51
|
Sui X, Zhang X, Fei D, Zhang Z, Ma M. Simultaneous rapid detection of Hantaan virus and Seoul virus using RT-LAMP in rats. PeerJ 2019; 6:e6068. [PMID: 30643674 PMCID: PMC6329334 DOI: 10.7717/peerj.6068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Hemorrhagic fever with renal syndrome is in most cases caused by the Hantaan virus (HTNV) and Seoul virus (SEOV). To develop and apply reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect HTNV and SEOV simultaneously, which was faster, more cost effective, and easier to perform as the target gene amplified rapidly. In this article an assay based on LAMP is demonstrated, which only employs such apparatus as a water bath or a heat block. Methods A chromogenic method using the calcein/Mn2+ complex and real-time turbidity monitoring method were used to assess reaction progress of the reaction, and the specificity of the RT-LAMP-based assay was assessed by detecting cDNAs/cRNAs generated from Coxsackievirus A16, Influenza virus, lymphocytic choriomeningitis virus, mouse poxvirus, rotavirus, mouse hepatitis virus. In addition, 23 clinical specimens were used to determine the agreement between the RT-LAMP assay with reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence (IFT) method. Results The detection limit of RT-LAMP to HNTV and SEOV was as low as 10 copies/μL with optimized reaction conditions, which was much more sensitive than the RT-PCR method (100–1,000 copies/μL). At the same time, the detection results of 23 clinical specimens have also illustrated the agreement between this the RT-LAMP assay with RT-PCR and IFT. Discussion This RT-LAMP assay could be used to perform simultaneous and rapid detection of HTNV and SEOV to the clinical specimens.
Collapse
Affiliation(s)
- Xin Sui
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China.,The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu Zhang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China.,Microbiological Laboratory, Center for Disease Control and Prevention of Jinzhou, Jinzhou, Liaoning, China
| | - Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhen Zhang
- Microbiological Laboratory, Center for Disease Control and Prevention of Jinzhou, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
52
|
Zuo SQ, Li XJ, Wang ZQ, Jiang JF, Fang LQ, Zhang WH, Zhang JS, Zhao QM, Cao WC. Genetic Diversity and the Spatio-Temporal Analyses of Hantaviruses in Shandong Province, China. Front Microbiol 2018; 9:2771. [PMID: 30524397 PMCID: PMC6257036 DOI: 10.3389/fmicb.2018.02771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in Shandong Province, China. We conducted an epizootiologic investigation and phylogeographic and phylodynamic analyses to infer the phylogenetic relationships of hantaviruses in space and time, and gain further insights into their evolutionary dynamics in Shandong Province. Our data indicated that the Seoul virus (SEOV) is distributed throughout Shandong, whereas Hantaan virus (HTNV) co-circulates with SEOV in the eastern and southern areas of Shandong. Their distribution showed strong geographic clustering. In addition, our analyses indicated multiple evolutionary paths, long-distance transmission, and demographic expansion events for SEOV in some areas. Selection pressure analyses revealed that negative selection on hantaviruses acted as the principal evolutionary force, whereas a little evidence of positive selection exists. We found that several positively selected sites were located within major functional regions and indicated the importance of these residues for adaptive evolution of hantaviruses.
Collapse
Affiliation(s)
- Shu-Qing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiu-Jun Li
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Zhi-Qiang Wang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Hui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiu-Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiu-Min Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
53
|
Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, Zhu Y, Li Y, Zheng D, Zhang C, Su H, Zheng Y, Zhou H, Zhu G, Li H, Chmura A, Yang F, Daszak P, Wang J, Liu Q, Jin Q. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. MICROBIOME 2018; 6:178. [PMID: 30285857 PMCID: PMC6171170 DOI: 10.1186/s40168-018-0554-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/05/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rodents represent around 43% of all mammalian species, are widely distributed, and are the natural reservoirs of a diverse group of zoonotic viruses, including hantaviruses, Lassa viruses, and tick-borne encephalitis viruses. Thus, analyzing the viral diversity harbored by rodents could assist efforts to predict and reduce the risk of future emergence of zoonotic viral diseases. RESULTS We used next-generation sequencing metagenomic analysis to survey for a range of mammalian viral families in rodents and other small animals of the orders Rodentia, Lagomorpha, and Soricomorpha in China. We sampled 3,055 small animals from 20 provinces and then outlined the spectra of mammalian viruses within these individuals and the basic ecological and genetic characteristics of novel rodent and shrew viruses among the viral spectra. Further analysis revealed that host taxonomy plays a primary role and geographical location plays a secondary role in determining viral diversity. Many viruses were reported for the first time with distinct evolutionary lineages, and viruses related to known human or animal pathogens were identified. Phylogram comparison between viruses and hosts indicated that host shifts commonly happened in many different species during viral evolutionary history. CONCLUSIONS These results expand our understanding of the viromes of rodents and insectivores in China and suggest that there is high diversity of viruses awaiting discovery in these species in Asia. These findings, combined with our previous bat virome data, greatly increase our knowledge of the viral community in wildlife in a densely populated country in an emerging disease hotspot.
Collapse
Affiliation(s)
- Zhiqiang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Puer, People's Republic of China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Lilian Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yafang Zhu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yuhui Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Dandan Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Chi Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Haoxiang Su
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yuting Zheng
- Yunnan Institute of Parasitic Diseases, Puer, People's Republic of China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Puer, People's Republic of China
| | | | | | | | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | | | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| | - Qiyong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| |
Collapse
|
54
|
Sun L, Zou LX. Spatiotemporal analysis and forecasting model of hemorrhagic fever with renal syndrome in mainland China. Epidemiol Infect 2018; 146:1680-1688. [PMID: 30078384 PMCID: PMC9507955 DOI: 10.1017/s0950268818002030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/10/2018] [Accepted: 06/28/2018] [Indexed: 11/07/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses is a serious public health problem in China, accounting for 90% of HFRS cases reported globally. In this study, we applied geographical information system (GIS), spatial autocorrelation analyses and a seasonal autoregressive-integrated moving average (SARIMA) model to describe and predict HFRS epidemic with the objective of monitoring and forecasting HFRS in mainland China. Chinese HFRS data from 2004 to 2016 were obtained from National Infectious Diseases Reporting System (NIDRS) database and Chinese Centre for Disease Control and Prevention (CDC). GIS maps were produced to detect the spatial distribution of HFRS cases. The Moran's I was adopted in spatial global autocorrelation analysis to identify the integral spatiotemporal pattern of HFRS outbreaks, while the local Moran's Ii was performed to identify 'hotspot' regions of HFRS at province level. A fittest SARIMA model was developed to forecast HFRS incidence in the year 2016, which was selected by Akaike information criterion and Ljung-Box test. During 2004-2015, a total of 165 710 HFRS cases were reported with the average annual incidence at province level ranged from 0 to 13.05 per 100 000 persons. Global Moran's I analysis showed that the HFRS outbreaks presented spatially clustered distribution, with the degree of cluster gradually decreasing from 2004 to 2009, then turned out to be randomly distributed and reached lowest point in 2012. Local Moran's Ii identified that four provinces in northeast China contributed to a 'high-high' cluster as a traditional epidemic centre, and Shaanxi became another HFRS 'hotspot' region since 2011. The monthly incidence of HFRS decreased sharply from 2004 to 2009 in mainland China, then increased markedly from 2010 to 2012, and decreased again since 2013, with obvious seasonal fluctuations. The SARIMA ((0,1,3) × (1,0,1)12) model was the most fittest forecasting model for the dataset of HFRS in mainland China. The spatiotemporal distribution of HFRS in mainland China varied in recent years; together with the SARIMA forecasting model, this study provided several potential decision supportive tools for the control and risk-management plan of HFRS in China.
