51
|
Pollock LM, Perkins B, Anand-Apte B. Primary cilia are present on endothelial cells of the hyaloid vasculature but are not required for the development of the blood-retinal barrier. PLoS One 2020; 15:e0225351. [PMID: 32735563 PMCID: PMC7394433 DOI: 10.1371/journal.pone.0225351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Endothelial cilia are found in a variety of tissues including the cranial vasculature of zebrafish embryos. Recently, endothelial cells in the developing mouse retina were reported to also possess primary cilia that are potentially involved in vascular remodeling. Fish carrying mutations in intraflagellar transport (ift) genes have disrupted cilia and have been reported to have an increased rate of spontaneous intracranial hemorrhage (ICH), potentially due to disruption of the sonic hedgehog (shh) signaling pathway. However, it remains unknown whether the endothelial cells forming the retinal microvasculature in zebrafish also possess cilia, and whether endothelial cilia are necessary for development and maintenance of the blood-retinal barrier (BRB). In the present study, we found that the endothelial cells lining the zebrafish hyaloid vasculature possess primary cilia during development. To determine whether endothelial cilia are necessary for BRB integrity, ift57, ift88, and ift172 mutants, which lack cilia, were crossed with the double-transgenic zebrafish strain Tg(l-fabp:DBP-EGFP;flk1:mCherry). This strain expresses a vitamin D-binding protein (DBP) fused to enhanced green fluorescent protein (EGFP) as a tracer in the blood plasma, while the endothelial cells forming the vasculature are tagged by mCherry. The Ift mutant fish develop a functional BRB, indicating that endothelial cilia are not necessary for early BRB integrity. Additionally, although treatment of zebrafish larvae with Shh inhibitor cyclopamine results in BRB breakdown, the Ift mutant fish were not sensitized to cyclopamine-induced BRB breakdown.
Collapse
Affiliation(s)
- Lana M. Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
52
|
Weaver ML, Piedade WP, Meshram NN, Famulski JK. Hyaloid vasculature and mmp2 activity play a role during optic fissure fusion in zebrafish. Sci Rep 2020; 10:10136. [PMID: 32576859 PMCID: PMC7311462 DOI: 10.1038/s41598-020-66451-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
Vertebrate retinal development requires timely and precise fusion of the optic fissure (OF). Failure of this event leads to congenital vision impairment in the form of coloboma. Recent studies have suggested hyaloid vasculature to be involved in OF fusion. In order to examine this link, we analyzed OF fusion and hyaloid vasculogenesis in the zebrafish pax2a noi mutant line. We first determined that pax2a-/- embryos fail to accumulate F-actin in the OF prior to basement membrane (BM) degradation. Furthermore, using 3D and live imaging we observed reduced OF hyaloid vascularization in pax2a-/- embryos. When examining the connection between pax2a loss of function and hyaloid vasculature, we observed significant reduction of talin1 expression, a regulator of hyaloid vasculature. In addition, cranial VEGF expression was found to be reduced in pax2a-/- embryos. Pharmacological inhibition of VEGF signaling phenocopied the pax2a-/- vasculature, F-actin and BM degradation phenotypes. Lastly, we determined that OF associated hyaloid vasculature is a source of mmp2, mmp14a and mmp14b expression and showed that mmp2 is functionally necessary for degradation of OF BM. Taken together we propose a pax2a driven mechanism that ensures proper and timely hyaloid vasculature invasion of the OF in order to facilitate availability of the BM remodeler mmp2.
Collapse
Affiliation(s)
- Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Warlen P Piedade
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
53
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
54
|
Kolosov D, Bui P, Wilkie MP, Kelly SP. Claudins of sea lamprey (Petromyzon marinus) - organ-specific expression and transcriptional responses to water of varying ion content. JOURNAL OF FISH BIOLOGY 2020; 96:768-781. [PMID: 32017083 DOI: 10.1111/jfb.14274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The role of lamprey epithelium tight junctions (TJs) in the regulation of salt and water balance is poorly understood. This study reported on claudin (Cldn) TJ protein transcripts of pre-metamorphic larval and post-metamorphic juvenile sea lamprey (Petromyzon marinus) and the transcriptional response of genes encoding Cldns to changed environmental ion levels. Transcripts encoding Cldn-3b, -4, -5, -10, -14, -18 and -19 were identified, and mRNA expression profiles revealed the organ-specific presence of cldn-5 and -14, broad expression of cldn-3b, -4, -10, -18 and -19 and spatial differences in the mRNA abundance of cldn-4, -3b and -14 along the ammocoete intestine. Expression profiles were qualitatively similar in ammocoetes and juvenile fishes. Transcript abundance of genes encoding Cldns in osmoregulatory organs (gill, kidney, intestine and skin) was subsequently investigated after exposure of ammocoetes to ion-poor water (IPW) and juveniles to hyperosmotic conditions [60% sea water (SW)]. IPW-acclimated ammocoetes increased mRNA abundance of nearly all cldns in the gill. Simultaneously, cldn-10 abundance increased in the skin, whereas cldn-4, -14 and -18 decreased in the kidney. Ammocoete cldn mRNA abundance in the intestine was altered in a region-specific manner. In contrast, cldn transcript abundance was mostly downregulated in osmoregulatory organs of juvenile fish acclimated to SW - cldn-3b, -10 and -19 in the gill; cldn-3b, -4, -10 and -19 in the skin; cldn-3b in the kidney; and cldn-3b and -14 in the intestine. Data support the idea that Cldn TJ proteins play an important role in the osmoregulatory physiology of pre- and post-metamorphic sea lamprey and that Cldn participation can occur across organs, in an organ-specific manner, as well as differ spatially within organs, which contributes to the regulation of salt and water balance in these fishes.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Phuong Bui
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mike P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
55
|
Admati I, Wasserman-Bartov T, Tovin A, Rozenblat R, Blitz E, Zada D, Lerer-Goldshtein T, Appelbaum L. Neural Alterations and Hyperactivity of the Hypothalamic-Pituitary-Thyroid Axis in Oatp1c1 Deficiency. Thyroid 2020; 30:161-174. [PMID: 31797746 DOI: 10.1089/thy.2019.0320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The thyroid hormones (THs) triiodothyronine (T3) and thyroxine (T4) are crucial regulators of brain development and function. Cell-specific transporter proteins facilitate TH uptake and efflux across the cell membrane, and insufficient TH transport causes hypothyroidism and mental retardation. Mutations in the TH transporters monocarboxylate transporter 8 (MCT8, SLC16A2) and the organic anion-transporting polypeptide 1C1 (OATP1C1, SLCO1C1) are associated with the psychomotor retardation Allan-Herndon-Dudley syndrome and juvenile neurodegeneration, respectively. Methods: To understand the mechanisms and test potential treatments for the recently discovered OATP1C1 deficiency, we established an oatp1c1 mutant (oatp1c1-/-) zebrafish. Results:oatp1c1 is expressed in endothelial cells, neurons, and astrocytes in zebrafish. The activity of the hypothalamic-pituitary-thyroid axis and behavioral locomotor activity increased in oatp1c1-/- larvae. Neuropathological analysis revealed structural alteration in radial glial cells and shorter neuronal axons in oatp1c1-/- larvae and adults. Notably, oatp1c1-/- and oatp1c1-/-Xmct8-/- adults exhibit an enlarged thyroid gland (goiter). Pharmacological assays showed that TH analogs, but not THs, can reduce the size and improve the color of the thyroid gland in adult mutant zebrafish. Conclusion: These results establish a vertebrate model for OATP1C1 deficiency that demonstrates endocrinological, neurological, and behavioral alterations mimicking findings observed in an OATP1C1-deficient patient. Further, the curative effect of TH analogs in the oatp1c1-/- zebrafish model may provide a lead toward a treatment modality in human patients.
