51
|
Güley Z, Fallico V, Cabrera-Rubio R, Cotter PD, Beresford T. Identification of Streptococcus infantarius subsp. infantarius as the species primarily responsible for acid production in Izmir Brined Tulum Cheese from the Aegean Region of Türkiye. Food Res Int 2022; 160:111707. [DOI: 10.1016/j.foodres.2022.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
52
|
Stretococcus gallolyticus infective endocarditis, a different presentation-a case report. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
53
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
54
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
55
|
Choden T, Cohen NA. The gut microbiome and the immune system. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human body contains trillions of microbes which generally live in symbiosis with the host. The interaction of the gut microbiome with elements of the host immune system has far-reaching effects in the development of normal gut and systemic immune responses. Disturbances to this intricate relationship may be responsible for a multitude of gastrointestinal and systemic immune mediated diseases. This review describes the development of the gut microbiome and its interaction with host immune cells in both health and disease states.
Collapse
Affiliation(s)
- Tenzin Choden
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nathaniel Aviv Cohen
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA; Inflammatory Bowel Disease Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
56
|
The role of microbiota in colorectal cancer. Folia Microbiol (Praha) 2022; 67:683-691. [PMID: 35534716 DOI: 10.1007/s12223-022-00978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
Cancer is one of the most important causes of death throughout the world, and the mortality rate is increasing significantly due to the aging of the population. One of the most common types of cancer is colorectal cancer (CRC). Human microbial ecosystems use metabolism to make important impacts on the body physiology. An intensive literature review was made to investigate the correlations between human gut microbiota and the incidence of CRC. The results of these studies show that there are differences in the composition of microbiota between CRC patients and normal people and the microorganisms in CRC patients are very different from healthy individuals. Therefore, changes in the microbiome can be used as a biomarker for the early detection of CRC. On the other hand, the intestinal flora is may be act as a powerful weapon against CRC in the future.
Collapse
|
57
|
Xing J, Fang Y, Zhang W, Zhang H, Tang D, Wang D. Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin Transl Oncol 2022; 24:784-795. [PMID: 35000132 DOI: 10.1007/s12094-021-02738-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease of the intestinal epithelium and ranks the third largest diagnosed malignancy in the world. Many studies have shown that the high risk of CRC is believed to be related to the formation of biofilms. To prove causation, it will be significant to decipher which specific bacteria in biofilms initiate and maintain CRC and fully describe their underlying mechanisms. Here we introduce a bacterial driver-passenger model. This model added a novel and compelling angle to the role of microorganisms, putting more emphasis on the transformation of bacterial composition in biofilms which play different roles in the development of CRC. In this model, bacterial drivers can initiate the formation of CRC through genotoxicity, while bacterial passengers maintain the CRC process through metabolites. On the basis of these pathogens, we further turned our attention to strategies that can inhibit and eradicate these pathogenic biofilms, with the aim of finding new ways to hinder colorectal carcinogenesis.
Collapse
Affiliation(s)
- J Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Y Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - W Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - H Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - D Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - D Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
58
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
59
|
Banal C, Lau S, Nagra S, Watters DAK. Streptococcus gallolyticus
bacteraemia and colorectal neoplasia: an old association with a new name. Med J Aust 2022; 216:281-282. [DOI: 10.5694/mja2.51447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Affiliation(s)
| | - Steve Lau
- University Hospital Geelong Geelong VIC
| | | | - David AK Watters
- University Hospital Geelong Geelong VIC
- Deakin University Geelong VIC
| |
Collapse
|
60
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
61
|
