51
|
Lee SB, Kim JE, Kim HT, Lee GM, Kim BS, Lee JM. Genetic mapping of the c1 locus by GBS-based BSA-seq revealed Pseudo-Response Regulator 2 as a candidate gene controlling pepper fruit color. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1897-1910. [PMID: 32088729 DOI: 10.1007/s00122-020-03565-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
The Pseudo-Response Regulator 2 gene was identified in the c1 locus, representing a genetic factor regulating fruit color in pepper using GBS-based BSA-seq. The loci c1, c2, and y have been widely reported as genetic determinants of various ripe fruit colors in pepper. However, c1, which may impact reduced pigmentation in red, orange, and yellow fruits, is not well understood. Two cultivars showing peach or orange fruit in Capsicum chinense 'Habanero' were found to have c2 mutation and were hypothesized to segregate c1 locus in the F2 population. Habanero peach (HP) showed a reduced level of chlorophylls, carotenoids and total soluble solids in immature and ripe fruits. A microscopic examination of the fruit pericarps revealed smaller plastids and less stacked thylakoid grana in HP. The expression of many genes related to chlorophyll and carotenoid biosynthetic pathways were reduced in HP. To identify the genomic region of the c1 locus, bulked segregant analysis combined with genotyping-by-sequencing was employed on an F2 population derived from a cross between Habanero orange and HP. One SNP at chromosome 1 was strongly associated with the peach fruit color. Pepper Pseudo-Response Regulator 2 (PRR2) was located close to the SNP and cosegregated with the peach fruit color. A 41 bp deletion at the third exon-intron junction region of CcPRR2 in HP resulted in a premature termination codon. A nonsense mutation of CaPRR2 was found in C. annuum 'IT158782' which had white ripe fruit coupled with null mutations of capsanthin-capsorubin synthase (y) and phytoene synthase 1 (c2). These results will be useful for the genetic improvement in fruit color and nutritional quality in pepper.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong Eun Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Hyoung Tae Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Gyu-Myung Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Byung-Soo Kim
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Je Min Lee
- Department of Horticultural Science (BK21 Plus Program), College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
52
|
Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, Tornero P, Alonso JM, López-Díaz I, Gómez MD, Pérez-Amador MA. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1026-1041. [PMID: 31930587 DOI: 10.1111/tpj.14684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Jorge Baños
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Julia Palau-Rodríguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Omar Ruiz-Rivero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State, Raleigh, NC, USA
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Miguel A Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
53
|
Hu W, Figueroa‐Balderas R, Chi‐Ham C, Lagarias JC. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. PLANT DIRECT 2020; 4:e00210. [PMID: 32346668 PMCID: PMC7184922 DOI: 10.1002/pld3.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
The constitutively active missense allele of Arabidopsis phytochrome B, AtPHYBY276H or AtYHB, encodes a polypeptide that adopts a light-insensitive, physiologically active conformation capable of sustaining photomorphogenesis in darkness. Here, we show that the orthologous OsYHB allele of rice phytochrome B (OsPHYBY283H ) also encodes a dominant "constitutively active" photoreceptor through comparative phenotypic analyses of AtYHB and OsYHB transgenic lines of four eudicot species, Arabidopsis thaliana, Nicotiana tabacum (tobacco), Nicotiana sylvestris and Solanum lycopersicum cv. MicroTom (tomato), and of two monocot species, Oryza sativa ssp. japonica and Brachypodium distachyon. Reciprocal transformation experiments show that the gain-of-function constitutive photomorphogenic (cop) phenotypes by YHB expression are stronger in host plants within the same class than across classes. Our studies also reveal additional YHB-dependent traits in adult plants, which include extreme shade tolerance, both early and late flowering behaviors, delayed leaf senescence, reduced tillering, and even viviparous seed germination. However, the strength of these gain-of-function phenotypes depends on the specific combination of YHB allele and species/cultivar transformed. Flowering and tillering of OsYHB- and OsPHYB-expressing lines of rice Nipponbare and Kitaake cultivars were compared, also revealing differences in YHB/PHYB allele versus genotype interaction on the phenotypic behavior of the two rice cultivars. In view of recent evidence that the regulatory activity of AtYHB is not only light insensitive but also temperature insensitive, selective YHB expression is expected to yield improved agronomic performance of both dicot and monocot crop plant species not possible with wild-type PHYB alleles.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Rosa Figueroa‐Balderas
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCAUSA
| | - Cecilia Chi‐Ham
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
| | - J. Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
54
|
Salcedo MF, Colman SL, Mansilla AY, Martínez MA, Fiol DF, Alvarez VA, Casalongué CA. Amelioration of tomato plants cultivated in organic-matter impoverished soil by supplementation with Undaria pinnatifida. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Robledo JM, Medeiros D, Vicente MH, Azevedo AA, Thompson AJ, Peres LEP, Ribeiro DM, Araújo WL, Zsögön A. Control of water-use efficiency by florigen. PLANT, CELL & ENVIRONMENT 2020; 43:76-86. [PMID: 31691316 DOI: 10.1111/pce.13664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought ("drought escape"). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.
Collapse
Affiliation(s)
- Jessenia M Robledo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Aristéa A Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Bedfordshire, UK
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
56
|
Rosado D, Trench B, Bianchetti R, Zuccarelli R, Rodrigues Alves FR, Purgatto E, Segal Floh EI, Silveira Nogueira FT, Freschi L, Rossi M. Downregulation of PHYTOCHROME-INTERACTING FACTOR 4 Influences Plant Development and Fruit Production. PLANT PHYSIOLOGY 2019; 181:1360-1370. [PMID: 31519788 PMCID: PMC6836831 DOI: 10.1104/pp.19.00833] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/04/2019] [Indexed: 05/27/2023]
Abstract
Plant development is highly dependent on the ability to perceive and cope with environmental changes. In this context, PIF proteins are key players in the cellular hub controlling responses to fluctuating light and temperature conditions. Reports in various plant species show that manipulation of the PIF4 level affects important agronomical traits. In tomato (Solanum lycopersicum), SlPIF1a and SlPIF3 regulate fruit nutraceutical composition. However, the wider role of this protein family, and the potential of their manipulation for the improvement of other traits, has not been explored. Here we report the effects of constitutive silencing of tomato SlPIF4 on whole-plant physiology and development. Ripening anticipation and higher carotenoid levels observed in SlPIF4-silenced fruits revealed a redundant role of SlPIF4 in the accumulation of nutraceutical compounds. Furthermore, silencing triggered a significant reduction in plant size, flowering, fruit yield, and fruit size. This phenotype was most likely caused by reduced auxin levels and altered carbon partitioning. Impaired thermomorphogenesis and delayed leaf senescence were also observed in silenced plants, highlighting the functional conservation of PIF4 homologs in angiosperms. Overall, this work improves our understanding of the role of PIF proteins-and light signaling-in metabolic and developmental processes that affect yield and composition of fleshy fruits.
