51
|
Noncoding RNA Expression During Viral Infection: The Long and the Short of It. MICRORNAS AND OTHER NON-CODING RNAS IN INFLAMMATION 2015. [PMCID: PMC7123390 DOI: 10.1007/978-3-319-13689-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
52
|
Identification and characterization of HTLV-1 HBZ post-translational modifications. PLoS One 2014; 9:e112762. [PMID: 25389759 PMCID: PMC4229220 DOI: 10.1371/journal.pone.0112762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is estimated to infect 15–25 million people worldwide, with several areas including southern Japan and the Caribbean basin being endemic. The virus is the etiological agent of debilitating and fatal diseases, for which there is currently no long-term cure. In the majority of cases of leukemia caused by HTLV-1, only a single viral gene, hbz, and its cognate protein, HBZ, are expressed and their importance is increasingly being recognized in the development of HTLV-1-associated disease. We hypothesized that HBZ, like other HTLV-1 proteins, has properties and functions regulated by post-translational modifications (PTMs) that affect specific signaling pathways important for disease development. To date, PTM of HBZ has not been described. We used an affinity-tagged protein and mass spectrometry method to identify seven modifications of HBZ for the first time. We examined how these PTMs affected the ability of HBZ to modulate several pathways, as measured using luciferase reporter assays. Herein, we report that none of the identified PTMs affected HBZ stability or its regulation of tested pathways.
Collapse
|
53
|
HBZ stimulates brain-derived neurotrophic factor/TrkB autocrine/paracrine signaling to promote survival of human T-cell leukemia virus type 1-Infected T cells. J Virol 2014; 88:13482-94. [PMID: 25210182 DOI: 10.1128/jvi.02285-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal proliferation, survival, and plasticity. These effects occur through autocrine and paracrine signaling events initiated by interactions between secreted BDNF and its high-affinity receptor, TrkB. A BDNF/TrkB autocrine/paracrine signaling loop has additionally been implicated in augmenting the survival of cells representing several human cancers and is associated with poor patient prognosis. Adult T-cell leukemia (ATL) is a fatal malignancy caused by infection with the complex retrovirus human T-cell leukemia virus type 1 (HTLV-1). In this study, we found that the HTLV-1-encoded protein HBZ activates expression of BDNF, and consistent with this effect, BDNF expression is elevated in HTLV-1-infected T-cell lines compared to uninfected T cells. Expression of TrkB is also higher in HTLV-1-infected T-cell lines than in uninfected T cells. Furthermore, levels of both BDNF and TrkB mRNAs are elevated in peripheral blood mononuclear cells (PBMCs) from ATL patients, and ATL patient sera contain higher concentrations of BDNF than sera from noninfected individuals. Finally, chemical inhibition of TrkB signaling increases apoptosis in HTLV-1-infected T cells and reduces phosphorylation of glycogen synthase kinase 3β (GSK-3β), a downstream target in the signaling pathway. These results suggest that HBZ contributes to an active BDNF/TrkB autocrine/paracrine signaling loop in HTLV-1-infected T cells that enhances the survival of these cells. IMPORTANCE Infection with human T-cell leukemia virus type 1 (HTLV-1) can cause a rare form of leukemia designated adult T-cell leukemia (ATL). Because ATL patients are unresponsive to chemotherapy, this malignancy is fatal. As a retrovirus, HTLV-1 integrates its genome into a host cell chromosome in order to utilize host factors for replication and expression of viral proteins. However, in infected cells from ATL patients, the viral genome is frequently modified to block expression of all but a single viral protein. This protein, known as HBZ, is therefore believed to modulate cellular pathways necessary for the leukemic state and the chemotherapeutic resistance of the cell. Here we provide evidence to support this hypothesis. We found that HBZ promotes a BDNF/TrkB autocrine/paracrine signaling pathway that is known to enhance the survival and chemotherapeutic resistance of other types of cancer cells. It is possible that inhibition of this pathway may improve treatments for ATL.
Collapse
|
54
|
Human T-cell leukemia virus type 3 (HTLV-3) and HTLV-4 antisense-transcript-encoded proteins interact and transactivate Jun family-dependent transcription via their atypical bZIP motif. J Virol 2014; 88:8956-70. [PMID: 24872589 DOI: 10.1128/jvi.01094-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human T-cell leukemia virus types 3 and 4 (HTLV-3 and HTLV-4) are recently isolated retroviruses. We have previously characterized HTLV-3- and HTLV-4-encoded antisense genes, termed APH-3 and APH-4, respectively, which, in contrast to HBZ, the HTLV-1 homologue, do not contain a typical bZIP domain (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). As HBZ differentially modulates the transactivation potential of various Jun family members, the effect of APH-3 and APH-4 on JunD-, c-Jun-, and JunB-mediated transcriptional activation was investigated. We first showed that APH-3 and APH-4 upregulated the transactivation potential of all tested Jun family members. Using an human telomerase catalytic subunit (hTERT) promoter construct, our results also highlighted that, unlike HBZ, which solely modulates hTERT expression via JunD, both APH-3 and APH-4 acted positively on the transactivation of the hTERT promoter mediated by tested Jun factors. Coimmunoprecipitation experiments demonstrated that these Jun proteins interacted with APH-3 and APH-4. Although no activation domain was identified for APH proteins, the activation domain of c-Jun was very important in the observed upregulation of its activation potential. We further showed that APH-3 and APH-4 required their putative bZIP-like domains and corresponding leucine residues for interaction and modulation of the transactivation potential of Jun factors. Our results demonstrate that HTLV-encoded antisense proteins behave differently, and that the bZIP-like domains of both APH-3 and APH-4 have retained their interaction potential for Jun members. These studies are important in assessing the differences between HBZ and other antisense proteins, which might further contribute to determining the role of HBZ in HTLV-1-associated diseases. IMPORTANCE HBZ, the antisense transcript-encoded protein from HTLV-1, is now well recognized as a potential factor for adult T-cell leukemia/lymphoma development. In order to better appreciate the mechanism of action of HBZ, comparison to antisense proteins from other HTLV viruses is important. Little is known in relation to the seemingly nonpathogenic HTLV-3 and HTLV-4 viruses, and studies of their antisense proteins are limited to our previously reported study (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). Here, we demonstrate that Jun transcription factors are differently affected by APH-3 and APH-4 compared to HBZ. These intriguing findings suggest that these proteins act differently on viral replication but also on cellular gene expression, and that highlighting their differences of action might lead to important information allowing us to understand the link between HTLV-1 HBZ and ATL in infected individuals.
Collapse
|
55
|
Human T cell leukemia virus type I tax-induced IκB-ζ modulates tax-dependent and tax-independent gene expression in T cells. Neoplasia 2014; 15:1110-24. [PMID: 24027435 DOI: 10.1593/neo.131140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3',5'-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases.
