51
|
Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int J Artif Organs 2020; 44:269-281. [PMID: 32945220 DOI: 10.1177/0391398820953866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage repair remains a great clinical challenge. Tissue engineering approaches based on decellularized extracellular matrix (dECM) scaffolds show promise for facilitating articular cartilage repair. Traditional regenerative approaches currently used in clinical practice, such as microfracture, mosaicplasty, and autologous chondrocyte implantation, can improve cartilage repair and show therapeutic effect to some degree; however, the long-term curative effect is suboptimal. As dECM prepared by proper decellularization procedures is a biodegradable material, which provides space for regeneration tissue growth, possesses low immunogenicity, and retains most of its bioactive molecules that maintain tissue homeostasis and facilitate tissue repair, dECM scaffolds may provide a biomimetic microenvironment promoting cell attachment, proliferation, and chondrogenic differentiation. Currently, cell-derived dECM scaffolds have become a research hotspot in the field of cartilage tissue engineering, as ECM derived from cells cultured in vitro has many advantages compared with native cartilage ECM. This review describes cell types used to secrete ECM, methods of inducing cells to secrete cartilage-like ECM and decellularization methods to prepare cell-derived dECM. The potential mechanism of dECM scaffolds on cartilage repair, methods for improving the mechanical strength of cell-derived dECM scaffolds, and future perspectives on cell-derived dECM scaffolds are also discussed in this review.
Collapse
Affiliation(s)
- Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunfeng Song
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiying Pang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochen Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
52
|
3D High-Frequency Ultrasound Imaging of Cartilage-Bone Interface Compared with Micro-CT. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6906148. [PMID: 32596353 PMCID: PMC7285412 DOI: 10.1155/2020/6906148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
Cartilage-bone interface (CBI) is a complex structure which bears important information in pathophysiology of osteoarthritis (OA). While high-frequency ultrasound (US) has been widely used for the investigation of articular cartilage, 3D imaging of CBI using US is less commonly reported in this field. Here, we adopted a 3D high-frequency ultrasound imaging approach specifically for the investigation of CBI in human knee samples. Fifteen osteochondral disks from the tibial plateau of seven OA patients were prepared in vitro and scanned using both high-frequency US and micro-CT imaging. The 3D morphology of the tidemark was reconstructed and compared using an image registration approach between the two imaging modalities. Results showed that the 3D tidemark could be well registered between the two imaging methods with a mean surface discrepancy of 33.2 ± 9.9 μm. Quantitative surface waviness/roughness parameter analysis showed significant correlations between the two imaging modalities. An intensity projected en face imaging was proposed to probe characteristic details of the CBI such as its perforations. This study provided evidence for the 3D high-frequency ultrasound as a nonionizing radiation imaging tool potentially useful to evaluate the change of CBI in basic research of join diseases including OA.
Collapse
|
53
|
Mukherjee S, Nazemi M, Jonkers I, Geris L. Use of Computational Modeling to Study Joint Degeneration: A Review. Front Bioeng Biotechnol 2020; 8:93. [PMID: 32185167 PMCID: PMC7058554 DOI: 10.3389/fbioe.2020.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the joints, which cannot be prevented effectively. Computational modeling of joint degradation allows to estimate the patient-specific progression of OA, which can aid clinicians to estimate the most suitable time window for surgical intervention in osteoarthritic patients. This paper gives an overview of the different approaches used to model different aspects of joint degeneration, thereby focusing mostly on the knee joint. The paper starts by discussing how OA affects the different components of the joint and how these are accounted for in the models. Subsequently, it discusses the different modeling approaches that can be used to answer questions related to OA etiology, progression and treatment. These models are ordered based on their underlying assumptions and technologies: musculoskeletal models, Finite Element models, (gene) regulatory models, multiscale models and data-driven models (artificial intelligence/machine learning). Finally, it is concluded that in the future, efforts should be made to integrate the different modeling techniques into a more robust computational framework that should not only be efficient to predict OA progression but also easily allow a patient’s individualized risk assessment as screening tool for use in clinical practice.
Collapse
Affiliation(s)
- Satanik Mukherjee
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Majid Nazemi
- GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
54
|
Eveque-Mourroux MR, Rocha B, Barré FPY, Heeren RMA, Cillero-Pastor B. Spatially resolved proteomics in osteoarthritis: State of the art and new perspectives. J Proteomics 2020; 215:103637. [PMID: 31926309 DOI: 10.1016/j.jprot.2020.103637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/07/2019] [Accepted: 01/05/2020] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is one of the most common diseases worldwide caused by chronic degeneration of the joints. Its high prevalence and the involvement of several tissues define OA as a highly heterogeneous disease. New biological markers to evaluate the progression of the pathology and improve its prognosis are needed. Among all the different -omic strategies applied to OA, solution phase bottom-up proteomics has made an extensive contribution to the field of biomarker research. However, new technologies for protein analysis should be considered for a better understanding of the disease. This review focuses on complementary proteomic methodologies and new technologies for translational research of OA and other rheumatic pathologies, especially mass spectrometry imaging and protein imaging methods not applied by the OA community yet.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - B Rocha
- Proteomics Group-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR), INIBIC - Hospital Universitario de A Coruña, A Coruña, Spain
| | - F P Y Barré
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - R M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands
| | - B Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, the Netherlands.
| |
Collapse
|
55
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
56
|
Vargas CA, Baptista CAC, Del Sol M, Sandoval C, Vásquez B, Veuthey C, Ottone NE. Development of an ultrathin sheet plastination technique in rat humeral joints with osteoarthritis induced by monosodium iodoacetate for neovascularization study. Anat Sci Int 2019; 95:297-303. [PMID: 31401788 DOI: 10.1007/s12565-019-00500-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
Abstract
Injection with monosodium iodoacetate (MIA) is widely used to produce osteoarthritis (OA). Ultrathin sheet plastination has been used to study the morphology of structures, with strong application in anatomical education and research. Our aim was to carry out, for the first time, ultrathin sheet plastination of rat humeral joints to observe the neovascularization provoked by OA. We injected 0.1 mL of MIA into the left humeral joints of ten Sprague-Dawley rats. The right shoulders of the same rats were used as control. Sixteen weeks after the injection, the animals were euthanized and were given an immediate red epoxy resin injection through the thoracic aorta. The samples were fixed in 10% formalin, prior to the plastination process, without decalcification. Samples were dehydrated with acetone (100%) at - 25 °C, for 10 days. Later, for degreasing, samples were immersed in methylene chloride at room temperature during 1 week. Forced impregnation was performed inside a stove within a vacuum chamber. The plastinated blocks obtained were cut with a slow velocity diamond blade saw. Slices were placed in curing chambers to achieve curing and final tissue transparentation. 230 μm thickness slices were obtained. The slices were analyzed under magnifying glass and microscope, achieving visualization of OA neovascularization. The cartilage affected by OA loses its ability to remain avascular, and blood vessels invade it from the subchondral bone to the calcified and uncalcified cartilage. Ultra-thin sheet plastination is useful to observe articular cartilage neovascularization, caused by OA induced with MIA in humeral rat joint.