Tortora SC, Bodiwala VM, Quinn A, Martello LA, Vignesh S. Microbiome and colorectal carcinogenesis: Linked mechanisms and racial differences. World J Gastrointest Oncol 2022; 14:375-395. [PMID: 35317317 PMCID: PMC8918999 DOI: 10.4251/wjgo.v14.i2.375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Various studies have shown the interplay between the intestinal microbiome, environmental factors, and genetic changes in colorectal cancer (CRC) development. In this review, we highlight the various gut and oral microbiota associated with CRC and colorectal adenomas, and their proposed molecular mechanisms in relation to the processes of “the hallmarks of cancer”, and differences in microbial diversity and abundance between race/ethnicity. Patients with CRC showed increased levels of Bacteroides, Prevotella, Escherichia coli, enterotoxigenic Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, Fusobacterium nucleatum (F. nucleatum) and Clostridium difficile. Higher levels of Bacteroides have been found in African American (AA) compared to Caucasian American (CA) patients. Pro-inflammatory bacteria such as F. nucleatum and Enterobacter species were significantly higher in AAs. Also, AA patients have been shown to have decreased microbial diversity compared to CA patients. Some studies have shown that using microbiome profiles in conjunction with certain risk factors such as age, race and body mass index may help predict healthy colon vs one with adenomas or carcinomas. Periodontitis is one of the most common bacterial infections in humans and is more prevalent in Non-Hispanic-Blacks as compared to Non-Hispanic Whites. This condition causes increased systemic inflammation, immune dysregulation, gut microbiota dysbiosis and thereby possibly influencing colorectal carcinogenesis. Periodontal-associated bacteria such as Fusobacterium, Prevotella, Bacteroides and Porphyromonas have been found in CRC tissues and in feces of CRC patients. Therefore, a deeper understanding of the association between oral and gastrointestinal bacterial profile, in addition to identifying prevalent bacteria in patients with CRC and the differences observed in ethnicity/race, may play a pivotal role in predicting incidence, prognosis, and lead to the development of new treatments.
Collapse
Affiliation(s)
- Sofia C Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Vimal M Bodiwala
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Andrew Quinn
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Laura A Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Shivakumar Vignesh
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| |
Collapse
|
62
|
Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19:135-144. [PMID: 34782783 PMCID: PMC8966578 DOI: 10.1038/s41575-021-00536-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Although bacteriophages have been overshadowed as therapeutic agents by antibiotics for decades, the emergence of multidrug-resistant bacteria and a better understanding of the role of the gut microbiota in human health and disease have brought them back into focus. In this Perspective, we briefly introduce basic phage biology and summarize recent discoveries about phages in relation to their role in the gut microbiota and gastrointestinal diseases, such as inflammatory bowel disease and chronic liver disease. In addition, we review preclinical studies and clinical trials of phage therapy for enteric disease and explore current challenges and potential future directions.
Collapse
Affiliation(s)
- Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, TX, USA
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
63
|
Peláez Ballesta AI, García Vázquez E, Gómez Gómez J. Infective endocarditis treated in a secondary hospital: epidemiological, clinical, microbiological characteristics and prognosis, with special reference to patients transferred to a third level hospital. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35:35-42. [PMID: 34845895 PMCID: PMC8790653 DOI: 10.37201/req/092.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To analyse the clinical and epidemiological characteristics and mortality-related factors of patients admitted to a secondary hospital with Infective Endocarditis (IE). METHODS Observational study of a cohort of patients who have been diagnosed with IE in a secondary hospital and evaluated in accordance with a pre-established protocol. RESULTS A total of 101 cases were evaluated (years 2000-2017), with an average age of 64 years and a male-to-female ratio of 2:1. 76% of the cases had an age-adjusted Charlson comorbidity index of >6, with 21% having had a dental procedure and 36% with a history of heart valve disease. The most common microorganism was methicillin-susceptible S. aureus (36%), with bacterial focus of unknown origin in 54%. The diagnostic delay time was 12 days in patients who were transferred, compared to 8 days in patients who were not transferred (p=0.07); the median surgery indication delay time was 5 days (IQR 13.5). The in-hospital mortality rate was 34.6% and the prognostic factors independently associated with mortality were: cerebrovascular events (OR 98.7%, 95% CI, 70.9-164.4); heart failure (OR 27.3, 95% CI, 10.2-149.1); and unsuitable antibiotic treatment (OR 7.2, 95% CI, 1.5-10.5). The mortality rate of the patients who were transferred and who therefore underwent surgery was 20% (5/25). CONCLUSIONS The onset of cerebrovascular events, heart failure and unsuitable antibiotic treatment are independently and significantly associated with in-hospital mortality. The mortality rate was higher than the published average (35%); the diagnostic delay was greater in patients for whom surgery was indicated.