Collapse
Affiliation(s)
- Inbal Admati
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Talya Wasserman-Bartov
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
56
|
Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology 2019; 77:51-59. [PMID: 31862285 DOI: 10.1016/j.neuro.2019.12.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023]
Abstract
Nano-sized plastic particles formed from both daily use plastics and its debris have become a potential health and environmental problem due to features such as transportation through food webs and maternal transfer. Although many studies on the toxicity of plastics exist more detailed and molecular studies are needed to evaluate and review the effects of plastics especially in nano-size range. For this purpose, we have microinjected polystyrene nanoplastics (PNP) (20 nm) to the zebrafish embryo, which is one of the best model organisms for developmental toxicity studies, to simulate intake with food or maternal. Survival, hatching and malformations evaluated during the experimental period (120 h). Moreover, we have aimed to put forth the presence of reactive oxygen species (ROS) and apoptosis signalling accumulation in the body in addition to bioaccumulation of PNP and immunochemical toxicity (8-OHdG) on the brain of zebrafish larvae at the 120th hour. According to results, it has been demonstrated that 20 nm diameter PNP can reach the brain and bioaccumulate there, moreover lead to oxidative DNA damage in the brain regions where it bioaccumulates. Here we have also imaged the PNP from a vertebrate brain via transmission electron microscopy (TEM) for the first time. As a result of these, it has been detected increasing mortality and prevailing abnormalities in addition to excessive ROS and apoptosis in especially the brain. As a conclusion, obtained data have suggested that precautions, on the use and contamination of the plastic product, to be taken during both pregnancy and baby care/feeding are important for the health of the baby in future.
Collapse
|
57
|
Gordon L, Blechman J, Shimoni E, Gur D, Anand-Apte B, Levkowitz G. The fenestrae-associated protein Plvap regulates the rate of blood-borne protein passage into the hypophysis. Development 2019; 146:dev.177790. [PMID: 31740533 DOI: 10.1242/dev.177790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
To maintain body homeostasis, endocrine systems must detect and integrate blood-borne peripheral signals. This is mediated by fenestrae, specialized permeable pores in the endothelial membrane. Plasmalemma vesicle-associated protein (Plvap) is located in the fenestral diaphragm and is thought to play a role in the passage of proteins through the fenestrae. However, this suggested function has yet to be demonstrated directly. We studied the development of fenestrated capillaries in the hypophysis, a major neuroendocrine interface between the blood and brain. Using a transgenic biosensor to visualize the vascular excretion of the genetically tagged plasma protein DBP-EGFP, we show that the developmental acquisition of vascular permeability coincides with differential expression of zebrafish plvap orthologs in the hypophysis versus brain. Ultrastructural analysis revealed that plvapb mutants display deficiencies in fenestral diaphragms and increased density of hypophyseal fenestrae. Measurements of DBP-EGFP extravasation in plvapb mutants provided direct proof that Plvap limits the rate of blood-borne protein passage through fenestrated endothelia. We present the regulatory role of Plvap in the development of blood-borne protein detection machinery at a neuroendocrine interface through which hormones are released to the general circulation.
Collapse
Affiliation(s)
- Ludmila Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Dvir Gur
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland OH 444195, USA
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| |
Collapse
|
58
|
Schenk H, Müller-Deile J, Schroder P, Bolaños-Palmieri P, Beverly-Staggs L, White R, Bräsen JH, Haller H, Schiffer M. Characterizing renal involvement in Hermansky-Pudlak Syndrome in a zebrafish model. Sci Rep 2019; 9:17718. [PMID: 31776394 PMCID: PMC6881439 DOI: 10.1038/s41598-019-54058-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare disease caused by mutations in the genes coding for various HPS proteins. HPS proteins are part of multi-subunit complexes involved in the biogenesis of organelles from the lysosomal-endosomal-system. In humans, this syndrome is characterized by the presence of albinism, platelet dysfunction and pulmonary fibrosis. The renal component to the disease remains unstudied and untreated in patients with HPS. Here we demonstrate that in humans, HPS proteins have a high renal expression with active transcription of HPS1, 3, 4 and 5 in human podocyte cell culture, suggesting that impaired function of HPS proteins could directly impact renal function. Therefore, we developed a zebrafish model to study the renal involvement of HPS proteins in proteinuric kidney disease. Remarkably, knockdown of HPS genes in zebrafish causes glomerular injury with edema, proteinuria and structural changes of the glomerular filtration barrier. Moreover, reduced expression of HPS proteins in zebrafish recapitulates other important disease hallmarks, like hypopigmentation and accumulation of intracellular debris characteristic of lysosomal disorders. In conclusion, we present a valid zebrafish model that highlights the previously underestimated relevance of renal disease in HPS. This draws attention to the therapeutic options available to manage this component of the syndrome.
Collapse
Affiliation(s)
- H Schenk
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany. .,Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA.
| | - J Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany
| | - P Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - P Bolaños-Palmieri
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany
| | - L Beverly-Staggs
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - R White
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - J H Bräsen
- Institute of Pathology, Nephropathology Unit, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | - M Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen, Germany.
| |
Collapse
|
59
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
60
|
Zhong X, Kang J, Qiu J, Yang W, Wu J, Ji D, Yu Y, Ke W, Shi X, Wei Y. Developmental exposure to BDE-99 hinders cerebrovascular growth and disturbs vascular barrier formation in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105224. [PMID: 31255847 DOI: 10.1016/j.aquatox.2019.105224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are distributed throughout the environment. Despite a moratorium on their use, concentrations of PBDEs in the atmosphere and in residential environments remain high due to their persistence. The environmental health risks remain concerning and one of the major adverse effects is neurodevelopmental toxicity. However, the early response and effects of PBDEs exposure on the developing brain remain unknown. In the present study, we investigated the impacts of 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) on vascular growth and vascular barrier function with an emphasis on cerebral blood vessels, in the early life stages, using a zebrafish model. No general toxicity was observed in exposing zebrafish larvae to 0-0.5 μM BDE-99 at 72 hpf. BDE-99 exposure resulted in neither general toxicity nor pronounced developmental impairment in somatic blood vessels, including intersegmental vessels (ISV) and common cardinal veins (CCV). Meanwhile, both 0.05 μM and 0.5 μM of BDE-99 reduced cerebrovascular density as well as down-regulation of VEGFA and VEGFR2 in the head. In addition, BDE-99 exposure increased vascular leakage, both in cerebral and truncal vasculature at 72 hpf. The accentuated vascular permeability was observed in the head. The mRNA levels of genes encoding tight junction molecules decreased in the BDE-99-exposed larvae, and more robust reductions in Cldn5, Zo1 and Jam were detected in the head than in the trunk. Moreover, proinflammatory factors including TNF-α, IL-1β and ICAM-1 were induced, and the expression of neurodevelopment-related genes was suppressed in the head following BDE-99 exposure. Taken together, these results reveal that developmental exposure to BDE-99 impedes cerebrovascular growth and disturbs vascular barrier formation. The cerebral vasculature in developing zebrafish, a more sensitive target for BDE-99, may be a promising tool for the assessment of the early neurodevelopmental effects due to PBDEs exposure.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmeng Kang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahuang Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenhan Yang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiongjie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
61
|
Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 2019; 10:3780. [PMID: 31439844 PMCID: PMC6706415 DOI: 10.1038/s41467-019-11762-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/04/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disorders, yet no major breakthroughs have been made in AD human trials and the disease remains a paramount challenge and a stigma in medicine. Here we eliminate the toxicity of amyloid beta (Aβ) in a facile, high-throughput zebrafish (Danio rerio) model using casein coated-gold nanoparticles (βCas AuNPs). βCas AuNPs in systemic circulation translocate across the blood brain barrier of zebrafish larvae and sequester intracerebral Aβ42 and its elicited toxicity in a nonspecific, chaperone-like manner. This is evidenced by behavioral pathology, reactive oxygen species and neuronal dysfunction biomarkers assays, complemented by brain histology and inductively coupled plasma-mass spectroscopy. We further demonstrate the capacity of βCas AuNPs in recovering the mobility and cognitive function of adult zebrafish exposed to Aβ. This potent, safe-to-use, and easy-to-apply nanomedicine may find broad use for eradicating toxic amyloid proteins implicated in a range of human diseases. Treating Alzheimer’s disease, one of the most common neurodegenerative diseases, is of wide interest. Here, the authors report on the development of casein coated gold nanoparticles which were able to cross the blood brain barrier and protect against amyloid beta toxicity in a zebrafish model.