Collapse
Affiliation(s)
- Claudia Andrea Vargas
- Doctoral Program in Morphological Sciences, Medicine School, Universidad de La Frontera, Temuco, Chile
- Department of Physical Education, Sports and Recreation, Education School, Universidad de La Frontera, Temuco, Chile
| | - Carlos A C Baptista
- Laboratory of Plastination, Department of Medical Education, College of Medicine, University of Toledo, Toledo, OH, USA
| | - Mariano Del Sol
- Doctoral Program in Morphological Sciences, Medicine School, Universidad de La Frontera, Temuco, Chile
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristian Sandoval
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Bélgica Vásquez
- Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Carlos Veuthey
- Laboratory of Plastination and Anatomical Techniques, Research Centre for Dental Sciences (CICO), Dental School, Universidad de La Frontera, Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Nicolás Ernesto Ottone
- Doctoral Program in Morphological Sciences, Medicine School, Universidad de La Frontera, Temuco, Chile.
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile.
- Laboratory of Plastination and Anatomical Techniques, Research Centre for Dental Sciences (CICO), Dental School, Universidad de La Frontera, Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
57
|
Deng C, Xu C, Zhou Q, Cheng Y. Advances of nanotechnology in osteochondral regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1576. [PMID: 31329375 DOI: 10.1002/wnan.1576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In the past few decades, nanotechnology has proven to be one of the most powerful engineering strategies. The nanotechnologies for osteochondral tissue engineering aim to restore the anatomical structures and physiological functions of cartilage, subchondral bone, and osteochondral interface. As subchondral bone and articular cartilage have different anatomical structures and the physiological functions, complete healing of osteochondral defects remains a great challenge. Considering the limitation of articular cartilage to self-healing and the complexity of osteochondral tissue, osteochondral defects are in urgently need for new therapeutic strategies. This review article will concentrate on the most recent advancements of nanotechnologies, which facilitates chondrogenic and osteogenic differentiation for osteochondral regeneration. Moreover, this review will also discuss the current strategies and physiological challenges for the regeneration of osteochondral tissue. Specifically, we will summarize the latest developments of nanobased scaffolds for simultaneously regenerating subchondral bone and articular cartilage tissues. Additionally, perspectives of nanotechnology in osteochondral tissue engineering will be highlighted. This review article provides a comprehensive summary of the latest trends in cartilage and subchondral bone regeneration, paving the way for nanotechnologies in osteochondral tissue engineering. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Cuijun Deng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Xu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Quan Zhou
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
58
|
Magnetic resonance imaging of subchondral insufficiency fractures of the lower limb. Skeletal Radiol 2019; 48:1011-1021. [PMID: 30706108 DOI: 10.1007/s00256-019-3160-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/04/2018] [Accepted: 01/10/2019] [Indexed: 02/02/2023]
Abstract
Subchondral insufficiency fracture (SIF) is a non-traumatic condition that has historically been associated with elderly, osteoporotic women and patients with systemic conditions. There has been much work done to determine the pathogenesis of SIF, which has previously been regarded as idiopathic, rapid-progressive osteoarthritis or osteonecrosis of the hip, spontaneous osteonecrosis of the knee (SONK), osteochondral defect (OCD) of the talus and adult-onset Freiberg infraction of the metatarsal head. Early diagnosis and management are crucial to prevent subchondral collapse, secondary osteonecrosis and early-onset osteoarthritis. Magnetic resonance imaging (MRI) plays an important role in the diagnosis of SIF, which is often inconspicuous on initial radiographs. In this article, the authors provide an update on the role of MRI in identifying key imaging features of SIF in various joints of the lower limb to aid in its correct diagnosis.
Collapse
|
59
|
Liu Q, Yang H, Duan J, Zhang H, Xie M, Ren H, Zhang M, Zhang J, Lu L, Liu X, Yu S, Wang M. Bilateral anterior elevation prosthesis boosts chondrocytes proliferation in mice mandibular condyle. Oral Dis 2019; 25:1589-1599. [DOI: 10.1111/odi.13128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Liu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hong‐xu Yang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Jing Duan
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hong‐yun Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Mian‐jiao Xie
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Hao‐tian Ren
- Department of Stomatology, Changhai Hospital The Second Military Medical University Shanghai China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Jing Zhang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Lei Lu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Xiao‐dong Liu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Shi‐bin Yu
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Mei‐qing Wang
- Department of Oral Anatomy and Physiology and Clinic of Temporomandibular Joint Disorders and Oral and Maxillofacial Pain, The Key Laboratory of Military Stomatology of State and the National Clinical Research Center for Oral Diseases, School of Stomatology The Fourth Military Medical University Xi'an China
| |
Collapse
|
60
|
Xie Y, Zhou W, Zhong Z, Yu H, Zhang P, Shen H. Docosahexaenoic acid inhibits bone remodeling and vessel formation in the osteochondral unit in a rat model. Biomed Pharmacother 2019; 114:108811. [PMID: 30965235 DOI: 10.1016/j.biopha.2019.108811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We aimed to determine whether bone remodeling and vessel formation in the osteochondral unit are suppressed by supplementing with docosahexaenoic acid in anterior cruciate ligament transection (ACLT)-induced rats. METHODS Twelve-week-old male Sprague Dawley rats were randomized to sham-operated, ACLT-operated and treated with vehicle, or ACLT-operated and treated with DHA groups. Micro-architecture and vasculature in the tibial osteochondral unit were examined by micro-CT, as well as by histomorphometry. To evaluate the effects of DHA in vitro, we conducted functional and expressional assays in RAW264.7 cells and HUVECs. Finally, we used OARSI-modified Mankin criteria and histological analyses to assess the status of the cartilage layer. RESULTS Microstructural parameters in the osteochondral unit showed that bone mass loss and angiogenesis were less in DHA-treated rats than in vehicle-treated rats. Immunofluorescence-positive cells labeled with TRAP, RANKL, CD31, and endomucin agents in the osteochondral unit of ACLT-operated rats were reduced in the DHA-treated group compared with the vehicle-treated group. Furthermore, the number of TRAP-stained cells, areas of bone resorption pits, and mRNA expression of TRAP, CTSK, MITF, and NFATC1 were reduced in RAW264.7 cells treated with RANKL + DHA compared with those treated with only RANKL. Tube formation, proliferation and migration of HUVECs, and VEGF-C mRNA and VEGFR2 protein expression were inhibited by DHA. The decrease in OARSI score, and MMP-13 and collagen X expression suggested that DHA attenuated cartilage degeneration. CONCLUSIONS DHA has the ability to restrain bone remodeling and vessel formation in the osteochondral unit, which may contribute to protection of cartilage.