Collapse
Affiliation(s)
- Ling Sun
- Department of Nephrology, Xuzhou Central Hospital, Medical College of Southeast University, Xuzhou, Jiangsu, China
| | - Lu-Xi Zou
- School of Management, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
55
|
Xiang J, Hansen A, Liu Q, Tong MX, Liu X, Sun Y, Cameron S, Hanson-Easey S, Han GS, Williams C, Weinstein P, Bi P. Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005-2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1249-1256. [PMID: 29913587 DOI: 10.1016/j.scitotenv.2018.04.407] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
This study aims to investigate the associations between meteorological factors and hemorrhagic fever with renal syndrome (HFRS) in 19 cities selected from HFRS high risk areas across different climate zones in three Provinces of China. De-identified daily reports of HFRS in Anhui, Heilongjiang, and Liaoning Provinces for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Daily weather data from each study location were obtained from the China meteorological Data Sharing Service System. Generalised estimating equation models (GEE) were used to quantify the city-specific HFRS-weather associations. Multivariate random-effects meta-regression models were used to pool the city-specific HFRS-weather effect estimates. HFRS showed an overall downward trend during the study period with a slight rebound after 2010. Meteorological factors were significantly associated with HFRS incidence. HFRS was relatively more sensitive to weather variability in subtropical regions (Anhui Province) than in temperate regions (Heilongjiang and Liaoning Provinces). The size of effect estimates and the duration of lagged effects varied by locations. Pooled results of the 19 cities showed that a 1 °C increase in maximum temperature (Tmax) resulted in a 1.6% (95% CI: 1.0%-2.2%) increase in HFRS; a 1 mm increase in weekly precipitation was associated with 0.2% (95%CI: 0.1%-0.3%) increase in HFRS; a 1% increase in average relative humidity was associated with a 0.9% (95%CI: 0.5%-1.2%) increase in HFRS. The lags with the largest effects for Tmax, precipitation, and relative humidity occurred in weeks 29, 22, and 16, respectively. Lagged effects of meteorological factors did not end after an epidemic season but waned gradually in the following 3-4 epidemic seasons. Weather variability plays a significant role in HFRS transmission in China. The long duration of lagged effects indicates the necessity of continuous interventions following the epidemics.
Collapse
Affiliation(s)
- Jianjun Xiang
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Michael Xiaoliang Tong
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Yehuan Sun
- Department of Epidemiology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Scott Cameron
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Scott Hanson-Easey
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Gil-Soo Han
- Communications and Media Studies, School of Media, Film and Journalism, Monash University, Caulfield, Victoria 3145, Australia.
| | - Craig Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia.
| | - Philip Weinstein
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
56
|
Cai Y, Wei Y, Han X, Han Z, Liu S, Zhang Y, Xu Y, Qi S, Li Q. Spatiotemporal patterns of hemorrhagic fever with renal syndrome in Hebei Province, China, 2001-2016. J Med Virol 2018; 91:337-346. [PMID: 30133872 DOI: 10.1002/jmv.25293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in China, where approximately 90% of the total human cases in the world are reported. The Hebei province, one of areas with the highest prevalence, has reported HFRS cases every year in the last two decades. This study describes the spatiotemporal patterns of HFRS in the Hebei province from 2001 to 2016, detects the high-risk spatiotemporal clusters of HFRS, and provides valuable information for planning and implementation of local preventive measures. For the purpose of the analysis, HFRS cases recorded during the sixteen years in the Hebei province were aggregated into three temporal periods (2001-2006, 2007-2012, and 2013-2016). Spatiotemporal analyses, including Global spatial autocorrelation analysis and Kulldorff's scan statistical analysis, were applied to analyze te spatiotemporal clusters of HFRS at the county level. The results revealed that the spatial extent of the HFRS epidemic in the Hebei province changed dynamically from 2001 to 2016, which indicated that a comprehensive preventative strategy should be implemented in the northeastern regions of the Hebei province in spring.
Collapse
Affiliation(s)
- Yanan Cai
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Yamei Wei
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Xu Han
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Zhanying Han
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Shiyou Liu
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Yanbo Zhang
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Yonggang Xu
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Shunxiang Qi
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| | - Qi Li
- Department for Viral Disease Control and Prevention, Hebei Province Centre for Disease Prevention and Control, Shijiazhuang, Hebei, China
| |
Collapse
|
57
|
Using a distributed lag non-linear model to identify impact of temperature variables on haemorrhagic fever with renal syndrome in Shandong Province. Epidemiol Infect 2018; 146:1671-1679. [PMID: 29976265 DOI: 10.1017/s095026881800184x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Haemorrhagic fever with renal syndrome (HFRS) is transmitted to humans mainly by rodents and this transmission could be easily influenced by meteorological factors. Given the long-term changes in climate associated with global climate change, it is important to better identify the effects of meteorological factors of HFRS in epidemic areas. Shandong province is one of the most seriously suffered provinces of HFRS in China. Daily HFRS data and meteorological data from 2007 to 2012 in Shandong province were applied. Quasi-Poisson regression with the distributed lag non-linear model was used to estimate the influences of mean temperature and Diurnal temperature range (DTR) on HFRS by sex, adjusting for the effects of relative humidity, precipitation, day-of-the-week, long-term trends and seasonality. A total of 6707 HFRS cases were reported in our study. The two peaks of HFRS were from March to June and from October to December, particularly, the latter peak in 2012. The estimated effects of mean temperature and DTR on HFRS were non-linear. The immediate and strong effect of low temperature and high DTR on HFRS was found. The lowest temperature -8.86°C at lag 0 days indicated the largest related relative risk (RRs) with the reference (14.85 °C), respectively, 1.46 (95% CI 1.11-1.90) for total cases, 1.33 (95% CI 1.00-1.78) for the males and 1.76 (95% CI 1.12-2.79) for the females. Highest DTR was associated with a higher risk on HFRS, the largest RRs (95% CI) were obtained when DTR = 15.97 °C with a reference at 8.62 °C, with 1.26 (0.96-1.64) for total cases and 1.52 (0.97-2.38) for the female at lag 0 days, 1.22 (1.05-1.41) for the male at lag 5 days. Non-linear lag effects of mean temperature and DTR on HFRS were identified and there were slight differences for different sexes.