Collapse
Affiliation(s)
- Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Bruna Trench
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | | | - Eduardo Purgatto
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
57
|
Gasparini K, Costa LC, Brito FAL, Pimenta TM, Cardoso FB, Araújo WL, Zsögön A, Ribeiro DM. Elevated CO 2 induces age-dependent restoration of growth and metabolism in gibberellin-deficient plants. PLANTA 2019; 250:1147-1161. [PMID: 31175419 DOI: 10.1007/s00425-019-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The effect of elevated [CO2] on the growth of tomato plants with reduced gibberellin content is influenced by developmental stage. The impact of increased atmospheric carbon dioxide (CO2) on plants has aroused interest in the last decades. Signaling molecules known as plant hormones are fundamental controllers of plant growth and development. Elevated CO2 concentration ([CO2]) increases plant growth; however, whether plant hormones act as mediators of this effect is still an open question. Here, we show the response to elevated [CO2] in tomato does not require a functional gibberellin (GA) biosynthesis pathway. We compared growth and primary metabolism between wild-type (WT) and GA-deficient mutant (gib-1) plants transferred from ambient (400 ppm) to elevated (750 ppm) [CO2] at two different growth stages (either 21 or 35 days after germination, DAG). Growth, photosynthetic parameters and primary metabolism in the stunted gib-1 plants were restored when they were transferred to elevated [CO2] at 21 DAG. Elevated [CO2] also stimulated growth and photosynthetic parameters in WT plants at 21 DAG; however, only minor changes were observed in the level of primary metabolites. At 35 DAG, on the other hand, elevated [CO2] did not stimulate growth in WT plants and gib-1 mutants showed their characteristic stunted growth phenotype. Taken together, our results reveal that elevated [CO2] enhances growth only within a narrow developmental window, in which GA biosynthesis is dispensable. This finding could be relevant for breeding crops in the face of the expected increases in atmospheric CO2 over the next century.
Collapse
Affiliation(s)
- Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| |
Collapse
|
58
|
Pinheiro TT, Peres LEP, Purgatto E, Latado RR, Maniero RA, Martins MM, Figueira A. Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant. PLANT CELL REPORTS 2019; 38:623-636. [PMID: 30737538 DOI: 10.1007/s00299-019-02393-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 05/22/2023]
Abstract
Complementation of the "Micro-Tom" tomato tangerine mutant with a Citrus CRTISO allele restores the wild-type fruit carotenoid profile, indicating that the Citrus allele encodes an authentic functional carotenoid isomerase. Citrus fruits are rich in carotenoids; the genus offers a large diversity in composition, yet to be fully explored to improve fruit nutritional quality. As perennial tree species, Citrus lack the resources for functional genetic studies, requiring the use of model plant systems. Here, we used the "Micro-Tom" (MT) tomato carrying the tangerine mutation (t), deficient for the carotenoid isomerase (CRTISO) gene, to functionally characterize the homologous C. sinensis genes. We identified four putative loci in the C. sinensis genome, named CsCRTISO, CsCRTISO-Like 1, CsCRTISO-Like 2, and CsCRTISO-Like 2B, with the latter as a presumed duplication of CRTISO-Like 2. In general, all the Citrus paralogs showed less expression specialization than the tomato ones, with CsCRTISO being the most expressed gene in all tissues analyzed. MT-t plants were successfully complemented with the CsCRTISO, and fruits showed a carotenoid profile similar to the control, indicating that the Citrus allele indeed encodes an authentic functional carotenoid isomerase and that the signal peptide is functional in tomato. MT was silenced using an inverted repeat of a fragment from the Citrus CRTISO resulting in a stronger phenotype than MT-t. MT-t and MT silenced for CRTISO presented an overall decrease in transcript accumulation of all genes from the biosynthesis pathway. The expression of the Citrus CRTISO gene is able to restore the biosynthesis of carotenoids with the appropriate regulation in MT-t. The decrease in transcript accumulation in MT-t and MT-CRTISO-suppressed lines reinforces previous suggestions that transcriptional regulation of the carotenoid biosynthesis involves regulatory loops by intermediate products.
Collapse
Affiliation(s)
- Thaísa T Pinheiro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Lázaro E P Peres
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Biológicas, Universidade de São Paulo, Av. Pádua Dias 11, CP 09, Piracicaba, SP, 13418-900, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo R Latado
- Centro APTA Citros "Sylvio Moreira", Instituto Agronômico, Rodovia Anhanguera, km 158, CP 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Rodolfo A Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Mônica M Martins
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, CP 96, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
59
|
Barbosa MAM, Chitwood DH, Azevedo AA, Araújo WL, Ribeiro DM, Peres LEP, Martins SCV, Zsögön A. Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance. PLANT, CELL & ENVIRONMENT 2019; 42:1575-1589. [PMID: 30523629 DOI: 10.1111/pce.13495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light-saturated rates of photosynthesis, Amax ) and water transport capacity (leaf hydraulic conductance, Kleaf ). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near-isogenic lines grown at two different irradiance levels. Kleaf , minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax , leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes ) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long-term water-use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.
Collapse
Affiliation(s)
- Maria Antonia M Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 48824, East Lansing, MI, USA
| | - Aristéa A Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
60
|
Batista-Silva W, Medeiros DB, Rodrigues-Salvador A, Daloso DM, Omena-Garcia RP, Oliveira FS, Pino LE, Peres LEP, Nunes-Nesi A, Fernie AR, Zsögön A, Araújo WL. Modulation of auxin signalling through DIAGETROPICA and ENTIRE differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:448-465. [PMID: 30066402 DOI: 10.1111/pce.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Acácio Rodrigues-Salvador
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franciele Santos Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lilian Ellen Pino
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
61
|
Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, Notini MM, Junior AC, De Jesus FA, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres LEP, Nogueira FTS. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. THE NEW PHYTOLOGIST 2019; 221:1328-1344. [PMID: 30238569 DOI: 10.1111/nph.15492] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.