Collapse
Affiliation(s)
- Yinhao Xie
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Wei Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Zhihong Zhong
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Haotao Yu
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Ping Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| | - Huawei Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
61
|
Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration. J Orthop Translat 2019; 17:15-25. [PMID: 31194079 PMCID: PMC6551354 DOI: 10.1016/j.jot.2018.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment for osteochondral defects remains a great challenge. Although several clinical strategies have been developed for management of osteochondral defects, the reconstruction of both cartilage and subchondral bone has proved to be difficult due to their different physiological structures and functions. Considering the restriction of cartilage to self-healing and the different biological properties in osteochondral tissue, new therapy strategies are essential to be developed. This review will focus on the latest developments of bioactive scaffolds, which facilitate the osteogenic and chondrogenic differentiation for the regeneration of bone and cartilage. Besides, the topic will also review the basic anatomy, strategies and challenges for osteochondral reconstruction, the selection of cells, biochemical factors and bioactive materials, as well as the design and preparation of bioactive scaffolds. Specifically, we summarize the most recent developments of single-type bioactive scaffolds for simultaneously regenerating cartilage and subchondral bone. Moreover, the future outlook of bioactive scaffolds in osteochondral tissue engineering will be discussed. This review offers a comprehensive summary of the most recent trend in osteochondral defect reconstruction, paving the way for the bioactive scaffolds in clinical therapy. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review summaries the latest developments of single-type bioactive scaffolds for regeneration of osteochondral defects. We also highlight a new possible translational direction for cartilage formation by harnessing bioactive ions and propose novel paradigms for subchondral bone regeneration in application of bioceramic scaffolds.
Collapse
Affiliation(s)
| | | | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
62
|
Vainieri M, Wahl D, Alini M, van Osch G, Grad S. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomater 2018; 81:256-266. [PMID: 30273741 DOI: 10.1016/j.actbio.2018.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Surgical procedures such as microfracture or autologous chondrocyte implantation have been used to treat articular cartilage lesions; however, repair often fails in terms of matrix organization and mechanical behaviour. Advanced biomaterials and tissue engineered constructs have been developed to improve cartilage repair; nevertheless, their clinical translation has been hampered by the lack of reliable in vitro models suitable for pre-clinical screening of new implants and compounds. In this study, an osteochondral defect model in a bioreactor that mimics the multi-axial motion of an articulating joint, was developed. Osteochondral explants were obtained from bovine stifle joints, and cartilage defects of 4 mm diameter were created. The explants were used as an interface against a ceramic ball applying dynamic compressive and shear loading. Osteochondral defects were filled with chondrocytes-seeded fibrin-polyurethane constructs and subjected to mechanical stimulation. Cartilage viability, proteoglycan accumulation and gene expression of seeded chondrocytes were compared to free swelling controls. Cells within both cartilage and bone remained viable throughout the 10-day culture period. Loading did not wear the cartilage, as indicated by histological evaluation and glycosaminoglycan release. The gene expression of seeded chondrocytes indicated a chondrogenic response to the mechanical stimulation. Proteoglycan 4 and cartilage oligomeric matrix protein were markedly increased, while mRNA ratios of collagen type II to type I and aggrecan to versican were also enhanced. This mechanically stimulated osteochondral defect culture model provides a viable microenvironment and will be a useful pre-clinical tool to screen new biomaterials and biological regenerative therapies under relevant complex mechanical stimuli. STATEMENT OF SIGNIFICANCE: Articular cartilage lesions have a poor healing capacity and reflect one of the most challenging problems in orthopedic clinical practice. The aim of current research is to develop a testing system to assess biomaterials for implants, that can permanently replace damaged cartilage with the original hyaline structure and can withstand the mechanical forces long term. Here, we present an osteochondral ex vivo culture model within a cartilage bioreactor, which mimics the complex motion of an articulating joint in vivo. The implementation of mechanical forces is essential for pre-clinical testing of novel technologies in the field of cartilage repair, biomaterial engineering and regenerative medicine. Our model provides a unique opportunity to investigate healing of articular cartilage defects in a physiological joint-like environment.
Collapse
|
63
|
Alliston T, Hernandez CJ, Findlay DM, Felson DT, Kennedy OD. Bone marrow lesions in osteoarthritis: What lies beneath. J Orthop Res 2018; 36:1818-1825. [PMID: 29266428 PMCID: PMC8607515 DOI: 10.1002/jor.23844] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease in the United States, affecting more than 30 million people, and is characterized by cartilage degeneration in articulating joints. OA can be viewed as a group of overlapping disorders, which result in functional joint failure. However, the precise cellular and molecular events within which lead to these clinically observable changes are neither well understood nor easily measurable. It is now clear that multiple factors, in multiple joint tissues, contribute to degeneration. Changes in subchondral bone are recognized as a hallmark of OA, but are normally associated with late-stage disease when degeneration is well established. However, early changes such as Bone Marrow Lesions (BMLs) in OA are a relatively recent discovery. BMLs are patterns from magnetic resonance images (MRI) that have been linked with pain and cartilage degeneration. Their potential utility in predicting progression, or as a target for therapy, is not yet fully understood. Here, we will review the current state-of-the-art in this field under three broad headings: (i) BMLs in symptomatic OA: malalignment, joint pain, and disease progression; (ii) biological considerations for bone-cartilage crosstalk in joint disease; and (iii) mechanical factors that may underlie BMLs and drive their communication with other joint tissues. Thus, this review will provide insights on this topic from a clinical, biological, and mechanical perspective. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1818-1825, 2018.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York. Hospital for Special Surgery, New York, New York
| | - David M. Findlay
- Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David T. Felson
- Clinical Epidemiology Research and Training Unit Boston University School of Medicine, Boston, Massachusetts, USA
| | - Oran D. Kennedy
- Department of Anatomy and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
64
|
Aaron RK, Racine JR, Voisinet A, Evangelista P, Dyke JP. Subchondral bone circulation in osteoarthritis of the human knee. Osteoarthritis Cartilage 2018; 26:940-944. [PMID: 29723635 DOI: 10.1016/j.joca.2018.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The hypothesis of this study is that human subchondral bone exhibits abnormal patterns of perfusion in osteoarthritis (OA) that can be characterized by kinetic parameters of blood flow using dynamic contrast enhanced (DCE) MRI. DESIGN Fifteen subjects with advanced OA of the knee and seven control subjects without OA were studied at 1.5 T with DCE-MRI. Region of interest (ROIs) analysis of pharmacokinetic perfusion parameters were used to examine initial uptake and washout of the contrast agent in the lateral tibial plateau. RESULTS Arterial and venous perfusion kinetics were abnormal in subchondral OA bone compared to those of normal controls. Time-intensity curves (TIC) exhibited delayed contrast clearance in OA knees compared to normal. Quantitatively, changes were observed in the kinetic parameters, kep, Akep, and kel. The mean kep and Akep were reduced in OA, compared to normal bone, indicating a reduction of arterial inflow and delayed signal enhancement. The kel in OA bone was lower than in normal bone, the negative kel indicating a reduction in venous outflow. The area under the TIC (AUC60) indicated greater residual contrast in OA bone. CONCLUSIONS DCE-MRI can quantitatively assess subchondral bone perfusion kinetics in human OA and identify heterogeneous regions of perfusion deficits. The results are consistent with venous stasis in OA, reflecting venous outflow obstruction, and can affect intraosseous pressure, reduce arterial inflow, reduce oxygen content, and may contribute to altered cell signaling in, and the pathophysiology of, OA.