Collapse
|
56
|
Karam M, Thenoz M, Capraro V, Robin JP, Pinatel C, Lancon A, Galia P, Sibon D, Thomas X, Ducastelle-Lepretre S, Nicolini F, El-Hamri M, Chelghoun Y, Wattel E, Mortreux F. Chromatin redistribution of the DEK oncoprotein represses hTERT transcription in leukemias. Neoplasia 2014; 16:21-30. [PMID: 24563617 PMCID: PMC3927101 DOI: 10.1593/neo.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
Abstract
Although numerous factors have been found to modulate hTERT transcription, the mechanism of its repression in certain leukemias remains unknown. We show here that DEK represses hTERT transcription through its enrichment on the hTERT promoter in cells from chronic and acute myeloid leukemias, chronic lymphocytic leukemia, but not acute lymphocytic leukemias where hTERT is overexpressed. We isolated DEK from the hTERT promoter incubated with nuclear extracts derived from fresh acute myelogenous leukemia (AML) cells and from cells expressing Tax, an hTERT repressor encoded by the human T cell leukemia virus type 1. In addition to the recruitment of DEK, the displacement of two potent known hTERT transactivators from the hTERT promoter characterized both AML cells and Tax-expressing cells. Reporter and chromatin immunoprecipitation assays permitted to map the region that supports the repressive effect of DEK on hTERT transcription, which was proportionate to the level of DEK-promoter association but not with the level of DEK expression. Besides hTERT repression, this context of chromatin redistribution of DEK was found to govern about 40% of overall transcriptional modifications, including those of cancer-prone genes. In conclusion, DEK emerges as an hTERT repressor shared by various leukemia subtypes and seems involved in the deregulation of numerous genes associated with leukemogenesis.
Collapse
Affiliation(s)
- Maroun Karam
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Morgan Thenoz
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Valérie Capraro
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Jean-Philippe Robin
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Christiane Pinatel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Agnès Lancon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - Perrine Galia
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| | - David Sibon
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Xavier Thomas
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Sophie Ducastelle-Lepretre
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Nicolini
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Mohamed El-Hamri
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Youcef Chelghoun
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Eric Wattel
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
- Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud 165, Pierre Bénite Cedex, France
| | - Franck Mortreux
- Université de Lyon 1, Centre National pour la Recherche Scientifique UMR5239, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon Cedex, France
| |
Collapse
|
57
|
Iacovides D, Michael S, Achilleos C, Strati K. Shared mechanisms in stemness and carcinogenesis: lessons from oncogenic viruses. Front Cell Infect Microbiol 2013; 3:66. [PMID: 24400225 PMCID: PMC3872316 DOI: 10.3389/fcimb.2013.00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023] Open
Abstract
A rise in technologies for epigenetic reprogramming of cells to pluripotency, highlights the potential of understanding and manipulating cellular plasticity in unprecedented ways. Increasing evidence points to shared mechanisms between cellular reprogramming and the carcinogenic process, with the emerging possibility to harness these parallels in future therapeutics. In this review, we present a synopsis of recent work from oncogenic viruses which contributes to this body of knowledge, establishing a nexus between infection, cancer, and stemness.
Collapse
Affiliation(s)
| | - Stella Michael
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | - Charis Achilleos
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus Nicosia, Cyprus
| |
Collapse
|
58
|
Zhao T, Coutts A, Xu L, Yu J, Ohshima K, Matsuoka M. HTLV-1 bZIP factor supports proliferation of adult T cell leukemia cells through suppression of C/EBPα signaling. Retrovirology 2013; 10:159. [PMID: 24359396 PMCID: PMC3880043 DOI: 10.1186/1742-4690-10-159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 12/11/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus etiologically associated with adult T-cell leukemia (ATL). The HTLV-1 bZIP factor (HBZ), which is encoded by minus strand of provirus, is expressed in all ATL cases and supports the proliferation of ATL cells. However, the precise mechanism of growth promoting activity of HBZ is poorly understood. RESULTS In this study, we showed that HBZ suppressed C/EBPα signaling activation induced by either Tax or C/EBPα. As mechanisms of HBZ-mediated C/EBPα inhibition, we found that HBZ physically interacted with C/EBPα and diminished its DNA binding capacity. Luciferase and immunoprecipitation assays revealed that HBZ repressed C/EBPα activation in a Smad3-dependent manner. In addition, C/EBPα was overexpressed in HTLV-1 infected cell lines and fresh ATL cases. HBZ was able to induce C/EBPα transcription by enhancing its promoter activity. Finally, HBZ selectively modulated the expression of C/EBPα target genes, leading to the impairment of C/EBPα-mediated cell growth suppression. CONCLUSION HBZ, by suppressing C/EBPα signaling, supports the proliferation of HTLV-1 infected cells, which is thought to be critical for oncogenesis.
Collapse
Affiliation(s)
- Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aaron Coutts
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Present address: School of Medicine, The University of Queensland, Herston 4006, Australia
| | - Lingling Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
| | - Juntao Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
59
|
Lairmore MD. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2013; 2:189-208. [PMID: 25384140 DOI: 10.1146/annurev-animal-022513-114117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine leukemia virus (BLV) and human T-lymphotrophic virus type-1 (HTLV-1) are related retroviruses associated with persistent and lifelong infections and a low incidence of lymphomas within their hosts. Both viruses can be spread through contact with bodily fluids containing infected cells, most often from mother to offspring through breast milk. Each of these complex retroviruses contains typical gag, pol, and env genes but also unique, nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the pathogenesis of each virus. Comparisons of BLV and HTLV-1 provide insights into mechanisms of spread and tumor formation, as well as potential approaches to therapeutic intervention against the infections.
Collapse
Affiliation(s)
- Michael D Lairmore
- School of Veterinary Medicine, University of California, Davis, California, 95616;
| |
Collapse
|
60
|
HTLV-1 clonality in adult T-cell leukaemia and non-malignant HTLV-1 infection. Semin Cancer Biol 2013; 26:89-98. [PMID: 24316494 PMCID: PMC4062949 DOI: 10.1016/j.semcancer.2013.11.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/28/2013] [Indexed: 11/21/2022]
Abstract
Human T lymphotropic virus type 1 (HTLV-1) causes a range of chronic inflammatory diseases and an aggressive malignancy of T lymphocytes known as adult T-cell leukaemia/lymphoma (ATLL). A cardinal feature of HTLV-1 infection is the presence of expanded clones of HTLV-1-infected T cells, which may persist for decades. A high viral burden (proviral load) is associated with both the inflammatory and malignant diseases caused by HTLV-1, and it has been believed that the oligoclonal expansion of infected cells predisposes to these diseases. However, it is not understood what regulates the clonality of HTLV-1 in vivo, that is, the number and abundance of HTLV-1-infected T cell clones. We review recent advances in the understanding of HTLV-1 infection and disease that have come from high-throughput quantification and analysis of HTLV-1 clonality in natural infection.
