1 expression led to an increase in the intracellular ROS level that was subsequently sufficient to disrupt KSHV latency and induce viral lytic reactivation. On the other hand, treatment with N-acetyl-l-cysteine (NAC), an oxygen free radical scavenger, led to a reduction in the FoxO1 inhibition-induced ROS level and, ultimately, the attenuation of KSHV lytic reactivation. These findings reveal that FoxO1 plays a critical role in keeping KSHV latency in check by maintaining the intracellular redox balance.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with several cancers, including Kaposi's sarcoma (KS). Both the KSHV latent and lytic replication phases are important for the development of KS. Identification of factors regulating the KSHV latent phase-to-lytic phase switch can provide insights into the pathogenesis of KSHV-induced malignancies. In this study, we show that the antioxidant defense factor forkhead box protein O1 (FoxO1) maintains KSHV latency by suppressing viral lytic replication. Inhibition of FoxO1 disrupts KSHV latency and induces viral lytic replication by increasing the intracellular ROS level. Significantly, treatment with an oxygen free radical scavenger, N-acetyl-l-cysteine (NAC), attenuated the FoxO1 inhibition-induced intracellular ROS level and KSHV lytic replication. Our works reveal a critical role of FoxO1 in suppressing KSHV lytic replication, which could be targeted for antiviral therapy.
Collapse
Affiliation(s)
- Ruoyun Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tingting Li
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suzane Ramos da Silva
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
69
|
Manners O, Murphy JC, Coleman A, Hughes DJ, Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol 2018; 32:60-70. [PMID: 30268927 PMCID: PMC6259586 DOI: 10.1016/j.coviro.2018.08.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Kaposi's Sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) are the causative agents of several malignancies. Like all herpesviruses, KSHV and EBV undergo distinct latent and lytic replication programmes. The transition between these states allows the establishment of a lifelong persistent infection, dissemination to sites of disease and the spread to new hosts. Latency-associated viral proteins have been well characterised in transformation and tumourigenesis pathways; however, a number of studies have shown that abrogation of KSHV and EBV lytic gene expression impairs the oncogenesis of several cancers. Furthermore, several lytically expressed proteins have been functionally tethered to the angioproliferative and anti-apoptotic phenotypes of virus-infected cells. As a result, the investigation and therapeutic targeting of KSHV and EBV lytic cycles may be essential for the treatment of their associated malignancies.
Collapse
Affiliation(s)
- Oliver Manners
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - James C Murphy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alex Coleman
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David J Hughes
- School of Biology, Biomolecular Sciences Building, University of St Andrews, Fife, KY16 9AJ, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom; Department of Biochemistry & Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
70
|
Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 2018; 14:e1007062. [PMID: 29746587 PMCID: PMC5963815 DOI: 10.1371/journal.ppat.1007062] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia. Hypoxia inducible factors (HIFs) play a critical role in survival and growth of cancerous cells, in addition to modulating cellular metabolism. Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes HIFs. Several factors encoded by KSHV are known to interact with up or downstream targets of HIFs. However, the process by which KSHV infection leads to stabilized HIF1α and modulation of the cellular metabolism is not understood. Comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α), of KSHV negative or positive cells led to identification of changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. KSHV-encoded vGPCR was identified as a novel target of HIF1α regulation and a major viral antigen involved in metabolic reprogramming. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia and KSHV-encoded factors, as well as other synergistically activated genes belonging to cellular metabolic pathways. This study showed unique, common and the synergistic effects of both HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in hypoxia.
Collapse
|
71
|
Anders PM, Montgomery ND, Montgomery SA, Bhatt AP, Dittmer DP, Damania B. Human herpesvirus-encoded kinase induces B cell lymphomas in vivo. J Clin Invest 2018; 128:2519-2534. [PMID: 29733294 DOI: 10.1172/jci97053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is the etiological agent of the endothelial cell cancer Kaposi's sarcoma (KS) and 2 B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV ORF36, also known as viral protein kinase (vPK), is a viral serine/threonine kinase. We previously reported that KSHV vPK enhances cell proliferation and mimics cellular S6 kinase to phosphorylate ribosomal protein S6, a protein involved in protein synthesis. We created a mouse model to analyze the function of vPK in vivo. We believe this is the first mouse tumor model of a viral kinase encoded by a pathogenic human virus. We observed increased B cell activation in the vPK transgenic mice compared with normal mice. We also found that, over time, vPK transgenic mice developed a B cell hyperproliferative disorder and/or a high-grade B cell non-Hodgkin lymphoma at a greatly increased incidence compared with littermate controls. This mouse model shows that a viral protein kinase is capable of promoting B cell activation and proliferation as well as augmenting lymphomagenesis in vivo and may therefore contribute to the development of viral cancers.
Collapse
Affiliation(s)
- Penny M Anders
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center.,Department of Pathology and Laboratory Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aadra P Bhatt
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center.,Department of Microbiology and Immunology, and
| |
Collapse
|
72
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
73
|
Tan B, Liu H, Zhang S, da Silva SR, Zhang L, Meng J, Cui X, Yuan H, Sorel O, Zhang SW, Huang Y, Gao SJ. Viral and cellular N 6-methyladenosine and N 6,2'-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nat Microbiol 2018; 3:108-120. [PMID: 29109479 PMCID: PMC6138870 DOI: 10.1038/s41564-017-0056-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) modifications (m6A/m) of messenger RNA mediate diverse cellular functions. Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) has latent and lytic replication phases that are essential for the development of KSHV-associated cancers. To date, the role of m6A/m in KSHV replication and tumorigenesis is unclear. Here, we provide mechanistic insights by examining the viral and cellular m6A/m epitranscriptomes during KSHV latent and lytic infection. KSHV transcripts contain abundant m6A/m modifications during latent and lytic replication, and these modifications are highly conserved among different cell types and infection systems. Knockdown of YTHDF2 enhanced lytic replication by impeding KSHV RNA degradation. YTHDF2 binds to viral transcripts and differentially mediates their stability. KSHV latent infection induces 5' untranslated region (UTR) hypomethylation and 3'UTR hypermethylation of the cellular epitranscriptome, regulating oncogenic and epithelial-mesenchymal transition pathways. KSHV lytic replication induces dynamic reprogramming of epitranscriptome, regulating pathways that control lytic replication. These results reveal a critical role of m6A/m modifications in KSHV lifecycle and provide rich resources for future investigations.