Collapse
|
58
|
Wu H, Wang X, Xue M, Wu C, Lu Q, Ding Z, Zhai Y, Lin J. Spatial-temporal characteristics and the epidemiology of haemorrhagic fever with renal syndrome from 2007 to 2016 in Zhejiang Province, China. Sci Rep 2018; 8:10244. [PMID: 29980717 PMCID: PMC6035233 DOI: 10.1038/s41598-018-28610-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
Zhejiang Province is one of the six provinces in China that has the highest incidence of haemorrhagic fever with renal syndrome (HFRS). Data on HFRS cases in Zhejiang Province from January 2007 to July 2017 were obtained from the China Information Network System of Disease Prevention and Control. Joinpoint regression analysis was used to observe the trend of the incidence rate of HFRS. The monthly incidence rate was predicted by autoregressive integrated moving average(ARIMA) models. Spatial autocorrelation analysis was performed to detect geographic clusters. A multivariate time series model was employed to analyze heterogeneous transmission of HFRS. There were a total of 4,836 HFRS cases, with 15 fatal cases reported in Zhejiang Province, China in the last decade. Results show that the mean absolute percentage error (MAPE) of the modelling performance and the forecasting performance of the ARIMA model were 27.53% and 16.29%, respectively. Male farmers and middle-aged patients account for the majority of the patient population. There were 54 high-high clusters and 1 high-low cluster identified at the county level. The random effect variance of the autoregressive component is 0.33; the spatio-temporal component is 1.30; and the endemic component is 2.45. According to the results, there was obvious spatial heterogeneity in the endemic component and spatio-temporal component but little spatial heterogeneity in the autoregressive component. A significant decreasing trend in the incidence rate was identified, and obvious clusters were discovered. Spatial heterogeneity in the factors driving HFRS transmission was discovered, which suggested that a targeted preventive effort should be considered in different districts based on their own main factors that contribute to the epidemics.
Collapse
Affiliation(s)
- Haocheng Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.,Key Laboratory for Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - XinYi Wang
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ming Xue
- Hangzhou Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chen Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Qinbao Lu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zheyuan Ding
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujia Zhai
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Junfen Lin
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China. .,Key Laboratory for Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
59
|
Fan X, Deng H, Sang J, Li N, Zhang X, Han Q, Liu Z. High Serum Procalcitonin Concentrations in Patients With Hemorrhagic Fever With Renal Syndrome Caused by Hantaan Virus. Front Cell Infect Microbiol 2018; 8:129. [PMID: 29868489 PMCID: PMC5952221 DOI: 10.3389/fcimb.2018.00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: This study analyzed the significance of procalcitonin (PCT) in patients with hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus. Methods: The demographics and clinical and laboratory data including PCT at hospital admission in 146 adults with HFRS were retrospectively analyzed. Results: PCT level was significantly higher in severe patients (n = 72) than in mild patients (n = 74, p < 0.001) and independently associated with disease severity (OR 2.544, 95% CI 1.330–4.868, p = 0.005). PCT had an area under the receiver operating characteristic curve (AUC) value of 0.738 (95% CI 0.657–0.820, p < 0.001) for predicting severity. PCT level was significantly increased in patients with bacterial infection (n = 87) compared with those without (n = 59, p = 0.037) and associated with bacterial infection (OR 1.685, 95% CI 1.026–2.768, p = 0.039). The AUC value of PCT for predicting bacterial infection was 0.618 (95% CI 0.524–0.711, p = 0.016). PCT level was significantly elevated in non-survivors (n = 13) compared with survivors (n = 133, p < 0.001) and independently associated with mortality (OR 1.075, 95% CI 1.003–1.152, p = 0.041). The AUC value of PCT for predicting mortality was 0.819 (95% CI 0.724–0.914, p < 0.001). Conclusion: PCT concentrations at admission would be predictive of disease severity, secondary bacterial infection and mortality in patients with HFRS caused by Hantaan virus.
Collapse
Affiliation(s)
- Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Deng
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
60
|
Abstract
Urbanization reduces exposure risk to many wildlife parasites and in general, improves overall health. However, our study importantly shows the complicated relationship between the diffusion of zoonotic pathogens and urbanization. Here, we reveal an unexpected relationship between hemorrhagic fever with renal syndrome incidence caused by a severe rodent-borne zoonotic pathogen worldwide and the process of urbanization in developing China. Our findings show that the number of urban immigrants is highly correlated with human incidence over time and also explain how the endemic turning points are associated with economic growth during the urbanization process. Our study shows that urbanizing regions of the developing world should focus their attention on zoonotic diseases. Urbanization and rural–urban migration are two factors driving global patterns of disease and mortality. There is significant concern about their potential impact on disease burden and the effectiveness of current control approaches. Few attempts have been made to increase our understanding of the relationship between urbanization and disease dynamics, although it is generally believed that urban living has contributed to reductions in communicable disease burden in industrialized countries. To investigate this relationship, we carried out spatiotemporal analyses using a 48-year-long dataset of hemorrhagic fever with renal syndrome incidence (HFRS; mainly caused by two serotypes of hantavirus in China: Hantaan virus and Seoul virus) and population movements in an important endemic area of south China during the period 1963–2010. Our findings indicate that epidemics coincide with urbanization, geographic expansion, and migrant movement over time. We found a biphasic inverted U-shaped relationship between HFRS incidence and urbanization, with various endemic turning points associated with economic growth rates in cities. Our results revealed the interrelatedness of urbanization, migration, and hantavirus epidemiology, potentially explaining why urbanizing cities with high economic growth exhibit extended epidemics. Our results also highlight contrasting effects of urbanization on zoonotic disease outbreaks during periods of economic development in China.