Collapse
|
61
|
Barbeau B, Peloponese JM, Mesnard JM. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 2013; 4:226. [PMID: 23966985 PMCID: PMC3736048 DOI: 10.3389/fmicb.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022] Open
Abstract
The production of antisense transcripts from the 3′ long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5′ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal Montréal, QC, Canada
| | | | | |
Collapse
|
62
|
Borowiak M, Kuhlmann AS, Girard S, Gazzolo L, Mesnard JM, Jalinot P, Dodon MD. HTLV-1 bZIP factor impedes the menin tumor suppressor and upregulates JunD-mediated transcription of the hTERT gene. Carcinogenesis 2013; 34:2664-72. [PMID: 23784080 DOI: 10.1093/carcin/bgt221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomerase activity in cancer cells is dependent on the transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene, encoding the catalytic subunit of human telomerase. We have shown previously that HTLV-1 basic leucine zipper (HBZ), a viral regulatory protein encoded by the human retrovirus, human T-cell leukemia virus, type 1 (HTLV-1) cooperates with JunD to enhance hTERT transcription in adult T-cell leukemia (ATL) cells. Menin, the product of the tumor-suppressor MEN-1 gene, also interacts with JunD, represses its transcriptional activity and downregulates telomerase expression. The main objective of this study was to examine how menin and HBZ get involved in the regulation of hTERT transcription. In this study, we report that JunD and menin form a repressor complex of hTERT transcription in HBZ-negative cells. Conversely, in HBZ-positive cells, the formation of a JunD/HBZ/menin ternary complex and the recruitment of p300 histone acetyl transferase activity by HBZ lead to a decreased activity of the JunD-menin suppressor unit that correlates with the activation of hTERT transcription. Silencing HBZ or menin expression in ATL cells confirms that these proteins are differentially involved in telomerase regulation. These results propose that HBZ, by impeding the tumor-suppressor activity of menin, functions as a leukemogenic cofactor to upregulate gene transcription and promote JunD-mediated leukemogenesis.
Collapse
Affiliation(s)
- Malgorzata Borowiak
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Development of a novel redirected T-cell–based adoptive immunotherapy targeting human telomerase reverse transcriptase for adult T-cell leukemia. Blood 2013; 121:4894-901. [DOI: 10.1182/blood-2012-11-465971] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Key Points
The efficacy and safety of a novel redirected T-cell–based adoptive immunotherapy targeting hTERT for patients with adult T-cell leukemia. hTERT-specific T-cell receptor gene-transduced CD8+ T cells lyse ATL cells, but not normal cells, both in vitro and in vivo.
Collapse
|
64
|
SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma. Blood 2013; 121:3640-9. [DOI: 10.1182/blood-2012-07-441022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Key Points
SOX4 is consistently expressed in ATL, is involved in ATL cell growth, and induces genes such as GCRK, NAP1, and HDAC8 in ATL. FRA-2/JUND and SOX4 form an important oncogenic cascade in ATL, leading to upregulation of genes such as HDAC8.
Collapse
|
65
|
Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J Virol 2013; 87:5089-105. [PMID: 23427159 DOI: 10.1128/jvi.00225-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HIV-1 proteins are synthesized from a single transcript in an unspliced form or following splicing, but the existence of an antisense protein (ASP) expressed from an antisense polyadenylated transcript has been suggested. Difficulties linked to the detection of this protein in mammalian cells led us to codon optimize its cDNA. Codon-optimized ASP was indeed efficiently detected in various transfected cell lines following flow cytometry and confocal microscopy analyses. Western blot analyses also led to the detection of optimized ASP in transfected cells but also provided evidence of its instability and high multimerization potential. ASP was mainly distributed in the cytoplasm in a punctate manner, which was reminiscent of autophagosomes. In agreement with this observation, a significant increase in ASP-positive cells and loss of its punctate distribution was observed in transfected cells when autophagy was inhibited at early steps. Induction of autophagy was confirmed by Western blot analyses that showed an ASP-mediated increase in levels of LC3b-II and Beclin 1, as well as colocalization and interaction between ASP and LC3. Interestingly, Myc-tagged ASP was detected in the context of proviral DNA following autophagy inhibition with a concomitant increase in the level and punctate distribution of LC3b-II. Finally, 3-methyladenine treatment of transfected or infected U937 cells decreased extracellular p24 levels in wild-type proviral DNA and to a much lesser extent in ASP-mutated proviral DNA. This study provides the first detection of ASP in mammalian cells by Western blotting. ASP-induced autophagy might explain the inherent difficulty in detecting this viral protein and might justify its presumed low abundance in infected cells.
Collapse
|
66
|
Hull RP, Srivastava PK, D’Souza Z, Atanur SS, Mechta-Grigoriou F, Game L, Petretto E, Cook HT, Aitman TJ, Behmoaras J. Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages. BMC Genomics 2013; 14:92. [PMID: 23398888 PMCID: PMC3608227 DOI: 10.1186/1471-2164-14-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/01/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The oxidative burst is one of the major antimicrobial mechanisms adopted by macrophages. The WKY rat strain is uniquely susceptible to experimentally induced macrophage-dependent crescentic glomerulonephritis (Crgn). We previously identified the AP-1 transcription factor JunD as a determinant of macrophage activation in WKY bone marrow-derived macrophages (BMDMs). JunD is over-expressed in WKY BMDMs and its silencing reduces Fc receptor-mediated oxidative burst in these cells. RESULTS Here we combined Jund RNA interference with microarray analyses alongside ChIP-sequencing (ChIP-Seq) analyses in WKY BMDMs to investigate JunD-mediated control of macrophage activation in basal and lipopolysaccharide (LPS) stimulated cells. Microarray analysis following Jund silencing showed that Jund activates and represses gene expression with marked differential expression (>3 fold) for genes linked with oxidative stress and IL-1β expression. These results were complemented by comparing whole genome expression in WKY BMDMs with Jund congenic strain (WKY.LCrgn2) BMDMs which express lower levels of JunD. ChIP-Seq analyses demonstrated that the increased expression of JunD resulted in an increased number of binding events in WKY BMDMs compared to WKY.LCrgn2 BMDMs. Combined ChIP-Seq and microarray analysis revealed a set of primary JunD-targets through which JunD exerts its effect on oxidative stress and IL-1β synthesis in basal and LPS-stimulated macrophages. CONCLUSIONS These findings demonstrate how genetically determined levels of a transcription factor affect its binding sites in primary cells and identify JunD as a key regulator of oxidative stress and IL-1β synthesis in primary macrophages, which may play a role in susceptibility to Crgn.