Collapse
Affiliation(s)
- Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Songyao Zhang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
- School of Automation, Northwestern Polytechnic University, Xi'an, Shaanxi, China
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lin Zhang
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Xiaodong Cui
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shao-Wu Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, Shaanxi, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
74
|
KSHV LANA upregulates the expression of epidermal growth factor like domain 7 to promote angiogenesis. Oncotarget 2017; 9:1210-1228. [PMID: 29416688 PMCID: PMC5787431 DOI: 10.18632/oncotarget.23456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/09/2017] [Indexed: 12/29/2022] Open
Abstract
Kaposi’s sarcoma (KS) is a highly-vascularized tumor characterized by inflammation and extensive neo-angiogenesis. The KS tumor microenvironment is rich in inflammatory and pro-angiogenic cytokines. Here, we report that the expression of Epidermal growth factor-like domain 7 (EGFL7) is upregulated in Kaposi’s sarcoma-associated herpes virus (KSHV) infected cells. EGFL7 is a secreted pro-angiogenic cytokine that has been implicated in angiogenesis and the proliferation of endothelial cells during many pathological conditions. Our data show that KS tumors as well as primary effusion lymphoma cells have increased levels of EGFL7 compared to the uninfected cells. We determined that the expression of a KSHV latent protein, LANA (latency-associated nuclear antigen), is the main viral factor responsible for this upregulation. The modulation of EGFL7 expression by LANA involves sequestration of death domain-associated protein 6 (Daxx) from the EGFL7 promoter. Daxx acts as a suppressor of promoter activity by binding to the avian erythroblastosis virus E26 oncogene homolog 1 (Ets-1), which is the core transcription factor required for the expression of EGFL7. We additionally show that the upregulation of EGFL7 by LANA contributes to the promotion of angiogenesis since siRNA-mediated knockdown of EGFL7 reduced in vitro tubulogenesis in LANA-expressing HUVEC cells. EGFL7 promotes angiogenesis through autocrine as well as paracrine mechanisms as the supernatant from LANA expressing cells depleted of EGFL7 showed reduced tubulogenesis. This study for the first time demonstrates EGFL7 to be an important angiogenic molecule secreted during KSHV infection that could be exploited for blocking KSHV associated malignancies in conjugation with other anti-angiogenic therapies.
Collapse
|
75
|
Gonnella R, Yadav S, Gilardini Montani MS, Granato M, Santarelli R, Garufi A, D'Orazi G, Faggioni A, Cirone M. Oxidant species are involved in T/B-mediated ERK1/2 phosphorylation that activates p53-p21 axis to promote KSHV lytic cycle in PEL cells. Free Radic Biol Med 2017; 112:327-335. [PMID: 28801242 DOI: 10.1016/j.freeradbiomed.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
KSHV is a gammaherpesvirus strongly associated to human cancers such as Primary Effusion Lymphoma (PEL) and Kaposi's Sarcoma. The naturally virus-infected tumor cells usually display latent infection since a minority of cells undergoes spontaneous viral replication. The lytic cycle can be induced in vitro upon appropriate stimuli such as TPA (T), alone or in combination with butyrate (B), (T/B). In previous studies, Protein Kinase C (PKC) δ, Extracellular Signal-regulated Kinase1/2 (ERK1/2) and p53-p21 axis have been separately reported to play a role in KSHV reactivation from latency. Here, we found that these pathways were interconnected to induce KSHV lytic cycle in PEL cells treated with T/B. T/B also increased H2O2 that played an important role in the activation of these pathways. Oxidant specie production correlated with PKC δ activation, as the PKC δ inhibitor rottlerin reduced both H2O2 and KSHV lytic antigen expression. H2O2 contributed to T/B-mediated ERK1/2 activation that mediated p53 phosphorylation at serine 15 (Ser15) and increased p21 expression. Oxidant specie inhibition by quercetin indeed strongly reduced the activation of these pathways, lytic antigen expression and interestingly it also increased T/B-induced cell death. The use of ERK inhibitor PD98059 or p53 silencing demonstrated the importance of p53Ser15 phosphorylation and of p53-p21 axis in KSHV lytic cycle activation. Understanding the role of oxidant species and the molecular mechanisms involved in KSHV lytic cycle induction is particularly important since oxidant species represent the most physiological stimulus for viral reactivation in vivo and it is known that viral production contributes to the maintenance/progression of KSHV associated malignancies.
Collapse
Affiliation(s)
- Roberta Gonnella
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| | - Shivangi Yadav
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| | | | - Marisa Granato
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| | - Roberta Santarelli
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy; Department of Medical Sciences, University 'G. d'Annunzio', 66013 Chieti, Italy.
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, 00100 Rome, Italy.
| |
Collapse
|
76
|
1, 25(OH)2 D3 Induces Reactivation and Death of Kaposi's Sarcoma-Associated Herpesvirus of Primary Effusion Lymphoma cells. Sci Rep 2017; 7:12438. [PMID: 28963501 PMCID: PMC5622028 DOI: 10.1038/s41598-017-12676-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) a gammaherpesvirus establishes perennial latency in the host with periodic reactivation. Occasionally change in the physiological condition like hypoxia, host cell differentiation can trigger the lytic switch and reactivation of the virus. The biologically active form of 1, 25(OH)2 D3 plays a critical role in the regulation of various physiological processes (e.g. regulation of mineral homeostasis and control of bone metabolism). Apart from its role in host physiology, 1, 25(OH)2 D3 has been implicated as a potential agent for the prevention and/or treatment of many a tumors. Here we show that 1, 25(OH)2 D3 induces both death of Kaposi sarcoma associated herpesvirus infected PEL cells and KSHV replication. 1, 25(OH)2 D3 mediated inhibition of proliferation was associated with apoptosis of the PEL cells, and virus reactivation. In addition, p38 signalling is required for KSHV reactivation. Furthermore, treatment of PEL cells with p38 inhibitor abrogated the expression of ORF57, thus blocking lytic switch. Furthermore, silencing of VDR resulted in reduced ORF57 expression compared to the control cells, signifying the potential role of 1, 25(OH)2 D3 in KSHV reactivation. Thus, our studies have revealed a novel role of 1, 25(OH)2 D3 in the regulation of KSHV reactivation and PEL cell death.