Collapse
Affiliation(s)
- R K Aaron
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - J R Racine
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - A Voisinet
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - P Evangelista
- Department of Radiology, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - J P Dyke
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
65
|
Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018; 9:112. [PMID: 29678192 PMCID: PMC5910611 DOI: 10.1186/s13287-018-0847-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of veritable in-vitro models of bone tissue is essential to understand the biology of bone and its surrounding environment, to analyze the pathogenesis of bone diseases (e.g., osteoporosis, osteoarthritis, osteomyelitis, etc.), to develop effective therapeutic drug screening, and to test potential therapeutic strategies. Dysregulated interactions between vasculature and bone cells are often related to the aforementioned pathologies, underscoring the need for a bone model that contains engineered vasculature. Due to ethical restraints and limited prediction power of animal models, human stem cell-based tissue engineering has gained increasing relevance as a candidate approach to overcome the limitations of animals and to serve as preclinical models for drug testing. Since bone is a highly vascularized tissue, the concomitant development of vasculature and mineralized matrix requires a synergistic interaction between osteogenic and endothelial precursors. A number of experimental approaches have been used to achieve this goal, such as the combination of angiogenic factors and three-dimensional scaffolds, prevascularization strategies, and coculture systems. In this review, we present an overview of the current models and approaches to generate in-vitro stem cell-based vascularized bone, with emphasis on the main challenges of vasculature engineering. These challenges are related to the choice of biomaterials, scaffold fabrication techniques, and cells, as well as the type of culturing conditions required, and specifically the application of dynamic culture systems using bioreactors.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
- Ri.MED Foundation, Via Bandiera 11, Palermo, 90133 Italy
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
66
|
Lin X, Chen J, Qiu P, Zhang Q, Wang S, Su M, Chen Y, Jin K, Qin A, Fan S, Chen P, Zhao X. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthritis Cartilage 2018; 26:433-444. [PMID: 29233641 DOI: 10.1016/j.joca.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the effect of decellularized osteochondral extracellular matrix (ECM) scaffold for osteochondral defect regeneration. DESIGN We compared the histological features and microstructure of degenerated cartilage to normal articular cartilage. We also generated and evaluated osteochondral ECM scaffolds through decellularization technology. Then scaffolds were implanted to osteochondral defect in rabbit model. After 12 weeks surgery, regeneration tissues were analyzed by histology, immunohistochemistry evaluation. And possible mechanisms of angiogenesis and cell migration were explored. RESULTS We demonstrated decreased cell numbers, formation of fibrous cartilage, lost microstructure and worse permeability in degenerated cartilage compared to normal cartilage. We also generated an osteochondral ECM scaffold with a hierarchical structure that exhibited low immunogenicity, high bioactivity, and well biocompatibility. We found that the ECM scaffold promoted tissue regeneration in osteochondral defects, which was dependent on the scaffold constituents and stratified three-dimensional microstructure as well as on its ability to inhibit angiogenesis and stimulate cell migration. CONCLUSIONS Our findings demonstrated that the biphasic hierarchical ECM scaffold represents a novel and effective biomaterial that can be used in the treatment of osteochondral defect.
Collapse
Affiliation(s)
- X Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - J Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - P Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Q Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - S Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - M Su
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Y Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - K Jin
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, China
| | - A Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - S Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - P Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - X Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| |
Collapse
|
67
|
Abstract
The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.
Collapse
Affiliation(s)
- Sabrina Jahn
- Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Jasmine Seror
- Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Jacob Klein
- Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
68
|
Milner PI. Keeping joints healthy: The Goldilocks effect of exercise. Vet J 2017; 226:4-5. [PMID: 28911839 DOI: 10.1016/j.tvjl.2017.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Peter I Milner
- University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 9SP, United Kingdom.
| |
Collapse
|
69
|
Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis. Curr Rheumatol Rep 2017; 19:49. [DOI: 10.1007/s11926-017-0660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
70
|
|
71
|
Pouran B, Arbabi V, Bleys RL, René van Weeren P, Zadpoor AA, Weinans H. Solute transport at the interface of cartilage and subchondral bone plate: Effect of micro-architecture. J Biomech 2016; 52:148-154. [PMID: 28063646 DOI: 10.1016/j.jbiomech.2016.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Cross-talk of subchondral bone and articular cartilage could be an important aspect in the etiology of osteoarthritis. Previous research has provided some evidence of transport of small molecules (~370Da) through the calcified cartilage and subchondral bone plate in murine osteoarthritis models. The current study, for the first time, uses a neutral diffusing computed tomography (CT) contrast agent (iodixanol, ~1550Da) to study the permeability of the osteochondral interface in equine and human samples. Sequential CT monitoring of diffusion after injecting a finite amount of contrast agent solution onto the cartilage surface using a micro-CT showed penetration of the contrast molecules across the cartilage-bone interface. Moreover, diffusion through the cartilage-bone interface was affected by thickness and porosity of the subchondral bone as well as the cartilage thickness in both human and equine samples. Our results revealed that porosity of the subchondral plate contributed more strongly to the diffusion across osteochondral interface compared to other morphological parameters in healthy equine samples. However, thickness of the subchondral plate contributed more strongly to the diffusion in slightly osteoarthritic human samples.
Collapse
Affiliation(s)
- Behdad Pouran
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Vahid Arbabi
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands; Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
72
|
Li X, He J, Zhang W, Jiang N, Li D. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations. MATERIALS 2016; 9:ma9110909. [PMID: 28774030 PMCID: PMC5457198 DOI: 10.3390/ma9110909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijie Zhang
- Department of Knee Joint Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
73
|
Coughlin TR, Kennedy OD. The role of subchondral bone damage in post-traumatic osteoarthritis. Ann N Y Acad Sci 2016; 1383:58-66. [DOI: 10.1111/nyas.13261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas R. Coughlin
- Department of Orthopedic Surgery; New York University School of Medicine; New York New York
| | - Oran D. Kennedy
- Department of Orthopedic Surgery; New York University School of Medicine; New York New York
- Department of Mechanical and Aerospace Engineering; New York University Tandon School of Engineering; New York New York
| |
Collapse
|
74
|
Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12:632-644. [PMID: 27652499 DOI: 10.1038/nrrheum.2016.148] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In diarthrodial joints, the articular cartilage, calcified cartilage, and subchondral cortical and trabecular bone form a biocomposite - referred to as the osteochondral unit - that is uniquely adapted to the transfer of load. During the evolution of the osteoarthritic process the compositions, functional properties, and structures of these tissues undergo marked alterations. Although pathological processes might selectively target a single joint tissue, ultimately all of the components of the osteochondral unit will be affected because of their intimate association, and thus the biological and physical crosstalk among them is of great importance. The development of targeted therapies against the osteoarthritic processes in cartilage or bone will, therefore, require an understanding of the state of these joint tissues at the time of the intervention. Importantly, these interventions will not be successful unless they are applied at the early stages of disease before considerable structural and functional alterations occur in the osteochondral unit. This Review describes the changes that occur in bone and cartilage during the osteoarthritic process, and highlights strategies for how this knowledge could be applied to develop new therapeutic interventions for osteoarthritis.