Collapse
Affiliation(s)
- A I Peláez Ballesta
- Ana Isabel Peláez Ballesta, Internal Medicine Department of the Hospital General Universitario Rafael Méndez (Lorca). Spain.
| | | | | |
Collapse
|
64
|
Manzoor S, Wani SM, Mir SA, Rizwan D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022; 96:111602. [PMID: 35182833 DOI: 10.1016/j.nut.2022.111602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
65
|
Liu P, Zhou W, Xu W, Peng Y, Yan Y, Lu L, Mi J, Zeng X, Cao Y. The Main Anthocyanin Monomer from Lycium ruthenicum Murray Fruit Mediates Obesity via Modulating the Gut Microbiota and Improving the Intestinal Barrier. Foods 2021; 11:foods11010098. [PMID: 35010223 PMCID: PMC8750395 DOI: 10.3390/foods11010098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins have been shown to exert certain antiobesity properties, but the specific relationship between anthocyanin-induced beneficial effects and the gut microbiota remains unclear. Petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) (P3G) is the main anthocyanin monomer from the fruit of Lycium ruthenicum Murray. Therefore, in this study, we investigated the antiobesity and remodeling effects of P3G on gut microbiota through a high-fat diet (HFD)-induced obesity mouse model and a fecal microbiota transplantation experiment. P3G was found to reduce body weight gain, fat accumulation, and liver steatosis in HFD-induced obese mice. Moreover, supplementation with P3G alleviated the HFD-induced imbalance in gut microbiota composition, and transferring the P3G-regulated gut microbiota to recipient mice provided comparable protection against obesity. This is the first time evidence is provided that P3G has an antiobesity effect by changing the intestinal microbiota. Our present data highlight a link between P3G intervention and enhancement in gut barrier integrity. This may be a promising option for obesity prevention.
Collapse
Affiliation(s)
- Peiyun Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (P.L.); (W.Z.); (W.X.); (Y.P.)
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (Y.Y.); (L.L.); (J.M.)
- National Wolfberry Engineering Research Center, Yinchuan 750002, China
- Correspondence: (X.Z.); (Y.C.); Tel.: +86-25-84396791 (X.Z.); +86-951-6886783 (Y.C.)
| |
Collapse
|
66
|
Keerty D, Yacoub AT, Nguyen TC, Haynes E, Greene J. First Case of Infective Endocarditis With Streptococcus equinus in an Immunocompetent Patient in North America: A Case Report and Review of Literature. Cureus 2021; 13:e19473. [PMID: 34912614 PMCID: PMC8664352 DOI: 10.7759/cureus.19473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
Infective endocarditis (IE) can be caused by bacterial or fungal infections invading the endocardial surface of the heart, such as its valves and chambers. Staphylococcus and Streptococcus species are mainly responsible for IE. Streptococcus equinus (S. equinus) has been rarely noted to cause IE. We present a case of a 69-year-old white male with a past medical history of severe aortic regurgitation, who during an elective aortic heart valve replacement surgery was noted to have multiple plaque-like vegetations at the base of the mitral valve that were positive for S. equinus. To date, there are only four cases of S. equinus endocarditis reported worldwide, with a high possibility of our case being the first reported in North America.
Collapse
Affiliation(s)
- Dinesh Keerty
- Internal Medicine, Moffitt Cancer Center, Tampa, USA
| | | | | | | | - John Greene
- Infectious Diseases, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
67
|
Loosen SH, Jördens MS, Luedde M, Modest DP, Labuhn S, Luedde T, Kostev K, Roderburg C. Incidence of Cancer in Patients with Irritable Bowl Syndrome. J Clin Med 2021; 10:jcm10245911. [PMID: 34945206 PMCID: PMC8703949 DOI: 10.3390/jcm10245911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) represents one of the most common disorders of gut–brain interaction (DGBI). As recent data has suggested an increased cancer incidence for IBS patients, there is an ongoing debate whether IBS might be associated with a risk of cancer development. In the present study, we evaluated and compared incidence rates of different malignancies including gastrointestinal cancer in a large cohort of outpatients, with or without IBS, treated in general practices in Germany. (2) Methods: We matched a cohort of 21,731 IBS patients from the IQVIA Disease Analyzer database documented between 2000 and 2019 in 1284 general practices to a cohort of equal size without IBS. Incidence of cancer diagnoses were evaluated using Cox regression models during a 10-year follow-up period. (3) Results: In 11.9% of patients with IBS compared to 8.0% without IBS, cancer of any type was diagnosed within 10 years following the index date (p < 0.001). In a regression analysis, this association was confirmed in female (HR: 1.68, p < 0.001) and male (HR = 1.57, p < 0.001) patients as well as in patients of all age groups. In terms of cancer entity, 1.9% of patients with and 1.3% of patients without IBS were newly diagnosed with cancer of digestive organs (p < 0.001). Among non-digestive cancer entities, the strongest association was observed for skin cancer (HR = 1.87, p < 0.001), followed by prostate cancer in men (HR = 1.81, p < 0.001) and breast cancer in female patients (HR = 1.80, p < 0.001). (4) Conclusion: Our data suggest that IBS might be associated with cancer of the digestive organs as well as with non-digestive cancer entities. However, our findings do not prove causality and further research is warranted as the association could be attributed to life style factors that were not documented in the database.