Collapse
|
77
|
Kulkarni A, Mateus M, Thinnes CC, McCullagh JS, Schofield CJ, Taylor GP, Bangham CRM. Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1. Cell Chem Biol 2017; 24:1377-1387.e3. [PMID: 28965728 PMCID: PMC5696563 DOI: 10.1016/j.chembiol.2017.08.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
The human retrovirus HTLV-1 causes a hematological malignancy or neuroinflammatory disease in ∼10% of infected individuals. HTLV-1 primarily infects CD4+ T lymphocytes and persists as a provirus integrated in their genome. HTLV-1 appears transcriptionally latent in freshly isolated cells; however, the chronically active anti-HTLV-1 cytotoxic T cell response observed in infected individuals indicates frequent proviral expression in vivo. The kinetics and regulation of HTLV-1 proviral expression in vivo are poorly understood. By using hypoxia, small-molecule hypoxia mimics, and inhibitors of specific metabolic pathways, we show that physiologically relevant levels of hypoxia, as routinely encountered by circulating T cells in the lymphoid organs and bone marrow, significantly enhance HTLV-1 reactivation from latency. Furthermore, culturing naturally infected CD4+ T cells in glucose-free medium or chemical inhibition of glycolysis or the mitochondrial electron transport chain strongly suppresses HTLV-1 plus-strand transcription. We conclude that glucose metabolism and oxygen tension regulate HTLV-1 proviral latency and reactivation in vivo. Physiological (1%) hypoxia enhances HTLV-1 plus-strand transcription HTLV-1 transcription is hypoxia regulated but HIF independent Inhibition of glycolysis or the mitochondrial ETC suppresses HTLV-1 transcription Extracellular glucose concentration regulates HTLV-1 reactivation from latency
Collapse
Affiliation(s)
- Anurag Kulkarni
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Manuel Mateus
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Cyrille C Thinnes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - James S McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Graham P Taylor
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK
| | - Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| |
Collapse
|
78
|
Abere B, Mamo TM, Hartmann S, Samarina N, Hage E, Rückert J, Hotop SK, Büsche G, Schulz TF. The Kaposi's sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog 2017; 13:e1006639. [PMID: 28938025 PMCID: PMC5627962 DOI: 10.1371/journal.ppat.1006639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/04/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the infectious cause of the highly vascularized tumor Kaposi’s sarcoma (KS), which is characterized by proliferating spindle cells of endothelial origin, extensive neo-angiogenesis and inflammatory infiltrates. The KSHV K15 protein contributes to the angiogenic and invasive properties of KSHV-infected endothelial cells. Here, we asked whether K15 could also play a role in KSHV lytic replication. Deletion of the K15 gene from the viral genome or its depletion by siRNA lead to reduced virus reactivation, as evidenced by the decreased expression levels of KSHV lytic proteins RTA, K-bZIP, ORF 45 and K8.1 as well as reduced release of infectious virus. Similar results were found for a K1 deletion virus. Deleting either K15 or K1 from the viral genome also compromised the ability of KSHV to activate PLCγ1, Erk1/2 and Akt1. In infected primary lymphatic endothelial (LEC-rKSHV) cells, which have previously been shown to spontaneously display a viral lytic transcription pattern, transfection of siRNA against K15, but not K1, abolished viral lytic replication as well as KSHV-induced spindle cell formation. Using a newly generated monoclonal antibody to K15, we found an abundant K15 protein expression in KS tumor biopsies obtained from HIV positive patients, emphasizing the physiological relevance of our findings. Finally, we used a dominant negative inhibitor of the K15-PLCγ1 interaction to establish proof of principle that pharmacological intervention with K15-dependent pathways may represent a novel approach to block KSHV reactivation and thereby its pathogenesis. Both the latent and lytic replication phases of the KSHV life cycle are thought to contribute to its persistence and pathogenesis. The non-structural signaling membrane protein K15 is involved in the angiogenic and invasive properties of KSHV-infected endothelial cells. Here we show that the K15 protein is required for virus replication, early viral gene expression and virus production through its activation of the cellular signaling pathways PLCγ1 and Erk 1/2. K15 is abundantly expressed in KSHV-infected lymphatic endothelial cells (LECs) and contributes to KSHV-induced endothelial spindle cell formation. The abundant K15 protein expression observed in LECs is also observed in KS tumors. We also show that it may be possible to target K15 in order to intervene therapeutically with KSHV lytic replication and pathogenesis.
Collapse
Affiliation(s)
- Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Tamrat M. Mamo
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Silke Hartmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Naira Samarina
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Elias Hage
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Sven-Kevin Hotop
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- Department of Chemical Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
79
|
Hypoxia-inducible factor-1 alpha as a therapeutic target for primary effusion lymphoma. PLoS Pathog 2017; 13:e1006628. [PMID: 28922425 PMCID: PMC5619862 DOI: 10.1371/journal.ppat.1006628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B-cell lymphoma with poor prognosis caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Previous studies have revealed that HIF-1α, which mediates much of the cellular response to hypoxia, plays an important role in life cycle of KSHV. KSHV infection promotes HIF-1α activity, and several KSHV genes are in turn activated by HIF-1α. In this study, we investigated the effects of knocking down HIF-1α in PELs. We observed that HIF-1α knockdown in each of two PEL lines leads to a reduction in both aerobic and anaerobic glycolysis as well as lipid biogenesis, indicating that HIF-1α is necessary for maintaining a metabolic state optimal for growth of PEL. We also found that HIF-1α suppression leads to a substantial reduction in activation of lytic KSHV genes, not only in hypoxia but also in normoxia. Moreover, HIF-1α knockdown led to a decrease in the expression of various KSHV latent genes, including LANA, vCyclin, kaposin, and miRNAs, under both normoxic and hypoxic conditions. These observations provide evidence that HIF-1α plays an important role in PEL even in normoxia. Consistent with these findings, we observed a significant inhibition of growth of PEL in normoxia upon HIF-1α suppression achieved by either HIF-1α knockdown or treatment with PX-478, a small molecule inhibitor of HIF-1α. These results offer further evidence that HIF-1α plays a critical role in the pathogenesis of PEL, and that inhibition of HIF-1α can be a potential therapeutic strategy in this disease. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that causes several malignancies including primary effusion lymphoma (PEL). PEL is an aggressive B-cell lymphoma that usually develops in a hypoxic environment. There is no standard treatment for PEL and it carries a poor prognosis. Previous studies have revealed that certain KSHV-encoded genes are activated by hypoxia-inducible factor 1 (HIF-1), an intracellular factor that mediates much of the cellular response to hypoxia. KSHV in turn can upregulate HIF-1, suggesting HIF-1 might play a substantial role in PEL oncogenesis. Here, we report for the first time the effects of suppressing HIF-1α, an oxygen-sensitive subunit of HIF-1, in PEL tumor cells. We demonstrate that suppressing HIF-1α can dramatically affect the oncogenic metabolic signature of PELs, replication of KSHV, expression of KSHV-encoded oncogenes, and the growth of PEL cells. Findings presented here not only provide new insights into the role of HIF-1α in KSHV-induced tumors but also provide a rationale for using anti-HIF-1α agents as a therapeutic strategy for PEL and potentially other KSHV-associated malignancies.