Collapse
Affiliation(s)
- Richard P Hull
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Prashant K Srivastava
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Zelpha D’Souza
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Santosh S Atanur
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | | | - Laurence Game
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - H Terence Cook
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Jacques Behmoaras
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| |
Collapse
|
67
|
Marban C, McCabe A, Bukong TN, Hall WW, Sheehy N. Interplay between the HTLV-2 Tax and APH-2 proteins in the regulation of the AP-1 pathway. Retrovirology 2012. [PMID: 23206352 PMCID: PMC3531308 DOI: 10.1186/1742-4690-9-98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In contrast with human T-cell leukemia virus type 1 (HTLV-1) that causes ATL (adult T-cell leukemia), HTLV-2 has not been causally linked to malignant disease. The minus strand of the HTLV genomes encode the regulatory proteins HTLV-1 bZIP factor (HBZ) for HTLV-1 and antisense protein of HTLV-2 (APH-2) for HTLV-2. Unlike the viral proteins Tax1 and Tax2, both HBZ and APH-2 are constitutively expressed in infected cells suggesting that they may play important roles in the pathogenesis of these viruses. To date, very little is known about the function of APH-2 except that it inhibits Tax2-mediated transcription of HTLV-2 genes. In the present study, we investigated the role of APH-2 in basal and Tax2B-mediated activation of the AP-1 pathway. RESULTS We demonstrate that, unlike HBZ, APH-2 stimulates basal AP-1 transcription by interacting with c-Jun and JunB through its non-conventional bZIP domain. In addition, when Tax2 and APH-2 are co-expressed, they physically interact in vivo and in vitro and APH-2 acts as an inhibitor of Tax2-mediated activation of AP-1 transcription. CONCLUSIONS This report is the first to document that HTLV-2 can modulate the AP-1 pathway. Altogether our results reveal that, in contrast with HBZ, APH-2 regulates AP-1 activity in a Tax2-dependant manner. As the AP-1 pathway is involved in numerous cellular functions susceptible to affect the life cycle of the virus, these distinct biological properties between HBZ and APH-2 may contribute to the differential pathogenic potential of HTLV-1 and HTLV-2.
Collapse
Affiliation(s)
- Céline Marban
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
68
|
Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3' long terminal repeat. J Virol 2012; 86:9070-8. [PMID: 22696638 DOI: 10.1128/jvi.00661-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection with the human T-cell leukemia virus type 1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia (ATL), a fatal malignancy characterized by the uncontrolled proliferation of virally infected CD4(+) T cells. The HTLV-1 basic leucine zipper factor (HBZ) is believed to contribute to development and maintenance of ATL. Unlike the other HTLV-1 genes, the hbz gene is encoded on the complementary strand of the provirus and therefore is not under direct control of the promoter within the 5' long terminal repeat (LTR) of the provirus. This promoter can undergo inactivating genetic or epigenetic changes during the course of ATL that eliminates expression of all viral genes except that of hbz. In contrast, repressive modifications are not known to occur on the hbz promoter located in the 3' LTR, and hbz expression has been consistently detected in all ATL patient samples. Although Sp1 regulates basal transcription from the HBZ promoter, other factors that activate transcription remain undefined. In this study, we used a proviral reporter construct deleted of the 5' LTR to show that HBZ upregulates its own expression through cooperation with JunD. Activation of antisense transcription was apparent in serum-deprived cells in which the level of JunD was elevated, and elimination of JunD expression by gene knockout or shRNA-mediated knockdown abrogated this effect. Activation through HBZ and JunD additionally required Sp1 binding at the hbz promoter. These data favor a model in which JunD is recruited to the promoter through Sp1, where it heterodimerizes with HBZ thereby enhancing its activity. Separately, hbz gene expression led to an increase in JunD abundance, and this effect correlated with emergence of features of transformed cells in immortalized fibroblasts. Overall, our results suggest that JunD represents a novel therapeutic target for the treatment of ATL.
Collapse
|
69
|
Human T-cell leukemia virus type 2 antisense viral protein 2 is dispensable for in vitro immortalization but functions to repress early virus replication in vivo. J Virol 2012; 86:8412-21. [PMID: 22623800 DOI: 10.1128/jvi.00717-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are closely related but pathogenically distinct human retroviruses. The antisense strand of the HTLV-1 genome encodes HTLV-1 basic leucine zipper (b-ZIP) protein (HBZ), a protein that inhibits Tax-mediated viral transcription, enhances T-cell proliferation, and promotes viral persistence. Recently, an HTLV-2 antisense viral protein (APH-2) was identified. Despite its lack of a typical b-ZIP domain, APH-2, like HBZ, interacts with cyclic AMP response element binding protein (CREB) and downregulates Tax-mediated viral transcription. Here, we provide evidence that the APH-2 C-terminal LXXLL motif is important for CREB binding and Tax repression. In order to investigate the functional role of APH-2 in the HTLV-2-mediated immortalization of primary T lymphocytes in vitro and in HTLV-2 infection in vivo, we generated APH-2 mutant viruses. In cell cultures, the immortalization capacities of APH-2 mutant viruses were indistinguishable from that of wild-type HTLV-2 (wtHTLV-2), indicating that, like HBZ, APH-2 is dispensable for viral infection and cellular transformation. In vivo, rabbits inoculated with either wtHTLV-2 or APH-2 mutant viruses established a persistent infection. However, the APH-2 knockout virus displayed an increased replication rate, as measured by an increased viral antibody response and a higher proviral load. In contrast to HTLV-1 HBZ, we show that APH-2 is dispensable for the establishment of an efficient infection and persistence in a rabbit animal model. Therefore, antisense proteins of HTLV-1 and HTLV-2 have evolved different functions in vivo, and further comparative studies will provide fundamental insights into the distinct pathobiologies of these two viruses.
Collapse
|
70
|
Macaire H, Riquet A, Moncollin V, Biémont-Trescol MC, Duc Dodon M, Hermine O, Debaud AL, Mahieux R, Mesnard JM, Pierre M, Gazzolo L, Bonnefoy N, Valentin H. Tax protein-induced expression of antiapoptotic Bfl-1 protein contributes to survival of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cells. J Biol Chem 2012; 287:21357-70. [PMID: 22553204 DOI: 10.1074/jbc.m112.340992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4(+) T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-x(L), and Bcl-2. Indeed, both Bfl-1 and Bcl-x(L) knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-x(L) in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-x(L) represent potential therapeutic targets for ATLL treatment.
Collapse
|
71
|
Zane L, Sibon D, Capraro V, Galia P, Karam M, Delfau-Larue MH, Gilson E, Gessain A, Gout O, Hermine O, Mortreux F, Wattel E. HTLV-1 positive and negative T cells cloned from infected individuals display telomerase and telomere genes deregulation that predominate in activated but untransformed CD4+ T cells. Int J Cancer 2012; 131:821-33. [PMID: 21717459 DOI: 10.1002/ijc.26270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/12/2011] [Indexed: 01/02/2023]
Abstract
Untransformed HTLV-1 positive CD4(+) cells from infected individuals are selected for expressing tax and displaying morphological features consistent with telomere dysfunctions. We show that in resting HTLV-1 positive CD4(+) cells cloned from patients, hTERT expression parallels tax expression and cell cycling. Upon activation, these cells dramatically augment tax expression, whereas their increase in telomerase activity is about 20 times lower than that of their uninfected counterpart. Activated HTLV-1 positive CD4(+) but not uninfected CD4(+) or CD8(+) clones also repress the transcription of TRF1, TPP1, TANK1, POT1, DNA-PKc and Ku80. Both infected and uninfected lymphocytes from infected individuals shared common telomere gene deregulations toward a pattern consistent with premature senescence. ATLL cells displayed the highest telomerase activity (TA) whereas recovered a telomere gene transcriptome close to that of normal CD4(+) cells. In conclusion HTLV-1-dependent telomere modulations seem involved in clonal expansion, immunosuppression, tumor initiation and progression.