Collapse
|
61
|
Detection of Hantaviruses and Arenaviruzses in three-toed jerboas from the Inner Mongolia Autonomous Region, China. Emerg Microbes Infect 2018; 7:35. [PMID: 29559618 PMCID: PMC5861045 DOI: 10.1038/s41426-018-0036-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
|
62
|
Liang W, Gu X, Li X, Zhang K, Wu K, Pang M, Dong J, Merrill HR, Hu T, Liu K, Shao Z, Yan H. Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005-2016. Sci Rep 2018; 8:749. [PMID: 29335595 PMCID: PMC5768775 DOI: 10.1038/s41598-017-18819-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a major rodent-borne zoonosis. Each year worldwide, 60,000–100,000 HFRS human cases are reported in more than seventy countries with almost 90% these cases occurring in China. Shaanxi Province in China has been among the most seriously affected areas since 1955. During 2009–2013, Shaanxi reported 11,400 human cases, the most of all provinces in China. Furthermore, the epidemiological features of HFRS have changed over time. Using long-term data of HFRS from 2005 to 2016, we carried out this retrospective epidemiological study combining ecological assessment models in Shaanxi. We found the majority of HFRS cases were male farmers who acquired infection in Guanzhong Plain, but the geographic extent of the epidemic has slowly spread northward. The highest age-specific attack rate since 2011 was among people aged 60–74 years, and the percentage of HFRS cases among the elderly increased from 12% in 2005 to 25% in 2016. We highly recommend expanding HFRS vaccination to people older than 60 years to better protect against the disease. Multivariate analysis revealed artificial area, cropland, pig and population density, GDP, and climate conditions (relative humidity, precipitation, and wind speed) as significant risk factors in the distribution of HFRS.
Collapse
Affiliation(s)
- Weifeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, China
| | - Xu Gu
- Department of Epidemiology, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.,Department of Epidemiology and Medical Statistics, School of Public Health and Management, Weifang Medical College, Weifang, 261000, China
| | - Xue Li
- Department of Epidemiology, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Kangjun Zhang
- Department of Epidemiology, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Kejian Wu
- Department of Mathematics, School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Miaomiao Pang
- Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, 710054, China
| | - Jianhua Dong
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Hunter R Merrill
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, 32611, USA
| | - Tao Hu
- Digital Resources and Information Center, Taishan Medical University, Taian, 271016, China
| | - Kun Liu
- Department of Epidemiology, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhongjun Shao
- Department of Epidemiology, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hong Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, China.
| |
Collapse
|
63
|
Xiao H, Tong X, Huang R, Gao L, Hu S, Li Y, Gao H, Zheng P, Yang H, Huang ZYX, Tan H, Tian H. Landscape and rodent community composition are associated with risk of hemorrhagic fever with renal syndrome in two cities in China, 2006-2013. BMC Infect Dis 2018; 18:37. [PMID: 29329512 PMCID: PMC5767038 DOI: 10.1186/s12879-017-2827-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by hantaviruses. Landscape can influence the risk of hantavirus infection for humans, mainly through its effect on rodent community composition and distribution. It is important to understand how landscapes influence population dynamics for different rodent species and the subsequent effect on HFRS risk. METHODS To determine how rodent community composition influenced human hantavirus infection, we monitored rodent communities in the prefecture-level cities of Loudi and Shaoyang, China, from 2006 to 2013. Land use data were extracted from satellite images and rodent community diversity was analyzed in 45 trapping sites, in different environments. Potential contact matrices, determining how rodent community composition influence HFRS infection among different land use types, were estimated based on rodent community composition and environment type for geo-located HFRS cases. RESULTS Apodemus agrarius and Rattus norvegicus were the predominant species in Loudi and Shaoyang, respectively. The major risk of HFRS infection was concentrated in areas with cultivated land and was associated with A. agrarius, R. norvegicus, and Rattus flavipectus. In urban areas in Shaoyang, Mus musculus was related to risk of hantavirus infection. CONCLUSIONS Landscape features and rodent community dynamics may affect the risk of human hantavirus infection. Results of this study may be useful for the development of HFRS prevention initiatives that are customized for regions with different geographical environments.
Collapse
Affiliation(s)
- Hong Xiao
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China. .,Key Laboratory of Geospatial Big Data Mining and Application, Changsha, Hunan Province, 410081, China.
| | - Xin Tong
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Geospatial Big Data Mining and Application, Changsha, Hunan Province, 410081, China
| | - Ru Huang
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Geospatial Big Data Mining and Application, Changsha, Hunan Province, 410081, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Yapin Li
- Center for Disease Control and Prevention of Beijing Military Region, Beijing, 100042, China
| | - Hongwei Gao
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Pai Zheng
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, 100191, China
| | - Huisuo Yang
- Center for Disease Control and Prevention of Beijing Military Region, Beijing, 100042, China
| | - Zheng Y X Huang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hua Tan
- School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
64
|
Jiang F, Wang L, Wang S, Zhu L, Dong L, Zhang Z, Hao B, Yang F, Liu W, Deng Y, Zhang Y, Ma Y, Pan B, Han Y, Ren H, Cao G. Meteorological factors affect the epidemiology of hemorrhagic fever with renal syndrome via altering the breeding and hantavirus-carrying states of rodents and mites: a 9 years' longitudinal study. Emerg Microbes Infect 2017; 6:e104. [PMID: 29184158 PMCID: PMC5717093 DOI: 10.1038/emi.2017.92] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Abstract
The incidence of hemorrhagic fever with renal syndrome (HFRS) in Qingdao, China was three times higher than that of the average national level. Here we characterized the epidemiology, ecological determinants and pathogen evolution of HFRS in Qingdao during 2007–2015. In this longitudinal study, a total of 1846 HFRS patients and 41 HFRS-related deaths were reported. HFRS in Qingdao peaked once a year in the fourth quarter. We built a time series generalized additive model, and found that meteorological factors in the previous quarter could accurately predict HFRS occurrence. To explore how meteorological factors influenced the epidemic of HFRS, we analyzed the relationship between meteorological factors and hantavirus-carrying states of the hosts (including rodents and shrews). Comprehensive analysis showed humidity was correlated to high host densities in the third quarter and high hantavirus-carrying rates of animal hosts in the third to fourth quarters, which might contribute to HFRS peak in the fourth quarter. We further compared the L segments of hantaviruses from HFRS patients, animal hosts and ectoparasites. Phylogenetic analysis showed that hantaviruses in gamasid and trombiculid mites were the same as those from the hosts. This indicated mites also contributed to the transmission of hantavirus. Furthermore, Hantaan virus from HFRS patients, hosts and mites in Qingdao formed a distinct phylogenetic cluster. A new clade of Seoul virus was also identified in the hosts. Overall, meteorological factors increase HFRS incidence possibly via facilitating hosts’ reproduction and consequent mite-mediated hantavirus transmission. New hantavirus subtypes evolved in Qingdao represent new challenges of fighting against HFRS.