Collapse
|
80
|
Effects of the NEDD8-Activating Enzyme Inhibitor MLN4924 on Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:JVI.00505-17. [PMID: 28701396 PMCID: PMC5599746 DOI: 10.1128/jvi.00505-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
The switch of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency to lytic replication is a key event for viral dissemination and pathogenesis. MLN4924, a novel neddylation inhibitor, reportedly causes the onset of KSHV reactivation but impairs later phases of the viral lytic program in infected cells. Thus far, the molecular mechanism involved in the modulation of the KSHV lytic cycle by MLN4924 is not yet fully understood. Here, we confirmed that treatment of different KSHV-infected primary effusion lymphoma (PEL) cell lines with MLN4924 substantially induces viral lytic protein expression. Due to the key role of the virally encoded ORF50 protein in the latent-to-lytic switch, we investigated its transcriptional regulation by MLN4924. We found that MLN4924 activates the ORF50 promoter (ORF50p) in KSHV-positive cells (but not in KSHV-negative cells), and the RBP-Jκ-binding elements within the promoter are critically required for MLN4924 responsiveness. In KSHV-negative cells, reactivation of the ORF50 promoter by MLN4924 requires the presence of the latency-associated nuclear antigen (LANA). Under such a condition, LANA acts as a repressor to block the ORF50p activity, whereas MLN4924 treatment relieves LANA-mediated repression. Importantly, we showed that LANA is a neddylated protein and can be deneddylated by MLN4924. On the other hand, we revealed that MLN4924 exhibits concentration-dependent biphasic effects on 12-O-tetradecanoylphorbol-13-acetate (TPA)- or sodium butyrate (SB)-induced viral reactivation in PEL cell lines. In other words, low concentrations of MLN4924 promote activation of TPA- or SB-mediated viral reactivation, whereas high concentrations of MLN4924, conversely, inhibit the progression of TPA- or SB-mediated viral lytic program.IMPORTANCE MLN4924 is a neddylation (NEDD8 modification) inhibitor, which currently acts as an anti-cancer drug in clinical trials. Although MLN4924 has been reported to trigger KSHV reactivation, many aspects regarding the action of MLN4924 in regulating the KSHV lytic cycle are not fully understood. Since the KSHV ORF50 protein is the key regulator of viral lytic reactivation, we focus on its transcriptional regulation by MLN4924. We here show that activation of the ORF50 gene by MLN4924 involves the relief of LANA-mediated transcriptional repression. Importantly, we find that LANA is a neddylated protein. To our knowledge, this is the first report showing that neddylation occurs in viral proteins. Additionally, we provide evidence that different concentrations of MLN4924 have opposite effects on TPA-mediated or SB-mediated KSHV lytic cycle activation. Therefore, in clinical application, we propose that MLN4924 needs to be used with caution in combination therapy to treat KSHV-positive subjects.
Collapse
|
81
|
Abstract
: The search for the etiologic agent for Kaposi sarcoma led to the discovery of Kaposi sarcoma-associated herpesvirus (KSHV) in 1994. KSHV, also called human herpesvirus-8, has since been shown to be the etiologic agent for several other tumors and diseases, including primary effusion lymphoma (PEL), an extracavitary variant of PEL, KSHV-associated diffuse large B-cell lymphoma, a form of multicentric Castleman disease, and KSHV inflammatory cytokine syndrome. KSHV encodes several genes that interfere with innate and specific immunity, thwart apoptosis, enhance cell proliferation and cytokine production, and promote angiogenesis, and these play important roles in disease pathogenesis. HIV is an important cofactor in Kaposi sarcoma pathogenesis, and widespread use of antiretroviral therapy has reduced Kaposi sarcoma incidence. However, Kaposi sarcoma remains the second most frequent tumor arising in HIV-infected patients in the United States and is particularly common in sub-Saharan Africa. KSHV prevalence varies substantially in different populations. KSHV is secreted in saliva, and public health measures to reduce its spread may help reduce the incidence of KSHV-associated diseases. Although there have been advances in the treatment of Kaposi sarcoma, KSHV-multicentric Castleman disease, and PEL, improved therapies are needed, especially those that are appropriate for Kaposi sarcoma in resource-poor regions.
Collapse
|
82
|
Sarkar R, Verma SC. Egr-1 regulates RTA transcription through a cooperative involvement of transcriptional regulators. Oncotarget 2017; 8:91425-91444. [PMID: 29207655 PMCID: PMC5710935 DOI: 10.18632/oncotarget.20648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) regulates the host cellular environment to establish life-long persistent infection by manipulating cellular signaling pathways, with approximately 1- 5% of cells undergoing lytic reactivation during the course of infection. Egr-1 (Early Growth Response Factor-1) is one such cellular transcription factor, which gets phosphorylated during the lytic phase of viral life cycle to perpetrate its function. This study demonstrates the mechanism of how Egr-1 mediates transcription of the immediate early gene, RTA (Replication and transcription activator), which is the lytic switch gene of KSHV. Egr-1 depleted KSHV infected cells exhibited reduced expression of RTA. Also, an increase in Egr-1 phosphorylation led to a higher virion production, which was suppressed in the presence of p38 and Raf inhibitors. Reporter assays showed that coexpression of Egr-1 and CBP (CREB-binding protein) enhances RTA promoter activity as compared to the expression of either Egr-1 or CBP alone. Binding of Egr-1 and CBP at RTA promoter was analyzed by chromatin immunoprecipitation assay (ChIP), which showed an enhanced accumulation during viral reactivation. Mutation in Egr-1 binding site of the RTA promoter eliminated Egr-1 response on promoter activation. Furthermore, de novo infection of THP-1 (monocytic) and HUVECs (endothelial) cells showed an upregulation of Egr-1 phosphorylation, whereas depletion of Egr-1 reduced the mRNA levels of RTA during primary infection. Together, these results demonstrate a cooperative role of Egr-1 and CBP in mediating RTA transcription, which significantly improves our understanding of the involvement of cellular factors controlling RTA transcription in KSHV pathogenesis.