Collapse
|
75
|
Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 2016; 4:16028. [PMID: 27672480 PMCID: PMC5028726 DOI: 10.1038/boneres.2016.28] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development.
Collapse
|
76
|
Bian W, Lian Q, Li D, Wang J, Zhang W, Jin Z, Qiu Y. Morphological characteristics of cartilage-bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold. Biomed Eng Online 2016; 15:82. [PMID: 27418247 PMCID: PMC4944264 DOI: 10.1186/s12938-016-0200-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
Background There is a lack of understanding of the morphological characteristics of the cartilage-bone interface. Materials that are currently being used in tissue engineering do not adequately support the regeneration of bone and cartilage tissues. The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures in the human knee joint and to design a biomimetic osteochondral scaffold based on morphological data. Methods Histology, micro-computed tomography (micro-CT), and scanning electron microscopy (SEM) were used to investigate the microstructure of the cartilage-bone transitional structures. Morphological characteristics and their distribution were obtained and summarized into a biomimetic design. A three-dimensional model of a biomimetic osteochondral scaffold was CAD designed. A prototype of the resulting subchondral bone scaffold was constructed by stereolithography using resin. Results Micro-CT revealed that subchondral bone presented a gradually changing structure from the subchondral to spongy bone tissue. The subchondral bone plate was more compact with ~20 % porosity compared with ~60 % porosity for the spongy bone. Histology and SEM showed that cartilage was stabilized on the subchondral bone plate by conjunctions, imbedding, interlocking, and binding forces generated by collagen fibers. Some scattered defects allow blood vessel invasion and nutritional supply. Conclusions The subchondral bone plate is not an intact plate between the cartilage and bone cavity, and some scattered defects exist that allow blood vessel invasion and nutritional supply. This characteristic was used to design an osteochondral scaffold. This could be used to construct an osteochondral complex that is similar to native bones.
Collapse
Affiliation(s)
- Weiguo Bian
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qin Lian
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dichen Li
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710028, Shaanxi, China
| | - Weijie Zhang
- State Key Lab for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Zhongmin Jin
- The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710028, Shaanxi, China
| | - Yusheng Qiu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
77
|
Osterberg A, Thiem D, Herlyn P, Mittlmeier T, Frerich B, Müller-Hilke B. Subchondral bone sclerosis and cancellous bone loss following OA induction depend on the underlying bone phenotype. Joint Bone Spine 2016; 84:71-77. [PMID: 27236261 DOI: 10.1016/j.jbspin.2015.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/22/2015] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is increasingly considered a disease of the whole joint, yet the interplay between the articular cartilage and the subchondral bone remains obscure. We here set out to investigate the impact of bone mass on the progression of surgically induced knee OA in the mouse. METHODS OA was induced in the right knees of female C57BL/6 (low bone mass) and STR/ort (high bone mass) mice via anterior cruciate ligament transection and destabilization of the medial meniscus. At 36 weeks of age, left and right knee joints were histologically compared for cartilage degeneration and via microCT analysis for subchondral bone plate thickness. In addition, femora were analyzed for bone mass at diaphysis and distal meta- and epiphysis. RESULTS The severity of cartilage deterioration did not differ under high and low bone mass conditions. However, the extent of bone sclerosis differed and was proportional to the baseline subchondral bone plate thickness. Moreover, the cancellous bone loss following OA progression was inversely related to the bone mass: high bone mass restricted the loss to the epiphysis, whereas low bone mass allowed for a more widespread loss extending into the metaphysis. CONCLUSIONS Our results suggest that cartilage degeneration is independent of the underlying bone mass. In contrast, subchondral bone remodeling associated with OA progression seem to correlate with the initial bone mass and suggest an enhanced crosstalk between the deteriorating cartilage and the subchondral bone under low bone mass conditions.
Collapse
Affiliation(s)
- Anja Osterberg
- Rostock University Medical Center, Institute for Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Daniel Thiem
- Rostock University Medical Center, Institute for Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Philipp Herlyn
- Rostock University Medical Center, Department for Trauma, Hand and Reconstructive Surgery, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Rostock University Medical Center, Department for Trauma, Hand and Reconstructive Surgery, 18057 Rostock, Germany
| | - Bernhard Frerich
- Rostock University Medical Center, Department of Oral and Maxillofacial Plastic Surgery, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Rostock University Medical Center, Institute for Immunology, Schillingallee 70, 18057 Rostock, Germany.
| |
Collapse
|
78
|
Abstract
The subchondral zone plays an important role in both the structural and biochemical maintenance of articular cartilage. Knowledge of the structure, function, and pathophysiology of the normal subchondral bone/articular surface interface is essential for an understanding of the pathogenesis of many of the disease entities that we will review in this chapter.
Collapse
|
79
|
Muttigi MS, Han I, Park HK, Park H, Lee SH. Matrilin-3 Role in Cartilage Development and Osteoarthritis. Int J Mol Sci 2016; 17:ijms17040590. [PMID: 27104523 PMCID: PMC4849044 DOI: 10.3390/ijms17040590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 11/16/2022] Open
Abstract
The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis.
Collapse
Affiliation(s)
- Manjunatha S Muttigi
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Korea.
- Department of Biomedical Science, CHA University, Seongnam-Si 13488, Korea.
