51
|
Bisht A, Bhalla S, Kumar A, Kaur J, Garg N. Gene expression analysis for selection and validation of suitable housekeeping gene(s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:592-602. [PMID: 33773234 DOI: 10.1016/j.plaphy.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The expression stability of six commonly used housekeeping genes (18S rRNA-18S ribosomal RNA, EF1α-elongation factor 1α, ACT1-Actin 1, GAPDH-Glyceraldehyde-3-phosphate dehydrogenase, TUB6-Tubulin/FtsZ family and UBC-Ubiquitin-conjugating enzyme) were scrutinized in leaves and roots of Cd stressed pigeonpea plants inoculated with arbuscular mycorrhizal (AM) species- Rhizoglomus intraradices (Ri), Funneliformis mosseae (Fm), Claroideoglomus etunicatum (Ce), C. claroideum (Cc). The stability profile of each gene was assessed using ΔCt, BestKeeper, NormFinder, RefFinder and geNorm algorithmic programs, which ranked different genes as most and least stable according to the tissues analysed. All the statistical algorithms ranked TUB6 as most stable and EF1α least stable housekeeping (HK) genes in both the plant tissues. The selected HK genes were verified using metallothionein (CcMT1) i.e. a stress responsive gene, whose expression altered under conditions of metal stress and AM inoculation. The expression pattern of CcMT1 varied highly when least stable reference gene was used for normalization as compared to most stable gene, under different treatments. Thus, there is a need of selecting suitable reference gene to achieve reliable results in gene expression studies using quantitative real time PCR (qRT-PCR). The study conducted will help future gene expression analysis in pigeonpea under specific stress.
Collapse
Affiliation(s)
- Aditi Bisht
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Shyna Bhalla
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh-160025, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh-160025, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
52
|
Seth R, Maritim TK, Parmar R, Sharma RK. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). HORTICULTURE RESEARCH 2021; 8:99. [PMID: 33931616 PMCID: PMC8087774 DOI: 10.1038/s41438-021-00532-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The most daunting issue of global climate change is the deleterious impact of extreme temperatures on tea productivity and quality, which has resulted in a quest among researchers and growers. The current study aims to unravel molecular programming underpinning thermotolerance by characterizing heat tolerance and sensitivity response in 20 tea cultivars. The significantly higher negative influence of heat stress was recorded in a sensitive cultivar with reduced water retention (47%), chlorophyll content (33.79%), oxidation potential (32.48%), and increase in membrane damage (76.4%). Transcriptional profiling of most tolerant and sensitive cultivars identified 78 differentially expressed unigenes with chaperon domains, including low and high molecular weight heat shock protein (HSP) and heat shock transcription factors (HSFs) involved in heat shock response (HSR). Further, predicted transcriptional interactome network revealed their key role in thermotolerance via well-co-ordinated transcriptional regulation of aquaporins, starch metabolism, chlorophyll biosynthesis, calcium, and ethylene mediated plant signaling system. The study identified the key role of HSPs (CsHSP90) in regulating HSR in tea, wherein, structure-based molecular docking revealed the inhibitory role of geldanamycin (GDA) on CsHSP90 by blocking ATP binding site at N-terminal domain of predicted structure. Subsequently, GDA mediated leaf disc inhibitor assay further affirmed enhanced HSR with higher expression of CsHSP17.6, CsHSP70, HSP101, and CsHSFA2 genes in tea. Through the current study, efforts were made to extrapolate a deeper understanding of chaperons mediated regulation of HSR attributing thermotolerance in tea.
Collapse
Affiliation(s)
- Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India
- Tea breeding and genetic improvement division, KALRO-Tea Research Institute, Box 820, 20200, Kericho, Kenya
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
53
|
Integrated Metabolomics and Transcriptomics Using an Optimised Dual Extraction Process to Study Human Brain Cancer Cells and Tissues. Metabolites 2021; 11:metabo11040240. [PMID: 33919944 PMCID: PMC8070957 DOI: 10.3390/metabo11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Collapse
|
54
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
55
|
Thakur V, Bains S, Kaur R, Singh K. Identification and characterization of SlbHLH, SlDof and SlWRKY transcription factors interacting with SlDPD gene involved in costunolide biosynthesis in Saussurea lappa. Int J Biol Macromol 2021; 173:146-159. [PMID: 33482203 DOI: 10.1016/j.ijbiomac.2021.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
The genes involved in costunolide biosynthesis in Saussurea lappa have been identified recently by our lab. However, the study of transcriptional regulators of these genes was lacking for better opportunities for engineering the pharmacologically important biosynthetic pathway. Therefore, we cloned the promoter region of diphosphomevalonate decarboxylase gene (DPD) and analyzed its cis-acting regulatory elements to reveal the potential transcription factor (TF) binding sites for Dof, bHLH and WRKY family proteins in the gene promoter. The transcriptome study approach followed by the hidden Markov model based search, digital gene expression, co-expression network analysis, conserved domain properties and evolutionary analyses were carried out to screen out seven putative TFs for the DPD-TF interaction studies. Yeast one-hybrid assays were performed and three TFs were reported, namely, SlDOF2, SlbHLH3 and SlWRKY2 from Dof, bHLH and WRKY families, respectively that interacted positively with the DPD gene of the costunolide biosynthetic pathway. The tissue specific relative gene expression studies also supported the linked co-expression of the gene and its interacting TFs The present report will improve the understanding of transcriptional regulation pattern of costunolide biosynthetic pathway.
Collapse
Affiliation(s)
- Vasundhara Thakur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Savita Bains
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
56
|
Maritim TK, Masand M, Seth R, Sharma RK. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2021; 11:1244. [PMID: 33441891 PMCID: PMC7806957 DOI: 10.1038/s41598-020-80437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purple-tea, an anthocyanin rich cultivar has recently gained popularity due to its health benefits and captivating leaf appearance. However, the sustainability of purple pigmentation and anthocyanin content during production period is hampered by seasonal variation. To understand seasonal dependent anthocyanin pigmentation in purple tea, global transcriptional and anthocyanin profiling was carried out in tea shoots with two leaves and a bud harvested during in early (reddish purple: S1_RP), main (dark gray purple: S2_GP) and backend flush (moderately olive green: S3_G) seasons. Of the three seasons, maximum accumulation of total anthocyanin content was recorded in S2_GP, while least amount was recorded during S3_G. Reference based transcriptome assembly of 412 million quality reads resulted into 71,349 non-redundant transcripts with 6081 significant differentially expressed genes. Interestingly, key DEGs involved in anthocyanin biosynthesis [PAL, 4CL, F3H, DFR and UGT/UFGT], vacuolar trafficking [ABC, MATE and GST] transcriptional regulation [MYB, NAC, bHLH, WRKY and HMG] and Abscisic acid signaling pathway [PYL and PP2C] were significantly upregulated in S2_GP. Conversely, DEGs associated with anthocyanin degradation [Prx and lac], repressor TFs and key components of auxin and ethylene signaling pathways [ARF, AUX/IAA/SAUR, ETR, ERF, EBF1/2] exhibited significant upregulation in S3_G, correlating positively with reduced anthocyanin content and purple coloration. The present study for the first-time elucidated genome-wide transcriptional insights and hypothesized the involvement of anthocyanin biosynthesis activators/repressor and anthocyanin degrading genes via peroxidases and laccases during seasonal induced leaf color transition in purple tea. Futuristically, key candidate gene(s) identified here can be used for genetic engineering and molecular breeding of seasonal independent anthocyanin-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.,Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Mamta Masand
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
57
|
Abstract
Isolation of high-quality RNA directly from tissues is desirable to obtain precise information of in vivo gene expression profiles in cells embedded within their extracellular matrix (ECM). It is well known that purification of RNA from cartilage tissues is particularly challenging due to low cell (chondrocyte) content and its dense ECM rich in large negatively charged proteoglycans that can copurify with RNA. Older methodologies to purify RNA from cartilage involved the use of concentrated denaturing solutions containing guanidinium isothiocyanate followed by ultracentrifugation in cesium trifluoroacetate. Such ultracentrifugation approaches are rarely used now since the emergence of more user-friendly mini spin column chromatography kits. For this chapter, we tested and compared three methods to isolate RNA from immature murine articular (femoral head) cartilage and found that the combination of TRIzol® reagent and spin column chromatography (Norgen Total RNA Purification Kit) was the best approach to generate higher quality RNA. Here, the average RNA Integrity Number (RIN), as determined by Bioanalyzer technology, was 7.1. We then applied this method to attempt to isolate RNA directly from human articular cartilage harvested from three osteoarthritic (OA) knee joint specimens. As expected, the concentration and quality of RNA obtained differed between samples. However, from one specimen, we were able to isolate approximately 3 μg of total RNA (including small noncoding RNAs) from 100 mg of human OA cartilage with a RIN = 7.9. Despite the patient-to-patient variabilities that are known to exist between cartilage specimens from OA joints, we have demonstrated that it is possible to obtain reasonably high levels of RNA from human OA articular cartilage at a quality suitable for downstream analyses including microarray and RNA-Seq. A detailed description of our preferred RNA purification methodology, which can be used to isolate RNA from human, bovine, or rodent cartilage tissue, is provided in this chapter.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Shriners Hospital for Children-St Louis, St Louis, MO, USA.