Collapse
Affiliation(s)
- Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
83
|
Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage. PLoS Pathog 2017; 13:e1006596. [PMID: 28854249 PMCID: PMC5595345 DOI: 10.1371/journal.ppat.1006596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/12/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus recognized as the principal causative agent of KS and primary effusion lymphoma (PEL). KSHV establishes persistent latent infection in B lymphocytes where viral gene expression is restricted, in part, by a cohesin-dependent chromosome conformation. Here, we show that endoplasmic reticulum (ER) stress induces a rapid, caspase-dependent cleavage of cohesin subunit RAD21. ER stress-induced cleavage of RAD21 correlated with a rapid and strong viral lytic transcriptional activation. This effect was observed in several KSHV positive PEL cells, but not in other B-cells or non-B-cell models of KSHV latency. The cleaved-RAD21 does not dissociate from viral genomes, nor disassemble from other components of the cohesin complex. However, RAD21 cleavage correlated with the disruption of the latency genome conformation as revealed by chromosome conformation capture (3C). Ectopic expression of C-terminal RAD21 cleaved form could partially induce KSHV lytic genes transcription in BCBLI cells, suggesting that ER-stress induced RAD21 cleavage was sufficient to induce KSHV reactivation from latency in PEL cells. Taken together our results reveal a novel aspect for control and maintenance of KSHV genome latency conformation mediated by stress-induced RAD21 cleavage. Our studies also suggest that RAD21 cleavage may be a general regulatory mechanism for rapid alteration of cellular chromosome conformation and cohesin-dependent transcription regulation. Latent infection with Kasposi’s Sarcoma (KS)-Associated Herpesivirus (KSHV) is linked to malignant transformation of the host cell. KSHV associated pleural effusion lymphomas (PEL) are highly sensitive to endoplasmic reticulum (ER) stress due to underlying defects in ER stress response pathways. We show here that ER stress inducers lead to a rapid activation of KSHV lytic transcripts, and that an underlying mechanism is found in the caspase and calpain-dependent proteolytic cleavage of RAD21. RAD21 is a subunit of the cohesin complex that maintains a chromosome conformation that restricts KSHV lytic cycle transcription. ER stress-induced cleavage of RAD21 alters the KSHV chromosome conformation associated with latency, and a locus-specific increase in RNA polymerase II association and activation. These findings provide new insights into the regulation of KSHV latency and its response to ER stress, and may further the development of selective treatments for KSHV associated PEL and related malignancies.
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW This review discusses the pathogenesis and recent advances in the management of Kaposi sarcoma herpesvirus (KSHV)-associated diseases. RECENT FINDINGS KSHV, a gammaherpesvirus, causes several tumors and related diseases, including Kaposi sarcoma, a form of multicentric Castleman disease (KSHV-MCD), and primary effusion lymphoma. These most often develop in patients infected with human immunodeficiency virus (HIV). KSHV inflammatory cytokine syndrome (KICS) is a newly described syndrome with high mortality that has inflammatory symptoms-like MCD but not the pathologic lymph node findings. KSHV-associated diseases are often associated with dysregulated human interleukin-6, and KSHV encodes a viral interleukin-6, both of which contribute to disease pathogenesis. Treatment of HIV is important in HIV-infected patients. Strategies to prevent KSHV infection may reduce the incidence of these tumors. Pomalidomide, an immunomodulatory agent, has activity in Kaposi sarcoma. Rituximab is active in KSHV-MCD but can cause Kaposi sarcoma exacerbation; rituximab plus liposomal doxorubicin is useful to treat KSHV-MCD patients with concurrent Kaposi sarcoma. SUMMARY KSHV is the etiological agents of all forms of Kaposi sarcoma and several other diseases. Strategies employing immunomodulatory agents, cytokine inhibition, and targeting of KSHV-infected cells are areas of active research.
Collapse
|
85
|
The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Inhibits Expression of SUMO/Sentrin-Specific Peptidase 6 To Facilitate Establishment of Latency. J Virol 2017; 91:JVI.00806-17. [PMID: 28615201 DOI: 10.1128/jvi.00806-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), which belongs to the Gammaherpesviridae, typically displays two different phases in its life cycle, the latent phase and the lytic phase. Latency-associated nuclear antigen (LANA), the primary viral product during latency, has been reported to bind to a series of cellular gene promoters to modulate gene transcription. To systemically elucidate the cellular genes regulated by LANA, we identified genome-wide LANA binding sites by chromatin immunoprecipitation coupled with sequencing (ChIP-seq). We stratified ChIP-seq data and found that LANA might be involved in the macromolecule catabolic process. Specifically, we found and verified that LANA could directly bind to the promoter of the SUMO/sentrin-specific peptidase 6 (SENP6) gene in vivo and in vitro LANA could repress SENP6 promoter activity in a dose-dependent manner in a reporter gene assay. LANA expression was sufficient to inhibit endogenous SENP6 expression at both the RNA and protein levels. Moreover, SENP6 overexpression in KSHV-infected cells reduced LANA at the protein level. Mechanistically, we found that SENP6 could interact with LANA and reduce the formation of sumoylated LANA, which relies on the desumoylation ability of SENP6. During de novo infection, SENP6 overexpression would decrease the abundance of LANA and enhance viral gene expression, which would hamper the establishment of latency. Taken together, these data suggest that KSHV-encoded LANA could inhibit SENP6 expression to regulate the abundance of itself, which may play an important role in controlling the establishment of latency.IMPORTANCE LANA, as a key latent protein produced by KSHV, is responsible for episome persistence and regulates viral reactivation. In the present study, our results demonstrated that LANA could bind to the promoter region of the SENP6 gene and inhibit SENP6 expression while the regulated SENP6 could in turn modulate the abundance of LANA through desumoylation. This delicate regulation may provide important insights to explain the abundance of LANA during KSHV latency.