Collapse
Affiliation(s)
- Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Airton C Junior
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Frederico A De Jesus
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Pollyanna Castilho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
62
|
Chen Y, Rofidal V, Hem S, Gil J, Nosarzewska J, Berger N, Demolombe V, Bouzayen M, Azhar BJ, Shakeel SN, Schaller GE, Binder BM, Santoni V, Chervin C. Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:1054. [PMID: 31555314 PMCID: PMC6727826 DOI: 10.3389/fpls.2019.01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Ethylene regulates fruit ripening and several plant functions (germination, plant growth, plant-microbe interactions). Protein quantification of ethylene receptors (ETRs) is essential to study their functions, but is impaired by low resolution tools such as antibodies that are mostly nonspecific, or the lack of sensitivity of shotgun proteomic approaches. We developed a targeted proteomic method, to quantify low-abundance proteins such as ETRs, and coupled this to mRNAs analyses, in two tomato lines: Wild Type (WT) and Never-Ripe (NR) which is insensitive to ethylene because of a gain-of-function mutation in ETR3. We obtained mRNA and protein abundance profiles for each ETR over the fruit development period. Despite a limiting number of replicates, we propose Pearson correlations between mRNA and protein profiles as interesting indicators to discriminate the two genotypes: such correlations are mostly positive in the WT and are affected by the NR mutation. The influence of putative post-transcriptional and post-translational changes are discussed. In NR fruits, the observed accumulation of the mutated ETR3 protein between ripening stages (Mature Green and Breaker + 8 days) may be a cause of NR tomatoes to stay orange. The label-free quantitative proteomics analysis of membrane proteins, concomitant to Parallel Reaction Monitoring analysis, may be a resource to study changes over tomato fruit development. These results could lead to studies about ETR subfunctions and interconnections over fruit development. Variations of RNA-protein correlations may open new fields of research in ETR regulation. Finally, similar approaches may be developed to study ETRs in whole plant development and plant-microorganism interactions.
Collapse
Affiliation(s)
- Yi Chen
- GBF, Université de Toulouse, INRA, Toulouse, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Julie Gil
- GBF, Université de Toulouse, INRA, Toulouse, France
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Beenish J. Azhar
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Samina N. Shakeel
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Véronique Santoni
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| | - Christian Chervin
- GBF, Université de Toulouse, INRA, Toulouse, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| |
Collapse
|
63
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Tormos-Moltó S, Pérez-Pérez JM. Morphological Characterization of Root System Architecture in Diverse Tomato Genotypes during Early Growth. Int J Mol Sci 2018; 19:E3888. [PMID: 30563085 PMCID: PMC6321557 DOI: 10.3390/ijms19123888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Plant roots exploit morphological plasticity to adapt and respond to different soil environments. We characterized the root system architecture of nine wild tomato species and four cultivated tomato (Solanum lycopersicum L.) varieties during early growth in a controlled environment. Additionally, the root system architecture of six near-isogenic lines from the tomato 'Micro-Tom' mutant collection was also studied. These lines were affected in key genes of ethylene, abscisic acid, and anthocyanin pathways. We found extensive differences between the studied lines for a number of meaningful morphological traits, such as lateral root distribution, lateral root length or adventitious root development, which might represent adaptations to local soil conditions during speciation and subsequent domestication. Taken together, our results provide a general quantitative framework for comparing root system architecture in tomato seedlings and other related species.
Collapse
Affiliation(s)
| | | | - Sergio Tormos-Moltó
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
- OQOTECH Process Validation System, 03801 Alcoy, Spain.
| | | |
Collapse
|
64
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
65
|
Shinozaki Y, Ezura K, Hu J, Okabe Y, Bénard C, Prodhomme D, Gibon Y, Sun TP, Ezura H, Ariizumi T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci Rep 2018; 8:12043. [PMID: 30104574 PMCID: PMC6089951 DOI: 10.1038/s41598-018-30502-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
Parthenocarpy, or pollination-independent fruit set, is an attractive trait for fruit production and can be induced by increased responses to the phytohormone gibberellin (GA), which regulates diverse aspects of plant development. GA signaling in plants is negatively regulated by DELLA proteins. A loss-of-function mutant of tomato DELLA (SlDELLA), procera (pro) thus exhibits enhanced GA-response phenotypes including parthenocarpy, although the pro mutation also confers some disadvantages for practical breeding. This study identified a new milder hypomorphic allele of SlDELLA, procera-2 (pro-2), which showed weaker GA-response phenotypes than pro. The pro-2 mutant contains a single nucleotide substitution, corresponding to a single amino acid substitution in the SAW subdomain of the SlDELLA. Accumulation of the mutated SlDELLA transcripts in wild-type (WT) resulted in parthenocarpy, while introduction of intact SlDELLA into pro-2 rescued mutant phenotypes. Yeast two-hybrid assays revealed that SlDELLA interacted with three tomato homologues of GID1 GA receptors with increasing affinity upon GA treatment, while their interactions were reduced by the pro and pro-2 mutations. Both pro and pro-2 mutants produced higher fruit yields under high temperature conditions, which were resulted from higher fruit set efficiency, demonstrating the potential for genetic parthenocarpy to improve yield under adverse environmental conditions.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Duyen Prodhomme
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
66
|
Li Y, Lu Y, Li L, Chu Z, Zhang H, Li H, Fernie AR, Ouyang B. Impairment of hormone pathways results in a general disturbance of fruit primary metabolism in tomato. Food Chem 2018; 274:170-179. [PMID: 30372923 DOI: 10.1016/j.foodchem.2018.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/13/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Fruit metabolites are regulated by different phytohormones; however, this needs to be investigated. Dynamic metabolite profiling, based on gas chromatography-mass spectrometry, has been conducted on the fruit of tomato cultivar Micro-Tom and its five hormone mutants: dpy, not, dgt, epi and pro. In total, 48 metabolites were quantified, including sugars, organic acids and amino acids. The results demonstrated that ABA had a greater effect on the regulation of primary metabolism in tomato fruit, while ethylene can play an important role in the transition of primary to secondary metabolism. Besides, results from enzyme activities and transcript abundance involved in primary metabolism suggested that AIV and HXK4 could play key roles in the accumulation of the main sugars. To the best of our knowledge, this is the first comprehensive analysis of the link between hormone and metabolite change during fruit development in a collection of mutants with diverse hormone pathways.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Lili Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuannan Chu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany.
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
67
|
Ernesto Bianchetti R, Silvestre Lira B, Santos Monteiro S, Demarco D, Purgatto E, Rothan C, Rossi M, Freschi L. Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis, and carotenoid metabolism in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3573-3586. [PMID: 29912373 PMCID: PMC6022544 DOI: 10.1093/jxb/ery145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 05/05/2023]
Abstract
Light signaling has long been reported to influence fruit biology, although the regulatory impact of fruit-localized photoreceptors on fruit development and metabolism remains unclear. Studies performed in phytochrome (PHY)-deficient tomato (Solanum lycopersicum) mutants suggest that SlPHYA, SlPHYB2, and to a lesser extent SlPHYB1 influence fruit development and ripening. By employing fruit-specific RNAi-mediated silencing of SlPHY genes, we demonstrated that fruit-localized SlPHYA and SlPHYB2 play contrasting roles in regulating plastid biogenesis and maturation in tomato. Our data revealed that fruit-localized SlPHYA, rather than SlPHYB1 or SlPHYB2, positively influences tomato plastid differentiation and division machinery via changes in both light and cytokinin signaling-related gene expression. Fruit-localized SlPHYA and SlPHYB2 were also shown to modulate sugar metabolism in early developing fruits via overlapping, yet distinct, mechanisms involving the co-ordinated transcriptional regulation of genes related to sink strength and starch biosynthesis. Fruit-specific SlPHY silencing also drastically altered the transcriptional profile of genes encoding light-repressor proteins and carotenoid-biosynthesis regulators, leading to reduced carotenoid biosynthesis during fruit ripening. Together, our data reveal the existence of an intricate PHY-hormonal interplay during fruit development and ripening, and provide conclusive evidence on the regulation of tomato quality by fruit-localized phytochromes.