| |
Collapse
|
58
|
Maritim TK, Seth R, Parmar R, Sharma RK. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics 2020; 113:305-316. [PMID: 33321202 DOI: 10.1016/j.ygeno.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/18/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Tea quality is a polygenic trait that exhibits tremendous genetic variability due to accumulation of array of secondary metabolites. To elucidate global molecular insights controlling quality attributes, metabolite profiling and transcriptome sequencing of twelve diverse tea cultivars was performed in tea shoots harvested during quality season. RP-HPLC-DAD analysis of quality parameters revealed significant difference in catechins, theanine and caffeine contents. Transcriptome sequencing resulted into 50,107 non-redundant transcripts with functional annotations of 81.6% (40,847) of the transcripts. Interestingly, 2872 differentially expressed transcripts exhibited significant enrichment in 38 pathways (FDR ≤ 0.05) including secondary metabolism, amino acid and carbon metabolism. Thirty-eight key candidates reportedly involved in biosynthesis of fatty acid derived volatiles, volatile terpenes, glycoside hydrolysis and key quality related pathways (flavonoid, caffeine and theanine-biosynthesis) were highly expressed in catechins-rich tea cultivars. Furthermore, enrichment of candidates involved in flavonoid biosynthesis, transcriptional regulation, volatile terpene and biosynthesis of fatty acid derived volatile in Protein-Protein Interactome network revealed well-coordinated regulation of quality characteristics in tea. Additionally, ascertainment of 23,649 non-synonymous SNPs and validation of candidate SNPs present in quality related genes suggests their potential utility in genome-wide mapping and marker development for expediting breeding of elite compound-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India; Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
59
|
Dhiman N, Kumar A, Kumar D, Bhattacharya A. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Sci Rep 2020; 10:17186. [PMID: 33057076 PMCID: PMC7560736 DOI: 10.1038/s41598-020-74049-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
The study is the first report on de novo transcriptome analysis of Nardostachys jatamansi, a critically endangered medicinal plant of alpine Himalayas. Illumina GAIIx sequencing of plants collected during end of vegetative growth (August) yielded 48,411 unigenes. 74.45% of these were annotated using UNIPROT. GO enrichment analysis, KEGG pathways and PPI network indicated simultaneous utilization of leaf photosynthates for flowering, rhizome fortification, stress response and tissue-specific secondary metabolites biosynthesis. Among the secondary metabolite biosynthesis genes, terpenoids were predominant. UPLC-PDA analysis of in vitro plants revealed temperature-dependent, tissue-specific differential distribution of various phenolics. Thus, as compared to 25 °C, the phenolic contents of both leaves (gallic acid and rutin) and roots (p-coumaric acid and cinnamic acid) were higher at 15 °C. These phenolics accounted for the therapeutic properties reported in the plant. In qRT-PCR of in vitro plants, secondary metabolite biosynthesis pathway genes showed higher expression at 15 °C and 14 h/10 h photoperiod (conditions representing end of vegetative growth period). This provided cues for in vitro modulation of identified secondary metabolites. Such modulation of secondary metabolites in in vitro systems can eliminate the need for uprooting N. jatamansi from wild. Hence, the study is a step towards effective conservation of the plant.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
60
|
Wu Q, Zang F, Xie X, Ma Y, Zheng Y, Zang D. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis. Sci Rep 2020; 10:16249. [PMID: 33004908 PMCID: PMC7530656 DOI: 10.1038/s41598-020-73289-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Populus wulianensis is an endangered species endemic to Shandong Province, China. Despite the economic and ornamental value of this species, few genomics and genetic studies have been performed. In this study, we performed a relevant analysis of the full-length transcriptome sequencing data of P. wulianensis and obtained expressed sequence tag (EST)-simple sequence repeat (SSR) markers with polymorphisms that can be used for further genetic research. In total, 8.18 Gb (3,521,665) clean reads with an average GC content of 42.12% were obtained. From the corrected 64,737 high-quality isoforms, 42,323 transcript sequences were obtained after redundancy analysis with CD-HIT. Among these transcript sequences, 41,876 sequences were annotated successfully. A total of 23,539 potential EST-SSRs were identified from 16,057 sequences. Excluding mononucleotides, the most abundant motifs were trinucleotide SSRs (47.80%), followed by di- (46.80%), tetra- (2.98%), hexa- (1.58%) and pentanucleotide SSRs (0.84%). Among the 100 designed EST-SSRs, 18 were polymorphic with high PIC values (0.721 and 0.683) and could be used for analyses of the genetic diversity and population structure of P. wulianensis. These full-length transcriptome sequencing data will facilitate gene discovery and functional genomics research in P. wulianensis, and the novel EST-SSRs developed in our study will promote molecular-assisted breeding, genetic diversity and conservation biology research in this species.
Collapse
Affiliation(s)
- Qichao Wu
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Fengqi Zang
- Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Xiaoman Xie
- Center for Forest Genetic Resources of Shandong Province, Jinan, 250014, People's Republic of China
| | - Yan Ma
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Yongqi Zheng
- Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Dekui Zang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
61
|
Barsain BL, Purohit A, Kumar A, Joshi R, Hallan V, Yadav SK. PkGPPS.SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa: Molecular insights into the picroside biosynthetic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:115-128. [PMID: 32554175 DOI: 10.1016/j.plaphy.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Geranyl geranyl pyrophosphate synthase (GGPPS) is known to form an integral subunit of the heteromeric GPPS (geranyl pyrophosphate synthase) complex and catalyzes the biosynthesis of monoterpene in plants. Picrorhiza kurrooa Royle ex Benth., a medicinally important high altitude plant is known for picroside biomolecules, the monoterpenoids. However, the significance of heteromeric GPPS in P. kurrooa still remains obscure. Here, transient silencing of PkGGPPS was observed to reduce picroside-I (P-I) content by more than 60% as well as picroside-II (P-II) by more than 75%. Thus, PkGGPPS was found to be involved in the biosynthesis of P-I and P-II besides other terpenoids. To unravel the mechanism, small subunit of GPPS (PkGPPS.SSU) was identified from P. kurrooa. Protein-protein interaction studies in yeast as well as bimolecular fluorescence complementation (BiFC) in planta have indicated that large subunit of GPPS PkGPPS.LSUs (PkGGPPS1 and PkGGPPS2) and PkGPPS.SSU form a heteromeric GPPS. Presence of similar conserved domains such as light responsive motifs, low temperature responsive elements (LTRE), dehydration responsive elements (DREs), W Box and MeJA responsive elements in the promoters of PkGPPS.LSU and PkGPPS.SSU documented their involvement in picroside biosynthesis. Further, the tissue specific transcript expression analysis vis-à-vis epigenetic regulation (DNA methylation) of promoters as well as coding regions of PkGPPS.LSU and PkGPPS.SSU has strongly suggested their role in picroside biosynthesis. Taken together, the newly identified PkGPPS.SSU formed the heteromeric GPPS by interacting with PkGPPS.LSUs to synthesize P-I and P-II in P. kurrooa.