Collapse
|
62
|
O'Brown NM, Megason SG, Gu C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. eLife 2019; 8:e47326. [PMID: 31429822 PMCID: PMC6726461 DOI: 10.7554/elife.47326] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
As an optically transparent model organism with an endothelial blood-brain barrier (BBB), zebrafish offer a powerful tool to study the vertebrate BBB. However, the precise developmental profile of functional zebrafish BBB acquisition and the subcellular and molecular mechanisms governing the zebrafish BBB remain poorly characterized. Here, we capture the dynamics of developmental BBB leakage using live imaging, revealing a combination of steady accumulation in the parenchyma and sporadic bursts of tracer leakage. Electron microscopy studies further reveal high levels of transcytosis in brain endothelium early in development that are suppressed later. The timing of this suppression of transcytosis coincides with the establishment of BBB function. Finally, we demonstrate a key mammalian BBB regulator Mfsd2a, which inhibits transcytosis, plays a conserved role in zebrafish, as mfsd2aa mutants display increased BBB permeability due to increased transcytosis. Our findings indicate a conserved developmental program of barrier acquisition between zebrafish and mice.
Collapse
Affiliation(s)
| | - Sean G Megason
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Chenghua Gu
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
63
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
64
|
Adler D, Linden JR, Shetty SV, Ma Y, Bokori-Brown M, Titball RW, Vartanian T. Clostridium perfringens Epsilon Toxin Compromises the Blood-Brain Barrier in a Humanized Zebrafish Model. iScience 2019; 15:39-54. [PMID: 31030181 PMCID: PMC6487375 DOI: 10.1016/j.isci.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is hypothesized to mediate blood-brain barrier (BBB) permeability by binding to the myelin and lymphocyte protein (MAL) on the luminal surface of endothelial cells (ECs). However, the kinetics of this interaction and a general understanding of ETX's behavior in a live organism have yet to be appreciated. Here we investigate ETX binding and BBB breakdown in living Danio rerio (zebrafish). Wild-type zebrafish ECs do not bind ETX. When zebrafish ECs are engineered to express human MAL (hMAL), proETX binding occurs in a time-dependent manner. Injection of activated toxin in hMAL zebrafish initiates BBB leakage, hMAL downregulation, blood vessel stenosis, perivascular edema, and blood stasis. We propose a kinetic model of MAL-dependent ETX binding and neurovascular pathology. By generating a humanized zebrafish BBB model, this study contributes to our understanding of ETX-induced BBB permeability and strengthens the proposal that MAL is the ETX receptor.
Collapse
Affiliation(s)
- Drew Adler
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Jennifer R Linden
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Samantha V Shetty
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Yinghua Ma
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | - Richard W Titball
- Department of Biosciences, University of Exeter, Exeter, Devon EX4 4SB, UK
| | - Timothy Vartanian
- Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
65
|
Quiñonez-Silvero C, Hübner K, Herzog W. Development of the brain vasculature and the blood-brain barrier in zebrafish. Dev Biol 2019; 457:181-190. [PMID: 30862465 DOI: 10.1016/j.ydbio.2019.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
To ensure tissue homeostasis the brain needs to be protected from blood-derived fluctuations or pathogens that could affect its function. Therefore, the brain capillaries develop tissue-specific properties to form a selective blood-brain barrier (BBB), allowing the passage of essential molecules to the brain and blocking the penetration of potentially harmful compounds or cells. Previous studies reported the presence of this barrier in zebrafish. The intrinsic features of the zebrafish embryos and larvae in combination with optical techniques, make them suitable for the study of barrier establishment and maturation. In this review, we discuss the most recent contributions to the development and formation of a functional zebrafish BBB. Moreover, we compare the molecular and cellular characteristic of the zebrafish and the mammalian BBB.
Collapse
Affiliation(s)
- Claudia Quiñonez-Silvero
- University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Germany
| | - Kathleen Hübner
- University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Germany
| | - Wiebke Herzog
- University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Germany; Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| |
Collapse
|
66
|
Müller-Deile J, Schenk H, Niggemann P, Bolaños-Palmieri P, Teng B, Higgs A, Staggs L, Haller H, Schroder P, Schiffer M. Mutation of microphthalmia-associated transcription factor (mitf) in zebrafish sensitizes for glomerulopathy. Biol Open 2019; 8:bio.040253. [PMID: 30718228 PMCID: PMC6451330 DOI: 10.1242/bio.040253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different glomerular diseases that affect podocyte homeostasis can clinically present as nephrotic syndrome with massive proteinuria, hypoalbuminemia, hyperlipidemia and edema. Up to now, no drugs that specifically target the actin cytoskeleton of podocytes are on the market and model systems for library screenings to develop anti-proteinuric drugs are of high interest. We developed a standardized proteinuria model in zebrafish using puromycin aminonucleoside (PAN) via treatment in the fish water to allow for further drug testing to develop anti-proteinuric drugs for the treatment of glomerular diseases. We noticed that fish that carry the nacre-mutation show a significantly higher susceptibility for the disruption of the glomerular filtration barrier following PAN treatment, which results in a more pronounced proteinuria phenotype. Nacre zebrafish inherit a mutation yielding a truncated version of microphthalmia-associated transcription factor/melanogenesis associated transcription factor (mitf). We hypothesized that the nacre mutation may lead to reduced formin expression and defects in cytoskeletal rearrangement. Based on the observations in zebrafish, we carried out a PAN treatment on cultured human podocytes after knockdown with MITF siRNA causing a rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Heiko Schenk
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Philipp Niggemann
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Bolaños-Palmieri
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Beina Teng
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Alysha Higgs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Lynne Staggs
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany.,Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Patricia Schroder
- Division of Nephrology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04609, USA
| | - Mario Schiffer
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany .,Department of Nephrology and Hypertension, University of Erlangen-Nurnberg, Erlangen 91054, Germany
| |
Collapse
|
67
|
Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, Adams RH, Vanhollebeke B, Herzog W. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat Commun 2018; 9:4860. [PMID: 30451830 PMCID: PMC6242933 DOI: 10.1038/s41467-018-07302-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Canonical Wnt signaling is crucial for vascularization of the central nervous system and blood-brain barrier (BBB) formation. BBB formation and modulation are not only important for development, but also relevant for vascular and neurodegenerative diseases. However, there is little understanding of how Wnt signaling contributes to brain angiogenesis and BBB formation. Here we show, using high resolution in vivo imaging and temporal and spatial manipulation of Wnt signaling, different requirements for Wnt signaling during brain angiogenesis and BBB formation. In the absence of Wnt signaling, premature Sphingosine-1-phosphate receptor (S1pr) signaling reduces VE-cadherin and Esama at cell-cell junctions. We suggest that Wnt signaling suppresses S1pr signaling during angiogenesis to enable the dynamic junction formation during anastomosis, whereas later S1pr signaling regulates BBB maturation and VE-cadherin stabilization. Our data provides a link between brain angiogenesis and BBB formation and identifies Wnt signaling as coordinator of the timing and as regulator of anastomosis.
Collapse
Affiliation(s)
- Kathleen Hübner
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Waldeyerstrasse 15, 48149, Muenster, Germany
| | - Pauline Cabochette
- Université libre de Bruxelles, Rue Prof. Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Rodrigo Diéguez-Hurtado
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Waldeyerstrasse 15, 48149, Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Yuki Wakayama
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | | | - Marvin Hubert
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Ralf H Adams
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Waldeyerstrasse 15, 48149, Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Benoit Vanhollebeke
- Université libre de Bruxelles, Rue Prof. Jeener et Brachet 12, 6041, Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Avenue Pasteur 6, 1300, Wavre, Belgium
| | - Wiebke Herzog
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Waldeyerstrasse 15, 48149, Muenster, Germany.
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
68
|
Anbalagan S, Gordon L, Blechman J, Matsuoka RL, Rajamannar P, Wircer E, Biran J, Reuveny A, Leshkowitz D, Stainier DYR, Levkowitz G. Pituicyte Cues Regulate the Development of Permeable Neuro-Vascular Interfaces. Dev Cell 2018; 47:711-726.e5. [PMID: 30449506 DOI: 10.1016/j.devcel.2018.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Abstract
The hypothalamo-neurohypophyseal system (HNS) regulates homeostasis through the passage of neurohormones and blood-borne proteins via permeable blood capillaries that lack the blood-brain barrier (BBB). Why neurohypophyseal capillaries become permeable while the neighboring vasculature of the brain forms BBB remains unclear. We show that pituicytes, the resident astroglial cells of the neurohypophysis, express genes that are associated with BBB breakdown during neuroinflammation. Pituicyte-enriched factors provide a local microenvironment that instructs a permeable neurovascular conduit. Thus, genetic and pharmacological perturbations of Vegfa and Tgfβ3 affected HNS vascular morphogenesis and permeability and impaired the expression of the fenestral marker plvap. The anti-inflammatory agent dexamethasone decreased HNS permeability and downregulated the pituicyte-specific cyp26b gene, encoding a retinoic acid catabolic enzyme. Inhibition of Cyp26b activity led to upregulation of tight junction protein Claudin-5 and decreased permeability. We conclude that pituicyte-derived factors regulate the "decision" of endothelial cells to adopt a permeable endothelial fate instead of forming a BBB.