Collapse
Affiliation(s)
- Ricardo Ernesto Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Scarlet Santos Monteiro
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, São Paulo, Brazil
| | - Christophe Rothan
- INRA, Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Correspondence:
| |
Collapse
|
68
|
Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM. Nitro-oxidative metabolism during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3449-3463. [PMID: 29304200 DOI: 10.1093/jxb/erx453] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 05/21/2023]
Abstract
Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and complex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes during the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide (H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO-), and S-nitrosothiols (SNOs), interact to regulate protein functions through post-translational modifications. In light of these recent discoveries, this review provides an update on the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential biotechnological applications of these substances to promote further improvements in fruit ripening regulation and nutritional quality. In addition, we suggest that the term 'nitro-oxidative eustress' with regard to fruit ripening would be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Paulo T Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Florianópolis, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
69
|
Silva WB, Vicente MH, Robledo JM, Reartes DS, Ferrari RC, Bianchetti R, Araújo WL, Freschi L, Peres LEP, Zsögön A. SELF-PRUNING Acts Synergistically with DIAGEOTROPICA to Guide Auxin Responses and Proper Growth Form. PLANT PHYSIOLOGY 2018; 176:2904-2916. [PMID: 29500181 PMCID: PMC5884583 DOI: 10.1104/pp.18.00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 05/10/2023]
Abstract
The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER1, a phosphatidylethanolamine-binding protein with antiflorigenic activity in Arabidopsis (Arabidopsis thaliana). A spontaneous loss-of-function mutation (sp) has been bred into several industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature, and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses, such as gravitropic curvature and elongation of excised hypocotyl segments. We also demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp mutants. Furthermore, diageotropica, a mutation in a gene encoding a cyclophilin A protein, appears to confer epistatic effects with sp Our results indicate that SP affects the tomato growth habit at least in part by influencing auxin transport and responsiveness. These findings suggest potential novel targets that could be manipulated for controlling plant growth habit and improving productivity.
Collapse
Affiliation(s)
- Willian B Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Jessenia M Robledo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Diego S Reartes
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Renata C Ferrari
- Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | - Ricardo Bianchetti
- Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, CEP 05508-900, São Paulo, SP, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
70
|
Rajabu CA, Kennedy GG, Ndunguru J, Ateka EM, Tairo F, Hanley-Bowdoin L, Ascencio-Ibáñez JT. Lanai: A small, fast growing tomato variety is an excellent model system for studying geminiviruses. J Virol Methods 2018. [PMID: 29530481 PMCID: PMC5904752 DOI: 10.1016/j.jviromet.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Florida Lanai is a tomato variety suitable for virus-host interaction studies. Florida-Lanai was infected by geminiviruses delivered by different methods. Florida-Lanai shows distinct measurable symptoms for different geminiviruses. Florida-Lanai has a small size, rapid growth and is easy to maintain. Florida-Lanai is an excellent choice for comparing geminivirus infections.
Geminiviruses are devastating single-stranded DNA viruses that infect a wide variety of crops in tropical and subtropical areas of the world. Tomato, which is a host for more than 100 geminiviruses, is one of the most affected crops. Developing plant models to study geminivirus-host interaction is important for the design of virus management strategies. In this study, “Florida Lanai” tomato was broadly characterized using three begomoviruses (Tomato yellow leaf curl virus, TYLCV; Tomato mottle virus, ToMoV; Tomato golden mosaic virus, TGMV) and a curtovirus (Beet curly top virus, BCTV). Infection rates of 100% were achieved by agroinoculation of TYLCV, ToMoV or BCTV. Mechanical inoculation of ToMoV or TGMV using a microsprayer as well as whitefly transmission of TYLCV or ToMoV also resulted in 100% infection frequencies. Symptoms appeared as early as four days post inoculation when agroinoculation or bombardment was used. Symptoms were distinct for each virus and a range of features, including plant height, flower number, fruit number, fruit weight and ploidy, was characterized. Due to its small size, rapid growth, ease of characterization and maintenance, and distinct responses to different geminiviruses, “Florida Lanai” is an excellent choice for comparing geminivirus infection in a common host.
Collapse
Affiliation(s)
- C A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA; Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - G G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC, 27695, USA
| | - J Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - E M Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - F Tairo
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - L Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA
| | - J T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Polk Hall 132, Box 7622, NCSU Campus, Raleigh NC, 27695, USA.
| |
Collapse
|
71
|
Gaion LA, Monteiro CC, Cruz FJR, Rossatto DR, López-Díaz I, Carrera E, Lima JE, Peres LEP, Carvalho RF. Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:11-21. [PMID: 29223878 DOI: 10.1016/j.jplph.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 05/07/2023]
Abstract
Plants are sessile organisms that must perceive and respond to various environmental constraints throughout their life cycle. Among these constraints, drought stress has become the main limiting factor to crop production around the world. Water deprivation is perceived primarily by the roots, which efficiently signal the shoot to trigger drought responses in order to maximize a plant's ability to survive. In this study, the tomato (Solanum lycopersicum L.) mutant procera (pro), with a constitutive response to gibberellin (GA), and its near isogenic line cv. Micro-Tom (MT), were used in reciprocal grafting under well-watered and water stress conditions to evaluate the role of GA signaling in root-to-shoot communication during drought stress. Growth, oxidative stress, gene expression, water relations and hormonal content were measured in order to provide insights into GA-mediated adjustments to water stress. All graft combinations with pro (i.e. pro/pro, MT/pro and pro/MT) prevented the reduction of growth under stress conditions without a reduction in oxidative stress. The increase of oxidative stress was followed by upregulation of SlDREB2, a drought-tolerance related gene, in all drought-stressed plants. Scions harboring the pro mutation tended to increase the abscisic acid (ABA) content, independent of the rootstock. Moreover, the GA sensitivity of the rootstock modulated stomatal conductance and water use efficiency under drought stress, indicating GA and ABA crosstalk in the adjustment of growth and water economy.