Collapse
Affiliation(s)
- Bharati Lalhal Barsain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Anjali Purohit
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
62
|
Hazman M, Kabil F, Abd Elhamid S, Nick P. Double lysis: an integrative time-saving method yielding high-quality RNA from strawberry. J Genet Eng Biotechnol 2020; 18:22. [PMID: 32577923 PMCID: PMC7311625 DOI: 10.1186/s43141-020-00039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022]
Abstract
Background The isolation of high-quality RNA from strawberry leaves and fruits is notoriously cumbersome. Both tissues are extremely rich in active secondary metabolites, as phenolics and pigments that inevitably perturb the isolation of RNA. Many protocols have been developed to address this problem. However, they are either costly, or time-consuming, in particular for high number of many plant samples. We describe here a new method with an easy-to-handle approach to obtain high-quality RNA from strawberry leaves and fruits. The method, referred to as double lysis, uses a novel combination of CTAB and Trizol protocols. Results Compared to conventional Trizol-dependent protocols, either used individually, or in a commercial spin-column kit, the new method yields RNA at lower costs, but of significantly improved quality. The RNA obtained by double lysis was very pure as indicated by 260/280 ratios of 2.06 (leaves) and 2.07 (fruits), while 260/230 ratio was 2.07 and 1.75, respectively. Also visually, RNA sediments from double lysis showed a white color, indicative of efficient elimination of polyphenolics and pigments. In contrast, traditional Trizol method produced reddish precipitates. The purity of RNA isolated by double lysis enabled successful removal of genomic DNA and, thus, allowed for more efficient cDNA synthesis and RT-PCR. In addition, the suggested method is able to yield RNA with fully preserved integrity from strawberry leaves, fruits in addition to petals and roots. Conclusion Double lysis is a new RNA isolation protocol developed through the integrative coupling of CTAB and Trizol reagents. The method is cost-effective, robust, time-saving, and can cope even with recalcitrant plant tissues with high contents of phenolics and pigments, such as strawberry leaves and fruits.
Collapse
Affiliation(s)
- Mohamed Hazman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamma St, Giza, 12619, Egypt.
| | - Farida Kabil
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Gamma St., 12613, Giza, Egypt
| | - Shrouk Abd Elhamid
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamma St, Giza, 12619, Egypt
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Bldg. 30.43, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
63
|
Two light responsive WRKY genes exhibit positive and negative correlation with picroside content in Picrorhiza kurrooa Royle ex Benth, an endangered medicinal herb. 3 Biotech 2020; 10:255. [PMID: 32432017 DOI: 10.1007/s13205-020-02249-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022] Open
Abstract
Picrorhiza kurrooa is an endangered herb known to produce the medicinally important picrosides through isoprenoid pathway. The present work showed the functionality of WRKY motifs (TGAC cis-acting elements) present in the promoters of regulatory genes 3-hydroxy-3-methylglutaryl coenzyme A reductase (Pkhmgr) and 1-deoxy-d-xylulose-5-phosphate synthase (Pkdxs) of the picrosides biosynthetic pathway by electrophoretic mobility shift assay. Also, the two WRKY genes, PkdWRKY and PksWRKY, were characterized and found to contain double and single characteristic WRKY domains, respectively along with a zinc-finger motif in each domain. Expression analysis revealed that PkdWRKY and PksWRKY exhibited a positive and negative correlation, respectively, with picrosides content under the environment of light and in different tissues. Functional evaluation in yeast showed DNA binding ability of both PksWRKY and PkdWRKY; however, only PkdWRKY exhibited transcriptional activation ability. Transient overexpression of PkdWRKY and PksWRKY in tobacco modulated the expression of selected native genes of tobacco involved in MVA and MEP pathway suggesting functionality of PkdWRKY and PksWRKY in planta. Collectively, data suggested that PkdWRKY and PksWRKY might be positive and negative regulators, respectively in the picrosides biosynthetic pathway.
Collapse
|
64
|
Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell ( Lithospermum erythrorhizon) reveals evolutionary insight into shikonin biosynthesis. HORTICULTURE RESEARCH 2020; 7:82. [PMID: 32528694 PMCID: PMC7261806 DOI: 10.1038/s41438-020-0301-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 05/08/2023]
Abstract
Lithospermum erythrorhizon (red gromwell; zicao) is a medicinal and economically valuable plant belonging to the Boraginaceae family. Roots from L. erythrorhizon have been used for centuries based on the antiviral and wound-healing properties produced from the bioactive compound shikonin and its derivatives. More recently, shikonin, its enantiomer alkannin, and several other shikonin/alkannin derivatives have collectively emerged as valuable natural colorants and as novel drug scaffolds. Despite several transcriptomes and proteomes having been generated from L. erythrorhizon, a reference genome is still unavailable. This has limited investigations into elucidating the shikonin/alkannin pathway and understanding its evolutionary and ecological significance. In this study, we obtained a de novo genome assembly for L. erythrorhizon using a combination of Oxford Nanopore long-read and Illumina short-read sequencing technologies. The resulting genome is ∼367.41 Mb long, with a contig N50 size of 314.31 kb and 27,720 predicted protein-coding genes. Using the L. erythrorhizon genome, we identified several additional p-hydroxybenzoate:geranyltransferase (PGT) homologs and provide insight into their evolutionary history. Phylogenetic analysis of prenyltransferases suggests that PGTs originated in a common ancestor of modern shikonin/alkannin-producing Boraginaceous species, likely from a retrotransposition-derived duplication event of an ancestral prenyltransferase gene. Furthermore, knocking down expression of LePGT1 in L. erythrorhizon hairy root lines revealed that LePGT1 is predominantly responsible for shikonin production early in culture establishment. Taken together, the reference genome reported in this study and the provided analysis on the evolutionary origin of shikonin/alkannin biosynthesis will guide elucidation of the remainder of the pathway.
Collapse
Affiliation(s)
- Robert P. Auber
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Thiti Suttiyut
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Manoj Ghaste
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Joseph W. Crook
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Joshua R. Widhalm
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
65
|
Thakur V, Bains S, Pathania S, Sharma S, Kaur R, Singh K. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. Int J Biol Macromol 2020; 150:52-67. [DOI: 10.1016/j.ijbiomac.2020.01.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
66
|
Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J Proteomics 2020; 219:103755. [DOI: 10.1016/j.jprot.2020.103755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
|
67
|
Singh G, Pal P, Masand M, Seth R, Kumar A, Singh S, Sharma RK. Comparative transcriptome analysis revealed gamma-irradiation mediated disruption of floral integrator gene(s) leading to prolonged vegetative phase in Stevia rebaudiana Bertoni. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:90-102. [PMID: 31951945 DOI: 10.1016/j.plaphy.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Stevia rebaudiana Bert. is getting global attention because of its ability to synthesize commercially important low/no calorie natural sweeteners (LNCSs) steviol glycosides (SGs). Considering, higher accumulation of SGs in vegetative phase followed by decrement during reproductive phase necessitate the understanding of different molecular components of floral transition to develop superior varieties/cultivars with prolonged vegetative phase in Stevia. Current comparative transcriptional analysis of low dose (5 kR) gamma-irradiated mutant genotype (SMG) with prolonged vegetative phase vis-à-vis background genotype (SBG) identified DGEs of major floral transition pathways, and expressed according to their physiological fate irrespective to SMG & SBG. Contrarily, reduced expression of floral integrator genes (FT and LEAFY) in mutant genotype suggests their involvement in prolonged vegetative phase phenotype. Likewise, GO and KEGG enrichment of photosynthesis and carbon assimilation efficiency might be associated with prolonged vegetative phase and higher accumulation of Stevioside content in mutant genotype. Furthermore, deviation of flowering related transcription factors (higher expressions except MIKS-type MADS-box SMG_PV compared to SBG_F) may possibly be correlated with low expression of floral integrator genes. Findings of current studies will facilitate the genetic manipulations and crop improvement efforts in Stevia through conventional breeding and genome editing approaches for increased SGs biosynthesis.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Poonam Pal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Mamta Masand
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Romit Seth
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ashok Kumar
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants (AMACIP) Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Sanatsujat Singh
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants (AMACIP) Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
68
|
Kajal M, Kaushal N, Kaur R, Singh K. Identification of novel microRNAs and their targets in Chlorophytum borivilianum by small RNA and degradome sequencing. Noncoding RNA Res 2020; 4:141-154. [PMID: 32072082 PMCID: PMC7012778 DOI: 10.1016/j.ncrna.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/04/2022] Open
Abstract
Plant specific miRNAs (Novel miRNAs) are well known to perform distinctive functions in biological processes. Identification of new miRNAs is necessary to understand their gene regulation. Degradome provides an opportunity to explore the miRNA functions by comparing the miRNA population and their degraded products. In the present study, Small RNA sequencing data was used to identify novel miRNAs. Further, degradome sequencing was carried out to identify miRNAs targets in the plant, Chlorophytum borivilianum. The present study supplemented 40 more novel miRNAs correlating degradome data with smallRNAome. Novel miRNAs, complementary to mRNA partial sequences obtained from degradome sequencing were actually targeting the later. A big pool of miRNA was established by using Oryza sativa, Arabidopsis thaliana, Populus trichocarpa, Ricinus communis, and Vitis vinifera genomic data. Targets were identified for novel miRNAs and total 109 targets were predicted. BLAST2GO analysis elaborate about localization of novel miRNAs’ targets and their corresponding KEGG (Kyoto Encyclopedia for Genes and Genomes) pathways. Identified targets were annotated and were found to be involved in significant biological processes like Nitrogen metabolism, Pyruvate metabolism, Citrate cycle (TCA cycle), photosynthesis, and Glycolysis/Gluconeogenesis. The present study provides an overall view of the miRNA regulation in multiple metabolic pathways that are involved in plant growth, pathogen resistance and secondary metabolism of C. borivilianum.