Collapse
Affiliation(s)
- Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
- Correspondence: (S.H.L.); (T.L.); Tel.: +49-211-81-04488 (S.H.L.)
| | - Markus S. Jördens
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| | - Mark Luedde
- KGP Bremerhaven, 27574 Bremerhaven, Germany;
| | - Dominik P. Modest
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Simon Labuhn
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
- Correspondence: (S.H.L.); (T.L.); Tel.: +49-211-81-04488 (S.H.L.)
| | | | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine, University Düsseldorf, 40225 Düsseldorf, Germany; (M.S.J.); (S.L.); (C.R.)
| |
Collapse
|
68
|
Abstract
Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.
Collapse
|
69
|
Öberg J, Rasmussen M, Buchwald P, Nilson B, Inghammar M. Streptococcus bovis-bacteremia: subspecies distribution and association with colorectal cancer: a retrospective cohort study. Epidemiol Infect 2021; 150:e8. [PMID: 38751047 PMCID: PMC8753481 DOI: 10.1017/s0950268821002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to describe the incidence of Streptococcus bovis/Streptococcus equinus complex (SBSEC) bacteremia, distribution of the SBSEC subspecies, and their respective association with colorectal cancer (CRC). A population-based retrospective cohort study of all episodes of SBSEC-bacteremia from 2003 to 2018 in Skåne Region, Sweden. Subspecies was determined by whole-genome sequencing. Medical charts were reviewed. The association between subspecies and CRC were analysed using logistic regression. In total 266 episodes of SBSEC-bacteremia were identified and the average annual incidence was 2.0 per 100 000 inhabitants. Of the 236 isolates available for typing, the most common subspecies was S. gallolyticus subsp. pasteurianus 88/236 (37%) followed by S. gallolyticus subsp. gallolyticus 58/236 (25%). In order to determine the risk of cancer following bacteremia, an incidence cohort of 174 episodes without a prior diagnosis of CRC or metastasised cancer was followed for 560 person-years. CRC was found in 13/174 (7%), of which 9 (69%) had S. gallolyticus subsp. gallolyticus-bacteremia. In contrast to other European studies, S. gallolyticus subsp. pasteurianus was the most common cause of SBSEC-bacteremia. CRC diagnosis after bacteremia was strongly associated with S. gallolyticus subsp. gallolyticus-bacteremia. Identification of SBSEC subspecies can guide clinical decision-making regarding CRC work-up following bacteremia.