Collapse
Affiliation(s)
- Savani Anbalagan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Ludmila Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Preethi Rajamannar
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Einav Wircer
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon Letziyon 7528809, Israel
| | - Adriana Reuveny
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, LSCF Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel.
| |
Collapse
|
69
|
Water extract of Brazilian green propolis attenuates high glucose-induced vascular morphological abnormality in zebrafish. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
70
|
Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018; 7:cells7090130. [PMID: 30200518 PMCID: PMC6162634 DOI: 10.3390/cells7090130] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
The structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques. We further discuss the future applications of such models, particularly their role in revealing new genetic diseases of the kidney and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Mohamed A Elmonem
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 11628 Cairo, Egypt.
| | - Sante Princiero Berlingerio
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Peter A de Witte
- Laboratory for Molecular Bio-Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Development and Regeneration, University Hospitals Leuven, KU Leuven-University of Leuven, Herestraat 49, Box 817, 3000 Leuven, Belgium.
| |
Collapse
|
71
|
van Leeuwen LM, Boot M, Kuijl C, Picavet DI, van Stempvoort G, van der Pol SM, de Vries HE, van der Wel NN, van der Kuip M, van Furth AM, van der Sar AM, Bitter W. Mycobacteria employ two different mechanisms to cross the blood-brain barrier. Cell Microbiol 2018; 20:e12858. [PMID: 29749044 PMCID: PMC6175424 DOI: 10.1111/cmi.12858] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle.
Collapse
Affiliation(s)
- Lisanne M. van Leeuwen
- Medical Microbiology and Infection ControlVU Medical CenterAmsterdamThe Netherlands
- Paediatric Infectious Diseases and ImmunologyVU Medical CenterAmsterdamThe Netherlands
| | - Maikel Boot
- Medical Microbiology and Infection ControlVU Medical CenterAmsterdamThe Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection ControlVU Medical CenterAmsterdamThe Netherlands
| | - Daisy I. Picavet
- Cell Biology and Histology, Electron Microscopy Centre AmsterdamAcademic Medical CentreAmsterdamThe Netherlands
| | - Gunny van Stempvoort
- Medical Microbiology and Infection ControlVU Medical CenterAmsterdamThe Netherlands
| | - Susanne M.A. van der Pol
- Molecular Cell Biology and Immunology, Amsterdam NeuroscienceVU Medical CenterAmsterdamThe Netherlands
| | - Helga E. de Vries
- Molecular Cell Biology and Immunology, Amsterdam NeuroscienceVU Medical CenterAmsterdamThe Netherlands
| | - Nicole N. van der Wel
- Cell Biology and Histology, Electron Microscopy Centre AmsterdamAcademic Medical CentreAmsterdamThe Netherlands
| | - Martijn van der Kuip
- Paediatric Infectious Diseases and ImmunologyVU Medical CenterAmsterdamThe Netherlands
| | | | | | - Wilbert Bitter
- Medical Microbiology and Infection ControlVU Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
72
|
Abstract
This review by O'Brown et al. discusses the cellular nature of the blood–brain barrier (BBB) and the conservation and variation of BBB function across taxa. It compares the BBB across organisms in order to provide insight into the human BBB both under normal physiological conditions and in neurological diseases. The blood–brain barrier (BBB) restricts free access of molecules between the blood and the brain and is essential for regulating the neural microenvironment. Here, we describe how the BBB was initially characterized and how the current field evaluates barrier properties. We next detail the cellular nature of the BBB and discuss both the conservation and variation of BBB function across taxa. Finally, we examine our current understanding of mouse and zebrafish model systems, as we expect that comparison of the BBB across organisms will provide insight into the human BBB under normal physiological conditions and in neurological diseases.
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah J Pfau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
73
|
Pollock LM, Xie J, Bell BA, Anand-Apte B. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier. FASEB J 2018; 32:5674-5684. [PMID: 29874129 DOI: 10.1096/fj.201701469r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The predominant function of the blood-retinal barrier (BRB) is to maintain retinal homeostasis by regulating the influx and efflux between the blood and retina. Breakdown of the BRB occurs in a number of ocular diseases that result in vision loss. Understanding the molecular and cellular pathways involved in the development and maintenance of the BRB is critical to developing therapeutics for these conditions. To visualize the BRB in vivo, we used the transgenic Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish model that expresses vitamin D binding protein (a member of the albumin gene family) tagged to green fluorescent protein. Retinoic acid (RA) plays a number of important roles in vertebrate development and has been shown to play a protective role during inflammation-induced blood-brain barrier disruption. The role of RA in BRB development and maintenance remains unknown. To disrupt RA signaling, Tg(l-fabp:DBP-EGFP:flk1:mCherry) zebrafish were treated with N, N-diethylaminobenzaldehyde and 4-[(1 E)-2-[5,6-dihydro-5,5-dimethyl-8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]benzoic acid, which are antagonists of retinal dehydrogenase and the RA receptor, respectively. Treatment with either compound resulted in BRB disruption and reduced visual acuity, whereas cotreatment with all- trans RA effectively rescued BRB integrity. Additionally, transgenic overexpression of Cyp26a1, which catalyzes RA degradation, resulted in breakdown of the BRB. Our results demonstrate that RA signaling is critical for maintenance of the BRB and could play a role in diseases such as diabetic macular edema.-Pollock, L. M., Xie, J., Bell, B. A., Anand-Apte, B. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier.
Collapse
Affiliation(s)
- Lana M Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Xie
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
74
|
Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. Front Neurol 2018; 9:347. [PMID: 29910763 PMCID: PMC5992294 DOI: 10.3389/fneur.2018.00347] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Movement disorders can be primarily divided into hypokinetic and hyperkinetic. Most of the hypokinetic syndromes are associated with the neurodegenerative disorder Parkinson’s disease (PD). By contrast, hyperkinetic syndromes encompass a broader array of diseases, including dystonia, essential tremor, or Huntington’s disease. The discovery of effective therapies for these disorders has been challenging and has also involved the development and characterization of accurate animal models for the screening of new drugs. Zebrafish constitutes an alternative vertebrate model for the study of movement disorders. The neuronal circuitries involved in movement in zebrafish are well characterized, and most of the associated molecular mechanisms are highly conserved. Particularly, zebrafish models of PD have contributed to a better understanding of the role of several genes implicated in the disease. Furthermore, zebrafish is a vertebrate model particularly suited for large-scale drug screenings. The relatively small size of zebrafish, optical transparency, and lifecycle, are key characteristics that facilitate the study of multiple compounds at the same time. Several transgenic, knockdown, and mutant zebrafish lines have been generated and characterized. Therefore, it is central to critically analyze these zebrafish lines and understand their suitability as models of movement disorders. Here, we revise the pathogenic mechanisms, phenotypes, and responsiveness to pharmacotherapies of zebrafish lines of the most common movement disorders. A systematic review of the literature was conducted by including all studies reporting the characterization of zebrafish models of the movement disorders selected from five bibliographic databases. A total of 63 studies were analyzed, and the most relevant data within the scope of this review were gathered. The majority (62%) of the studies were focused in the characterization of zebrafish models of PD. Overall, the zebrafish models included display conserved biochemical and neurobehavioral features of the phenomenology in humans. Nevertheless, in light of what is known for all animal models available, the use of zebrafish as a model for drug discovery requires further optimization. Future technological developments alongside with a deeper understanding of the molecular bases of these disorders should enable the development of novel zebrafish lines that can prove useful for drug discovery for movement disorders.