Collapse
|
86
|
Increased Frequency and Vasculogenic Potential of Endothelial Colony-Forming Cells in Patients with Kaposi’s Sarcoma. J Invest Dermatol 2017; 137:1533-1540. [DOI: 10.1016/j.jid.2017.02.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/23/2022]
|
87
|
Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017; 8:613. [PMID: 28473805 PMCID: PMC5397509 DOI: 10.3389/fmicb.2017.00613] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| |
Collapse
|
88
|
Hypoxia inducible factor one alpha and human viral pathogens. Curr Res Transl Med 2017; 65:7-9. [PMID: 28340697 DOI: 10.1016/j.retram.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
If the oxygen tension level is 21% in ambient air, it is only between 14% and 1% in vivo. Consequently, viral pathogens are exposed and must adapt to these fluctuating oxygen levels to colonize the host and cause diseases. The problem is that for many years, the virological studies have been performed at 21% oxygen levels and consequently this is a real handicap to have a correct view of the mechanistic aspects of human viral infections. In this brief review, we describe for some selected examples the interactions of human viruses with this relative hypoxia observed in vivo.
Collapse
|
89
|
Van Leer-Greenberg B, Kole A, Chawla S. Hepatic Kaposi sarcoma: A case report and review of the literature. World J Hepatol 2017; 9:171-179. [PMID: 28217255 PMCID: PMC5295157 DOI: 10.4254/wjh.v9.i4.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma (KS) is an aggressive cancer caused by human herpesvirus-8, primarily seen in immunocompromised patients. As opposed to the well-described cutaneous manifestations and pulmonary complications of KS, hepatic KS is rarely reported before death as most patients with hepatic KS do not manifest symptoms or evidence of liver injury. In patients with acquired immune deficiency syndrome, hepatic involvement of KS is present in 12%-24% of the population on incidental imaging and in approximately 35% of patients with cutaneous KS if an autopsy was completed after their death. Patients with clinically significant hepatic injury due to hepatic KS usually have an aggressive course of disease with hepatic failure often progressing to multi-organ failure and death. Here we report an unusual presentation of acute liver injury due to hepatic KS and briefly review the published literature on hepatic KS.
Collapse
Affiliation(s)
- Brett Van Leer-Greenberg
- Brett Van Leer-Greenberg, Abhisake Kole, Saurabh Chawla, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Abhisake Kole
- Brett Van Leer-Greenberg, Abhisake Kole, Saurabh Chawla, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Saurabh Chawla
- Brett Van Leer-Greenberg, Abhisake Kole, Saurabh Chawla, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
90
|
Sun R, Tan X, Wang X, Wang X, Yang L, Robertson ES, Lan K. Epigenetic Landscape of Kaposi's Sarcoma-Associated Herpesvirus Genome in Classic Kaposi's Sarcoma Tissues. PLoS Pathog 2017; 13:e1006167. [PMID: 28118409 PMCID: PMC5291540 DOI: 10.1371/journal.ppat.1006167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/03/2017] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically related to Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). It typically displays two different phases in its life cycle, the default latency and occasional lytic replication. The epigenetic modifications are thought to determine the fate of KSHV infection. Previous studies elegantly depicted epigenetic landscape of latent viral genome in in vitro cell culture systems. However, the physiologically relevant scenario in clinical KS tissue samples is unclear. In the present study, we established a protocol of ChIP-Seq for clinical KS tissue samples and mapped out the epigenetic landscape of KSHV genome in classic KS tissues. We examined AcH3 and H3K27me3 histone modifications on KSHV genome, as well as the genome-wide binding sites of latency associated nuclear antigen (LANA). Our results demonstrated that the enriched AcH3 was mainly restricted at latent locus while H3K27me3 was widespread on KSHV genome in classic KS tissues. The epigenetic landscape at the region of vIRF3 gene confirmed its silenced state in KS tissues. Meanwhile, the abundant enrichment of LANA at the terminal repeat (TR) region was also validated in the classic KS tissues, however, different LANA binding sites were observed on the host genome. Furthermore, we verified the histone modifications by ChIP-qPCR and found the dominant repressive H3K27me3 at the promoter region of replication and transcription activator (RTA) in classic KS tissues. Intriguingly, we found that the TR region in classic KS tissues was lacking in AcH3 histone modifications. These data now established the epigenetic landscape of KSHV genome in classic KS tissues, which provides new insights for understanding KSHV epigenetics and pathogenesis. Epigenetic modifications are thought to determine the fate of KSHV infection. The epigenetic landscape of KSHV genome in in vitro cell culture systems was well studied previously. However, the physiologically relevant scenario in clinical KS tissues is unclear. In this study, we performed ChIP-Seq experiments in classic KS tissues and mapped out the AcH3 and H3K27me3 histone modifications on KSHV genome, as well as the genome-wide LANA binding sites. The results revealed a similar H3K27me3 landscape but distinct AcH3 patterns on the KSHV genome compared to the results from in vitro cultured PEL and KSHV infected SLK cells. Intriguingly, there were different LANA binding sites seen on the host genome and a reduced number of AcH3 histone modifications at the TR region of KSHV genome were found. The established epigenetic landscape of KSHV genome in classic KS tissues provides new insights towards our understanding of KSHV epigenetics, which is important for future studies on the mechanism of KSHV infection and pathogenesis.