Collapse
Affiliation(s)
- Linda Zane
- Université de Lyon, Oncovirologie et Biothérapies, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
73
|
Mensah-Osman EJ, Veniaminova NA, Merchant JL. Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol 2011; 301:G783-90. [PMID: 21852362 PMCID: PMC3220327 DOI: 10.1152/ajpgi.00160.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/16/2011] [Indexed: 01/31/2023]
Abstract
Mutations in the MEN1 gene correlate with multiple endocrine neoplasia I (MEN1). Gastrinomas are the most malignant of the neuroendocrine tumors associated with MEN1. Because menin and JunD proteins interact, we examined whether JunD binds to and regulates the gastrin gene promoter. Both menin and JunD are ubiquitous nuclear proteins that we showed colocalize in the gastrin-expressing G cells of the mouse antrum. Transfection with a JunD expression vector alone induced endogenous gastrin mRNA in AGS human gastric cells, and the induction was blocked by menin overexpression. We mapped repression by menin to both a nonconsensus AP-1 site and proximal GC-rich elements within the human gastrin promoter. Chromatin immunoprecipitation assays, EMSAs, and DNA affinity precipitation assays documented that JunD and Sp1 proteins bind these two elements and are both targets for menin regulation. Consistent with menin forming a complex with histone deacetylases, we found that repression of gastrin gene expression by menin was reversed by trichostatin A. In conclusion, proximal DNA elements within the human gastrin gene promoter mediate interactions between JunD, which induces gastrin gene expression and menin, which suppresses JunD-mediated activation.
Collapse
Affiliation(s)
- Edith J Mensah-Osman
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, 48109-2200, USA
| | | | | |
Collapse
|
74
|
Human T-cell lymphotropic virus type 3 (HTLV-3)- and HTLV-4-derived antisense transcripts encode proteins with similar Tax-inhibiting functions but distinct subcellular localization. J Virol 2011; 85:12673-85. [PMID: 21917984 DOI: 10.1128/jvi.05296-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human T-cell lymphotropic virus (HTLV) retrovirus family is composed of the well-known HTLV type 1 (HTLV-1) and HTLV-2 and the most recently discovered HTLV-3 and HTLV-4. Like other retroviruses, HTLV-1 and HTLV-2 gene expression has been thought to be orchestrated through a single transcript. However, recent reports have demonstrated the unique potential of both HTLV-1 and HTLV-2 to produce an antisense transcript. Furthermore, these unexpected and newly identified transcripts lead to the synthesis of viral proteins termed HBZ (HTLV-1 basic leucine zipper) and APH-2 (antisense protein of HTLV-2), respectively. As potential open reading frames are present on the antisense strand of HTLV-3 and HTLV-4, we tested whether in vitro antisense transcription occurred in these viruses and whether these transcripts had a coding potential. Using HTLV-3 and HTLV-4 proviral DNA constructs, antisense transcripts were detected by reverse transcriptase PCR. These transcripts are spliced and polyadenylated and initiate at multiple sites from the 3' long terminal repeat (LTR). The resulting proteins, termed APH-3 and APH-4, are devoid of a typical basic leucine zipper domain but contain basic amino acid-rich regions. Confocal microscopy and Western blotting experiments demonstrated a nucleus-restricted pattern for APH-4, while APH-3 was localized both in the cytoplasm and in the nucleus. Both proteins showed partial colocalization with nucleoli and HBZ-associated structures. Finally, both proteins inhibited Tax1- and Tax3-mediated HTLV-1 and HTLV-3 LTR activation. These results further demonstrate that retroviral antisense transcription is not exclusive to HTLV-1 and HTLV-2 and that APH-3 and APH-4 could impact HTLV-3 and HTLV-4 replication.
Collapse
|
75
|
Aspects virologiques de l’infection par HTLV-1 et nouveaux concepts thérapeutiques. ACTA ACUST UNITED AC 2011; 104:181-7. [DOI: 10.1007/s13149-011-0161-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/10/2023]
|
76
|
Barbeau B, Mesnard JM. Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 2011; 3:456-68. [PMID: 21994742 PMCID: PMC3185765 DOI: 10.3390/v3050456] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022] Open
Abstract
Retroviral gene expression generally depends on a full-length transcript that initiates in the 5′ long terminal repeat (LTR), which is either unspliced or alternatively spliced. We and others have demonstrated the existence of an antisense transcript initiating in the 3′ LTR of the Human T-cell Leukemia Virus type 1 (HTLV-1) that is involved in the production of HBZ (HTLV-1 basic leucine zipper (bZIP) factor). HBZ is a Fos-like factor capable of inhibiting Tax-mediated activation of the HTLV-1 LTR by interacting with the cellular transcription factor cAMP-response element-binding protein (CREB) and the pleiotropic cellular coactivators p300/CBP. HBZ can also activate cellular transcription through its interaction with p300/CBP. Interestingly, HBZ has also been found to promote T-lymphocyte proliferation. By down-regulating viral expression and by stimulating T-cell proliferation, HBZ could be essential in the establishment of a chronic infection. Antisense transcription also occurs in the closely related HTLV-2 retrovirus as well as in the recently discovered HTLV-3 and HTLV-4. These antisense transcripts are also involved in the production of retroviral proteins that we have termed Antisense Protein of HTLVs (APH). Like HBZ, the APH proteins are localized in the nucleus of transfected cells and repress Tax-mediated viral transcription.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Centre de recherche Bio Med, Université du Québec à Montréal, Montréal (Québec) H2X 3X8, Canada; E-Mail:
| | - Jean-Michel Mesnard
- Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé, Université Montpellier 1, 34293 Montpellier Cedex 5, France
- CNRS, UM5236, CPBS, F-34965 Montpellier, France
- CPBS, Université Montpellier 2, F-34095 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-434-359-440; Fax: +33-434-359-411
| |
Collapse
|
77
|
Cook PR, Polakowski N, Lemasson I. HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP. J Mol Biol 2011; 409:384-98. [PMID: 21497608 DOI: 10.1016/j.jmb.2011.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
The complex retrovirus human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Deregulation of cellular transcription is thought to be an important step for T-cell transformation caused by viral infection. HTLV-1 basic leucine zipper factor (HBZ) is one of the viral proteins believed to be involved in this process, as it deregulates the expression of numerous cellular genes. In the context of the provirus, HBZ represses HTLV-1 transcription, in part, by binding to the homologous cellular coactivators p300 and CBP. These coactivators play a central role in transcriptional regulation. In this study, we determined that HBZ binds with high affinity to the KIX domain of p300/CBP. This domain contains two binding surfaces that are differentially targeted by multiple cellular factors. We show that two φXXφφ motifs in the activation domain of HBZ mediate binding to a single surface of the KIX domain, the mixed-lineage leukemia (MLL) binding surface. Formation of this interaction inhibits binding of MLL to the KIX domain while enhancing the binding of the transcription factor c-Myb to the opposite surface of KIX. Consequently, HBZ inhibits transcriptional activation mediated by MLL and enhances activation mediated by c-Myb. CREB, which binds the same surface of KIX as c-Myb, also exhibited an increase in activity through HBZ. These results indicate that HBZ is able to alter gene expression by competing with transcription factors for the occupancy of one surface of KIX while enhancing the binding of factors to the other surface.