Collapse
Affiliation(s)
- Rita L Vaz
- TechnoPhage, SA, Lisboa, Portugal.,Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joaquim J Ferreira
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| |
Collapse
|
75
|
Abstract
Ocular tuberculosis (TB) commonly causes severe inflammation and vision loss in TB-endemic countries. The mechanism by which tuberculous infection becomes established in the eye is poorly understood. We have developed the zebrafish larva infected with Mycobacterium marinum as a model to study the early pathogenesis of ocular TB. We find that hematogenous bacterial seeding of the eye occurs despite a functional blood retinal barrier. Prototypical early granulomas form in response to bacteria in the eye. These granulomas involve the retinal vasculature and retinal pigment epithelium-choroid complex which are characteristic locations for human ocular TB. We find that peripheral blood monocytes are recruited to the nascent ocular granuloma further suggesting that the immune privileged nature of the eye is breached by this inflammatory focus.
Collapse
|
76
|
Müller-Deile J, Schröder P, Beverly-Staggs L, Hiss R, Fiedler J, Nyström J, Thum T, Haller H, Schiffer M. Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish. Sci Rep 2018; 8:3621. [PMID: 29483572 PMCID: PMC5827519 DOI: 10.1038/s41598-018-22070-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
So far the pathomechanism of preeclampsia in pregnancy is focussed on increased circulating levels of soluble fms-like tyrosin kinase-1 (sFLT-1) that neutralizes glomerular VEGF-A expression and prevents its signaling at the glomerular endothelium. As a result of changed glomerular VEGF-A levels endotheliosis and podocyte foot process effacement are typical morphological features of preeclampsia. Recently, microRNA-26a-5p (miR-26a-5p) was described to be also upregulated in the preeclamptic placenta. We found that miR-26a-5p targets VEGF-A expression by means of PIK3C2α in cultured human podocytes and that miR-26a-5p overexpression in zebrafish causes proteinuria, edema, glomerular endotheliosis and podocyte foot process effacement. Interestingly, recombinant zebrafish Vegf-Aa protein could rescue glomerular changes induced by miR-26a-5p. In a small pilot study, preeclamptic patients with podocyte damage identified by podocyturia, expressed significantly more urinary miR-26a-5p compared to healthy controls. Thus, functional and ultrastructural glomerular changes after miR-26a-5p overexpression can resemble the findings seen in preeclampsia and indicate a potential pathophysiological role of miR-26a-5p in addition to sFLT-1 in this disease.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany. .,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| | - Patricia Schröder
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | | | - Rebecca Hiss
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| |
Collapse
|
77
|
van Leeuwen LM, Evans RJ, Jim KK, Verboom T, Fang X, Bojarczuk A, Malicki J, Johnston SA, van der Sar AM. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5. Biol Open 2018; 7:7/2/bio030494. [PMID: 29437557 PMCID: PMC5861362 DOI: 10.1242/bio.030494] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The central nervous system (CNS) has specific barriers that protect the brain from potential threats and tightly regulate molecular transport. Despite the critical functions of the CNS barriers, the mechanisms underlying their development and function are not well understood, and there are very limited experimental models for their study. Claudin 5 is a tight junction protein required for blood brain barrier (BBB) and, probably, choroid plexus (CP) structure and function in vertebrates. Here, we show that the gene claudin 5a is the zebrafish orthologue with high fidelity expression, in the BBB and CP barriers, that demonstrates the conservation of the BBB and CP between humans and zebrafish. Expression of claudin 5a correlates with developmental tightening of the BBB and is restricted to a subset of the brain vasculature clearly delineating the BBB. We show that claudin 5a-expressing cells of the CP are ciliated ependymal cells that drive fluid flow in the brain ventricles. Finally, we find that CP development precedes BBB development and that claudin 5a expression occurs simultaneously with angiogenesis. Thus, our novel transgenic zebrafish represents an ideal model to study CNS barrier development and function, critical in understanding the mechanisms underlying CNS barrier function in health and disease. Summary: A novel transgenic zebrafish, using claudin 5a, represents an ideal model to study blood brain barrier and choroid plexus barrier development and function in vivo.
Collapse
Affiliation(s)
- Lisanne Martine van Leeuwen
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands.,Department of Pediatric Infectious Diseases & Immunology, VU Medical Center, Amsterdam 1007MB, The Netherlands
| | - Robert J Evans
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Kin Ki Jim
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| | - Xiaoming Fang
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Aleksandra Bojarczuk
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jarema Malicki
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom.,Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Simon Andrew Johnston
- Bateson Centre, University of Sheffield, Sheffield, S10 2TN, United Kingdom .,Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Astrid Marijke van der Sar
- Department of Medical Microbiology & Infection control, VU Medical Center, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
78
|
FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 2018; 68-69:263-279. [PMID: 29337051 DOI: 10.1016/j.matbio.2018.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
Abstract
Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement.
Collapse
|
79
|
Pitt JA, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, Wiesner M, Levin ED, Di Giulio RT. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:185-194. [PMID: 29197232 PMCID: PMC6959514 DOI: 10.1016/j.aquatox.2017.11.017] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 05/02/2023]
Abstract
Plastic pollution is a critical environmental concern and comprises the majority of anthropogenic debris in the ocean, including macro, micro, and likely nanoscale (less than 100nm in at least one dimension) plastic particles. While the toxicity of macroplastics and microplastics is relatively well studied, the toxicity of nanoplastics is largely uncharacterized. Here, fluorescent polystyrene nanoparticles (PS NPs) were used to investigate the potential toxicity of nanoplastics in developing zebrafish (Danio rerio), as well as to characterize the uptake and distribution of the particles within embryos and larvae. Zebrafish embryos at 6h post-fertilization (hpf) were exposed to PS NPs (0.1, 1, or 10ppm) until 120 hpf. Our results demonstrate that PS NPs accumulated in the yolk sac as early as 24 hpf and migrated to the gastrointestinal tract, gallbladder, liver, pancreas, heart, and brain throughout development (48-120 hpf). Accumulation of PS NPs decreased during the depuration phase (120-168 hpf) in all organs, but at a slower rate in the pancreas and gastrointestinal tract. Notably, exposure to PS NPs did not induce significant mortality, deformities, or changes to mitochondrial bioenergetics, but did decrease the heart rate. Lastly, exposure to PS NPs altered larval behavior as evidenced by swimming hypoactivity in exposed larvae. Taken together, these data suggest that at least some nanoplastics can penetrate the chorion of developing zebrafish, accumulate in the tissues, and affect physiology and behavior, potentially affecting organismal fitness in contaminated aquatic ecosystems.
Collapse
Affiliation(s)
- Jordan A Pitt
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA.