Collapse
Affiliation(s)
- Fachun Jiang
- Department of Acute Infectious Diseases, Municipal Center of Disease Control and Prevention of Qingdao, Qingdao, China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Lin Zhu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Liyan Dong
- Department of Acute Infectious Diseases, Municipal Center of Disease Control and Prevention of Qingdao, Qingdao, China
| | - Zhentang Zhang
- Centre of Disease Control and Prevention of Huangdao District, Qingdao, China
| | - Bi Hao
- Department of Acute Infectious Diseases, Municipal Center of Disease Control and Prevention of Qingdao, Qingdao, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yun Zhang
- Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Yajun Ma
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Bei Pan
- Department of Acute Infectious Diseases, Municipal Center of Disease Control and Prevention of Qingdao, Qingdao, China
| | - Yalin Han
- Department of Acute Infectious Diseases, Municipal Center of Disease Control and Prevention of Qingdao, Qingdao, China
| | - Hongyan Ren
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
65
|
Sankar S, Ramamurthy M, Nandagopal B, Sridharan G. Short peptide epitope design from hantaviruses causing HFRS. Bioinformation 2017; 13:231-236. [PMID: 28943728 PMCID: PMC5602290 DOI: 10.6026/97320630013231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Several genotypes of the hantavirus cause hemorrhagic fever with renal syndrome (HFRS) and is an important public health problem
worldwide. There is now growing interest to develop subunit vaccines especially focused to elicit cytotoxic T lymphocyte responses
which are important against viral infection. We identified candidate T-cell epitopes that bind to Class I HLA supertypes towards
identifying potential subunit vaccine entity. These epitopes are conserved in all 5 hantavirus genotypes of HFRS (Hantaan, Dobrava-
Belgrade, Seoul, Gou virus and Amur). The epitopes identified from S and M segment genomes were analyzed for human proteasome
cleavage, transporter associated antigen processing (TAP) efficiency and antigenicity using bioinformatic approaches. The epitope
MRNTIMASK which had the two characteristics of high proteasomal cleavage score and TAP score, also had high antigenicity score.
Our results indicate that this epitope from the nucleocapsid protein may be considered the most favorable moiety for the development
of subunit peptide vaccine.
Collapse
Affiliation(s)
- Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore 632 055, Tamil Nadu, India
| | - Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore 632 055, Tamil Nadu, India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore 632 055, Tamil Nadu, India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore 632 055, Tamil Nadu, India
| |
Collapse
|
66
|
Liu DY, Liu J, Liu BY, Liu YY, Xiong HR, Hou W, Yang ZQ. Phylogenetic analysis based on mitochondrial DNA sequences of wild rats, and the relationship with Seoul virus infection in Hubei, China. Virol Sin 2017; 32:235-244. [PMID: 28669005 PMCID: PMC6598924 DOI: 10.1007/s12250-016-3940-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Seoul virus (SEOV), which is predominantly carried by Rattus norvegicus, is one of the major causes of hemorrhagic fever with renal syndrome (HFRS) in China. Hubei province, located in the central south of China, has experienced some of the most severe epidemics of HFRS. To investigate the mitochondrial DNA (mtDNA)-based phylogenetics of wild rats in Hubei, and the relationship with SEOV infection, 664 wild rats were captured from five trapping sites in Hubei from 2000-2009 and 2014-2015. Using reverse-transcription (RT)-PCR, 41 (6.17%) rats were found to be positive for SEOV infection. The SEOV-positive percentage in Yichang was significantly lower than that in other areas. The mtDNA D-loop and cytochrome b (cyt-b) genes of 103 rats were sequenced. Among these animals, 37 were SEOV-positive. The reconstruction of the phylogenetic relationship (based on the complete D-loop and cyt-b sequences) allowed the rats to be categorized into two lineages, R. norvegicus and Rattus nitidus, with the former including the majority of the rats. For both the D-loop and cyt-b genes, 18 haplotypes were identified. The geographic distributions of the different haplotypes were significantly different. There were no significant differences in the SEOVpositive percentages between different haplotypes. There were three sub-lineages for the D-loop, and two for cyt-b. The SEOV-positive percentages for each of the sub-lineages did not significantly differ. This indicates that the SEOV-positive percentage is not related to the mtDNA D-loop or cyt-b haplotype or the sub-lineage of rats from Hubei.
Collapse
Affiliation(s)
- Dong-Ying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Bing-Yu Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
67
|
Sun XF, Zhao L, Zhang ZT, Liu MM, Xue ZF, Wen HL, Ma DQ, Huang YT, Sun Y, Zhou CM, Luo LM, Liu JW, Li WQ, Yu H, Yu XJ. Detection of Imjin Virus and Seoul Virus in Crocidurine Shrews in Shandong Province, China. Vector Borne Zoonotic Dis 2017; 17:425-431. [PMID: 28287930 DOI: 10.1089/vbz.2016.2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Recently, hantaviruses have been discovered in insectivores in Europe, Asia, Africa, and North America. Imjin virus (MJNV) was first isolated from the lung tissues of Ussuri white-toothed shrew (Crocidura lasiura) from South Korea in 2009. We aim to detect the species and prevalence of insectivore- and rodent-borne hantaviruses in shrews and rodents. MATERIALS AND METHODS Shrews and rodents were captured in Jiaonan County of Shandong Province, China, in 2014. RT-PCR was used to amplify viral RNA of Hantavirus species, including insectivore-borne Imjin virus (MJNV), rodent-borne Hantaan virus (HTNV), and Seoul virus (SEOV) from shrews and rodents. RESULTS AND DISCUSSION We found that MJNV infected 10.7% (19/178) of Crocidura shrews, but it infected none of rodents (0/475); we also found that 2 of 178 (1.1%) Crocidura shrews were PCR positive to SEOV. This study indicated that the major animal hosts of Imjin virus are shrews, and rodent-borne SEOV can infect shrews.
Collapse
Affiliation(s)
- Xi-Feng Sun
- 1 School of Public Health, Shandong University , Jinan, China
| | - Li Zhao
- 1 School of Public Health, Shandong University , Jinan, China
| | - Zhen-Tang Zhang
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Miao-Miao Liu
- 1 School of Public Health, Shandong University , Jinan, China
| | - Zai-Feng Xue
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Hong-Ling Wen
- 1 School of Public Health, Shandong University , Jinan, China
| | - Dong-Qiang Ma
- 2 Huangdao District Center for Disease Control and Prevention , Qingdao City, China
| | - Yu-Ting Huang
- 1 School of Public Health, Shandong University , Jinan, China
| | - Yue Sun
- 1 School of Public Health, Shandong University , Jinan, China
| | - Chuan-Min Zhou
- 1 School of Public Health, Shandong University , Jinan, China
| | - Li-Mei Luo
- 1 School of Public Health, Shandong University , Jinan, China
| | - Jian-Wei Liu
- 1 School of Public Health, Shandong University , Jinan, China
| | - Wen-Qian Li
- 1 School of Public Health, Shandong University , Jinan, China
| | - Hao Yu
- 3 School of Medicine, Fudan University , Shanghai, China
| | - Xue-Jie Yu
- 1 School of Public Health, Shandong University , Jinan, China .,4 School of Health Sciences, Wuhan University , Wuhan, China .,5 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
68
|
Hantavirus infection: a global zoonotic challenge. Virol Sin 2017; 32:32-43. [PMID: 28120221 DOI: 10.1007/s12250-016-3899-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.