Collapse
Key Words
- AGO, Argonaute
- BLAST, Basic local Alignment Search Tool
- BP, Biological Process
- CC, Cellular Component
- Chlorophytum borivilianum
- Degradome
- FAO, Food and Agriculture Organization of the United Nations
- GO, Gene Ontology
- IL, Interleukin
- Illumina sequencing
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCF-7, PC3, HCT-116, Types of cell lines
- MEP, 2-C-methyl-Derythritol-4-phosphate pathway
- MF, Molecular Function
- MFEs, Minimum Fold Energies
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- MVA, Mevalonic Acid Pathway
- RdDM, RNA-directed DNA methylation
- SRA
- SRA, Sequencing Read Archieve
- TNF, Tumor Necrosis Factor
- iNOS, Inducible Nitric Oxide Synthase
- mgmL−1, milligram per millilitre
- microRNAs
- nt, nucleotide
Collapse
Affiliation(s)
- Monika Kajal
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Nishant Kaushal
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| |
Collapse
|
69
|
Park S, An B, Park S. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci Rep 2020; 10:2720. [PMID: 32066766 PMCID: PMC7026143 DOI: 10.1038/s41598-020-59547-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
70
|
Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R. Regulation of color transition in purple tea (Camellia sinensis). PLANTA 2019; 251:35. [PMID: 31853722 DOI: 10.1007/s00425-019-03328-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shweta Thakur
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ajay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Prakash Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ravi Shankar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
71
|
Sareen B, Thapa P, Joshi R, Bhattacharya A. Proteome Analysis of the Gametophytes of a Western Himalayan Fern Diplazium maximum Reveals Their Adaptive Responses to Changes in Their Micro-Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:1623. [PMID: 31921265 PMCID: PMC6928197 DOI: 10.3389/fpls.2019.01623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Ferns have survived changing habitats and environmental extremes of different eras, wherein, the exploratory haploid gametophytes are believed to have played a major role. Therefore, the proteome of in vitro grown gametophytes of a temperate Himalayan fern, Diplazium maximum in response to 0 (G0), 1 (G1), and 3% (G3) sucrose was studied. A total of 110 differentially abundant protein spots (DAPs) were obtained. Among these, only 67 could be functionally categorized as unique proteins involved in various metabolic processes. Calcium dependent proteins, receptor like kinases, G proteins, proteins related to hormonal signaling and their interaction with other pathways, and regulatory proteins were recorded indicating the involvement of five different signaling pathways. DAPs involved in the activation of genes and transcription factors of signaling and transduction pathways, transport and ion channels, cell-wall and structural proteins, defense, chaperons, energy metabolism, protein synthesis, modification, and turnover were identified. The gametophytes responded to changes in their micro-environment. There was also significant increase in prothallus biomass and conversion of two-dimensional prothalli into three-dimensional prothallus clumps at 3% sucrose. The three-D clumps had higher photosynthetic surface area and also closer proximity for sexual reproduction and sporophyte formation. Highest accumulation of proline, enhanced scavenging of reactive oxygen species (ROS) and DAPs of mostly, abiotic stress tolerance, secondary metabolite synthesis, and detoxification at 3% sucrose indicated an adaptive response of gametophytes. Protein Protein Interaction network and Principal Component analyses, and qRT-PCR validation of genes encoding 12 proteins of various metabolic processes indicated differential adjustment of gametophytes to different levels of sucrose in the culture medium. Therefore, a hypothetical mechanism was proposed to show that even slight changes in the micro-environment of D. maximum gametophytes triggered multiple mechanisms of adaptation. Many DAPs identified in the study have potential use in crop improvement and metabolic engineering programs, phytoremediation and environmental protection.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Thapa
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Robin Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
72
|
Giolai M, Verweij W, Lister A, Heavens D, Macaulay I, Clark MD. Spatially resolved transcriptomics reveals plant host responses to pathogens. PLANT METHODS 2019; 15:114. [PMID: 31624491 PMCID: PMC6785889 DOI: 10.1186/s13007-019-0498-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Thorough understanding of complex model systems requires the characterisation of processes in different cell types of an organism. This can be achieved with high-throughput spatial transcriptomics at a large scale. However, for plant model systems this is still challenging as suitable transcriptomics methods are sparsely available. Here we present GaST-seq (Grid-assisted, Spatial Transcriptome sequencing), an easy to adopt, micro-scale spatial-transcriptomics workflow that allows to study expression profiles across small areas of plant tissue at a fraction of the cost of existing sequencing-based methods. RESULTS We compare the GaST-seq method with widely used library preparation methods (Illumina TruSeq). In spatial experiments we show that the GaST-seq method is sensitive enough to identify expression differences across a plant organ. We further assess the spatial transcriptome response of Arabidopsis thaliana leaves exposed to the bacterial molecule flagellin-22, and show that with eukaryotic (Albugo laibachii) infection both host and pathogen spatial transcriptomes are obtained. CONCLUSION We show that our method can be used to identify known, rapidly flagellin-22 elicited genes, plant immune response pathways to bacterial attack and spatial expression patterns of genes associated with these pathways.
Collapse
Affiliation(s)
- Michael Giolai
- John Innes Centre, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Walter Verweij
- Earlham Institute, Norwich Research Park, Norwich, UK
- Enza Zaden, Enkhuizen, NL Netherlands
| | | | | | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Matthew D. Clark
- Earlham Institute, Norwich Research Park, Norwich, UK
- Natural History Museum, London, UK
| |
Collapse
|
73
|
Dhiman N, Sharma NK, Thapa P, Sharma I, Kumar Swarnkar M, Chawla A, Shankar R, Bhattacharya A. De novo transcriptome provides insights into the growth behaviour and resveratrol and trans-stilbenes biosynthesis in Dactylorhiza hatagirea - An endangered alpine terrestrial orchid of western Himalaya. Sci Rep 2019; 9:13133. [PMID: 31511556 PMCID: PMC6739469 DOI: 10.1038/s41598-019-49446-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
This is the first report on de novo transcriptome of Dactylorhiza hatagirea, a critically-endangered, terrestrial orchid of alpine Himalayas. The plant is acclaimed for medicinal properties but little is known about its secondary-metabolites profile or cues regulating their biosynthesis. De novo transcriptome analysis was therefore, undertaken to gain basic understanding on these aspects, while circumventing the acute limitation of plant material availability. 65,384 transcripts and finally, 37,371 unigenes were assembled de novo from a total of 236 million reads obtained from shoot, tuber and leaves of the plant. Dominance of differentially-expressing-genes (DEGs) related to cold-stress-response and plant-hormone-signal-transduction; and those involved in photosynthesis, sugar-metabolism and secondary-metabolite-synthesis provided insights into carbohydrate-partitioning in the plant during its preparation for freezing winter at natural habitat. DEGs of glucomannan, ascorbic acid, carotenoids, phylloquinone/naphthoquinones, indole alkaloids, resveratrol and stilbene biosynthesis revealed the secondary-metabolite profile of D. hatagirea. UHPLC results confirmed appreciable amounts of resveratrol and trans-stilbene in D. hatagirea tubers, for the first time. Expression analysis of 15 selected genes including those of phenylpropanoid pathway confirmed the validity of RNA-seq data. Opportunistic growth, temperature- and tissue-specific-differential-expression of secondary metabolite biosynthesis and stress tolerant genes were confirmed using clonal plants growing at 8, 15 and 25 °C.