Collapse
Affiliation(s)
- Pamela R Cook
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 278374, USA
| | | | | |
Collapse
|
78
|
Linley AJ, Ahmad M, Rees RC. Tumour-associated antigens: considerations for their use in tumour immunotherapy. Int J Hematol 2011; 93:263-273. [DOI: 10.1007/s12185-011-0783-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 12/19/2022]
|
79
|
Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 2010; 30:1379-89. [PMID: 21119600 DOI: 10.1038/onc.2010.537] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus discovered to be causative of a human cancer, adult T-cell leukemia. The transforming entity of HTLV-1 has been attributed to the virally-encoded oncoprotein, Tax. Unlike the v-onc proteins encoded by other oncogenic animal retroviruses that transform cells, Tax does not originate from a c-onc counterpart. In this article, we review progress in our understanding of HTLV-1 infectivity, cellular transformation, anti-sense transcription and therapy, 30 years after the original discovery of this virus.
Collapse
|
80
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
81
|
Polakowski N, Gregory H, Mesnard JM, Lemasson I. Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain. Retrovirology 2010; 7:61. [PMID: 20653953 PMCID: PMC2918529 DOI: 10.1186/1742-4690-7-61] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/23/2010] [Indexed: 12/28/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators. Results To determine the effects of these interactions on transcription, we performed a preliminary microarray analysis, comparing levels of gene expression in cells with wild-type HBZ versus cells with HBZ mutated in its LXXLL motifs. DKK1, which encodes the secreted Wnt signaling inhibitor, Dickkopf-1 (Dkk1), was confirmed to be transcriptionally activated by HBZ, but not its mutant. Dkk1 plays a major role in the development of bone lesions caused by multiple myeloma. In parallel with the initial findings, activation of Dkk1 expression by HBZ was abrogated by siRNA-mediated knockdown of p300/CBP or by a truncated form of p300 containing the KIX domain. Among HTLV-1-infected T-cell lines tested, the detection of Dkk1 mRNA partially correlated with a threshold level of HBZ mRNA. In addition, an uninfected and an HTLV-1-infected T-cell line transfected with an HBZ expression vector exhibited de novo and increased DKK1 transcription, respectively. In contrast to HBZ, The HTLV-1 Tax protein repressed Dkk1 expression. Conclusions These data indicate that HBZ activates Dkk1 expression through its interaction with p300/CBP. However, this effect is limited in HTLV-1-infected T-cell lines, which in part, may be due to suppression of Dkk1 expression by Tax. Consequently, the ability of HBZ to regulate expression of Dkk1 and possibly other cellular genes may only be significant during late stages of ATL, when Tax expression is repressed.
Collapse
Affiliation(s)
- Nicholas Polakowski
- East Carolina University, Department of Microbiology and Immunology, Brody School of Medicine, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
82
|
Requirement of the human T-cell leukemia virus p12 and p30 products for infectivity of human dendritic cells and macaques but not rabbits. Blood 2010; 116:3809-17. [PMID: 20647569 DOI: 10.1182/blood-2010-05-284141] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The identification of the genes necessary for human T-cell leukemia virus (HTLV-1) persistence in humans may provide targets for therapeutic approaches. We demonstrate that ablation of the HTLV-1 genes encoding p12, p30, or the HBZ protein, does not affect viral infectivity in rabbits and in this species, only the absence of HBZ is associated with a consistent reduction in virus levels. We observed reversion of the HTLV-1 mutants to the HTLV-1 wild-type genotype in none of the inoculated rabbits. In contrast, in macaques, the absence of HBZ was associated with reversion of the mutant virus to the wild-type genotype in 3 of the 4 animals within weeks from infection. Similarly, reversion to the wild type was observed in 2 of the 4 macaque inoculated with the p30 mutant. The 4 macaques exposed to the p12 knock remained seronegative, and only 2 animals were positive at a single time point for viral DNA in tissues. Interestingly, we found that the p12 and the p30 mutants were also severely impaired in their ability to replicate in human dendritic cells. These data suggest that infection of dendritic cells may be required for the establishment and maintenance of HTLV-1 infection in primate species.
Collapse
|
83
|
Matsuoka M. HTLV-1 bZIP factor gene: Its roles in HTLV-1 pathogenesis. Mol Aspects Med 2010; 31:359-66. [PMID: 20599553 DOI: 10.1016/j.mam.2010.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/16/2010] [Accepted: 06/20/2010] [Indexed: 10/19/2022]
Abstract
The HTLV-1 bZIP factor (HBZ) gene is transcribed as an anti-sense transcript of HTLV-1 from the 3' long terminal repeat (LTR). Recent studies showed that the HBZ gene was expressed in all ATL cases, suggesting its critical role in leukemogenesis. In addition, only the HBZ gene sequence remains intact, unaffected by nonsense mutations and deletion. HBZ mRNA promotes proliferation of adult T-cell leukemia (ATL) cells. The HBZ protein has three domains: activation, central, and bZIP domains. HBZ interacts with a variety of cellular factors, and modulates not only cellular functions, but also viral gene transcription from 5'LTR. The complex functions of HBZ modulate T-cells, and promote their proliferation, which is likely indispensable for leukemogenesis by HTLV-1.
Collapse
Affiliation(s)
- Masao Matsuoka
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
84
|
Dolcetti R, De Rossi A. Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev 2010; 32:233-53. [PMID: 20549676 DOI: 10.1002/med.20211] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase is a ribonucleoprotein complex critically involved in extending and maintaining telomeres. Unlike the majority of somatic cells, in which hTERT and telomerase activity are generally silent, normal lymphocytes show transient physiological hTERT expression and telomerase activity according to their differentiation/activation status. During lymphomagenesis, induction of persistent telomerase expression and activity may occur before or after telomere shortening, as a consequence of the different mechanisms through which transforming factors/agents may activate telomerase. Available data indicate that the timing of telomerase activation may allow the distinction of two different lymphomagenetic models: (i) an early activation of telomerase via exogenous regulators of hTERT, along with an increased lymphocyte growth and a subsequent selection of cells with increased transforming potential may characterize several virus-related lymphoid malignancies; (ii) a progressive shortening of telomeres, leading to genetic instability which favors a subsequent activation of telomerase via endogenous regulators may occur in most virus-unrelated lymphoid tumors. These models may have clinically relevant implications, particularly for the tailoring of therapeutic strategies targeting telomerase.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Medical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy.
| | | |
Collapse
|
85
|
Na H, Huisman W, Ellestad KK, Phillips TR, Power C. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production. Virology 2010; 404:246-60. [PMID: 20570310 DOI: 10.1016/j.virol.2010.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.