Collapse
Affiliation(s)
- Lucas Aparecido Gaion
- Department of Biology Applied to Agriculture, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | - Carolina Cristina Monteiro
- Department of Biology Applied to Agriculture, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | - Flávio José Rodrigues Cruz
- Department of Biology Applied to Agriculture, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | - Davi Rodrigo Rossatto
- Department of Biology Applied to Agriculture, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil
| | - Isabel López-Díaz
- Institute for Plant Molecular and Cellular Biology (IBMCP), CSIC-UPV, Carrer de l'Enginyer Fausto Elio 46011, Valencia, Spain
| | - Esther Carrera
- Institute for Plant Molecular and Cellular Biology (IBMCP), CSIC-UPV, Carrer de l'Enginyer Fausto Elio 46011, Valencia, Spain
| | - Joni Esrom Lima
- Botany Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Minas Gerais, Brazil
| | | | - Rogério Falleiros Carvalho
- Department of Biology Applied to Agriculture, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, 14884-900, Jaboticabal, Brazil.
| |
Collapse
|
72
|
Cruz AB, Bianchetti RE, Alves FRR, Purgatto E, Peres LEP, Rossi M, Freschi L. Light, Ethylene and Auxin Signaling Interaction Regulates Carotenoid Biosynthesis During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:1370. [PMID: 30279694 PMCID: PMC6153336 DOI: 10.3389/fpls.2018.01370] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/29/2018] [Indexed: 05/17/2023]
Abstract
Light signaling and plant hormones, particularly ethylene and auxins, have been identified as important regulators of carotenoid biosynthesis during tomato fruit ripening. However, whether and how the light and hormonal signaling cascades crosstalk to control this metabolic route remain poorly elucidated. Here, the potential involvement of ethylene and auxins in the light-mediated regulation of tomato fruit carotenogenesis was investigated by comparing the impacts of light treatments and the light-hyperresponsive high pigment-2 (hp2) mutation on both carotenoid synthesis and hormonal signaling. Under either light or dark conditions, the overaccumulation of carotenoids in hp2 ripening fruits was associated with disturbed ethylene production, increased expression of genes encoding master regulators of ripening and higher ethylene sensitivity and signaling output. The increased ethylene sensitivity observed in hp2 fruits was associated with the differential expression of genes encoding ethylene receptors and downstream signaling transduction elements, including the downregulation of the transcription factor ETHYLENE RESPONSE FACTOR.E4, a repressor of carotenoid synthesis. Accordingly, treatments with exogenous ethylene promoted carotenoid biosynthetic genes more intensively in hp2 than in wild-type fruits. Moreover, the loss of HP2 function drastically altered auxin signaling in tomato fruits, resulting in higher activation of the auxin-responsive promoter DR5, severe down-regulation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes and altered accumulation of AUXIN RESPONSE FACTOR (ARF) transcripts. Both tomato ARF2 paralogues (Sl-ARF2a and SlARF2b) were up-regulated in hp2 fruits, which agrees with the promotive roles played by these ARFs in tomato fruit ripening and carotenoid biosynthesis. Among the genes differentially expressed in hp2 fruits, the additive effect of light treatment and loss of HP2 function was particularly evident for those encoding carotenoid biosynthetic enzymes, ethylene-related transcription factors, Aux/IAAs and ARFs. Altogether, the data uncover the involvement of ethylene and auxin as part of the light signaling cascades controlling tomato fruit metabolism and provide a new link between light signaling, plant hormone sensitivity and carotenoid metabolism in ripening fruits.
Collapse
Affiliation(s)
- Aline Bertinatto Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Lazaro Eustaquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz", Universidade de São Paulo, Piracicaba, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Luciano Freschi,
| |
Collapse
|
73
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
74
|
Bianchetti RE, Cruz AB, Oliveira BS, Demarco D, Purgatto E, Peres LEP, Rossi M, Freschi L. Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Sci Rep 2017; 7:7822. [PMID: 28798491 PMCID: PMC5552807 DOI: 10.1038/s41598-017-08448-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Phytochomes and plant hormones have been emerging as important regulators of fleshy fruit biology and quality traits; however, the relevance of phytochrome-hormonal signaling crosstalk in controlling fruit development and metabolism remains elusive. Here, we show that the deficiency in phytochrome chromophore phytochromobilin (PΦB) biosynthesis inhibits sugar accumulation in tomato (Solanum lycopersicum) fruits by transcriptionally downregulating sink- and starch biosynthesis-related enzymes, such as cell-wall invertases, sucrose transporters and ADP-glucose pyrophosphorylases. PΦB deficiency was also shown to repress fruit chloroplast biogenesis, which implicates more limited production of photoassimilates via fruit photosynthesis. Genetic and physiological data revealed the involvement of auxins and cytokinins in mediating the negative impact of PΦB deficiency on fruit sink strength and chloroplast formation. PΦB deficiency was shown to transcriptionally repress type-A TOMATO RESPONSE REGULATORs and AUXIN RESPONSE FACTORs both in pericarp and columella, suggesting active phytochrome-hormonal signaling crosstalk in these tissues. Data also revealed that PΦB deficiency influences fruit ripening by delaying the climacteric rise in ethylene production and signaling. Altogether, the data uncover the impact of phytochromobilin deficiency in fine-tuning sugar metabolism, chloroplast formation and the timing of fruit ripening and also reveal a link between auxins, cytokinins and phytochromes in regulating sugar import and accumulation in fruits.
Collapse
Affiliation(s)
- Ricardo Ernesto Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Aline Bertinatto Cruz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Bruna Soares Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-900, São Paulo, Brazil.
| |
Collapse
|
75
|
Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:35-47. [PMID: 28483052 DOI: 10.1016/j.plantsci.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departament of Plant Biology, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Geraldo Felipe Ferreira E Silva
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Frederico Almeida de Jesus
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lucas Cutri
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Cassia Regina Fernandes Figueiredo
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Francisco André Ossamu Tanaka
- Departament of Phytopathology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP),Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Fábio Tebaldi Silveira Nogueira
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
76
|
Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Arch Microbiol 2017; 199:787-798. [PMID: 28283681 DOI: 10.1007/s00203-017-1354-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.