Collapse
Affiliation(s)
- Nisha Dhiman
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Nitesh Kumar Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Pooja Thapa
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Isha Sharma
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Mohit Kumar Swarnkar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
| | - Amit Chawla
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Ravi Shankar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Amita Bhattacharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P., India.
- Academy of Scientific and Innovative Research(AcSIR), CSIR-Institute of Himalayan Bio-Resource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
74
|
Purohit A, Kumar V, Chownk M, Yadav SK. Processing-Independent Extracellular Production of High Purity C-Phycocyanin from Spirulina platensis. ACS Biomater Sci Eng 2019; 5:3237-3245. [DOI: 10.1021/acsbiomaterials.9b00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anjali Purohit
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Varun Kumar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Manisha Chownk
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306, Punjab, India
| |
Collapse
|
75
|
Parmar R, Seth R, Singh P, Singh G, Kumar S, Sharma RK. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci Rep 2019; 9:7487. [PMID: 31097754 PMCID: PMC6522520 DOI: 10.1038/s41598-019-43925-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Tea is popular health beverage consumed by millions of people worldwide. Drought is among the acute abiotic stress severely affecting tea cultivation, globally. In current study, transcriptome sequencing of four diverse tea genotypes with inherent contrasting genetic response to drought (tolerant & sensitive) generated more than 140 million reads. De novo and reference-based assembly and functional annotation of 67,093 transcripts with multifarious public protein databases yielded 54,484 (78.2%) transcripts with significant enrichment of GO and KEGG drought responsive pathways in tolerant genotypes. Comparative DGE and qRT analysis revealed key role of ABA dependent & independent pathways, potassium & ABC membrane transporters (AtABCG22, AtABCG11, AtABCC5 & AtABCC4) and antioxidant defence system against oxidative stress in tolerant genotypes, while seems to be failed in sensitive genotypes. Additionally, highly expressed UPL3HECT E3 ligases and RING E3 ligases possibly enhance drought tolerance by actively regulating functional modification of stress related genes. Further, ascertainment of, 80803 high quality putative SNPs with functional validation of key non-synonymous SNPs suggested their implications for developing high-throughput genotyping platform in tea. Futuristically, functionally relevant genomic resources can be potentially utilized for gene discovery, genetic engineering and marker-assisted genetic improvement for better yield and quality in tea under drought conditions.
Collapse
Affiliation(s)
- Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
76
|
Verma D, Lakhanpal N, Singh K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 2019; 20:227. [PMID: 30890148 PMCID: PMC6425617 DOI: 10.1186/s12864-019-5593-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa. Results A total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR. Conclusion We identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Neha Lakhanpal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
77
|
Shivakumar VS, Johnson G, Zimmer EA. Transcriptome analysis of the curry tree (Bergera koenigii L., Rutaceae) during leaf development. Sci Rep 2019; 9:4230. [PMID: 30862864 PMCID: PMC6414593 DOI: 10.1038/s41598-019-40227-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
The curry tree (Bergera koenigii L.) is a widely cultivated plant used in South Asian cooking. Next-generation sequencing was used to generate the transcriptome of the curry leaf to detect changes in gene expression during leaf development, such as those genes involved in the production of oils which lend the leaf its characteristic taste, aroma, and medicinal properties. Using abundance estimation (RSEM) and differential expression analysis, genes that were significantly differentially expressed were identified. The transcriptome was annotated with BLASTx using the non-redundant (nr) protein database, and Gene Ontology (GO) terms were assigned based on the top BLAST hit using Blast2GO. Lastly, functional enrichment of the assigned GO terms was analyzed for genes that were significantly differentially expressed. Of the most enriched GO categories, pathways involved in cell wall, membrane, and lignin synthesis were found to be most upregulated in immature leaf tissue, possibly due to the growth and expansion of the leaf tissue. Terpene synthases, which synthesize monoterpenes and sesquiterpenes, which comprise much of the curry essential oil, were found to be significantly upregulated in mature leaf tissue, suggesting that oil production increases later in leaf development. Enzymes involved in pigment production were also significantly upregulated in mature leaves. The findings were based on computational estimates of gene expression from RNA-seq data, and further study is warranted to validate these results using targeted techniques, such as quantitative PCR.
Collapse
Affiliation(s)
- Vikram S Shivakumar
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.
- Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA.
| | - Gabriel Johnson
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA
| | - Elizabeth A Zimmer
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC, 20013-7012, USA.
| |
Collapse
|
78
|
Leh TY, Yong CSY, Nulit R, Abdullah JO. Efficient and High-Quality RNA Isolation from Metabolite-Rich Tissues of Stevia rebaudiana, an Important Commercial Crop. Trop Life Sci Res 2019; 30:149-159. [PMID: 30847038 PMCID: PMC6396891 DOI: 10.21315/tlsr2019.30.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stevia rebaudiana, a perennial herb native to northeastern Paraguay, has gained immense attention globally over the recent decades due to the natural sweetness of its leaves. Like in most plants, this particular species contains high amount of secondary metabolites, thus rendering the isolation of high quality and quantity RNA extract for molecular applications rather challenging. An effective, high-yield and high-quality RNA isolation protocol for this economically important plant species was devised here based on the cetyltrimethylammonium bromide (CTAB) extraction method, with an additional genomic DNA (gDNA) removal step. DNA and other contaminants that may affect downstream applications were effectively removed. Our results exhibited that RNA samples isolated from the leaves and stems of Stevia rebaudiana using this improvised method are high in integrity and quality with RNA integrity number (RIN) of more than 8 and low in contaminants.
Collapse
Affiliation(s)
- Tan Yoeng Leh
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
79
|
Long Non-coding RNAs Coordinate Developmental Transitions and Other Key Biological Processes in Grapevine. Sci Rep 2019; 9:3552. [PMID: 30837504 PMCID: PMC6401051 DOI: 10.1038/s41598-019-38989-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts >200 nucleotides that have prominently surfaced as dynamic regulatory molecules. Using computational approaches, we identified and characterized 56,441 lncRNAs in grapevine (Vitis vinifera) by harnessing RNA-seq data from 10 developmental stages of leaf, inflorescence, and berry tissues. We conducted differential expression analysis and determined tissue- and developmental stage-specificity of lncRNAs in grapevine, which indicated their spatiotemporal regulation. Functional annotation using co-expression analysis revealed their involvement in regulation of developmental transitions in sync with transcription factors (TFs). Further, pathway enrichment analysis revealed lncRNAs associated with biosynthetic and secondary metabolic pathways. Additionally, we identified 115, 560, and 133 lncRNAs as putative miRNA precursors, targets, and endogenous target mimics, respectively, which provided an insight into the interplay of regulatory RNAs. We also explored lncRNA-mediated regulation of extra-chromosomal genes–i.e., mitochondrial and chloroplast coding sequences and observed their involvement in key biological processes like ‘photosynthesis’ and ‘oxidative phosphorylation’. In brief, these transcripts coordinate important biological functions via interactions with both coding and non-coding RNAs as well as TFs in grapevine. Our study would facilitate future experiments in unraveling regulatory mechanisms of development in this fruit crop of economic importance.
Collapse
|
80
|
Behnam B, Bohorquez-Chaux A, Castaneda-Mendez OF, Tsuji H, Ishitani M, Becerra Lopez-Lavalle LA. An optimized isolation protocol yields high-quality RNA from cassava tissues ( Manihot esculenta Crantz). FEBS Open Bio 2019; 9:814-825. [PMID: 30984554 PMCID: PMC6443859 DOI: 10.1002/2211-5463.12561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
We developed and modified a precise, rapid, and reproducible protocol isolating high-quality RNA from tissues of multiple varieties of cassava plants (Manihot esculenta Crantz). The resulting method is suitable for use in mini, midi, and maxi preparations and rapidly achieves high total RNA yields (170-600 μg·g-1) using low-cost chemicals and consumables and with minimal contamination from polysaccharides, polyphenols, proteins, and other secondary metabolites. In particular, A 260 : A 280 ratios were > 2.0 for RNA from various tissues, and all of the present RNA samples yielded ribosomal integrity number values of greater than six. The resulting high purity and quality of isolated RNA will facilitate downstream applications (quantitative reverse transcriptase-polymerase chain reaction or RNA sequencing) in cassava molecular breeding.