| | - Jordan S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Nick Geitner
- Department of Civil and Environmental Engineering and the Center for the Environmental Implications of Nano Technology, Duke University, Durham, NC 27708, USA
| | - Mark Wiesner
- Department of Civil and Environmental Engineering and the Center for the Environmental Implications of Nano Technology, Duke University, Durham, NC 27708, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
80
|
Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2017; 214:50-57. [DOI: 10.1016/j.cbpa.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022]
|
81
|
Li Y, Song X, Yi X, Wang R, Lee SMY, Wang X, Zheng Y. Zebrafish: A Visual Model To Evaluate the Biofate of Transferrin Receptor-Targeted 7Peptide-Decorated Coumarin 6 Micelles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39048-39058. [PMID: 29039926 DOI: 10.1021/acsami.7b12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the present study, the zebrafish was explored as an in vivo model to assess the biofate of transferrin receptor (TfR)-targeted coumarin 6 (C6) micelles across various biological barriers. Three 7peptide (7pep)-decorated poly(ethylene glycol)-block-poly(ε-caprolactone) micelles loaded with fluorescence coumarin 6 (7pep-M-C6) with different ligand densities were constructed with particle sizes between 30 and 40 nm. Whole-mount immunostaining revealed that the expression level of TfR in the retina, brain, and intestine increased along with development stage. Compared to unmodified micelles, 7pep-M-C6 demonstrated higher uptake efficiency in the larval zebrafish. Preinhibition of TfR with 7pep implicated the TfR-mediated endocytosis pathway in the uptake of 7pep-M-C6. Confocal images of the larval zebrafish eye and brain showed the efficient delivery of C6 across the retinal pigment epithelial to the ganglion cell layer and the significant accumulation of C6 in all brain tissues, respectively, which plateaued when the ligand density was 10%. To investigate the intestinal distribution of C6, micelles were administered to adult zebrafish via gavaging. Notably, 7pep-M-C6 enhanced the transport of C6 across the villi and increased its aggregation into the basolateral membrane of the intestine. After the oral administration of 7pep-M-C6, C6 accumulated in the eye and brain. Förster resonance energy transfer analysis suggested that intact 7pep-modified micelles could enter the epithelial cells of the intestine, brain, and eye after oral administration in adult zebrafish. In conclusion, zebrafish could be used as a model for in vivo visual assessment of the biofate of TfR-targeted drug delivery systems.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xiaoning Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| |
Collapse
|
82
|
Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, Xie Y, Yao S, Zhao C. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Sci Rep 2017; 7:14372. [PMID: 29085081 PMCID: PMC5662771 DOI: 10.1038/s41598-017-14766-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) is necessary for maintaining brain homeostasis, but it also represents a major challenge for drug delivery to the brain tumors. A suitable in vivo Glioblastoma Multiforme (GBM) model is needed for efficient testing of BBB crossable pharmaceuticals. In this study, we firstly confirmed the BBB functionality in 3dpf zebrafish embryos by Lucifer Yellow, Evans Blue and DAPI microinjection. We then transplanted human GBM tumor cells into the zebrafish brain, in which implanted GBM cells (U87 and U251) were highly mitotic and invasive, mimicking their malignancy features in rodents' brain. Interestingly, we found that, although extensive endothelial proliferation and vessel dilation were observed in GBM xenografts, the BBB was still not disturbed. Next, using the zebrafish orthotopic GBM xenograft model as an in vivo visual readout, we successfully identified a promising small compound named TNB, which could efficiently cross the zebrafish BBB and inhibit the progression of orthotopic GBM xenografts. These results indicate that TNB is a promising BBB crossable GBM drug worth to be further characterized in human BBB setting, also suggest the zebrafish orthotopic GBM model as an efficient visual readout for the BBB penetrating anti-GBM drugs.
Collapse
Affiliation(s)
- Anqi Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Dan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, P.R. China.
| |
Collapse
|
83
|
Li Y, Chen T, Miao X, Yi X, Wang X, Zhao H, Lee SMY, Zheng Y. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res 2017; 125:246-257. [PMID: 28867638 DOI: 10.1016/j.phrs.2017.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The blood brain barrier (BBB) is the network of capillaries that controls the passage of substances from the blood into the brain and other parts of the central nervous system (CNS). As this barrier is the major obstacle for drug delivery into CNS, a credible BBB model is very necessary to assess the BBB permeability of novel neuroactive compounds including thousands of bioactive compounds which have been extracted from medicinal plants and have the potential for the treatment of CNS diseases. Increasing reports indicated that zebrafish has emerged as a timely, reproducible model for BBB permeability assessment. In this review, the development and functions of the BBB in zebrafish, such as its anatomical morphology, tight junctions, drug transporters and enzyme expression, are compared with those in mammals. The studies outlined in this review describe the utilization of the zebrafish as a BBB model to investigate the permeability and distribution of fluorescent dyes and drugs. Particularly, this review focuses on the use of zebrafish to evaluate the delivery of natural products and nanosized drug delivery systems across the BBB. Due to the highly conserved nature of both the structure and function of the BBB between zebrafish and mammals, zebrafish has the potential to be developed as a model for assessing and predicting the permeability of BBB to novel compounds.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
84
|
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality. PLoS One 2017; 12:e0182047. [PMID: 28771527 PMCID: PMC5542556 DOI: 10.1371/journal.pone.0182047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Collapse
|
85
|
Philip AM, Wang Y, Mauro A, El-Rass S, Marshall JC, Lee WL, Slutsky AS, dos Santos CC, Wen XY. Development of a zebrafish sepsis model for high-throughput drug discovery. Mol Med 2017; 23:134-148. [PMID: 28598490 PMCID: PMC5522968 DOI: 10.2119/molmed.2016.00188] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a leading cause of death worldwide. Current treatment modalities remain largely supportive. Intervention strategies focused on inhibiting specific mediators of the inflammatory host response have been largely unsuccessful, a consequence of an inadequate understanding of the complexity and heterogeneity of the innate immune response. Moreover, the conventional drug development pipeline is time consuming and expensive and the low success rates associated with cell-based screens underline the need for whole organism screening strategies, especially for complex pathological processes. Here, we established an LPS-induced zebrafish endotoxemia model, which exhibits the major hallmarks of human sepsis including, edema and tissue/organ damage, increased vascular permeability and vascular leakage accompanied by an altered expression of cellular junction proteins, increased cytokine expression, immune cell activation and ROS production, reduced circulation and increased platelet aggregation. We tested the suitability of the model for phenotype-based drug screening using three primary readouts: mortality, vascular leakage, and ROS production. Preliminary screening identified fasudil, a drug known to protect against vascular leakage in murine models, as a lead hit thereby validating the utility of our model for sepsis drug screens. This zebrafish sepsis model has the potential to rapidly analyze sepsis associated pathologies and cellular processes in the whole organism, as well as to screen and validate large numbers of compounds that can modify sepsis pathology in vivo.
Collapse
Affiliation(s)
- Anju M Philip
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Physiology, Toronto, Ontario, Canada
| | - Youdong Wang
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Antonio Mauro
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Warren L Lee
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
| | - Arthur S Slutsky
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Claudia C dos Santos
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Physiology, Toronto, Ontario, Canada
- Department of Medicine and Institute of Medical Science, Toronto, Ontario, Canada
- Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
86
|
Cole KLH, Early JJ, Lyons DA. Drug discovery for remyelination and treatment of MS. Glia 2017; 65:1565-1589. [PMID: 28618073 DOI: 10.1002/glia.23166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Glia constitute the majority of the cells in our nervous system, yet there are currently no drugs that target glia for the treatment of disease. Given ongoing discoveries of the many roles of glia in numerous diseases of the nervous system, this is likely to change in years to come. Here we focus on the possibility that targeting the oligodendrocyte lineage to promote regeneration of myelin (remyelination) represents a therapeutic strategy for the treatment of the demyelinating disease multiple sclerosis, MS. We discuss how hypothesis driven studies have identified multiple targets and pathways that can be manipulated to promote remyelination in vivo, and how this work has led to the first ever remyelination clinical trials. We also highlight how recent chemical discovery screens have identified a host of small molecule compounds that promote oligodendrocyte differentiation in vitro. Some of these compounds have also been shown to promote myelin regeneration in vivo, with one already being trialled in humans. Promoting oligodendrocyte differentiation and remyelination represents just one potential strategy for the treatment of MS. The pathology of MS is complex, and its complete amelioration may require targeting multiple biological processes in parallel. Therefore, we present an overview of new technologies and models for phenotypic analyses and screening that can be exploited to study complex cell-cell interactions in in vitro and in vivo systems. Such technological platforms will provide insight into fundamental mechanisms and increase capacities for drug-discovery of relevance to glia and currently intractable disorders of the CNS.
Collapse
Affiliation(s)
- Katy L H Cole
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Jason J Early
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
87
|
Li Y, Miao X, Chen T, Yi X, Wang R, Zhao H, Lee SMY, Wang X, Zheng Y. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf B Biointerfaces 2017; 156:227-235. [PMID: 28544957 DOI: 10.1016/j.colsurfb.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
88
|
Siegerist F, Zhou W, Endlich K, Endlich N. 4D in vivo imaging of glomerular barrier function in a zebrafish podocyte injury model. Acta Physiol (Oxf) 2017; 220:167-173. [PMID: 27414464 DOI: 10.1111/apha.12754] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 01/15/2023]
Abstract
AIM Zebrafish larvae with their simplified pronephros are an ideal model to study glomerular physiology. Although several groups use zebrafish larvae to assess glomerular barrier function, temporary or slight changes are still difficult to measure. The aim of this study was to investigate the potential of in vivo two-photon microscopy (2-PM) for long-term imaging of glomerular barrier function in zebrafish larvae. METHODS As a proof of principle, we adapted the nitroreductase/metronidazole model of targeted podocyte ablation for 2-PM. Combination with a strain, which expresses eGFP-vitamin D-binding protein in the blood plasma, led to a strain that allowed induction of podocyte injury with parallel assessment of glomerular barrier function. We used four-dimensional (4D) 2-PM to assess eGFP fluorescence over 26 h in the vasculature and in tubules of multiple zebrafish larvae (5 days post-fertilization) simultaneously. RESULTS By 4D 2-PM, we observed that, under physiological conditions, eGFP fluorescence was retained in the vasculature and rarely detected in proximal tubule cells. Application of metronidazole induced podocyte injury and cell death as shown by TUNEL staining. Induction of podocyte injury resulted in a dramatic decrease of eGFP fluorescence in the vasculature over time (about 50% and 90% after 2 and 12 h respectively). Loss of vascular eGFP fluorescence was paralleled by an endocytosis-mediated accumulation of eGFP fluorescence in proximal tubule cells, indicating proteinuria. CONCLUSION We established a microscopy-based method to monitor the dynamics of glomerular barrier function during induction of podocyte injury in multiple zebrafish larvae simultaneously over 26 h.