Collapse
Affiliation(s)
- Jonas Öberg
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund,Sweden
- Department of Infectious Diseases, Helsingborg Hospital, Helsingborg, Sweden
| | - Magnus Rasmussen
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund,Sweden
| | - Pamela Buchwald
- Department of Surgery, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Bo Nilson
- Department of Laboratory Medicine Lund, Section of Medical Microbiology, Lund University, Lund, Sweden
- Department of Clinical Microbiology, Infection Control and Prevention, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Malin Inghammar
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund,Sweden
| |
Collapse
|
70
|
Wu Y, Wu Y, Wu H, Wu C, Ji E, Xu J, Zhang Y, Wei J, Zhao Y, Yang H. Systematic Survey of the Alteration of the Faecal Microbiota in Rats With Gastrointestinal Disorder and Modulation by Multicomponent Drugs. Front Pharmacol 2021; 12:670335. [PMID: 34803663 PMCID: PMC8596021 DOI: 10.3389/fphar.2021.670335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal disorder (GID) is a global health disease which leads to heavy public medical burden. Disorders in the intestinal flora have been found in gastrointestinal disorder patients. However, the interaction between GID and the intestinal flora in faecal has not been studied comprehensively. In addition, multicomponent drugs represented by traditional Chinese medicine (TCM) are widely used for treating GID, but their modulation of the intestinal flora has not been investigated. Therefore, in this study, a high-throughput sequencing strategy was used to investigate alterations in the intestinal flora in a rat GID model, followed by an investigation of the modulation by a representative TCM, Xiaoerfupi (XEFP) granule. The results showed that in rats with GID, the relative abundances of Erysipelotrichaceae, Lachnospiraceae, Streptococcaceae increased and that of Ruminococcaceae decreased. At the macro level, the levels of LysoPC(16:0), LysoPC(20:2), LysoPC(15:0), LysoPC(20:2 (11Z, 14Z)), LysoPC(20:1), LysoPC(15:0), LysoPC(20:0) and LysoPE (0:0/20:0) in serum increased and levels of PC(36:4), PC(38:4), PC(o-36;4), PE (MonoMe(13,5)/MonoMe(11,5)) decreased. The imbalance of metabolites was restored by XEFP through ether lipid metabolism pathway. Increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio of the GID rats was restored by XEFP as well. Moreover, XEFP can relief the symptoms of GID rats by increasing bacteria Ruminococcaceae and decreasing Streptococcaceae, Erysipelotrichaceae and Lachnospiraceae in faecal microbiota level. This study represents a comprehensive survey of the interaction between GID and the intestinal flora and a systematic evaluation of modulation by a multicomponent drug.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Medical Experimental Center of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yang Wu
- Medical Experimental Center of Chinese Academy of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxun Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Enhui Ji
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Yang
- Medical Experimental Center of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
71
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
72
|
Malik S, Prasad S, Kishore S, Kumar A, Upadhyay V. A perspective review on impact and molecular mechanism of environmental carcinogens on human health. Biotechnol Genet Eng Rev 2021; 37:178-207. [PMID: 34672914 DOI: 10.1080/02648725.2021.1991715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death all around the world. It is a group of diseases characterized by abnormal and uncontrollable division of cells leading to severe health conditions and fatality if remains undiagnosed till later stages. Cancer can be caused due to mutation or sudden alterations by effect of certain external agents. Agents that can cause sudden alterations in the genetic content of an individual are known as mutagens. Mutations can lead to permanent changes in the genetic constituency of an individual and possibly lead to cancer. Mutagenic agents that possess the capacity to induce cancer in humans are called carcinogens. Carcinogens may be naturally present in the environment or generated by anthropogenic activities. However, with the progress in molecular techniques, genetic and/or epigenetic mechanisms of carcinogenesis of a wide range of carcinogens have been elucidated. Present review aims to discuss different types of environmental carcinogens and their respective mechanisms responsible for inducing cancer in humans.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Abhishek Kumar
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India.,Manipal Academy of Higher Education (Mahe), Manipal, India
| | - Vineet Upadhyay
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India
| |
Collapse
|
73
|
Bacteria-Cancer Interface: Awaiting the Perfect Storm. Pathogens 2021; 10:pathogens10101321. [PMID: 34684270 PMCID: PMC8540461 DOI: 10.3390/pathogens10101321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence reveal a very close association of malignancies with chronic inflammation as a result of persistent bacterial infection. Recently, more studies have provided experimental evidence for an etiological role of bacterial factors disposing infected tissue towards carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these cells must be able to deregulate cellular energetics and have the ability to evade immune destruction. How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response or micro-environment is still not clear. In this review we showcase well-studied bacteria and their virulence factors that are tightly associated with carcinoma and the various mechanisms and pathways that could have carcinogenic properties.