Collapse
Affiliation(s)
- Babak Behnam
- Kihara Institute for Biological Research Yokohama City University Yokohama Japan
| | | | | | - Hiroyuki Tsuji
- Kihara Institute for Biological Research Yokohama City University Yokohama Japan
| | - Manabu Ishitani
- International Center for Tropical Agriculture (CIAT) Valle del Cauca Colombia
| | | |
Collapse
|
81
|
Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep 2019; 46:1985-2002. [PMID: 30706357 DOI: 10.1007/s11033-019-04648-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Hydrogen peroxide (H2O2) is known to accumulate in plants during abiotic stress conditions and also acts as a signalling molecule. In this study, Arabidopsis thaliana transgenics overexpressing cytosolic CuZn-superoxide dismutase (PaSOD) from poly-extremophile high-altitude Himalayan plant Potentilla atrosanguinea, cytosolic ascorbate peroxidase (RaAPX) from Rheum australe and dual transgenics overexpressing both the genes were developed and analyzed under salt stress. In comparison to wild-type (WT) or single transgenics, the performance of dual transgenics under salt stress was better with higher biomass accumulation and cellulose content. We identified genes involved in cell wall biosynthesis, including nine cellulose synthases (CesA), seven cellulose synthase-like proteins together with other wall-related genes. RNA-seq analysis and qPCR revealed differential regulation of genes (CesA 4, 7 and 8) and transcription factors (MYB46 and 83) involved in secondary cell wall cellulose biosynthesis, amongst which most of the cellulose biosynthesis gene showed upregulation in single (PaSOD line) and dual transgenics at 100 mM salt stress. A positive correlation between cellulose content and H2O2 accumulation was observed in these transgenic lines. Further, cellulose content was 1.6-2 folds significantly higher in PaSOD and dual transgenic lines, 1.4 fold higher in RaAPX lines as compared to WT plants under stress conditions. Additionally, transgenics overexpressing PaSOD and RaAPX also displayed higher amounts of phenolics as compared to WT. The novelty of present study is that H2O2 apart from its role in signalling, it also provides mechanical strength to plants and aid in plant biomass production during salt stress by transcriptional activation of cellulose biosynthesis pathway. This modulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create plants with enhanced cellulose content for biofuel use.
Collapse
|
82
|
Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [ Camellia sinensis (L.) O. Kuntze]. Int J Mol Sci 2019; 20:ijms20030539. [PMID: 30696008 PMCID: PMC6387076 DOI: 10.3390/ijms20030539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
This study explicates molecular insights commencing Self-Incompatibility (SI) and CC (cross-compatibility/fertilization) in self (SP) and cross (CP) pollinated pistils of tea. The fluorescence microscopy analysis revealed ceased/deviated pollen tubes in SP, while successful fertilization occurred in CP at 48 HAP. Global transcriptome sequencing of SP and CP pistils generated 109.7 million reads with overall 77.9% mapping rate to draft tea genome. Furthermore, concatenated de novo assembly resulted into 48,163 transcripts. Functional annotations and enrichment analysis (KEGG & GO) resulted into 3793 differentially expressed genes (DEGs). Among these, de novo and reference-based expression analysis identified 195 DEGs involved in pollen-pistil interaction. Interestingly, the presence of 182 genes [PT germination & elongation (67), S-locus (11), fertilization (43), disease resistance protein (30) and abscission (31)] in a major hub of the protein-protein interactome network suggests a complex signaling cascade commencing SI/CC. Furthermore, tissue-specific qRT-PCR analysis affirmed the localized expression of 42 DE putative key candidates in stigma-style and ovary, and suggested that LSI initiated in style and was sustained up to ovary with the active involvement of csRNS, SRKs & SKIPs during SP. Nonetheless, COBL10, RALF, FERONIA-rlk, LLG and MAPKs were possibly facilitating fertilization. The current study comprehensively unravels molecular insights of phase-specific pollen-pistil interaction during SI and fertilization, which can be utilized to enhance breeding efficiency and genetic improvement in tea.
Collapse
|
83
|
Park S, Son S, Shin M, Fujii N, Hoshino T, Park S. Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae). BMC PLANT BIOLOGY 2019; 19:14. [PMID: 30621589 PMCID: PMC6325733 DOI: 10.1186/s12870-018-1621-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Sungwon Son
- Plant Conservation Division, Korea National Arboretum, Pocheon, Gyeonggi 11186 South Korea
| | - Myungju Shin
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Noriyuki Fujii
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Takuji Hoshino
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, Okayama, 700-0005 Japan
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
84
|
Sinha R, Sharma TR, Singh AK. Validation of reference genes for qRT-PCR data normalisation in lentil ( Lens culinaris) under leaf developmental stages and abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:123-134. [PMID: 30804635 PMCID: PMC6352542 DOI: 10.1007/s12298-018-0609-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 05/07/2023]
Abstract
Lentil (Lens culinaris) is one of the most important staple food crops of developing countries. Transcriptome based global gene expression profiling followed by validation of expression of important genes through quantitative real time-PCR (qRT-PCR) has achieved significance in recent years. However, there is a severe scarcity of information regarding stable reference genes in lentil, which is mandatory for qRT-PCR data normalisation. Hence, the present study was under-taken to identify the most stable reference gene(s) in lentil. Expression stability of eight candidate genes viz. ribulose 1,5-bisphosphate carboxylase large subunit (Rbcl), ribosomal protein L2 (RPL2), 18S rRNA, tubulin (Tub), elongation factor 1α (EF1α), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), heat shock protein (HSP70), and Maturase (mat K) was evaluated in five varieties of lentil at three different stages of leaf development and abiotic stress conditions using qRT-PCR. The results were analysed using four types of statistical software viz., geNorm, BestKeeper, NormFinder and RefFinder; all softwares identified RPL2 as most stable under abiotic stress conditions and developmental stages followed by Tub and Rbcl; while, HSP70 was identified as least stable. Relative expression of the target genes, defensin and PR4, was evaluated under abiotic stress conditions and data normalisation was done using two stable reference genes, RPL2 and Tub, either alone or in combination and with two least stable genes, HSP70 and 18S. The present work provides a list of potential reference genes in lentil, which will help in selection of appropriate reference gene for qRT-PCR data normalization depending upon the experiment.
Collapse
Affiliation(s)
- Ragini Sinha
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| | - T. R. Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| | - Anil Kumar Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, 834 010 India
| |
Collapse
|
85
|
Palani SN, Elangovan S, Menon A, Kumariah M, Tennyson J. An efficient nucleic acids extraction protocol for Elettaria cardamomum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
86
|
De Novo Transcriptomic Analysis and Development of EST–SSRs for Styrax japonicus. FORESTS 2018. [DOI: 10.3390/f9120748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Styrax japonicus sieb. et Zucc. is widely distributed in China with ornamental and medicinal values. However, the transcriptome of S. japonicus has not yet been reported. In this study, we carried out the first transcriptome analysis of S. japonicus and developed a set of expressed sequence tag–simple sequence repeats (EST–SSRs). We obtained 338,570,222 clean reads in total, of which the mean GC content was 41.58%. In total, 136,071 unigenes were obtained having an average length of 611 bp and 71,226 unigenes were favorably annotated in the database. In total, we identified 55,977 potential EST–SSRs from 38,611 unigenes, of which there was 1 SSR per 6.73 kb. The di-nucleotide repeats (40.40%) were the most identified SSRs. One set of 60 primer pairs was randomly selected, and the amplified products in S. japonicus were validated; 28 primer pairs successfully produced clear amplicons. A total of 21 (35%) polymorphic genic SSR markers were identified between two populations. In total, 15 alleles were detected and the average number was 6. The average of observed heterozygosity and expected heterozygosity was 0.614 and 0.552, respectively. The polymorphism information content (PIC) value fluctuated between 0.074 and 0.855, with a mean value of 0.504, which was also the middle level. This study provides useful information for diversity studies and resource assessments of S. japonicus.