Collapse
Affiliation(s)
- F. Siegerist
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| | - W. Zhou
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor MI USA
| | - K. Endlich
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| | - N. Endlich
- Department of Anatomy and Cell Biology; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
89
|
Hsieh FY, Zhilenkov AV, Voronov II, Khakina EA, Mischenko DV, Troshin PA, Hsu SH. Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11482-11492. [PMID: 28263053 DOI: 10.1021/acsami.7b01077] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Delivering drugs to the central nervous system (CNS) is a major challenge in treating CNS-related diseases. Nanoparticles that can cross blood-brain barrier (BBB) are potential tools. In this study, water-soluble C60 fullerene derivatives with different types of linkages between the fullerene cage and the solubilizing addend were synthesized (compounds 1-3: C-C bonds, compounds 4-5: C-S bonds, compound 6: C-P bonds, and compounds 7-9: C-N bonds). Fullerene derivatives 1-6 were observed to induce neural stem cell (NSC) proliferation in vitro and rescue the function of injured CNS in zebrafish. Fullerene derivatives 7-9 were found to inhibit glioblastoma cell proliferation in vitro and reduce glioblastoma formation in zebrafish. These effects were correlated with the cell metabolic changes. Particularly, compound 3 bearing residues of phenylbutiryc acids significantly promoted NSC proliferation and neural repair without causing tumor growth. Meanwhile, compound 7 with phenylalanine appendages significantly inhibited glioblastoma growth without retarding the neural repair. We conclude that the surface functional group determines the properties as well as the interactions of C60 with NSCs and glioma cells, producing either a neuroprotective or antitumor effect for possible treatment of CNS-related diseases.
Collapse
Affiliation(s)
| | - A V Zhilenkov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - I I Voronov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - E A Khakina
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - D V Mischenko
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
| | - Pavel A Troshin
- Institute for Problems of Chemical Physics of Russian Academy of Sciences , Semenov Prospect 1, Chernogolovka 142432, Russian Federation
- Skolkovo Institute of Science and Technology , Moscow 143005, Russian Federation
| | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes , Zhunan 35053, Taiwan, R.O.C
| |
Collapse
|
90
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
91
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
92
|
Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, Bai S. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS JOURNAL 2016; 19:475-486. [PMID: 27882487 DOI: 10.1208/s12248-016-0015-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Although small interfering RNA (siRNA) holds great therapeutic promise, its delivery to the disease site remains a paramount obstacle. In this study, we tested whether brain endothelial cell-derived exosomes could deliver siRNA across the blood-brain barrier (BBB) in zebrafish. Natural exosomes were isolated from brain endothelial bEND.3 cell culture media and vascular endothelial growth factor (VEGF) siRNA was loaded in exosomes with the assistance of a transfection reagent. While fluorescence-activated cell flow cytometry and immunocytochemistry staining studies indicated that wild-type exosomes significantly increased the uptake of fluorescence-labeled siRNA in the autologous brain endothelial cells, decreased fluorescence intensity was observed in the cells treated with the tetraspanin CD63 antibody-blocked exosome-delivered formulation (p < 0.05). In the transport study, exosomes also enhanced the permeability of rhodamine 123 in a co-cultured monolayer of brain endothelial bEND.3 cell and astrocyte. Inhibition at the expression of VEGF RNA and protein levels was observed in glioblastoma-astrocytoma U-87 MG cells treated with exosome-delivered siRNAs. Imaging results showed that exosome delivered more siRNAs across the BBB in Tg(fli1:GFP) zebrafish. In a xenotransplanted brain tumor model, exosome-delivered VEGF siRNAs decreased the fluorescence intensity of labeled cancer cells in the brain of zebrafish. Brain endothelial cell-derived exosomes could be potentially used as a natural carrier for the brain delivery of exogenous siRNA.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA
| | - Brittany Fogarty
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA
| | - Bret LaForge
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA
| | - Salma Aziz
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA
| | - Thuy Pham
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA
| | - Leanne Lai
- Department of Sociobehavioral and Administrative Pharmacy, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida, 33328, USA
| | - Shuhua Bai
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, 04401, USA.
| |
Collapse
|
93
|
Zhang Y, Liu H, Yao J, Huang Y, Qin S, Sun Z, Xu Y, Wan S, Cheng H, Li C, Zhang X, Ke Y. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death Dis 2016; 7:e2470. [PMID: 27831560 PMCID: PMC5260887 DOI: 10.1038/cddis.2016.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are life-threatening diseases that are associated with high mortality rates due to treatment limitations. Neutrophils play key roles in the pathogenesis of ALI/ARDS by promoting the inflammation and injury of the alveolar microenvironment. To date, in vivo functional approaches have been limited by the inaccessibility to the alveolar sacs, which are located at the anatomical terminal of the respiratory duct in mammals. We are the first to characterize the swim bladder of the zebrafish larva, which is similar to the mammalian lung, as a real-time in vivo model for examining pulmonary neutrophil infiltration during ALI. We observed that the delivery of exogenous materials, including lipopolysaccharide (LPS), Poly IC and silica nanoparticles, by microinjection triggered significant time- and dose-dependent neutrophil recruitment into the swim bladder. Neutrophils infiltrated the LPS-injected swim bladder through the blood capillaries around the pneumatic duct or a site near the pronephric duct. An increase in the post-LPS inflammatory cytokine mRNA levels coincided with the in vivo neutrophil aggregation in the swim bladder. Microscopic examinations of the LPS-injected swim bladders further revealed in situ injuries, including epithelial distortion, endoplasmic reticulum swelling and mitochondrial injuries. Inhibitor screening assays with this model showed a reduction in neutrophil migration into the LPS-injected swim bladder in response to Shp2 inhibition. Moreover, the pharmacological suppression and targeted disruption of Shp2 in myeloid cells alleviated pulmonary inflammation in the LPS-induced ALI mouse model. Additionally, we used this model to assess pneumonia-induced neutrophil recruitment by microinjecting bronchoalveolar lavage fluid from patients into swim bladders; this injection enhanced neutrophil aggregation relative to the control. In conclusion, our findings highlight the swim bladder as a promising and powerful model for mechanistic and drug screening studies of alveolar injuries.
Collapse
Affiliation(s)
- Yuefei Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hongcui Liu
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Junlin Yao
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanfeng Huang
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Shenlu Qin
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Zheng Sun
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yingchun Xu
- Department of Pulmonology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Shu Wan
- Department of Neurosurgery, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Hongqiang Cheng
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Chunqi Li
- Hunter Biotechnology Corporation, Hangzhou 310053, China
| | - Xue Zhang
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yuehai Ke
- Research Center of Molecular Medicine, Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
94
|
N-Cadherin is Involved in Neuronal Activity-Dependent Regulation of Myelinating Capacity of Zebrafish Individual Oligodendrocytes In Vivo. Mol Neurobiol 2016; 54:6917-6930. [PMID: 27771903 DOI: 10.1007/s12035-016-0233-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Stimulating neuronal activity increases myelin sheath formation by individual oligodendrocytes, but how myelination is regulated by neuronal activity in vivo is still not fully understood. While in vitro studies have revealed the important role of N-cadherin in myelination, our understanding in vivo remains quite limited. To obtain the role of N-cadherin during activity-dependent regulation of myelinating capacity of individual oligodendrocytes, we successfully built an in vivo dynamic imaging model of the Mauthner cell at the subcellular structure level in the zebrafish central nervous system. Enhanced green fluorescent protein (EGFP)-tagged N-cadherin was used to visualize the stable accumulations and mobile transports of N-cadherin by single-cell electroporation at the single-cell level. We found that pentylenetetrazol (PTZ) significantly enhanced the accumulation of N-cadherin in Mauthner axons, a response that was paralleled by enhanced sheath number per oligodendrocytes. By offsetting this phenotype using oligopeptide (AHAVD) which blocks the function of N-cadherin, we showed that PTZ regulates myelination in an N-cadherin-dependent manner. What is more, we further suggested that PTZ influences N-cadherin and myelination via a cAMP pathway. Consequently, our data indicated that N-cadherin is involved in neuronal activity-dependent regulation of myelinating capacity of zebrafish individual oligodendrocytes in vivo.