Collapse
|
69
|
Nyanga PL, Onyuka J, Webale MK, Were T, Budambula V. Escherichia coli pathotypes and Shigella sero-groups in diarrheic children in Nairobi city, Kenya. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:220-228. [PMID: 29118939 PMCID: PMC5660273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM In the present study, we investigated the prevalence of E. coli pathotypes and Shigella sero-groups and their antimicrobial profiles among diarrheic children in Nairobi city, Kenya. BACKGROUND Although diarrheagenic E. coli pathotypes and Shigella sero-groups are leading causes of diarrhea in children under five years in developing countries, their distribution and antimicrobial resistance vary from place to place and over time in a given region. METHODS In a cross-sectional study, we enrolled diarrheic children (n=354) under five years seeking treatment at Mbagathi Hospital, Nairobi city, Kenya,. Stool samples were collected from all children for bacterial culture. Bacterial isolation and identification was performed by conventional microbiological methods. Polymerase chain amplification was used to detect aspU, aggR, andpcvd432 for EAEC, est and elt for ETEC, eae for EPEC, stx for EHEC, and ipaH for EIEC and Shigella species. Antimicrobial profile was determined by disk diffusion method. RESULTS The prevalence of EAEC, ETEC, EPEC (eae), EIEC (ipaH) was 21.2%, 10.5%, 4.5%, and 0.6%, respectively, while that of mixed infection was 0.6%for ETEC/EAEC and 0.3%for EAEC/EPEC/ETEC. No EHEC strain was isolated. Pathogenetic analysis for EAEC showed that5.9% carried aspU,8.2% possessed both aspU and aggR and 7.1% had a combination of aspU, aggR andpcvd432 while that of ETEC was 2.3% for elt, 6.5% for both elt and est and 1.7% for est. The combination of aspU with aggR, elt and est, and pcvd432 with aggR, aspU and est was 0.3% for each case of ETEC/EAEC mixed infection. The aspU gene co-existed with aggR, pcvd432, eae and elt in the EAEC/EPEC/ETEC mixed infection. The prevalence of S. boydii, S. dysenteriae, S. flexneriand,S. sonnei was 0.8%, 0.6%, 1.7%, and 0.8%, respectively. No E. coli pathotype and shigella co-infection was detected. In addition, both E. coli pathotypes and Shigella species were resistant to ampicillin, trimethoprim/sulfamethoxazole, streptomycin, chloramphenicol and tetracycline while gentamycin and kanamycin resistance occurred in diarrheagenic E. coli. CONCLUSION E. coli pathotypes and Shigella sero-groups harboring virulent genes are important causes of diarrhea in children in Kenya. The increasing spectrum of antibiotic resistance in diarrheagenic E. coli and Shigella species necessitates the development of antimicrobial stewardship education-programs to influence prescribing behavior as well as optimizing the use of effective antimicrobials in Kenya.
Collapse
Affiliation(s)
- Peter Lokamar Nyanga
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya.,Department of Medical Laboratory Sciences, Mount Kenya University, Thika, Kenya.
| | - Jackson Onyuka
- School of Health Sciences, Kirinyaga University, Kirinyaga, Kenya.
| | - Mark Kilongosi Webale
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Tom Were
- Department of Environmental Health Sciences, Technical University of Mombasa, Mombasa, Kenya.
| | - Valentine Budambula
- Department of Medical Laboratory Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
70
|
Ge L, Zhao Y, Zhou K, Mu X, Yu H, Wang Y, Wang N, Fan H, Guo L, Huo X. Spatio-Temporal Pattern and Influencing Factors of Hemorrhagic Fever with Renal Syndrome (HFRS) in Hubei Province (China) between 2005 and 2014. PLoS One 2016; 11:e0167836. [PMID: 28030550 PMCID: PMC5193338 DOI: 10.1371/journal.pone.0167836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
Hemorrhagic Fever with Renal Syndrome (HFRS) is considered as a globally distributed infectious disease, which results in many deaths annually in Hubei Province, China. The outbreak of HFRS is usually characterized with spatio-temporal heterogeneity and is seasonally distributed. Further, it might also be impacted by the influencing factors such as socio-economic and geographical environment. To better understand and predict the outbreak of HFRS in the Hubei Province, the spatio-temporal pattern and influencing factors were investigated in this study. Moran's I Index value was adopted in spatial global autocorrelation analysis to identify the overall spatio-temporal pattern of HFRS outbreak. Kulldorff scan statistical analysis was performed to further identify the changing trends of the clustering patterns of HFRS outbreak. Spearman's rank correlation analysis was used to explore the possible influencing factors on HFRS epidemics such as climate and geographic. The results demonstrated that HFRS outbreak in Hubei Province decreased from 2005 to 2012 in general while increasing slightly from 2012 to 2014. The spatial and temporal scan statistical analysis indicated that HFRS epidemic was temporally clustered in summer and autumn from 2005 to 2014 except 2008 and 2011. The seasonal epidemic pattern of HFRS in Hubei Province was characterized by a bimodal pattern (March to May and September to November) while peaks often occurring in the spring time. SEOV-type HFRS was presumed to influence more on the total number of HFRS incidence than HTNV-type HFRS do. The average humidity and human population density were the main influencing factors during these years. HFRS outbreaks were more in plains than in other areas of Hubei Province. We did not find that whether the terrain of the wetland (water system) plays a significant role in the outbreak of HFRS incidence. With a better understanding of rodent infection rate, socio-economic status and ecological environment characteristics, this study may help to reduce the outbreak of HFRS disease.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan city, Hubei Province, PR China
- Tianjin Institute of Surveying and Mapping, Tianjin city, PR China
- * E-mail:
| | - Youlin Zhao
- Business School of Hohai University, Nanjing city, Jiangsu Province, PR China
| | - Kui Zhou
- Tianjin Institute of Surveying and Mapping, Tianjin city, PR China
| | - Xiangming Mu
- School of Information Studies in University of Wisconsin-Milwaukee 2025 E Newpot Ave #NWQB, Milwaukee, WI, United States of America
| | - Haibo Yu
- Tianjin Institute of Surveying and Mapping, Tianjin city, PR China
| | - Yongfeng Wang
- Tianjin Institute of Surveying and Mapping, Tianjin city, PR China
| | - Ning Wang
- First Crust Deformation Monitoring and Application Center, China Earthquake administration, Tianjin city, PR China
| | - Hong Fan
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan city, Hubei Province, PR China
| | - Liqiang Guo
- Tianjin Institute of Surveying and Mapping, Tianjin city, PR China
| | - XiXiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| |
Collapse
|
71
|
Li Z, Zeng H, Wang Y, Zhang Y, Cheng L, Zhang F, Lei Y, Jin B, Ma Y, Chen L. The assessment of Hantaan virus-specific antibody responses after the immunization program for hemorrhagic fever with renal syndrome in northwest China. Hum Vaccin Immunother 2016; 13:802-807. [PMID: 27824286 DOI: 10.1080/21645515.2016.1253645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Xianyang city is one of the main hemorrhagic fever with renal syndrome (HFRS) epidemic areas in northwest China. Although the HFRS immunity program has been provided in this city, HFRS is still occurred every year. In order to implement the vaccination program effectively and to control HFRS, the analysis of antibody responses specific to Hantaan virus (HTNV) in individuals after vaccination is essential. In this study, a total of 100 subjects were divided into 5 groups: unvaccinated, 1, 3, 29 and 33 months after boost vaccination. The levels and the positive rates of HTNV-NP-specific IgM and IgG antibodies as well as HTNV neutralizing antibodies were significantly increased in the serum of the vaccinated individuals. The positive rates and levels of HTNV-NP-specific IgG and HTNV neutralizing antibody reached their highest values at 3 months respectively and could be sustained up to 33 months after vaccination. Moreover, the titres of HTNV-NP-specific IgM or IgG antibody and the titres of HTNV neutralizing antibody at 1 month after vaccination have a positive correlation. The level of HTNV-NP-specific IgG antibody was much higher than that of HTNV-NP-specific IgM antibody or HTNV neutralizing antibody. In addition, the strongest responses of antibody-secreting cells were observed at 3 months after vaccination, which was consistent with the serum results. Therefore, the HFRS immunization program is effective to induce humoral immunity in the population of northwest China.