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea.
| | - Hun-Kuk Park
- Department of Biomedical Engineering, Collage of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-Si 13488, Korea.
| |
Collapse
|
80
|
Zhou X, Liu Y, Zhou S, Fu XX, Yu XL, Fu CL, Zhang B, Dai M. The correlation between radiographic and pathologic grading of lumbar facet joint degeneration. BMC Med Imaging 2016; 16:27. [PMID: 27025987 PMCID: PMC4812623 DOI: 10.1186/s12880-016-0129-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Before performing spine non-fusion surgery that retains the facet joints, choosing an accurate radiographic method to evaluate the degree of facet joint degeneration is extremely important. Therefore, the objective of this study was to determine the accuracy and reliability of different radiographic classifications by analyzing the correlation between radiographic and pathologic grading of lumbar facet joint degeneration. Taking the pathologic examination as standard, the consistency of computed tomography (CT) and magnetic resonance imaging (MRI) assessment of lumbar facet joint degeneration was compared. Methods A total of 74 facet joints obtained from 42 patients who underwent posterior lumbar surgery were evaluated. All patients underwent CT and MRI before surgery. The pathologic grade was evaluated with a method based on hematoxylin-eosin and toluidine blue staining. The radiographic grade was evaluated using the methods proposed by different authors. Results There was a moderate consistency between pathologic and radiographic grading for facet joint degeneration. The weighted kappa coefficients comparing pathologic with radiographic grading were 0.506 for CT, 0.561 for MRI, and 0.592 for CT combined with MRI, respectively. Taking the pathologic examination as standard, the consistency of CT and MRI examination was also moderate, and the weighted kappa coefficient was 0.459. Conclusion The radiographic examination has moderate accuracy and reliability for evaluating degeneration of facet joints. Therefore, a more accurate method for evaluating the degeneration of facet joints is necessary before performing spine non-fusion surgery that retains the facet joints. Electronic supplementary material The online version of this article (doi:10.1186/s12880-016-0129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Yuan Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Song Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Xiao-Xing Fu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Xiao-Long Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Chang-Lin Fu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China. .,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China. .,Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
81
|
Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Goiriena JJ, Prosper F, Orive G, Padilla S. A new strategy to tackle severe knee osteoarthritis: Combination of intra-articular and intraosseous injections of Platelet Rich Plasma. Expert Opin Biol Ther 2016; 16:627-43. [PMID: 26930117 DOI: 10.1517/14712598.2016.1157162] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Knee osteoarthritis (KOA) is a mechanically induced, cytokine and enzyme-mediated disorder involving all the joint tissue of the knee. Rebuilding a physiological-homeostatic network at the tissue level following knee organ failure, such as in severe KOA, is a daunting task with therapeutic targets encompassing the articular cartilage, synovium and subchondral bone. Intraarticular infiltration of plasma rich in growth factors (PRP) has emerged as a promising symptomatic approach, although it is insufficient to reach the subchondral bone. AREAS COVERED This review addresses current molecular and cellular data in joint homeostasis and osteoarthritis pathophysiology. In particular, it focuses on changes that subchondral bone undergoes in knee osteoarthritis and evaluates recent observations on the crosstalk among articular cartilage, subchondral bone and synovial membrane. In addition, we review some mechanistic aspects that have been proposed and provide the rationale for using PRP intraosseously in KOA. EXPERT OPINION The knee joint is a paradigm of autonomy and connectedness of its anatomical structures and tissues from which it is made. We propose an innovative approach to the treatment of severe knee osteoarthritis consisting of a combination of intraarticular and intraosseous infiltrations of PRP, which might offer a new therapeutic tool in KOA therapy.
Collapse
Affiliation(s)
- Mikel Sánchez
- a Arthroscopic Surgery Unit , Hospital Vithas San José , Vitoria-Gasteiz , Spain
| | - Eduardo Anitua
- b Department of Regenerative Medicine, Laboratory of Regenerative Medicine, BTI Biotechnology Institute , Vitoria , Spain
| | - Diego Delgado
- c Arthroscopic Surgery Unit Research , Hospital Vithas San José , Vitoria-Gasteiz , Spain
| | - Peio Sanchez
- c Arthroscopic Surgery Unit Research , Hospital Vithas San José , Vitoria-Gasteiz , Spain
| | - Roberto Prado
- b Department of Regenerative Medicine, Laboratory of Regenerative Medicine, BTI Biotechnology Institute , Vitoria , Spain
| | | | - Felipe Prosper
- e Cell Therapy Program, Foundation for Applied Medical Research , University of Navarra , Pamplona , Spain.,f Hematology and Cell Therapy Department , Clínica Universidad de Navarra, University of Navarra , Pamplona , Spain
| | - Gorka Orive
- b Department of Regenerative Medicine, Laboratory of Regenerative Medicine, BTI Biotechnology Institute , Vitoria , Spain.,g Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country , Vitoria , Spain.,h Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN, SLFPB-EHU , Vitoria-Gasteiz , Spain
| | - Sabino Padilla
- b Department of Regenerative Medicine, Laboratory of Regenerative Medicine, BTI Biotechnology Institute , Vitoria , Spain
| |
Collapse
|
82
|
Steinbeck MJ, Eisenhauer PT, Maltenfort MG, Parvizi J, Freeman TA. Identifying Patient-Specific Pathology in Osteoarthritis Development Based on MicroCT Analysis of Subchondral Trabecular Bone. J Arthroplasty 2016; 31:269-77. [PMID: 26411393 DOI: 10.1016/j.arth.2015.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/21/2015] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
The goal of this study was to identify alternative mechanisms of osteoarthritis pathology by analyzing subchondral bone. Femoral condyle samples were collected from post-menopausal female patients with knee osteoarthritis undegoing total knee arthroplasty. In the majority of patients, subchondral trabecular bone volume doubled under a region of the medial femoral condyle with full-thickness cartilage deterioration. However, in a subset of patients the bone volume in this region remained constant. This subset also had larger areas of vascular penetration in the calcified cartilage of the lateral condyle concurrent with increased vascular endothelial growth factor expression. Subtyping by subchondral bone characteristics identified a unique population, which lacked the sclerotic bone characteristic of late-stage osteoarthritis. Identification of subtypes within the osteoarthritis population allows investigation of alternate disease pathologies.
Collapse
Affiliation(s)
- Marla J Steinbeck
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Peter T Eisenhauer
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Javad Parvizi
- Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
83
|
Abstract
Articular cartilage has obvious and fundamental roles in joint function and body movement. Much is known about its organization, extracellular matrix, and phenotypic properties of its cells, but less is known about its developmental biology. Incipient articular cartilage in late embryos and neonates is a thin tissue with scanty matrix and small cells, while adult tissue is thick and zonal and contains large cells and abundant matrix. What remains unclear is not only how incipient articular cartilage forms, but how it then grows and matures into a functional, complex, and multifaceted structure. This review focuses on recent and exciting discoveries on the developmental biology and growth of articular cartilage, frames them within the context of classic studies, and points to lingering questions and research goals. Advances in this research area will have significant relevance to basic science, and also considerable translational value to design superior cartilage repair and regeneration strategies.
Collapse
Affiliation(s)
- Rebekah S Decker
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
84
|
Bagi CM, Berryman E, Zakur DE, Wilkie D, Andresen CJ. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA. Arthritis Res Ther 2015; 17:315. [PMID: 26542671 PMCID: PMC4635572 DOI: 10.1186/s13075-015-0829-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Methods Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. Results The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and Zol reduced serum CTX-II level, both treatments failed to prevent or correct cartilage deterioration, osteophyte formation and mechanical incapacity. Conclusions The various methods utilized in this study showed that aggressive treatment with Zol and PTH did not have the capacity to prevent or correct the deterioration of the hyaline cartilage, thickening of the subchondral bone plate, osteophyte formation or the mechanical incapacity of the osteoarthritic knee.