Collapse
|
95
|
Venero Galanternik M, Stratman AN, Jung HM, Butler MG, Weinstein BM. Building the drains: the lymphatic vasculature in health and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:689-710. [PMID: 27576003 DOI: 10.1002/wdev.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Stratman
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Min Jung
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew G Butler
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brant M Weinstein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
96
|
Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, van der Ende A, Veening JW, van de Beek D, Vandenbroucke-Grauls CMJE. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation 2016; 13:188. [PMID: 27542968 PMCID: PMC4992281 DOI: 10.1186/s12974-016-0655-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is one of the most important causes of bacterial meningitis, an infection where unfavourable outcome is driven by bacterial and host-derived toxins. In this study, we developed and characterized a pneumococcal meningitis model in zebrafish embryos that allows for real-time investigation of early host-microbe interaction. METHODS Zebrafish embryos were infected in the caudal vein or hindbrain ventricle with green fluorescent wild-type S. pneumoniae D39 or a pneumolysin-deficient mutant. The kdrl:mCherry transgenic zebrafish line was used to visualize the blood vessels, whereas phagocytic cells were visualized by staining with far red anti-L-plastin or in mpx:GFP/mpeg1:mCherry zebrafish, that have green fluorescent neutrophils and red fluorescent macrophages. Imaging was performed by fluorescence confocal and time-lapse microscopy. RESULTS After infection by caudal vein, we saw focal clogging of the pneumococci in the blood vessels and migration of bacteria through the blood-brain barrier into the subarachnoid space and brain tissue. Infection with pneumolysin-deficient S. pneumoniae in the hindbrain ventricle showed attenuated growth and migration through the brain as compared to the wild-type strain. Time-lapse and confocal imaging revealed that the initial innate immune response to S. pneumoniae in the subarachnoid space mainly consisted of neutrophils and that pneumolysin-mediated cytolytic activity caused a marked reduction of phagocytes. CONCLUSIONS This new meningitis model permits detailed analysis and visualization of host-microbe interaction in pneumococcal meningitis in real time and is a very promising tool to further our insights in the pathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - JooYeon Engelen-Lee
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
97
|
Li S, Peng Z, Dallman J, Baker J, Othman AM, Blackwelder PL, Leblanc RM. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids Surf B Biointerfaces 2016; 145:251-256. [PMID: 27187189 DOI: 10.1016/j.colsurfb.2016.05.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Drug delivery to the central nervous system (CNS) in biological systems remains a major medical challenge due to the tight junctions between endothelial cells known as the blood-brain-barrier (BBB). Here we use a zebrafish model to explore the possibility of using transferrin-conjugated carbon dots (C-Dots) to ferry compounds across the BBB. C-Dots have previously been reported to inhibit protein fibrillation, and they are also used to deliver drugs for disease treatment. In terms of the potential medical application of C-Dots for the treatment of CNS diseases, one of the most formidable challenges is how to deliver them inside the CNS. To achieve this in this study, human transferrin was covalently conjugated to C-Dots. The conjugates were then injected into the vasculature of zebrafish to examine the possibility of crossing the BBB in vivo via transferrin receptor-mediated endocytosis. The experimental observations suggest that the transferrin-C-Dots can enter the CNS while C-Dots alone cannot.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Zhili Peng
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Julia Dallman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - James Baker
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States
| | - Abdelhameed M Othman
- Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu, Saudi Arabia; Department of Environmental Biotechnology, Genetic Engineering and Biotechnology, University of Sadat City, Sadat City, Egypt
| | - Patrica L Blackwelder
- University of Miami Center for Advanced Microscopy and Marine Geosciences, 1301 Memorial Drive, University of Miami, Coral Gables, FL, 33146, United States; Nova Southeastern University Oceanographic Center, 8000 North Ocean Drive, Dania, FL, 33004, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, United States.
| |
Collapse
|
98
|
Rahbar S, Pan W, Jonz MG. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen. PLoS One 2016; 11:e0154261. [PMID: 27100625 PMCID: PMC4839714 DOI: 10.1371/journal.pone.0154261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Saman Rahbar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wen Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
99
|
DeRossi C, Vacaru A, Rafiq R, Cinaroglu A, Imrie D, Nayar S, Baryshnikova A, Milev MP, Stanga D, Kadakia D, Gao N, Chu J, Freeze HH, Lehrman MA, Sacher M, Sadler KC. trappc11 is required for protein glycosylation in zebrafish and humans. Mol Biol Cell 2016; 27:1220-34. [PMID: 26912795 PMCID: PMC4831877 DOI: 10.1091/mbc.e15-08-0557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/12/2016] [Accepted: 02/19/2016] [Indexed: 12/23/2022] Open
Abstract
Activation of the unfolded protein response (UPR) can be either adaptive or pathological. We term the pathological UPR that causes fatty liver disease a "stressed UPR." Here we investigate the mechanism of stressed UPR activation in zebrafish bearing a mutation in thetrappc11gene, which encodes a component of the transport protein particle (TRAPP) complex.trappc11mutants are characterized by secretory pathway defects, reflecting disruption of the TRAPP complex. In addition, we uncover a defect in protein glycosylation intrappc11mutants that is associated with reduced levels of lipid-linked oligosaccharides (LLOs) and compensatory up-regulation of genes in the terpenoid biosynthetic pathway that produces the LLO anchor dolichol. Treating wild-type larvae with terpenoid or LLO synthesis inhibitors phenocopies the stressed UPR seen intrappc11mutants and is synthetically lethal withtrappc11mutation. We propose that reduced LLO level causing hypoglycosylation is a mechanism of stressed UPR induction intrappc11mutants. Of importance, in human cells, depletion of TRAPPC11, but not other TRAPP components, causes protein hypoglycosylation, and lipid droplets accumulate in fibroblasts from patients with theTRAPPC11mutation. These data point to a previously unanticipated and conserved role for TRAPPC11 in LLO biosynthesis and protein glycosylation in addition to its established function in vesicle trafficking.
Collapse
Affiliation(s)
- Charles DeRossi
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ana Vacaru
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ruhina Rafiq
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ayca Cinaroglu
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dru Imrie
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shikha Nayar
- Department of Pediatrics and Mindich Institute for Child Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Daniela Stanga
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Dhara Kadakia
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ningguo Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jaime Chu
- Department of Pediatrics and Mindich Institute for Child Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Kirsten C Sadler
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
100
|
McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chem Biol 2016; 11:842-9. [PMID: 26845413 DOI: 10.1021/acschembio.5b00800] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many psychiatric drugs modulate the nervous system through multitarget mechanisms. However, systematic identification of multitarget compounds has been difficult using traditional in vitro screening assays. New approaches to phenotypic profiling in zebrafish can help researchers identify novel compounds with complex polypharmacology. For example, large-scale behavior-based chemical screens can rapidly identify large numbers of structurally diverse and phenotype-related compounds. Once these compounds have been identified, a systems-level analysis of their structures may help to identify statistically enriched target pathways. Together, systematic behavioral profiling and multitarget predictions may help researchers identify new behavior-modifying pathways and CNS therapeutics.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Leo Gendelev
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - Michael J. Keiser
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| | - David Kokel
- University of California San Francisco, Institute of Neurodegenerative
Diseases, 675 Nelson Rising
Lane, San Francisco, California 94143, United States
| |
Collapse
|