Collapse
|
74
|
Thind SK, Shibib DR, Gentry CA. The Effect of Nomenclature Revision of Streptococcus bovis to Streptococcus gallolyticus on Subsequent Colon Cancer Screening. Open Forum Infect Dis 2021; 8:ofab426. [PMID: 34568510 PMCID: PMC8458264 DOI: 10.1093/ofid/ofab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lack of awareness of the taxonomic revision from the familiar Streptococcus bovis to the less familiar Streptococcus gallolyticus may be associated with a decrease in recommended colon cancer screening in patients with bacteremia from this organism. This could subsequently lead to a delay in diagnosis or underdiagnosis of colon cancer and other serious underlying gastrointestinal diseases. The aim of this study was to determine whether the nomenclature change of S. bovis to S. gallolyticus resulted in decreased colon cancer screening. Methods This study was a retrospective, observational, nationwide analysis of patients who had positive blood cultures for S. bovis/S. gallolyticus from any Veterans Affairs Medical Center (VAMC) between January 1, 2002, and December 31, 2017. Results There was no difference in the primary end point of intent for colonoscopy between the S. gallolyticus and S. bovis groups (66.5% [117/176] vs 62.1% [624/1005], respectively; P = .26). The overall mortality rate was 33.8% among 1181 patients included in the study, with a significantly lower mortality in patients with evidence of intent for colonoscopy (29.6% vs 42.5%; P ≤ .001), gastroenterology (GI) consultation (29.8% vs 41.4%; P < .001), infectious diseases (ID) consultation (29.4% vs 39.0%; P = .001), or either consultation (31.9% vs 40.7%; P = .013), compared to those that did not. Conclusions There was no difference in colon cancer screening rates between patients with episodes of bacteremia reported as S. bovis and those reported as S. gallolyticus. Overall mortality was lower in patients who had ID consultation, GI consultation, or evidence of colonoscopy.
Collapse
Affiliation(s)
- Sharanjeet K Thind
- Section of Infectious Diseases, Medical Service, Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dena R Shibib
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Pathology, Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA
| | - Chris A Gentry
- Pharmacy Service, Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA
| |
Collapse
|
75
|
Abstract
Metagenomic analyses have revealed microbial dysbiosis in the gut of patients with colorectal cancer (CRC). The gut microbiota influences CRC via a variety of mechanisms, including microbial-derived factors such as metabolites or genotoxins. Pathogenic drivers and opportunistic passenger bacteria may underlie direct effect of the gut microbiota on carcinogenesis. We posit that metabolites generated by gut microbiota can influence CRC through a multitude of epigenetic or genetic effects on malignant transformation. A closer look at the cross talks between the commensals, epithelial cells, immune regulators etc., needs to be established with more substantiated studies. The recurrence of chemoresistant disease following therapy undoubtedly provides the impetus for morbidity and mortality; yet, the role of gut microbiome in drug resistance remains to be fully investigated. We review the current literature on microbial dysbiosis during CRC and discuss the mechanistic basis of CRC-associated bacteria in tumor initiation, progression and drug resistance.
Collapse
|
76
|
Yu ZK, Xie RL, You R, Liu YP, Chen XY, Chen MY, Huang PY. The role of the bacterial microbiome in the treatment of cancer. BMC Cancer 2021; 21:934. [PMID: 34412621 PMCID: PMC8375149 DOI: 10.1186/s12885-021-08664-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is defined as the microorganisms that reside in or on the human body, such as bacteria, viruses, fungi, and protozoa, and their genomes. The human microbiome participates in the modulation of human metabolism by influencing several intricate pathways. The association between specific bacteria or viruses and the efficacy of cancer treatments and the occurrence of treatment-related toxicity in cancer patients has been reported. However, the understanding of the interaction between the host microbiome and the cancer treatment response is limited, and the microbiome potentially plays a greater role in the treatment of cancer than reported to date. Here, we provide a thorough review of the potential role of the gut and locally resident bacterial microbiota in modulating responses to different cancer therapeutics to demonstrate the association between the gut or locally resident bacterial microbiota and cancer therapy. Probable mechanisms, such as metabolism, the immune response and the translocation of microbiome constituents, are discussed to promote future research into the association between the microbiome and other types of cancer. We conclude that the interaction between the host immune system and the microbiome may be the basis of the role of the microbiome in cancer therapies. Future research on the association between host immunity and the microbiome may improve the efficacy of several cancer treatments and provide insights into the cause of treatment-related side effects.