Collapse
|
77
|
Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. PROTOPLASMA 2017; 254:771-783. [PMID: 27263082 DOI: 10.1007/s00709-016-0989-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
There is a very effective cross-talk between signals triggered by reactive oxygen species and hormonal responses in plants, activating proteins/enzymes likely to be involved in stress tolerance. Abscisic acid (ABA) is known as a stress hormone that takes part in the integration of signals. This work aimed to characterize the biochemical response and ultrastructural changes induced by cadmium (Cd) in the Micro-Tom (MT) sitiens ABA-deficient mutant (sit) and its wild-type (MT) counterpart. MT and sit plants were grown over a 96-h period in the presence of Cd (0, 10, and 100 μM CdCl2). The overall results indicated increases in lipid peroxidation, hydrogen peroxide content and in the activities of the key antioxidant enzymes such as catalase, glutathione reductase, and ascorbate peroxidase in both genotypes. On the other hand, no alteration was observed in chlorophyll content, while the activity of another antioxidant enzyme, superoxide dismutase, remained constant or even decreased in the presence of Cd. Roots and shoots of the sit mutant and MT were analyzed by light and transmission electron microscopy in order to characterize the structural changes caused by the exposure to this metal. Cd caused a decrease in intercellular spaces in shoots and a decrease in cell size in roots of both genotypes. In leaves, Cd affected organelle shape and internal organization of the thylakoid membranes, whereas noticeable increase in the number of mitochondria and vacuoles in MT and sit roots were observed. These results add new information that should help unravel the relative importance of ABA in regulating the cell responses to stressful conditions induced by Cd apart from providing the first characterization of this mutant to oxidative stress.
Collapse
Affiliation(s)
- Georgia B Pompeu
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil
| | - Milca B Vilhena
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil
| | - Priscila L Gratão
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias-FCAV, Universidade Estadual Paulista-UNESP, 14884-900, Jaboticabal, SP, Brazil
| | - Rogério F Carvalho
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias-FCAV, Universidade Estadual Paulista-UNESP, 14884-900, Jaboticabal, SP, Brazil
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura-CENA, Universidade de São Paulo-USP, 13400-970, Piracicaba, SP, Brazil
| | - Adriana P Martinelli
- Centro de Energia Nuclear na Agricultura-CENA, Universidade de São Paulo-USP, 13400-970, Piracicaba, SP, Brazil
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
78
|
Zsögön A, Cermak T, Voytas D, Peres LEP. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:120-130. [PMID: 28167025 DOI: 10.1016/j.plantsci.2016.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Collapse
Affiliation(s)
- Agustin Zsögön
- Laboratory of Molecular Plant Physiology, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tomas Cermak
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
79
|
Zuccarelli R, Coelho ACP, Peres LEP, Freschi L. Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 2017; 68:77-90. [PMID: 28109803 DOI: 10.1016/j.niox.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Aline C P Coelho
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Lazaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil.
| |
Collapse
|
80
|
Garcia V, Bres C, Just D, Fernandez L, Tai FWJ, Mauxion JP, Le Paslier MC, Bérard A, Brunel D, Aoki K, Alseekh S, Fernie AR, Fraser PD, Rothan C. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 2016; 11:2401-2418. [PMID: 27809315 DOI: 10.1038/nprot.2016.143] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.
Collapse
Affiliation(s)
- Virginie Garcia
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Cécile Bres
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Lucie Fernandez
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Fabienne Wong Jun Tai
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Marie-Christine Le Paslier
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Aurélie Bérard
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Dominique Brunel
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christophe Rothan
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
81
|
Melo NKG, Bianchetti RE, Lira BS, Oliveira PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings. PLANT PHYSIOLOGY 2016; 170:2278-94. [PMID: 26829981 PMCID: PMC4825133 DOI: 10.1104/pp.16.00023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 05/19/2023]
Abstract
The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.
Collapse
Affiliation(s)
- Nielda K G Melo
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Ricardo E Bianchetti
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Bruno S Lira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Paulo M R Oliveira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Rafael Zuccarelli
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Devisson L O Dias
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Diego Demarco
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Lazaro E P Peres
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Magdalena Rossi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Luciano Freschi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| |
Collapse
|
82
|
Flores P, Hernández V, Hellín P, Fenoll J, Cava J, Mestre T, Martínez V. Metabolite profile of the tomato dwarf cultivar Micro-Tom and comparative response to saline and nutritional stresses with regard to a commercial cultivar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1562-1570. [PMID: 25974114 DOI: 10.1002/jsfa.7256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/15/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The dwarf tomato variety Micro-Tom has been used as a plant model for studies of plant development. However, its response to environmental and agricultural factors has not been well studied. This work studies the phytochemical content of Micro-Tom tomato and its comparative response to saline and nutritional (N, K and Ca) stresses with regard to a commercial variety. RESULTS The chromatographic profiles of Micro-Tom were similar to those of the commercial variety and the only differences appear to be the concentration of the components. In Micro-Tom, the concentrations of sugars and organic acids increased by salinity in a lesser extent than in Optima. Moreover, contrary to that observed in the commercial variety, phenolic compounds and vitamin C did not increase by salinity in the dwarf variety. However, both varieties increased similarly the concentrations of carotenoids under saline conditions. Finally, fruit yield and most primary and secondary metabolite concentrations in Micro-Tom were not affected by N, K or Ca limitation. CONCLUSIONS The mutations leading to the dwarf phenotype did not greatly alter the metabolite profiles but studies using Micro-Tom as a plant model should consider the lower capacity for sugars and organic acids under saline conditions and the greater tolerance to nutrient limitation of the dwarf variety.
Collapse
Affiliation(s)
- Pilar Flores
- Murcia Institute of Agri-Food Research and Development (IMIDA), c/ Mayor s/n, La Alberca, Murcia, Spain
- Unidad Asociada al CSIC Grupo de Fertirriego y Calidad Hortofrutícola (IMIDA-CEBAS), Murcia, Spain
| | - Virginia Hernández
- Murcia Institute of Agri-Food Research and Development (IMIDA), c/ Mayor s/n, La Alberca, Murcia, Spain
| | - Pilar Hellín
- Murcia Institute of Agri-Food Research and Development (IMIDA), c/ Mayor s/n, La Alberca, Murcia, Spain
- Unidad Asociada al CSIC Grupo de Fertirriego y Calidad Hortofrutícola (IMIDA-CEBAS), Murcia, Spain
| | - Jose Fenoll
- Murcia Institute of Agri-Food Research and Development (IMIDA), c/ Mayor s/n, La Alberca, Murcia, Spain
- Unidad Asociada al CSIC Grupo de Fertirriego y Calidad Hortofrutícola (IMIDA-CEBAS), Murcia, Spain
| | - Juana Cava
- Murcia Institute of Agri-Food Research and Development (IMIDA), c/ Mayor s/n, La Alberca, Murcia, Spain
| | - Teresa Mestre
- Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 164, E-30100, Murcia, Spain
| | - Vicente Martínez
- Unidad Asociada al CSIC Grupo de Fertirriego y Calidad Hortofrutícola (IMIDA-CEBAS), Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 164, E-30100, Murcia, Spain
| |
Collapse
|
83
|
Folta A, Bargsten JW, Bisseling T, Nap JP, Mlynarova L. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:581-91. [PMID: 25974127 PMCID: PMC11388966 DOI: 10.1111/pbi.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.