Collapse
|
87
|
Sinha R, Pal AK, Singh AK. Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik.) genotypes under drought stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Bains S, Thakur V, Kaur J, Singh K, Kaur R. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 2018; 111:1474-1482. [PMID: 30343181 DOI: 10.1016/j.ygeno.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
Saussurea lappa (family Asteraceae) possesses immense pharmacological potential mainly due to the presence of sesquiterpene lactones. In spite of its medicinal importance, S. lappa has been poorly explored at the molecular level. We initiated leaf transcriptome sequencing of S. lappa using the illumina highseq 2000 platform and generated 62,039,614 raw reads. Trinity assembler generated 122,434 contigs with an N50 value of 1053 bp. The assembled transcripts were compared against the non-redundant protein database at NCBI. The Blast2GO analysis assigned gene ontology (GO) terms, categorized into molecular functions (3132), biological processes (4477) and cellular components (1.927). Using KEGG, around 476 contigs were assigned to 39 pathways. For secondary metabolic pathways, we identified transcripts encoding genes involved in sesquiterpenoid and flavonoid biosynthesis. Relatively low number of transcripts were also found encoding for genes involved in the alkaloid pathway. Our data will contribute to functional genomics and metabolic engineering studies in this plant.
Collapse
Affiliation(s)
- Savita Bains
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Vasundhara Thakur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Jagdeep Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
89
|
Park S, An B, Park S. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Sci Rep 2018; 8:13568. [PMID: 30206286 PMCID: PMC6134119 DOI: 10.1038/s41598-018-31938-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
We generated a complete plastid genome (plastome) sequence for Lamprocapnos spectabilis, providing the first complete plastome from the subfamily Fumarioideae (Papaveraceae). The Lamprocapnos plastome shows large differences in size, structure, gene content, and substitution rates compared with two sequenced Papaveraceae plastomes. We propose a model that explains the major rearrangements observed, involving at least six inverted repeat (IR) boundary shifts and five inversions, generating a number of gene duplications and relocations, as well as a two-fold expansion of the IR and miniaturized small single-copy region. A reduction in the substitution rates for genes transferred from the single-copy regions to the IR was observed. Accelerated substitution rates of plastid accD and clpP were detected in the Lamprocapnos plastome. The accelerated substitution rate for the accD gene was correlated with a large insertion of amino acid repeat (AAR) motifs in the middle region, but the forces driving the higher substitution rate of the clpP gene are unclear. We found a variable number of AARs in Lamprocapnos accD and ycf1 genes within individuals, and the repeats were associated with coiled-coil regions. In addition, comparative analysis of three Papaveraceae plastomes revealed loss of rps15 in Papaver, and functional replacement to the nucleus was identified.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
90
|
Kaachra A, Vats SK, Kumar S. Heterologous Expression of Key C and N Metabolic Enzymes Improves Re-assimilation of Photorespired CO 2 and NH 3, and Growth. PLANT PHYSIOLOGY 2018; 177:1396-1409. [PMID: 29891741 PMCID: PMC6084664 DOI: 10.1104/pp.18.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 05/11/2023]
Abstract
We investigated the effect of the heterologous expression of phosphoenolpyruvate carboxylase (ZmPepcase), aspartate aminotransferase (GmAspAT), and glutamine synthetase (NtGS) on carbon (C) and nitrogen (N) metabolism in Arabidopsis (Arabidopsis thaliana). These transgenes were expressed either separately or in different combinations. The highest gains in shoot dry weight were observed in transgenic lines coexpressing all three genes. Tracer experiments using NaH14CO3 suggested that the coexpression of ZmPepcase, GmAspAT, and NtGS resulted in a higher flux of assimilated CO2 toward sugars and amino acids. Upon feeding the leaf discs with glycine-1-14C, transgenic lines evolved significantly lower 14CO2 levels than the wild type, suggesting that a higher reassimilation of CO2 evolved during photorespiration. Leaves of transgenic plants accumulated significantly lower ammonium without any significant difference in the levels of photorespiratory ammonium relative to the wild type, suggesting a higher reassimilation of photorespired NH3 Transgenic lines also showed improved photosynthetic rates, higher shoot biomass accumulation, and improved seed yield in comparison with wild-type plants under both optimum and limiting N conditions. This work demonstrates that the heterologous coexpression of ZmPepcase, GmAspAT, and NtGS reduced the photorespiratory loss of C and N with concomitant enhancements in shoot biomass and seed yield.
Collapse
Affiliation(s)
- Anish Kaachra
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, P.O. Box 6, Palampur (H.P.) 176061, India
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, P.O. Box 6, Palampur (H.P.) 176061, India
| | - Surender Kumar Vats
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, P.O. Box 6, Palampur (H.P.) 176061, India
| | - Sanjay Kumar
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, P.O. Box 6, Palampur (H.P.) 176061, India.
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, P.O. Box 6, Palampur (H.P.) 176061, India
| |
Collapse
|
91
|
De Novo Transcriptome Assembly and Population Genetic Analyses for an Endangered Chinese Endemic Acer miaotaiense (Aceraceae). Genes (Basel) 2018; 9:genes9080378. [PMID: 30060522 PMCID: PMC6115825 DOI: 10.3390/genes9080378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Acer miaotaiense (P. C. Tsoong) is a rare and highly endangered plant in China. Because of the lack of genomic information and the limited number of available molecular markers, there are insufficient tools to determine the genetic diversity of this species. Here, 93,305 unigenes were obtained by multiple assembled contigs with a transcriptome sequencing program. Furthermore, 12,819 expressed sequence tag-derived simple sequence repeat (EST-SSR) markers were generated, 300 were randomly selected and synthesized, 19 primer pairs were identified as highly polymorphic (average number of alleles (Na) = 8, expected heterozygosity (He) = 0.635, polymorphism information content (PIC) = 0.604) and were further used for population genetic analysis. All 261 samples were grouped into two genetic clusters by UPGMA, a principal component analyses and a STRUCTURE analyses. A moderate level of genetic differentiation (genetic differentiation index (Fst) = 0.059–0.116, gene flow = 1.904–3.993) among the populations and the major genetic variance (81.01%) within populations were revealed by the AMOVA. Based on the results, scientific conservation strategies should be established using in situ and ex situ conservation strategies. The study provides useful genetic information for the protection of precious wild resources and for further research on the origin and evolution of this endangered plant and its related species.
Collapse
|
92
|
Ramadoss N, Basu C. Extraction of RNA from Recalcitrant Tree Species Paulownia elongata. Bio Protoc 2018; 8:e2925. [PMID: 34395749 DOI: 10.21769/bioprotoc.2925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 11/02/2022] Open
Abstract
Isolation of pure RNA is the basic requisite for most molecular biology work. Plants contain polyphenols and polysaccharides, which can interfere with isolation of pure RNA from them. Especially hardwood tree species like Paulownia elongata have surplus amount of RNA-binding alkaloids, proteins and secondary metabolites that can further complicate the process of RNA extraction. Paulownia elongata is a fast-growing tree species which is known for its role in environmental adaptability and biofuel research. Here we describe an economical, efficient and time-saving method (2 h) to extract RNA from leaf tissues of the tree Paulownia elongata. Lack of DNA contamination and good RNA integrity were confirmed using RNA Gel electrophoresis. The purity of RNA was confirmed using Nanodrop spectrophotometer that revealed an A260:A280 ratio of about 2.0. The purified RNA was successfully used in the downstream applications such as RT-PCR (Reverse Transcription PCR) and qPCR (quantitative PCR). This method could be used for RNA extraction from several other recalcitrant tree species.
Collapse
Affiliation(s)
- Niveditha Ramadoss
- Department of Biology, California State University, Northridge, California, USA
| | - Chhandak Basu
- Department of Biology, California State University, Northridge, California, USA
| |
Collapse
|
93
|
Sajitha TP, Manjunatha BL, Siva R, Gogna N, Dorai K, Ravikanth G, Uma Shaanker R. Mechanism of Resistance to Camptothecin, a Cytotoxic Plant Secondary Metabolite, by Lymantria sp. Larvae. J Chem Ecol 2018; 44:611-620. [DOI: 10.1007/s10886-018-0960-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 10/16/2022]
|
94
|
Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant based omega-3 fatty acids. Transgenic Res 2018; 27:253-263. [PMID: 29752697 DOI: 10.1007/s11248-018-0070-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
Alpha-linolenic acid (ALA) deficiency and a skewed n6:n3 fatty acid ratio in the diet is a major explanation for the prevalence of cardiovascular diseases and inflammatory/autoimmune diseases. There is mounting evidence of the health benefits associated with omega-3 long chain polyunsaturated fatty acids (LC PUFA's). Although present in abundance in fish, a number of factors limit our consumption of fish based omega-3 PUFA's. To name a few, overexploitation of wild fish stocks has reduced their sustainability due to increased demand of aquaculture for fish oil and meal; the pollution of marine food webs has raised concerns over the ingestion of toxic substances such as heavy metals and dioxins; vegetarians do not consider fish-based sources for supplemental nutrition. Thus alternative sources are being sought and one approach to the sustainable supply of LC-PUFAs is the metabolic engineering of transgenic plants with the capacity to synthesize n3 LC-PUFAs. The present investigation was carried out with the goal of developing transgenic safflower capable of producing pharmaceutically important alpha-linolenic acid (ALA, C18:3, n3). This crop was selected as the seeds accumulate ~ 78% of the total fatty acids as linoleic acid (LA, C18:2, n6), the immediate precursor of ALA. In the present work, ALA production was achieved successfully in safflower seeds by transforming safflower hypocotyls with Arabidopsis specific delta 15 desaturase (FAD3) driven by truncated seed specific promoter. Transgenic safflower fortified with ALA is not only potentially valuable nutritional superior novel oil but also has reduced ratio of LA to ALA which is required for good health.