Collapse
Affiliation(s)
- Cedo M Bagi
- Global Science and Technology, Pfizer Global Research and Development, Pfizer Inc., 100 Eastern Point Road, Groton, CT, 06340, USA.
| | - Edwin Berryman
- Comparative Medicine, Global Science and Technology, Pfizer Global Research and Development, Pfizer Inc., 100 Eastern Point Road, Groton, CT, 06340, USA.
| | - David E Zakur
- Comparative Medicine, Global Science and Technology, Pfizer Global Research and Development, Pfizer Inc., 100 Eastern Point Road, Groton, CT, 06340, USA. david.zakur.@pfizer.com
| | - Dean Wilkie
- Investigative Pathology, Drug Safety Research and Development, Pfizer Inc., 100 Eastern Point Road, Groton, CT, 06340, USA.
| | - Catharine J Andresen
- Comparative Medicine, Global Science and Technology, Pfizer Global Research and Development, Pfizer Inc., 100 Eastern Point Road, Groton, CT, 06340, USA.
| |
Collapse
|
85
|
Dyke JP, Synan M, Ezell P, Ballon D, Racine J, Aaron RK. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley guinea pig model of advanced osteoarthritis. J Orthop Res 2015; 33:366-72. [PMID: 25410523 PMCID: PMC4346481 DOI: 10.1002/jor.22768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/11/2014] [Indexed: 02/04/2023]
Abstract
This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown.
Collapse
Affiliation(s)
- Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY,Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, NY
| | - Michael Synan
- Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, NY
| | - Paula Ezell
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medical College, New York, NY,Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, NY
| | - Jennifer Racine
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Roy K. Aaron
- Department of Orthopedics, The Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
86
|
Goetzen M, Hofmann-Fliri L, Arens D, Zeiter S, Stadelmann V, Nehrbass D, Richards RG, Blauth M. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints. Medicine (Baltimore) 2015; 94:e414. [PMID: 25621690 PMCID: PMC4602635 DOI: 10.1097/md.0000000000000414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.
Collapse
Affiliation(s)
- Michael Goetzen
- From the AO Research Institute Davos (MG, L-HF, DA, SZ, VS, DN, GR), Davos, Switzerland; and Department of Trauma Surgery (MG, MB), Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH. FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J Bone Miner Res 2014; 29:2643-52. [PMID: 24839262 PMCID: PMC4963234 DOI: 10.1002/jbmr.2284] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 12/18/2022]
Abstract
Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair.
Collapse
Affiliation(s)
- Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Margaret K Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jeffrey P Spalazzi
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Pleshko
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY, USA
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
88
|
Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2014; 15:223. [PMID: 24321104 PMCID: PMC4061721 DOI: 10.1186/ar4405] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a major cause of disability in the adult population. As a
progressive degenerative joint disorder, OA is characterized by cartilage damage,
changes in the subchondral bone, osteophyte formation, muscle weakness, and
inflammation of the synovium tissue and tendon. Although OA has long been viewed as a
primary disorder of articular cartilage, subchondral bone is attracting increasing
attention. It is commonly reported to play a vital role in the pathogenesis of OA.
Subchondral bone sclerosis, together with progressive cartilage degradation, is
widely considered as a hallmark of OA. Despite the increase in bone volume fraction,
subchondral bone is hypomineralized, due to abnormal bone remodeling. Some
histopathological changes in the subchondral bone have also been detected, including
microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes
basic features of the osteochondral junction, which comprises subchondral bone and
articular cartilage. Importantly, we discuss risk factors influencing subchondral
bone integrity. We also focus on the microarchitectural and histopathological changes
of subchondral bone in OA, and provide an overview of their potential contribution to
the progression of OA. A hypothetical model for the pathogenesis of OA is
proposed.
Collapse
|
89
|
Abstract
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Cell Biology and Physiology, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
90
|
Guo H, Xu ZW, He BR, Hao DJ, Bian WG. Three dimensional reconstruction of bone-cartilage transitional structures based on semi-automatic registration and automatic segmentation of serial sections. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0027-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
91
|
Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 2014; 15:375. [PMID: 24072604 DOI: 10.1007/s11926-013-0375-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a whole joint disease, in which thinning and disappearance of cartilage is a critical determinant in OA progression. The rupture of cartilage homeostasis whatever its cause (aging, genetic predisposition, trauma or metabolic disorder) induces profound phenotypic modifications of chondrocytes, which then promote the synthesis of a subset of factors that induce cartilage damage and target other joint tissues. Interestingly, among these factors are numerous components of the inflammatory pathways. Chondrocytes produce cytokines, chemokines, alarmins, prostanoids, and adipokines and express numerous cell surface receptors for cytokines and chemokines, as well as Toll-like receptors. These receptors activate intracellular signaling pathways involved in inflammatory and stress responses of chondrocytes in OA joints. This review focuses on mechanisms responsible for the maintenance of cartilage homeostasis and highlights the role of inflammatory processes in OA progression.
Collapse
|
92
|
Abstract
There is now general agreement that osteoarthritis (OA) involves all structures in the affected joint, culminating in the degradation of the articular cartilage. It is appropriate to focus particularly on the subchondral bone because characteristic changes occur in this tissue with disease progression, either in parallel, or contributing to, the loss of cartilage volume and quality. Changes in both the articular cartilage and the subchondral bone are mediated by the cells in these two compartments, chondrocytes and cells of the osteoblast lineage, respectively, whose primary roles are to maintain the integrity and function of these tissues. In addition, altered rates of bone remodeling across the disease process are due to increased or decreased osteoclastic bone resorption. In the altered mechanical and biochemical environment of a progressively diseased joint, the cells function differently and show a different profile of gene expression, suggesting direct effects of these external influences. There is also ex vivo and in vitro evidence of chemical crosstalk between the cells in cartilage and subchondral bone, suggesting an interdependence of events in the two compartments and therefore indirect effects of, for example, altered loading of the joint. It is ultimately these cellular changes that explain the altered morphology of the cartilage and subchondral bone. With respect to crosstalk between the cells in cartilage and bone, there is evidence that small molecules can transit between these tissues. For larger molecules, such as inflammatory mediators, this is an intriguing possibility but remains to be demonstrated. The cellular changes during the progression of OA almost certainly need to be considered in a temporal and spatial manner, since it is important when and where observations are made in either human disease or animal models of OA. Until recently, comparisons have been made with the assumption, for example, that the subchondral bone is behaviorally uniform, but this is not the case in OA, where regional differences of the bone are evident using magnetic resonance imaging (MRI). Nevertheless, an appreciation of the altered cell function during the progression of OA will identify new disease modifying targets. If, indeed, the cartilage and subchondral bone behave as an interconnected functional unit, normalization of cell behavior in one compartment may have benefits in both tissues.