Collapse
Affiliation(s)
- Adam Folta
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Joachim W Bargsten
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan-Peter Nap
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| | - Ludmila Mlynarova
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
84
|
Shikata M, Hoshikawa K, Ariizumi T, Fukuda N, Yamazaki Y, Ezura H. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. PLANT & CELL PHYSIOLOGY 2016; 57:e11. [PMID: 26719120 DOI: 10.1093/pcp/pcv194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 05/19/2023]
Abstract
TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs.
Collapse
Affiliation(s)
- Masahito Shikata
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Ken Hoshikawa
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Tohru Ariizumi
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Naoya Fukuda
- Agricultural and Forestry Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hiroshi Ezura
- Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
85
|
Rothan C, Just D, Fernandez L, Atienza I, Ballias P, Lemaire-Chamley M. Culture of the Tomato Micro-Tom Cultivar in Greenhouse. Methods Mol Biol 2016; 1363:57-64. [PMID: 26577781 DOI: 10.1007/978-1-4939-3115-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France. .,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Lucie Fernandez
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Isabelle Atienza
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Patricia Ballias
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et Pathologie, 71 avenue Edouard Bourlaux, BP81, 33140, Villenave d'Ornon, France.,Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, 33140, Villenave d'Ornon, France
| |
Collapse
|
86
|
González-Aguilera KL, Saad CF, Chávez Montes RA, Alves-Ferreira M, de Folter S. Selection of Reference Genes for Quantitative Real-Time RT-PCR Studies in Tomato Fruit of the Genotype MT-Rg1. FRONTIERS IN PLANT SCIENCE 2016; 7:1386. [PMID: 27679646 PMCID: PMC5021083 DOI: 10.3389/fpls.2016.01386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/31/2016] [Indexed: 05/20/2023]
Abstract
Quantitative real-time RT-PCR (qRT-PCR) has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L.) cultivar Micro-Tom (MT) is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed, and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 and APETALA2c during fruit development are comparable to previous reports using other tomato cultivars.
Collapse
Affiliation(s)
- Karla L. González-Aguilera
- Unidad de Genómica Avanzada – Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Carolina F. Saad
- Laboratório de Genética Molecular Vegetal, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Ricardo A. Chávez Montes
- Unidad de Genómica Avanzada – Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Marcio Alves-Ferreira
- Laboratório de Genética Molecular Vegetal, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Stefan de Folter
- Unidad de Genómica Avanzada – Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
- *Correspondence: Stefan de Folter,
| |
Collapse
|
87
|
Watts-Williams SJ, Cavagnaro TR. Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review. MYCORRHIZA 2015; 25:587-97. [PMID: 25862569 DOI: 10.1007/s00572-015-0639-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/18/2015] [Indexed: 05/03/2023]
Abstract
A significant challenge facing the study of arbuscular mycorrhiza is the establishment of suitable non-mycorrhizal treatments that can be compared with mycorrhizal treatments. A number of options are available, including soil disinfection or sterilisation, comparison of constitutively mycorrhizal and non-mycorrhizal plant species, comparison of plants grown in soils with different inoculum potential and the comparison of mycorrhiza-defective mutant genotypes with their mycorrhizal wild-type progenitors. Each option has its inherent advantages and limitations. Here, the potential to use mycorrhiza-defective mutant and wild-type genotype plant pairs as tools to study the functioning of mycorrhiza is reviewed. The emphasis of this review is placed on non-legume plant species, as mycorrhiza-defective plant genotypes in legumes have recently been extensively reviewed. It is concluded that non-legume mycorrhiza-defective mutant and wild-type pairs are useful tools in the study of mycorrhiza. However, the mutant genotypes should be well characterised and, ideally, meet a number of key criteria. The generation of more mycorrhiza-defective mutant genotypes in agronomically important plant species would be of benefit, as would be more research using these genotype pairs, especially under field conditions.
Collapse
Affiliation(s)
- Stephanie J Watts-Williams
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Timothy R Cavagnaro
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
88
|
Martínez-Bello L, Moritz T, López-Díaz I. Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5897-910. [PMID: 26093022 PMCID: PMC4566981 DOI: 10.1093/jxb/erv300] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate a wide range of developmental processes in plants. Levels of active GAs are regulated by biosynthetic and catabolic enzymes like the GA 2-oxidases (GA2oxs). In tomato (Solanum lycopersicum L.) C19 GA2oxs are encoded by a small multigenic family of five members with some degree of redundancy. In order to investigate their roles in tomato, the silencing of all five genes in transgenic plants was induced. A significant increase in active GA4 content was found in the ovaries of transgenic plants. In addition, the transgenic unfertilized ovaries were much bigger than wild-type ovaries (about 30 times) and a certain proportion (5-37%) were able to develop parthenocarpically. Among the GA2ox family, genes GA2ox1 and -2 seem to be the most relevant for this phenotype since their expression was induced in unfertilized ovaries and repressed in developing fruits, inversely correlating with ovary growth. Interestingly, transgenic lines exhibited a significant inhibition of branching and a higher content of active GA4 in axillary buds. This phenotype was reverted, in transgenic plants, by the application of paclobutrazol, a GA biosynthesis inhibitor, suggesting a role for GAs as repressors of branching. In summary, this work demonstrates that GA 2-oxidases regulate gibberellin levels in ovaries and axillary buds of tomato plants and their silencing is responsible for parthenocarpic fruit growth and branching inhibition.