Collapse
Affiliation(s)
- Zhuo Li
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China.,b Department of medical laboratory technology , Xi'an Health School , Xi'an , Shaanxi , China
| | - Hanyu Zeng
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Ying Wang
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Yusi Zhang
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Linfeng Cheng
- c Department of Microbiology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Fanglin Zhang
- c Department of Microbiology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Yingfeng Lei
- c Department of Microbiology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Boquan Jin
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Ying Ma
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Lihua Chen
- a Department of Immunology , the Fourth Military Medical University , Xi'an , Shaanxi , China
| |
Collapse
|
72
|
Ge L, Zhao Y, Sheng Z, Wang N, Zhou K, Mu X, Guo L, Wang T, Yang Z, Huo X. Construction of a Seasonal Difference-Geographically and Temporally Weighted Regression (SD-GTWR) Model and Comparative Analysis with GWR-Based Models for Hemorrhagic Fever with Renal Syndrome (HFRS) in Hubei Province (China). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1062. [PMID: 27801870 PMCID: PMC5129272 DOI: 10.3390/ijerph13111062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is considered a globally distributed infectious disease which results in many deaths annually in Hubei Province, China. In order to conduct a better analysis and accurately predict HFRS incidence in Hubei Province, a new model named Seasonal Difference-Geographically and Temporally Weighted Regression (SD-GTWR) was constructed. The SD-GTWR model, which integrates the analysis and relationship of seasonal difference, spatial and temporal characteristics of HFRS (HFRS was characterized by spatiotemporal heterogeneity and it is seasonally distributed), was designed to illustrate the latent relationships between the spatio-temporal pattern of the HFRS epidemic and its influencing factors. Experiments from the study demonstrated that SD-GTWR model is superior to traditional models such as GWR- based models in terms of the efficiency and the ability of providing influencing factor analysis.
Collapse
Affiliation(s)
- Liang Ge
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Youlin Zhao
- Business School of Hohai University, Nanjing 211100, China.
| | - Zhongjie Sheng
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Ning Wang
- First Crust Deformation Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China.
| | - Kui Zhou
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Xiangming Mu
- School of Information Studies of University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Liqiang Guo
- Tianjin Institute of Surveying and Mapping, Tianjin 300381, China.
| | - Teng Wang
- Business School of Hohai University, Nanjing 211100, China.
| | - Zhanqiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430079, China.
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| |
Collapse
|
73
|
Jiang F, Zhang Z, Dong L, Hao B, Xue Z, Ma D, Su H, Wen HL, Yu H, Yu XJ. Prevalence of hemorrhagic fever with renal syndrome in Qingdao City, China, 2010-2014. Sci Rep 2016; 6:36081. [PMID: 27786303 PMCID: PMC5081555 DOI: 10.1038/srep36081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) was considered to be transmitted by Apodemus agrarius and Rattus norvegicus, the principal animal hosts of Hantaan virus and Seoul virus, respectively. The aim of this study is to determine the correlation of HFRS incidence with capture rate and hantavirus infection rate of rodent species in Qingdao City, China. We collected HFRS patients' information and captured field and residential rodents in Qingdao City, China from 2010 to 2014. The correlations of HFRS incidence to rodent capture rate and hantavirus infection rate of rodents were analyzed statistically. The main findings of this study are that the high HFRS incidence (19.3/100,000) is correlated to the capture rate of field Mus musculus (p = 0.011, r = 0.037); but surprisingly it did not correlated to the capture rate of the principal rodent hosts Apodemus agrarius and Rattus norvegicus and the hantavirus infection rate of these rodent species in the field or residential area. These novel findings suggest that Mus musculus, a nontraditional animal host of hantavirus may play an important role in hantavirus transmission in Qingdao City.
Collapse
Affiliation(s)
- Fachun Jiang
- Qingdao City Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266033, China
| | - Zhentang Zhang
- Huangdao District Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266400, China
| | - Liyan Dong
- Qingdao City Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266033, China
| | - Bi Hao
- Qingdao City Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266033, China
| | - Zaifeng Xue
- Huangdao District Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266400, China
| | - Dongqiang Ma
- Huangdao District Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266400, China
| | - Hang Su
- Qingdao City Center for Disease Control and Prevention, Qingdao City, Shandong Province, 266033, China
| | - Hong-ling Wen
- School of Public Health, Shandong University, Jinan, Shandong Province, 250012, China
| | - Hao Yu
- School of Medicine, Fudan University, Shanghai, 200433, China
| | - Xue-jie Yu
- School of Public Health, Shandong University, Jinan, Shandong Province, 250012, China
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0609, USA
| |
Collapse
|
74
|
Wang L, Wang T, Cui F, Zhai SY, Zhang L, Yang SX, Wang ZQ, Yu XJ. Hemorrhagic Fever with Renal Syndrome, Zibo City, China, 2006-2014. Emerg Infect Dis 2016; 22:274-6. [PMID: 26812444 DOI: 10.3201eid/2202.151516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analysis of hemorrhagic fever with renal syndrome cases in Zibo City, China, during 2006-2014 showed that it occurred year-round. Peaks in spring and fall/winter were caused by Hantaan and Seoul viruses, respectively. Rodent hosts were the striped field mouse for Hantaan virus and the brown rat and house mouse for Seoul virus.