Collapse
Affiliation(s)
- Zi-Kun Yu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Rui-Ling Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xu-Yin Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
77
|
Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol 2021; 24:193-202. [PMID: 34387847 PMCID: PMC8360819 DOI: 10.1007/s12094-021-02690-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
During last few decades, role of microbiota and its importance in several diseases has been a hot topic for research. The microbiota is considered as an accessory organ for maintaining normal physiology of an individual. These microbiota organisms which normally colonize several epithelial surfaces are known to secrete several small molecules leading to local and systemic effects on normal biological processes. The role of microbiota is also established in carcinogenesis as per several recent findings. The effects of microbiota on cancer is not only limited to their contribution in oncogenesis, but the overall susceptibility for oncogenesis and its subsequent progression, development of coinfections, and response to anticancer therapy is also found to be affected by microbiota. The information about microbiota and subsequent contributions of microbes in anticancer response motivated researchers in development of microbes-based anticancer therapeutics. We provided current status of microbiota contribution in oncogenesis with special reference to their mechanistic implications in different aspects of oncogenesis. In addition, the mechanistic implications of bacteria in anticancer therapy are also discussed. We conclude that several mechanisms of microbiota-mediated regulation of oncogenesis is known, but approaches must be focused on understanding contribution of microbiota as a community rather than single organisms-mediated effects.
Collapse
|
78
|
Forouzandeh A, Blavi L, Abdelli N, Melo-Duran D, Vidal A, Rodríguez M, Monteiro ANTR, Pérez JF, Darwich L, Solà-Oriol D. Effects of dicopper oxide and copper sulfate on growth performance and gut microbiota in broilers. Poult Sci 2021; 100:101224. [PMID: 34157560 PMCID: PMC8237351 DOI: 10.1016/j.psj.2021.101224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
An experiment was conducted to determine the effects of two sources of copper (Cu) from copper sulfate (CuSO4) and dicopper oxide (Cu2O, CoRouge) at three levels of inclusion (15, 75, and 150 mg/kg) on growth performance and gut microbiota of broilers. A total of 840 one-d-old male chickens (Ross 308) were weighed and randomly allocated to seven dietary treatments: negative control (NC, a basal diet without Cu addition), and the NC supplemented with 15, 75, or 150 mg Cu/kg from CuSO4 or Cu2O (12 replicate pens/treatment, 10 chicks per pen). Broilers were challenged by reusing an old litter with high concentrations in Clostridium perfringens to promote necrotic enteritis. Broiler performance was registered at d 21, 35, and 42. Excreta samples were collected at d 14, 28, and 42 for antimicrobial resistance (AMR) analyses. At d 43, one broiler per pen was euthanized to obtain ileal content for microbial characterization. Body weight d 35 and daily gain d 42 improved (P < 0.05) in Cu2O as Cu dose inclusion increased from 15 mg/kg to 150 mg/kg. Supplementation of 150 mg/kg of Cu from Cu2O decreased the abundance (P < 0.01) of some families such as Streptococcaceae and Corynebacteriaceae and increased the abundance (P < 0.05) of some commensal bacteria like Clostridiaceae and Peptostreptococcaceae. Phenotypic AMR was not different among treatments on d 14 and 28. Isolated Enterococcus spp. from broilers fed the NC diet on d 42 showed higher (P < 0.05) resistance to enrofloxacin, gentamicin, and chloramphenicol compared with Cu treatments. By contrast, the isolated Escherichia coli from broilers fed 150 mg/kg of Cu, either from CuSO4 or Cu2O, showed higher (P < 0.05) resistance to streptomycin and chloramphenicol compared to the NC. This study suggests that supplementing 150 mg/kg of Cu from Cu2O establishes changes in the gut microbiota by regulating the bacterial population in the ileum, which may explain the positive impact on broilers' growth performance.