Collapse
Affiliation(s)
- Liliam Martínez-Bello
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, S-90183 Umeå, Sweden
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
89
|
Shinozaki Y, Hao S, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei Z, Zhong S, Giovannoni JJ, Rose JKC, Okabe Y, Heta Y, Ezura H, Ariizumi T. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:237-51. [PMID: 25996898 DOI: 10.1111/tpj.12882] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
Fruit set in angiosperms marks the transition from flowering to fruit production and a commitment to seed dispersal. Studies with Solanum lycopersicum (tomato) fruit have shown that pollination and subsequent fertilization induce the biosynthesis of several hormones, including auxin and gibberellins (GAs), which stimulate fruit set. Circumstantial evidence suggests that the gaseous hormone ethylene may also influence fruit set, but this has yet to be substantiated with molecular or mechanistic data. Here, we examined fruit set at the biochemical and genetic levels, using hormone and inhibitor treatments, and mutants that affect auxin or ethylene signaling. The expression of system-1 ethylene biosynthetic genes and the production of ethylene decreased during pollination-dependent fruit set in wild-type tomato and during pollination-independent fruit set in the auxin hypersensitive mutant iaa9-3. Blocking ethylene perception in emasculated flowers, using either the ethylene-insensitive Sletr1-1 mutation or 1-methylcyclopropene (1-MCP), resulted in elongated parthenocarpic fruit and increased cell expansion, whereas simultaneous treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) inhibited parthenocarpy. Additionally, the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to pollinated ovaries reduced fruit set. Furthermore, Sletr1-1 parthenocarpic fruits did not exhibit increased auxin accumulation, but rather had elevated levels of bioactive GAs, most likely reflecting an increase in transcripts encoding the GA-biosynthetic enzyme SlGA20ox3, as well as a reduction in the levels of transcripts encoding the GA-inactivating enzymes SlGA2ox4 and SlGA2ox5. Taken together, our results suggest that ethylene plays a role in tomato fruit set by suppressing GA metabolism.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Shuhei Hao
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuko Ozeki-Iida
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Silin Zhong
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- U.S. Department of Agriculture/Agriculture Research Service, Robert W. Holley Centre for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yoshihiro Okabe
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Yumi Heta
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Environmental Sciences, Gene Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| |
Collapse
|
90
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
91
|
Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). JOURNAL OF PLANT PHYSIOLOGY 2015; 177:11-19. [PMID: 25659332 DOI: 10.1016/j.jplph.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Collapse
Affiliation(s)
- Mateus Henrique Vicente
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Ariadne Felicio Lopo de Sá
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), R. Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
92
|
Zsögön A, Negrini ACA, Peres LEP, Nguyen HT, Ball MC. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). THE NEW PHYTOLOGIST 2015; 205:618-26. [PMID: 25267094 DOI: 10.1111/nph.13084] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/22/2014] [Indexed: 05/05/2023]
Abstract
Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
93
|
Schwarz D, Thompson AJ, Kläring HP. Guidelines to use tomato in experiments with a controlled environment. FRONTIERS IN PLANT SCIENCE 2014; 5:625. [PMID: 25477888 PMCID: PMC4235429 DOI: 10.3389/fpls.2014.00625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 10/22/2014] [Indexed: 05/04/2023]
Abstract
Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar "Heinz 1706" (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10-35°C, relative humidity 30-90%, and, CO2 concentration 200-1500 μmol mol(-1). Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners.
Collapse
Affiliation(s)
- Dietmar Schwarz
- Department of Plant Nutrition, Leibniz Institute for Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Andrew J. Thompson
- Reader in Molecular Plant Science, School of Energy, Environment and Agrifood, Cranfield UniversityCranfield, UK
| | - Hans-Peter Kläring
- Department of Modelling and Knowledge Transfer, Leibniz Institute for Vegetable and Ornamental CropsGroßbeeren, Germany
| |
Collapse
|
94
|
Larbat R, Paris C, Le Bot J, Adamowicz S. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:62-73. [PMID: 24908507 DOI: 10.1016/j.plantsci.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/09/2023]
Abstract
Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant.
Collapse
Affiliation(s)
- Romain Larbat
- INRA UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Cédric Paris
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Jacques Le Bot
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| | - Stéphane Adamowicz
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| |
Collapse
|
95
|
Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, Le Paslier MC, Brunel D, Suda K, Minakuchi Y, Toyoda A, Fujiyama A, Toyoshima H, Suzuki T, Igarashi K, Rothan C, Kaminuma E, Nakamura Y, Yano K, Aoki K. Genome-wide analysis of intraspecific DNA polymorphism in 'Micro-Tom', a model cultivar of tomato (Solanum lycopersicum). PLANT & CELL PHYSIOLOGY 2014; 55:445-54. [PMID: 24319074 DOI: 10.1093/pcp/pct181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.
Collapse
Affiliation(s)
- Masaaki Kobayashi
- Faculty of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, 214-8571 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis 2013. [DOI: 10.1007/s13199-013-0251-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
97
|
Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, Marshall A, Jayasuta S, Baxter C, van Wijk R, Boyden L, Cade R, Chapman NH, Fraser PD, Hodgman C, Seymour GB. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. PLANT PHYSIOLOGY 2013; 161:1476-85. [PMID: 23292788 PMCID: PMC3585610 DOI: 10.1104/pp.112.212654] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/03/2013] [Indexed: 05/18/2023]
Abstract
Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.
Collapse
|
98
|
Aoki K, Ogata Y, Igarashi K, Yano K, Nagasaki H, Kaminuma E, Toyoda A. Functional genomics of tomato in a post-genome-sequencing phase. BREEDING SCIENCE 2013; 63:14-20. [PMID: 23641177 PMCID: PMC3621439 DOI: 10.1270/jsbbs.63.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/18/2012] [Indexed: 05/23/2023]
Abstract
Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv 'Heinz 1706' serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding.
Collapse
Affiliation(s)
- Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka 599-8531, Japan
| | - Kaori Igarashi
- School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Hideki Nagasaki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Eli Kaminuma
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
99
|
Okabe Y, Ariizumi T, Ezura H. Updating the Micro-Tom TILLING platform. BREEDING SCIENCE 2013; 63:42-8. [PMID: 23641180 PMCID: PMC3621444 DOI: 10.1270/jsbbs.63.42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/25/2012] [Indexed: 05/25/2023]
Abstract
The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
100
|
Arikita FN, Azevedo MS, Scotton DC, Pinto MDS, Figueira A, Peres LEP. Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:121-130. [PMID: 23265325 DOI: 10.1016/j.plantsci.2012.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/16/2012] [Accepted: 11/17/2012] [Indexed: 06/01/2023]
Abstract
Tomato (Solanum lycopersicum L.) is an attractive model to study the genetic basis of adventitious organ formation capacity, since there is considerable natural genetic variation among wild relatives. Using a set of 46 introgression lines (ILs), each containing a small chromosomal segment of Solanum pennellii LA716 introgressed and mapped into the tomato cultivar M82, we characterized a high shoot-regeneration capacity for ILs 3-2, 6-1, 7-1, 7-2, 8-2, 8-3, 9-1, 9-2, 10-2 and 10-3, when cotyledon explants were cultivated on medium containing 5.0μM BAP. F1 seedlings from the crosses 'Micro-Tom×ILs' and 'ILs×ILs' demonstrated that the shoot regeneration capacity of most ILs was dominant and that the regeneration ability of IL8-3 enhanced that of the other ILs in an additive manner. The ILs 3-2, 7-1, 8-3, and 10-2 also exhibited enhanced root formation on MS medium containing 0.4μM NAA, indicating that these chromosomal segments may contain genes controlling the competence to assume distinct cell fates, rather than the induction of a specific organ. We also performed the introgression of the genes controlling competence into the model system 'Micro-Tom'. The further isolation of such genes will improve our understanding of the molecular basis of organogenic capacity.
Collapse
Affiliation(s)
- Fernanda Namie Arikita
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, Brazil
| | | | | | | | | | | |
Collapse
|