Collapse
Affiliation(s)
- Hong Na
- Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
86
|
Reinke AW, Grigoryan G, Keating AE. Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry 2010; 49:1985-97. [PMID: 20102225 DOI: 10.1021/bi902065k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- or heterodimers. Several viruses encode proteins containing bZIP domains, including four that encode bZIPs lacking significant homology to any human protein. We investigated the interaction specificity of these four viral bZIPs by using coiled-coil arrays to assess self-associations as well as heterointeractions with 33 representative human bZIPs. The arrays recapitulated reported viral-human interactions and also uncovered new associations. MEQ and HBZ interacted with multiple human partners and had unique interaction profiles compared to any human bZIPs, whereas K-bZIP and BZLF1 displayed homospecificity. New interactions detected included HBZ with MAFB, MAFG, ATF2, CEBPG, and CREBZF and MEQ with NFIL3. These were confirmed in solution using circular dichroism. HBZ can heteroassociate with MAFB and MAFG in the presence of MARE-site DNA, and this interaction is dependent on the basic region of HBZ. NFIL3 and MEQ have different yet overlapping DNA-binding specificities and can form a heterocomplex with DNA. Computational design considering both affinity for MEQ and specificity with respect to other undesired bZIP-type interactions was used to generate a MEQ dimerization inhibitor. This peptide, anti-MEQ, bound MEQ both stably and specifically, as assayed using coiled-coil arrays and circular dichroism in solution. Anti-MEQ also inhibited MEQ binding to DNA. These studies can guide further investigation of the function of viral and human bZIP complexes.
Collapse
Affiliation(s)
- Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
87
|
|
88
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
89
|
Antagonistic effect of the tumor suppressor Menin and the HBZ protein of HTLV-1 on telomerase activity. Retrovirology 2009. [PMCID: PMC2767016 DOI: 10.1186/1742-4690-6-s2-p33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
90
|
Matsuoka M, Green PL. The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 2009; 6:71. [PMID: 19650892 PMCID: PMC2731725 DOI: 10.1186/1742-4690-6-71] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/03/2009] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL) and is also associated with a variety of lymphocyte-mediated diseases. The HTLV-1 basic leucine zipper (HBZ) gene, found to be consistently expressed in ATL, has recently been the subject of intensive research efforts. In this review, we summarize recent findings about HBZ and discuss its roles and functions not only in the virus life cycle, but also in HTLV-1 disease pathogenesis.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | |
Collapse
|
91
|
Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription. Blood 2009; 114:2427-38. [PMID: 19602711 DOI: 10.1182/blood-2008-09-179879] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for "antisense protein of HTLV-2." APH-2 mRNA is spliced, polyadenylated, and initiates in the 3'-long terminal repeat at different positions. This transcript was detected in all HTLV-2-infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2-infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand-encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients.
Collapse
|
92
|
Clerc I, Hivin P, Rubbo PA, Lemasson I, Barbeau B, Mesnard JM. Propensity for HBZ-SP1 isoform of HTLV-I to inhibit c-Jun activity correlates with sequestration of c-Jun into nuclear bodies rather than inhibition of its DNA-binding activity. Virology 2009; 391:195-202. [PMID: 19595408 DOI: 10.1016/j.virol.2009.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/23/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
Abstract
HTLV-I bZIP factor (HBZ) contains a C-terminal zipper domain involved in its interaction with c-Jun. This interaction leads to a reduction of c-Jun DNA-binding activity and prevents the protein from activating transcription of AP-1-dependent promoters. However, it remained unclear whether the negative effect of HBZ-SP1 was due to its weak DNA-binding activity or to its capacity to target cellular factors to transcriptionally-inactive nuclear bodies. To answer this question, we produced a mutant in which specific residues present in the modulatory and DNA-binding domain of HBZ-SP1 were substituted for the corresponding c-Fos amino acids to improve the DNA-binding activity of the c-Jun/HBZ-SP1 heterodimer. The stability of the mutant, its interaction with c-Jun, DNA-binding activity of the resulting heterodimer, and its effect on the c-Jun activity were tested. In conclusion, we demonstrate that the repression of c-Jun activity in vivo is mainly due to the HBZ-SP1-mediated sequestration of c-Jun to the HBZ-NBs.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), France; CNRS, UM5236, CPBS, F-34965 Montpellier, France; Université Montpellier 2, CPBS, F-34095 Montpellier, France
| | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Journo C, Douceron E, Mahieux R. HTLV gene regulation: because size matters, transcription is not enough. Future Microbiol 2009; 4:425-40. [PMID: 19416012 DOI: 10.2217/fmb.09.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite being discovered in animals in the early 20th century, the scientific interest in retroviruses was boosted with the discovery of human retroviruses (human T-leukemia/lymphoma virus [HTLV] and HIV), which are responsible for significant morbidity and mortality. HTLV was identified more than 25 years ago as the etiological agent of adult T-cell leukemia/lymphoma. It was then shown to be a complex retrovirus, given that it not only encodes the characteristic retroviral Gag, Pol and Env proteins, but also regulatory and accessory proteins. Since the first studies documenting the role of these proteins in viral expression, the picture has become increasingly more complex. Indeed, owing to the limited size of its genome that contains overlapping open-reading frames, HTLV has evolved unique ways to regulate its expression. Retroviral expression was originally thought to be mainly controlled through the regulation of transcription from the 5 long-terminal repeats, but we now know that the 3 long-terminal repeats also serve as promoters. Regulation of splicing and mRNA export, and post-translational modifications of viral protein also play a major role. This review discusses the latest insights gained into the field of HTLV gene expression.
Collapse
Affiliation(s)
- Chloé Journo
- Equipe Oncogenèse Rétrovirale, INSERM-U758 Virologie Humaine, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
95
|
Deville L, Hillion J, Ségal-Bendirdjian E. Telomerase regulation in hematological cancers: a matter of stemness? Biochim Biophys Acta Mol Basis Dis 2009; 1792:229-39. [PMID: 19419697 DOI: 10.1016/j.bbadis.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 01/02/2023]
Abstract
Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.