Collapse
Affiliation(s)
- Rui Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- * E-mail: (KL); (ESR); (LY)
| | - Erle S. Robertson
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KL); (ESR); (LY)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, Hubei, China
- * E-mail: (KL); (ESR); (LY)
| |
Collapse
|
91
|
Chen HS, De Leo A, Wang Z, Kerekovic A, Hills R, Lieberman PM. BET-Inhibitors Disrupt Rad21-Dependent Conformational Control of KSHV Latency. PLoS Pathog 2017; 13:e1006100. [PMID: 28107481 PMCID: PMC5287475 DOI: 10.1371/journal.ppat.1006100] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/01/2017] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) establishes stable latent infection in B-lymphocytes and pleural effusion lymphomas (PELs). During latency, the viral genome persists as an epigenetically constrained episome with restricted gene expression programs. To identify epigenetic regulators of KSHV latency, we screened a focused small molecule library containing known inhibitors of epigenetic factors. We identified JQ1, a Bromodomain and Extended Terminal (BET) protein inhibitor, as a potent activator of KSHV lytic reactivation from B-cells carrying episomal KSHV. We validated that JQ1 and other BET inhibitors efficiently stimulated reactivation of KSHV from latently infected PEL cells. We found that BET proteins BRD2 and BRD4 localize to several regions of the viral genome, including the LANA binding sites within the terminal repeats (TR), as well as at CTCF-cohesin sites in the latent and lytic control regions. JQ1 did not disrupt the interaction of BRD4 or BRD2 with LANA, but did reduce the binding of LANA with KSHV TR. We have previously demonstrated a cohesin-dependent DNA-loop interaction between the latent and lytic control regions that restrict expression of ORF50/RTA and ORF45 immediate early gene transcripts. JQ1 reduced binding of cohesin subunit Rad21 with the CTCF binding sites in the latency and lytic control regions. JQ1 also reduced DNA-loop interaction between latent and lytic control regions. These findings implicate BET proteins BRD2 and BRD4 in the maintenance of KSHV chromatin architecture during latency and reveal BET inhibitors as potent activators of KSHV reactivation from latency. KSHV is an oncogenic human herpesvirus implicated as the causative agent of KS and cofactor in pleural effusion lymphomas (PELs). The latent virus persists in PELs as an epigenetically regulated episome. We found that small molecule inhibitors of BET family have potent activity in triggering the lytic switch during latent infection in PELs. The BET family inhibitor JQ1 disrupted the latent virus from maintaining a closed DNA loop conformation. These findings have implications for treatment of KSHV-associated malignancies with epigenetic modulators of the BET inhibitor family.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Azepines/pharmacology
- B-Lymphocytes/virology
- Binding Sites/drug effects
- Cell Cycle Proteins
- Cell Line, Tumor
- DNA-Binding Proteins
- Gene Expression Regulation, Viral
- HEK293 Cells
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoproteins/metabolism
- Pleural Effusion, Malignant/virology
- Protein Binding/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- RNA, Small Interfering
- Sarcoma, Kaposi/virology
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Virus Activation/drug effects
- Virus Latency/drug effects
Collapse
Affiliation(s)
- Horng-Shen Chen
- The Wistar Institute, Philadelphia, PA, United States of America
| | | | - Zhuo Wang
- The Wistar Institute, Philadelphia, PA, United States of America
| | - Andrew Kerekovic
- The Wistar Institute, Philadelphia, PA, United States of America
| | - Robert Hills
- The Wistar Institute, Philadelphia, PA, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
92
|
Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs Target GADD45B To Protect Infected Cells from Cell Cycle Arrest and Apoptosis. J Virol 2017; 91:JVI.02045-16. [PMID: 27852859 DOI: 10.1128/jvi.02045-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma is one of the most common malignancies in HIV-infected individuals. The responsible agent, Kaposi's sarcoma-associated herpesvirus (KSHV; HHV8), expresses multiple microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. After infection in primary endothelial cells with KSHV, growth arrest DNA damage-inducible gene 45 beta (GADD45B) is one of the most repressed genes using genomic expression profiling. GADD45B was also repressed in mRNA expression profiling experiments when KSHV miRNAs were introduced to uninfected cells. We hypothesized that KSHV miRNAs target human GADD45B to protect cells from consequences of DNA damage, which can be triggered by viral infection. Expression of GADD45B protein is induced by the p53 activator, Nutlin-3, and KSHV miRNA-K9 inhibits this induction. In addition, Nutlin-3 increased apoptosis and cell cycle arrest based on flow cytometry assays. KSHV miR-K9 protected primary endothelial cells from apoptosis and cell cycle arrest following Nutlin-3 treatment. Similar protective phenotypes were seen for targeting GADD45B with short interfering RNAs (siRNAs), as with miR-K9. KSHV miR-K9 also decreased the protein levels of cleaved caspase-3, cleaved caspase-7, and cleaved poly(ADP-ribose) polymerase (PARP). In B lymphocytes latently infected with KSHV, specific inhibitors of KSHV miR-K9 led to increased GADD45B expression and apoptosis, indicating that miR-K9 is important for reducing apoptosis in infected cells. Furthermore, ectopic expression of GADD45B in KSHV-infected cells promoted apoptosis. Together, these results identify a new miRNA target and demonstrate that KSHV miRNAs are important for protecting infected cells from DNA damage responses. IMPORTANCE Kaposi's sarcoma-associated herpesvirus is a leading cause of cancers in individuals with AIDS. Promoting survival of infected cells is essential for maintaining viral infections. A virus needs to combat various cellular defense mechanisms designed to eradicate the viral infection. One such response can include DNA damage response factors, which can promote an arrest in cell growth and trigger cell death. We used a new approach to search for human genes repressed by small nucleic acids (microRNAs) expressed by a gammaherpesvirus (KSHV), which identified a gene called GADD45B as a target of microRNAs. Repression of GADD45B, which is expressed in response to DNA damage, benefited survival of infected cells in response to a DNA damage response. This information could be used to design new treatments for herpesvirus infections.
Collapse
|
93
|
Viollet C, Davis DA, Tekeste SS, Reczko M, Ziegelbauer JM, Pezzella F, Ragoussis J, Yarchoan R. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature. PLoS Pathog 2017; 13:e1006143. [PMID: 28046107 PMCID: PMC5234848 DOI: 10.1371/journal.ppat.1006143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 01/09/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Coralie Viollet
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shewit S. Tekeste
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Reczko
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Molecular Oncology, Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
94
|
Morinet F, Parent M, Lebbé C, Pillet S, Koken M, Capron C. Oxygen, a regulator of viral gene expression? Curr Res Transl Med 2016; 64:165-166. [PMID: 27765278 DOI: 10.1016/j.retram.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 11/26/2022]
Affiliation(s)
- F Morinet
- Hôpital Saint-Louis, université Paris-7, Paris-Diderot, AP-HP, 75010 Paris, France.
| | - M Parent
- Hôpital Ambroise-Paré, université Versailles-Saint-Quentin-en-Yvelines, AP-HP, 92100 Boulogne-Billancourt, France
| | - C Lebbé
- Hôpital Saint-Louis, université Paris-7, Paris-Diderot, AP-HP, 75010 Paris, France
| | - S Pillet
- Laboratoire des agents infectieux et d'hygiène, hôpital Saint-Étienne, université de Saint-Étienne, 42270 Saint-Étienne, France
| | - M Koken
- LABOCEA R&D-CNRS, 29280 Plouazané, France
| | - C Capron
- Hôpital Ambroise-Paré, université Versailles-Saint-Quentin-en-Yvelines, AP-HP, 92100 Boulogne-Billancourt, France
| |
Collapse
|
95
|
Vassilaki N, Frakolaki E. Virus-host interactions under hypoxia. Microbes Infect 2016; 19:193-203. [PMID: 27771294 DOI: 10.1016/j.micinf.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Oxygen tension can exert a significant effect on viral propagation in vitro and possibly in vivo. In general, hypoxia restricts the replication of viruses that naturally infect tissues exposed to ambient oxygen and induces the growth of viruses that naturally target tissues exposed to low oxygen. Some viruses can reprogram cell bioenergetics towards lowering cellular respiration and therefore oxygen consumption in order to support their replication. Aim of this review is to summarize findings on the interplay between viral infection and oxygen levels, highlighting the implicated oxygen tension-sensitive elements and metabolic determinants and concluding with possible therapeutic approaches targeting these mediators.