Collapse
|
75
|
Li S, Cao W, Ren H, Lu L, Zhuang D, Liu Q. Time Series Analysis of Hemorrhagic Fever with Renal Syndrome: A Case Study in Jiaonan County, China. PLoS One 2016; 11:e0163771. [PMID: 27706256 PMCID: PMC5051726 DOI: 10.1371/journal.pone.0163771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022] Open
Abstract
Exact prediction of Hemorrhagic fever with renal syndrome (HFRS) epidemics must improve to establish effective preventive measures in China. A Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied to establish a highly predictive model of HFRS. Meteorological factors were considered external variables through a cross correlation analysis. Then, these factors were included in the SARIMA model to determine if they could improve the predictive ability of HFRS epidemics in the region. The optimal univariate SARIMA model was identified as (0,0,2)(1,1,1)12. The R2 of the prediction of HFRS cases from January 2014 to December 2014 was 0.857, and the Root mean square error (RMSE) was 2.708. However, the inclusion of meteorological variables as external regressors did not significantly improve the SARIMA model. This result is likely because seasonal variations in meteorological variables were included in the seasonal characteristics of the HFRS itself.
Collapse
Affiliation(s)
- Shujuan Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Wei Cao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing, 100101, China
- * E-mail:
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, 5 Changbai Road, Changping, Beijing, 102206, China
| | - Dafang Zhuang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qiyong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, 5 Changbai Road, Changping, Beijing, 102206, China
| |
Collapse
|
76
|
Jiang H, Du H, Wang LM, Wang PZ, Bai XF. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front Cell Infect Microbiol 2016; 6:1. [PMID: 26870699 PMCID: PMC4737898 DOI: 10.3389/fcimb.2016.00001] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS), which is a zoonosis endemic in eastern Asia, especially in China. The reservoir host of HTNV is field mouse (Apodemus agraricus). The main manifestation of HFRS, including acute kidney injury, increases vascular permeability, and coagulation abnormalities. In this paper, we review the current knowledge of the pathogenesis of HFRS including virus factor, immunity factor and host genetic factors. Furthermore, the treatment and prevention will be discussed.
Collapse
Affiliation(s)
- Hong Jiang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Hong Du
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Li M Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University Xi'an, China
| | - Ping Z Wang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Xue F Bai
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
77
|
Liu X, Zhang T, Xie C, Xie Y. Changes of HFRS Incidence Caused by Vaccine Intervention in Yichun City, China, 2005-2013. Med Sci Monit 2016; 22:295-301. [PMID: 26818778 PMCID: PMC4737060 DOI: 10.12659/msm.895886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Since 2009, the Hemorrhagic Fever with Renal Syndrome (HFRS) Targeted Expanded Program on Immunization (EPI) has been carried out in the 16-60 age population in Yichun City of Jiangxi Province. However, the annual reported incidences of HFRS in Yichun City Increased significantly from 2009 to 2013. MATERIAL/METHODS The information on HFRS reported cases were obtained from the China Information System for Disease Control and Prevention (CISDCP), and demographic data was collected from the Basic Information System. Hantavirus-specific antigen and antibody of rodent specimens were tested by enzyme-linked immunosorbent assay (ELISA) or immune fluorescent assay. RESULTS The annual HFRS incidences among all age subgroups presented growth tendencies in non-EPI targeted regions and EPI targeted regions, except for the EPI target population. The annual incidences of EPI target population were stable at around 10 per 100,000 population from 2008 to 2013. HFRS annual incidence was significantly related to rat virus index among all age subgroups in non-EPI targeted regions and >60 age subgroup in EPI targeted regions. CONCLUSIONS HFRS vaccine implement has had a notable effect in HFRS prevention and control.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Institution of Communicable Disease Control and Prevention, Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China (mainland)
| | - Tianchen Zhang
- Institution Of Communicable Disease Control And Prevention, Jiangxi Province Center For Disease Control And Prevention, Nanchang, Jiangxi, China (mainland)
| | - Chunyan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yun Xie
- Institution Of Communicable Disease Control And Prevention, Jiangxi Province Center For Disease Control And Prevention, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
78
|
Wang L, Wang T, Cui F, Zhai SY, Zhang L, Yang SX, Wang ZQ, Yu XJ. Hemorrhagic Fever with Renal Syndrome, Zibo City, China, 2006-2014. Emerg Infect Dis 2016. [PMID: 26812444 PMCID: PMC4734509 DOI: 10.3201/eid2202.151516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Analysis of hemorrhagic fever with renal syndrome cases in Zibo City, China, during 2006-2014 showed that it occurred year-round. Peaks in spring and fall/winter were caused by Hantaan and Seoul viruses, respectively. Rodent hosts were the striped field mouse for Hantaan virus and the brown rat and house mouse for Seoul virus.
Collapse
|
79
|
Complete Genome Sequence of a Novel Mutation of Seoul Virus Isolated from Suncus murinus in the Fujian Province of China. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00075-15. [PMID: 25838472 PMCID: PMC4384476 DOI: 10.1128/genomea.00075-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Suncus murinus has been identified as the host for Seoul virus (SEOV). Here, we report the complete genome sequence of SEOV strain Fj372/2013, which was isolated from the lung tissue of Suncus murinus in the Fujian Province of China. A mutation A38C was observed in an open reading fragment of the middle segment.
Collapse
|
80
|
Li S, Ren H, Hu W, Lu L, Xu X, Zhuang D, Liu Q. Spatiotemporal heterogeneity analysis of hemorrhagic fever with renal syndrome in China using geographically weighted regression models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:12129-47. [PMID: 25429681 PMCID: PMC4276605 DOI: 10.3390/ijerph111212129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in China. The identification of the spatiotemporal pattern of HFRS will provide a foundation for the effective control of the disease. Based on the incidence of HFRS, as well as environmental factors, and social-economic factors of China from 2005–2012, this paper identified the spatiotemporal characteristics of HFRS distribution and the factors that impact this distribution. The results indicate that the spatial distribution of HFRS had a significant, positive spatial correlation. The spatiotemporal heterogeneity was affected by the temperature, precipitation, humidity, NDVI of January, NDVI of August for the previous year, land use, and elevation in 2005–2009. However, these factors did not explain the spatiotemporal heterogeneity of HFRS incidences in 2010–2012. Spatiotemporal heterogeneity of provincial HFRS incidences and its relation to environmental factors would provide valuable information for hygiene authorities to design and implement effective measures for the prevention and control of HFRS in China.
Collapse
Affiliation(s)
- Shujuan Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China.
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China.
| | - Wensheng Hu
- Center for Health Statistics and Information, National Health and Family Planning Commission, No.38 Beilishi Road, Xicheng District, Beijing 100044, China.
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, 5 Changbai Road, Changping, Beijing 102206, China.
| | - Xinliang Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China.
| | - Dafang Zhuang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China.
| | - Qiyong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, 5 Changbai Road, Changping, Beijing 102206, China.
| |
Collapse
|