Collapse
Affiliation(s)
- Laure Deville
- INSERM UMR-S 685, Institut d'Hématologie, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| | | | | |
Collapse
|
96
|
Machijima Y, Ishikawa C, Sawada S, Okudaira T, Uchihara JN, Tanaka Y, Taira N, Mori N. Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol. Retrovirology 2009; 6:7. [PMID: 19146708 PMCID: PMC2635345 DOI: 10.1186/1742-4690-6-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATLL) is a malignancy derived from T cells infected with human T-cell leukemia virus type 1 (HTLV-1), and it is known to be resistant to standard anticancer therapies. Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables such as cabbage, broccoli and Brussels sprout, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic and antiestrogenic properties in experimental studies. The aim of this study was to determine the potential anti-ATLL effects of I3C both in vitro and in vivo. Results In the in vitro study, I3C inhibited cell viability of HTLV-1-infected T-cell lines and ATLL cells in a dose-dependent manner. Importantly, I3C did not exert any inhibitory effect on uninfected T-cell lines and normal peripheral blood mononuclear cells. I3C prevented the G1/S transition by reducing the expression of cyclin D1, cyclin D2, Cdk4 and Cdk6, and induced apoptosis by reducing the expression of XIAP, survivin and Bcl-2, and by upregulating the expression of Bak. The induced apoptosis was associated with activation of caspase-3, -8 and -9, and poly(ADP-ribose) polymerase cleavage. I3C also suppressed IκBα phosphorylation and JunD expression, resulting in inactivation of NF-κB and AP-1. Inoculation of HTLV-1-infected T cells in mice with severe combined immunodeficiency resulted in tumor growth. The latter was inhibited by treatment with I3C (50 mg/kg/day orally), but not the vehicle control. Conclusion Our preclinical data suggest that I3C could be potentially a useful chemotherapeutic agent for patients with ATLL.
Collapse
Affiliation(s)
- Yoshiaki Machijima
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
98
|
Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008; 112:3788-97. [PMID: 18689544 DOI: 10.1182/blood-2008-04-154286] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) is dispensable for HTLV-1-mediated cellular transformation in cell culture, but is required for efficient viral infectivity and persistence in rabbits. In most adult T-cell leukemia (ATL) cells, Tax oncoprotein expression is typically low or undetectable, whereas Hbz gene expression is maintained, suggesting that Hbz expression may support infected cell survival and, ultimately, leukemogenesis. Emerging data indicate that HBZ protein can interact with cAMP response element binding protein (CREB) and Jun family members, altering transcription factor binding and transactivation of both viral and cellular promoters. Herein, lentiviral vectors that express Hbz-specific short hairpin (sh)-RNA effectively decreased both Hbz mRNA and HBZ protein expression in transduced HTLV-1-transformed SLB-1 T cells. Hbz knockdown correlated with a significant decrease in T-cell proliferation in culture. Both SLB-1 and SLB-1-Hbz knockdown cells engrafted into inoculated NOD/SCID(gammachain-/-) mice to form solid tumors that also infiltrated multiple tissues. However, tumor formation and organ infiltration were significantly decreased in animals challenged with SLB-1-Hbz knockdown cells. Our data indicate that Hbz expression enhances the proliferative capacity of HTLV-1-infected T cells, playing a critical role in cell survival and ultimately HTLV-1 tumorigenesis in the infected host.
Collapse
|
99
|
Clerc I, Polakowski N, André-Arpin C, Cook P, Barbeau B, Mesnard JM, Lemasson I. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem 2008; 283:23903-13. [PMID: 18599479 DOI: 10.1074/jbc.m803116200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of human T cell leukemia virus type 1 (HTLV-1) transcription is established through the formation of protein complexes on the viral promoter that are essentially composed of the cellular basic leucine zipper (bZIP) transcription factor cAMP-response element-binding protein (CREB (or certain other members of the ATF/CREB family), the HTLV-1-encoded transactivator Tax, and the pleiotropic cellular coactivators p300/CBP. HTLV-1 bZIP factor (HBZ) is a protein encoded by HTLV-1 that contains a bZIP domain and functions to repress HTLV-1 transcription. HBZ has been shown to repress viral transcription by dimerizing with CREB, which occurs specifically through the bZIP domain in each protein, and preventing CREB from binding to the DNA. However, we previously found that HBZ causes only partial removal of CREB from a chromosomally integrated viral promoter, and more importantly, an HBZ mutant lacking the COOH-terminal bZIP domain retains the ability to repress viral transcription. These results suggest that an additional mechanism contributes to HBZ-mediated repression of HTLV-1 transcription. In this study, we show that HBZ binds directly to the p300 and CBP coactivators. Two LXXLL-like motifs located within the NH(2)-terminal region of HBZ are important for this interaction and specifically mediate binding to the KIX domain of p300/CBP. We provide evidence that this interaction interferes with the ability of Tax to bind p300/CBP and thereby inhibits the association of the coactivators with the viral promoter. Our findings demonstrate that HBZ utilizes a bipartite mechanism to repress viral transcription.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1 and CNRS, UM5236, Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
100
|
Usui T, Yanagihara K, Tsukasaki K, Murata K, Hasegawa H, Yamada Y, Kamihira S. Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells. Retrovirology 2008; 5:34. [PMID: 18426605 PMCID: PMC2386809 DOI: 10.1186/1742-4690-5-34] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/22/2008] [Indexed: 11/10/2022] Open
Abstract
Background HTLV-1 causes adult T-cell leukemia (ATL). Although there have been many studies on the oncogenesis of the viral protein Tax, the precise oncogenic mechanism remains to be elucidated. Recently, a new viral factor, HTLV-1 basic Zip factor (HBZ), encoded from the minus strand mRNA was discovered and the current models of Tax-centered ATL cell pathogenesis are in conflict with this discovery. HBZs consisting of non-spliced and spliced isoforms (HBZ-SI) are thought to be implicated in viral replication and T-cell proliferation but there is little evidence on the HBZ expression profile on a large scale. Results To investigate the role of HBZ-SI in HTLV-1 provirus-positive cells, the HBZ-SI and Tax mRNA loads in samples with a mixture of infected and non-infected cells were measured and then adjusted by dividing by the HTLV-I proviral load. We show here that the HBZ-SI mRNA level is 4-fold higher than non-spliced HBZ and is expressed by almost all cells harboring HTLV-1 provirus with variable intensity. The proviral-adjusted HBZ-SI and Tax quantification revealed a characteristic imbalanced expression feature of high HBZ and low Tax expression levels in primary ATL cells or high HBZ and very high Tax levels in HTLV-1-related cell lines (cell lines) compared with a standard expression profile of low HBZ and low Tax in infected cells. Interestingly, according to the mutual Tax and HBZ expression status, HTLV-1-related cell lines were subcategorized into two groups, an ATL cell type with high HBZ and low Tax levels and another type with high Tax and either high or low HBZ, which was closely related to its cell origin. Conclusion This is the first comprehensive study to evaluate the mutual expression profile of HBZ and Tax in provirus-positive cells, revealing that there are quantitative and relative characteristic features among infected cells, primary ATL cells, and cell lines.
Collapse
Affiliation(s)
- Tetsuya Usui
- Department of Laboratory Medicine Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, Japan.
| | | | | | | | | | | | | |
Collapse
|