Collapse
Affiliation(s)
- Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Av., 11521, Athens, Greece.
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Av., 11521, Athens, Greece
| |
Collapse
|
96
|
Fine-Tuning of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle in Neighboring Cells through the RTA-JAG1-Notch Pathway. PLoS Pathog 2016; 12:e1005900. [PMID: 27760204 PMCID: PMC5070770 DOI: 10.1371/journal.ppat.1005900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/27/2016] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is an oncogenic pathogen that displays latent and lytic life cycles. In KS lesions, infiltrated immune cells, secreted viral and/or cellular cytokines, and hypoxia orchestrate a chronic pro-lytic microenvironment that can promote KSHV reactivation. However, only a small subset of viruses spontaneously undergoes lytic replication in this pro-lytic microenvironment while the majority remains in latency. Here, we show that the expression of the Notch ligand JAG1 is induced by KSHV-encoded replication and transcription activator (RTA) during reactivation. JAG1 up-regulation activates Notch signaling in neighboring cells and prevents viral lytic replication. The suppression of JAG1 and Notch1 with inhibitors or small interfering RNA promotes lytic replication in the presence of RTA induction or under conditions of hypoxia. The underlying mechanism involves the Notch downstream effector hairy and enhancer of split 1 (Hes1), which directly binds lytic gene promoters and attenuates viral lytic gene expression. RTA interacts with lymphoid enhancer-binding factor 1 (LEF1), disrupts LEF1/Groucho/TLE suppressive complexes and releases LEF1 to activate JAG1 expression. Taken together, our results suggest that cells with viral lytic replication can inhibit KSHV reactivation in neighboring cells through an RTA-JAG1-Notch pathway. These data provide insight into the mechanism by which the virus maintains the balance between lytic and latent infection in the pro-lytic tumor microenvironment. KSHV infected cells display significant heterogeneity in viral lytic replication within the universal pro-lytic inflammatory milieu, suggesting that the balance between latency and reactivation is carefully regulated. This fine-tuned regulatory mechanism is essential for KSHV to persist in the host and drive cells to malignancy. In the present study, we show that KSHV can usurp the Notch signaling pathway to inhibit the viral lytic life cycle in neighboring cells. Notch signaling in surrounding cells can be activated through an RTA-JAG1-Notch pathway initiated by cells in which KSHV is reactivated. Activated Notch inhibits KSHV reactivation through its downstream effector Hes1. These findings suggest that the ability of Notch to determine the fate of adjacent cells is hijacked by KSHV to maintain its life cycle, providing a mechanistic explanation for the phenomenon by which only a small fraction of viruses enters lytic replication in the common pro-lytic microenvironment.
Collapse
|
97
|
ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle. J Virol 2016; 90:9543-55. [PMID: 27512077 PMCID: PMC5044832 DOI: 10.1128/jvi.03262-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle—viral latency and the productive lytic cycle—and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation.
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of immunocompromised individuals, including Kaposi's sarcoma (KS). Herpesviruses are able to establish a latent infection, in which they escape immune detection by restricting viral gene expression. Importantly, however, reactivation of productive viral replication (the lytic cycle) is necessary for the pathogenesis of KS. Therefore, it is important that we comprehensively understand the mechanisms that govern lytic reactivation, to better understand disease progression. In this study, we have identified a novel cellular protein (AT-rich interacting domain protein 3B [ARID3B]) that we show is able to temper lytic reactivation. We showed that the master lytic switch protein, RTA, enhanced ARID3B levels, which then interacted with viral DNA in a lytic cycle-dependent manner. Therefore, we have added a new factor to the list of cellular proteins that regulate the KSHV lytic cycle, which has implications for our understanding of KSHV biology.
Collapse
|
98
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
99
|
Brief Report: A Phase 1b/Pharmacokinetic Trial of PTC299, a Novel PostTranscriptional VEGF Inhibitor, for AIDS-Related Kaposi's Sarcoma: AIDS Malignancy Consortium Trial 059. J Acquir Immune Defic Syndr 2016; 72:52-7. [PMID: 26689971 DOI: 10.1097/qai.0000000000000918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in Kaposi's sarcoma (KS). We administered PTC299, a post-transcriptional inhibitor of pathogenic VEGF, to persons with HIV-related KS. Seventeen participants received 3 different doses of PTC299. Adverse events typically observed with VEGF inhibition were absent. Three participants had partial tumor responses and 11 had stable disease. There were no differences in exposure to PTC299 by antiretroviral regimen. Serum VEGF, but not KS-associated herpesvirus DNA, decreased on treatment. Given redundancies in the VEGF feedback loop, future trials should consider combining PTC299 with agents that inhibit different pathways implicated in KS and KS-associated herpesvirus proliferation.
Collapse
|
100
|
Zhu C, Zhu Q, Wang C, Zhang L, Wei F, Cai Q. Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review). Int J Oncol 2016; 49:1269-76. [PMID: 27499495 DOI: 10.3892/ijo.2016.3633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/23/2016] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1 is a central regulator in the adaptation process of cell response to hypoxia (low oxygen). Emerging evidence has demonstrated that HIF-1 plays an important role in the development and progression of many types of human diseases, including pathogen-associated cancers. In the present review, we summarize the recent understandings of how human pathogenic agents including viruses, bacteria and parasites deregulate cellular HIF-1 signaling pathway in their associated cancer cells, and highlight the common molecular mechanisms of HIF-1 signaling activated by these pathogenic infection, which could act as potential diagnostic markers and new therapeutic strategies against human infectious cancers.
Collapse
Affiliation(s)
- Caixia Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Qing Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chong Wang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Liming Zhang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|