Collapse
Affiliation(s)
- David M Findlay
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, Royal Adelaide Hospital, Level 4 Bice Building, Adelaide, South Australia, 5000, Australia,
| | | |
Collapse
|
93
|
Abstract
Osteochondral defects are difficult to treat because the articular cartilage and the subchondral bone have dissimilar characteristics and abilities to regenerate. Bioinspired scaffolds are designed to mimic structural and biological cues of the native osteochondral unit, supporting both cartilaginous and subchondral bone repair and the integration of the newly formed osteochondral matrix with the surrounding tissues. The aim of this review is to outline fundamental requirements and strategies for the development of biomimetic scaffolds reproducing the unique and multifaceted anatomical structure of the osteochondral unit. Recent progress in preclinical animal studies using bilayer and multilayer scaffolds, together with continuous gradient scaffolds will be discussed and placed in a translational perspective with data emerging from their clinical application to treat osteochondral defects in patients.
Collapse
Affiliation(s)
- Silvia Lopa
- 1 Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | | |
Collapse
|
94
|
Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 2013; 14:20793-808. [PMID: 24135873 PMCID: PMC3821643 DOI: 10.3390/ijms141020793] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-915-504-800; Fax: +34-915-442-636
| | - Rodolfo Gómez
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail:
| | - Raquel Largo
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| | - Gabriel Herrero-Beaumont
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| |
Collapse
|
95
|
Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 2013; 14:19805-30. [PMID: 24084727 PMCID: PMC3821588 DOI: 10.3390/ijms141019805] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.
Collapse
|
96
|
Priam S, Bougault C, Houard X, Gosset M, Salvat C, Berenbaum F, Jacques C. Identification of Soluble 14-3-3∊ as a Novel Subchondral Bone Mediator Involved in Cartilage Degradation in Osteoarthritis. ACTA ACUST UNITED AC 2013; 65:1831-42. [DOI: 10.1002/art.37951] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 03/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Sabrina Priam
- University Pierre and Marie Curie Paris VI; Paris; France
| | | | - Xavier Houard
- University Pierre and Marie Curie Paris VI; Paris; France
| | | | - Colette Salvat
- University Pierre and Marie Curie Paris VI; Paris; France
| | - Francis Berenbaum
- University Pierre and Marie Curie Paris VI and St. Antoine Hospital; AP-HP; Paris; France
| | - Claire Jacques
- University Pierre and Marie Curie Paris VI; Paris; France
| |
Collapse
|
97
|
Abstract
Cartilage damage which characterizes osteoarthritis is accompanied with bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation which suggests their role in the dialogue between both cells. Several animal models of osteoarthritis have been developed in order to assess the mechanism of cartilage loss and chondrocyte functions that encompassed surgical, chemical, or genetic approaches. Indeed, the animal models are helpful to investigate the cartilage changes in relation to changes in bone remodeling. Accumulative in vivo evidence show that increased bone resorption occurs at early stage of the development of osteoarthritis. Inhibition of bone resorbing molecules prevents cartilage damage, confirming the role of bone factors in the cross talk between both tissues. Among these numerous molecules, some participate to the imbalance in cartilage homeostasis and in the pathophysiology of osteoarthritis. These local factors are potential candidates for new drug targets.
Collapse
Affiliation(s)
- M Cohen-Solal
- INSERM U606, University Paris-Diderot Paris 7, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France.
| | | | | |
Collapse
|
98
|
Mahjoub M, Berenbaum F, Houard X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos Int 2012. [PMID: 23179566 DOI: 10.1007/s00198-012-2161-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Osteoarthritis is a whole joint disease characterised by the disappearance of the cartilage associated with subchondral bone sclerosis, formation of osteophytes and a mild inflammation of the synovial membrane. Although all these events have been independently studied, functional interactions between these different joint tissues should exist, especially between subchondral bone and cartilage. Moreover, recent studies show that cartilage and subchondral bone act as a single functional unit. This review highlights this novel concept.
Collapse
Affiliation(s)
- M Mahjoub
- UR4 Ageing, Stress and Inflammation, Université Pierre et Marie Curie, 7 quai Saint-Bernard, 75252, Paris Cedex 5, France
| | | | | |
Collapse
|
99
|
Orth P, Cucchiarini M, Kaul G, Ong MF, Gräber S, Kohn DM, Madry H. Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model. Osteoarthritis Cartilage 2012; 20:1161-9. [PMID: 22771776 DOI: 10.1016/j.joca.2012.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Upward migration of the subchondral bone plate is associated with osteochondral repair. The aim of this study was to quantitatively monitor the sequence of subchondral bone plate advancement in a lapine model of spontaneous osteochondral repair over a 1-year period and to correlate these findings with articular cartilage repair. DESIGN Standardized cylindrical osteochondral defects were created in the rabbit trochlear groove. Subchondral bone reconstitution patterns were identified at five time points. Migration of the subchondral bone plate and areas occupied by osseous repair tissue were determined by histomorphometrical analysis. Tidemark formation and overall cartilage repair were correlated with the histomorphometrical parameters of the subchondral bone. RESULTS The subchondral bone reconstitution pattern was cylindrical at 3 weeks, infundibuliform at 6 weeks, plane at 4 and 6 months, and hypertrophic after 1 year. At this late time point, the osteochondral junction advanced 0.19 [95% confidence intervals (CI) 0.10-0.30] mm above its original level. Overall articular cartilage repair was significantly improved by 4 and 6 months but degraded after 1 year. Subchondral bone plate migration correlated with tidemark formation (r = 0.47; P < 0.0001), but not with the overall score of the repair cartilage (r = 0.11; P > 0.44). CONCLUSIONS The subchondral bone plate is reconstituted in a distinct chronological order. The lack of correlation suggests that articular cartilage repair and subchondral bone reconstitution proceed at a different pace and that the advancement of the subchondral bone plate is not responsible for the diminished articular cartilage repair in this model.
Collapse
Affiliation(s)
- P Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The classical view of the pathogenesis of osteoarthritis (OA) is that subchondral sclerosis is associated with, and perhaps causes, age-related joint degeneration. Recent observations have demonstrated that OA is associated with early loss of bone owing to increased bone remodelling, followed by slow turnover leading to densification of the subchondral plate and complete loss of cartilage. Subchondral densification is a late event in OA that involves only the subchondral plate and calcified cartilage; the subchondral cancellous bone beneath the subchondral plate may remain osteopenic. In experimental models, inducing subchondral sclerosis without allowing the prior stage of increased bone remodelling to occur does not lead to progressive OA. Therefore, both early-stage increased remodelling and bone loss, and the late-stage slow remodelling and subchondral densification are important components of the pathogenetic process that leads to OA. The apparent paradoxical observations that OA is associated with both increased remodelling and osteopenia, as well as decreased remodelling and sclerosis, are consistent with the spatial and temporal separation of these processes during joint degeneration. This Review provides an overview of current knowledge on OA and discusses the role of subchondral bone in the initiation and progression of OA. A hypothetical model of OA pathogenesis is proposed.
Collapse
Affiliation(s)
- David B Burr
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|