Collapse
|
95
|
Liu L, Han R, Yu N, Zhang W, Xing L, Xie D, Peng D. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS One 2018; 13:e0196592. [PMID: 29715304 PMCID: PMC5929529 DOI: 10.1371/journal.pone.0196592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Acquiring high quality RNA is the basis of plant molecular biology research, plant genetics and other physiological investigations. At present, a large number of nucleotide isolation methods have been exploited or modified, such as commercial kits, CTAB, SDS methods and so on. Due to the nature of different plants, extraction methods vary. Moreover, efficiency of certain approach cannot be guaranteed due to composition of different plants and extracting high quality RNA from plants rich in polysaccharides and polyphenols are often difficult. The physical and chemical properties of polysaccharides which are similar to nucleic acids and other secondary metabolites will be coprecipitated with RNA irreversibly. Therefore, how to remove polysaccharides and other secondary metabolites during RNA extraction is the primary challenge. Dendrobium huoshanense is an Orchidaceae perennial herb that is rich in polysaccharides and other secondary metabolites. By using D. huoshanense as the subject, we improved the method originated from CHAN and made it suitable for plants containing high amount of polysaccharides and polyphenols. The extracted total RNA was clear and non-dispersive, with good integrity and no obvious contamination with DNA and other impurities. And it was also evaluated by gel electrophoresis, nucleic acid quantitative detector and PCR assessment. Thus, as a simple approach, it is suitable and efficient in RNA isolation for plants rich in polysaccharides and polyphenols.
Collapse
Affiliation(s)
- Lulu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Innovative Team from Colleges for Scientific Research's Platform—The Innovative Team in Researching the Key Technologies Concerning the Integration of Processing Chinese Medicine Decoction Pieces in Producing Area, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongmei Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- * E-mail:
| |
Collapse
|
96
|
Roshan P, Kulshreshtha A, Kumar S, Purohit R, Hallan V. AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Sci Rep 2018; 8:1273. [PMID: 29352245 PMCID: PMC5775426 DOI: 10.1038/s41598-018-19292-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Tomato leaf curl Palampur virus (ToLCPalV) is a whitefly-transmitted, bipartite begomovirus. Here, we demonstrated that ectopic expression of AV2 from a Potato virus X (PVX)-based vector accelerated systemic necrosis and reactive oxygen species (ROS) accumulation in Nicotiana benthamiana. Furthermore, 10 amino acids from N-terminal region of AV2 were found to be associated with the systemic necrosis symptom/phenotype. Mutational studies of ToLCPalV infectious clones lacking the AV2 revealed that AV2 is essential for the systemic movement of DNA-A, symptom severity and viral DNA accumulation. In a yeast two-hybrid assay, Catalase2 (Cat2) was found to associate with AV2 protein. Further, silencing of Cat2 resulted in appearance of necrotic lesions on N. benthamiana and these plants were highly susceptible to ToLCPalV infection in comparison to control plants. Infection ToLCPalV on Solanum lycopersicum resulted in downregulation of Cat2 transcripts, followed by accumulation of ROS and stress marker transcripts. The AV2 protein also suppressed virus-induced gene silencing (VIGS) of the Phytoene desaturase (PDS) gene. Our results show that AV2 is essential for the pathogenicity, systemic movement and suppression of gene silencing in the host. Altogether, our findings suggest that interactions between AV2 and Cat2 might play a crucial role in the establishment of ToLCPalV infection.
Collapse
Affiliation(s)
- Poonam Roshan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Aditya Kulshreshtha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Surender Kumar
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vipin Hallan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India.
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India.
| |
Collapse
|
97
|
Kajal M, Singh K. Small RNA profiling for identification of miRNAs involved in regulation of saponins biosynthesis in Chlorophytum borivilianum. BMC PLANT BIOLOGY 2017; 17:265. [PMID: 29281971 PMCID: PMC5745966 DOI: 10.1186/s12870-017-1214-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/14/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND MicroRNAs act as molecular regulator of cell signaling, plant growth and development, and regulate various primary and secondary plant metabolic processes. In the present study, deep sequencing of small RNAs was carried out to identify known and novel miRNAs from pharmaceutically important plant, Chlorophytum borivilianum. RESULTS Total 442 known miRNAs and 5 novel miRNAs were identified from young leaf small RNA library. Experimental validation with stem loop RT-PCR confirmed the in silico identification. Based on transcriptome data of root and leaf of C. borivilianum, Oryza sativa, and Arabidopsis thaliana target gene prediction was done using psRNAtarget and mirRanda. BLAST2GO helped in localization of predicted targets and KEGG (Kyoto Encyclopedia for Genes and Genomes) pathway analysis concluded that miR9662, miR894, miR172, and miR166 might be involved in regulating saponin biosynthetic pathway. The correlation between miRNA and its target gene was further validated by RT-qPCR analysis. CONCLUSION This study provides first elaborated glimpse of miRNA pool of C. borivilianum, which can help to understand the miRNA dependent regulation of saponin biosynthesis and to design further metabolic engineering experiment to enhance their contents in the plant.
Collapse
Affiliation(s)
- Monika Kajal
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
98
|
Zhu H, Sun X, Liu D, Zheng L, Chen L, Ma A. An Improved Total RNA Extraction Method for White Jelly Mushroom Tremella fuciformis Rich in Polysaccharides. MYCOBIOLOGY 2017; 45:434-437. [PMID: 29371814 PMCID: PMC5780378 DOI: 10.5941/myco.2017.45.4.434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
An improved method for extracting high quality and quantity RNA from a jelly mushroom and a dimorphic fungus-Tremella fuciformis which is especially rich in polysaccharides, is described. RNA was extracted from T. fuciformis mycelium M1332 and its parental monokaryotic yeast-like cells Y13 and Y32. The A260/280 and A260/230 ratios were both approximately 2, and the RNA integrity number was larger than 8.9. The yields of RNA were between 108 and 213 µg/g fresh wt. Downstream molecular applications including reverse transcriptional PCR and quantitative real-time PCR were also performed. This protocol is reliable and may be widely applicable for total RNA extraction from other jelly mushrooms or filamentous fungi rich in polysaccharides.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongmei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liesheng Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
99
|
Singh G, Singh G, Singh P, Parmar R, Paul N, Vashist R, Swarnkar MK, Kumar A, Singh S, Singh AK, Kumar S, Sharma RK. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Sci Rep 2017; 7:11835. [PMID: 28928460 PMCID: PMC5605536 DOI: 10.1038/s41598-017-12025-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Gagandeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pradeep Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Navgeet Paul
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Radhika Vashist
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Mohit Kumar Swarnkar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ashok Kumar
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanatsujat Singh
- Agrotechnology of Medicinal, Aromatic and Commercially Important Plants, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Anil Kumar Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi, Jharkhand, India
| | - Sanjay Kumar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
100
|
Wani TA, Pandith SA, Gupta AP, Chandra S, Sharma N, Lattoo SK. Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS One 2017; 12:e0179155. [PMID: 28662128 PMCID: PMC5491003 DOI: 10.1371/journal.pone.0179155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity.
Collapse
Affiliation(s)
- Tareq A Wani
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Ajai P Gupta
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Suresh Chandra
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Namrata Sharma
- Department of Botany, University of Jammu, Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|