Collapse
Affiliation(s)
- A Forouzandeh
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - L Blavi
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - N Abdelli
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - D Melo-Duran
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - A Vidal
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | - J F Pérez
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - L Darwich
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - D Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
79
|
Liu J, Hao W, He Z, Kwek E, Zhu H, Ma N, Ma KY, Chen ZY. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr 2021; 60:2735-2746. [PMID: 33392758 DOI: 10.1007/s00394-020-02446-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Blueberry and cranberry are rich in anthocyanins. The present study was to investigate the effects of anthocyanin extracts from blueberry and cranberry on body weight and gut microbiota. METHODS C57BL/6 J Mice were divided into six groups (n = 9 each) fed one of six diets namely low-fat diet (LFD), high-fat diet (HFD), HFD with the addition of 1% blueberry extract (BL), 2% blueberry extract (BH), 1% cranberry extract (CL), and 2% cranberry extract (CH), respectively. RESULTS Feeding BL and BH diets significantly decreased body weight gain by 20-23%, total adipose tissue weight by 18-20%, and total liver lipids by 16-18% compared with feeding HFD. Feeding CH diet but not CL diet reduced the body weight by 27%, accompanied by a significant reduction of total plasma cholesterol by 25% and tumor necrosis factor alpha (TNF-α) by 38%. The metagenomic analysis showed that the supplementation of blueberry and cranberry anthocyanin extracts reduced plasma lipopolysaccharide concentration, accompanied by a reduction in the relative abundance of Rikenella and Rikenellaceae. Dietary supplementation of berry anthocyanin extracts promoted the growth of Lachnoclostridium, Roseburia, and Clostridium_innocuum_group in genus level, leading to a greater production of fecal short-chain fatty acids (SCFA). CONCLUSIONS It was concluded that both berry anthocyanins could manage the body weight and favorably modulate the gut microbiota at least in mice.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, China.
| |
Collapse
|
80
|
Allium-Derived Compound Propyl Propane Thiosulfonate (PTSO) Attenuates Metabolic Alterations in Mice Fed a High-Fat Diet through Its Anti-Inflammatory and Prebiotic Properties. Nutrients 2021; 13:nu13082595. [PMID: 34444755 PMCID: PMC8400710 DOI: 10.3390/nu13082595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Propyl propane thiosulfonate (PTSO) is an organosulfur compound from Allium spp. that has shown interesting antimicrobial properties and immunomodulatory effects in different experimental models. In this sense, our aim was to evaluate its effect on an experimental model of obesity, focusing on inflammatory and metabolic markers and the gut microbiota. Methods and results: Mice were fed a high-fat diet and orally treated with different doses of PTSO (0.1, 0.5 and 1 mg/kg/day) for 5 weeks. PTSO lessened the weight gain and improved the plasma markers associated with glucose and lipid metabolisms. PTSO also attenuated obesity-associated systemic inflammation, reducing the immune cell infiltration and, thus, the expression of pro-inflammatory cytokines in adipose and hepatic tissues (Il-1ẞ, Il-6, Tnf-α, Mcp-1, Jnk-1, Jnk-2, Leptin, Leptin R, Adiponectin, Ampk, Ppar-α, Ppar-γ, Glut-4 and Tlr-4) and improving the expression of different key elements for gut barrier integrity (Muc-2, Muc-3, Occludin, Zo-1 and Tff-3). Additionally, these effects were connected to a regulation of the gut microbiome, which was altered by the high-fat diet. Conclusion: Allium-derived PTSO can be considered a potential new tool for the treatment of metabolic syndrome.
Collapse
|
81
|
Jaye K, Li CG, Bhuyan DJ. The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses. Crit Rev Oncol Hematol 2021; 165:103429. [PMID: 34293459 DOI: 10.1016/j.critrevonc.2021.103429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
The association between human gut microbiota and cancers has been an evolving field of biomedical research in recent years. The gut microbiota is composed of the microorganisms residing in the gastrointestinal system that interact with the host to regulate behaviours and biochemical processes within the gut. This symbiotic physiological interaction between the gut and the microbiota plays a significant role in the modulation of gut homeostasis, in which perturbations to the microbiota, also known as dysbiosis can lead to the onset of diseases, including cancer. In this review, we analysed the current literature to understand the role of gut microbiota in the five most prevalent cancer types, namely colon (colorectal), lung, breast, prostate, and stomach cancers. Recent studies have observed the immunomodulatory and anti-tumoural effects of gut microbiota in cancers. Furthermore, gut microbial dysbiosis can induce the release of toxic metabolites and exhibit pro-tumoural effects in the host. The gut microbiota was observed to have clinical implications in each cancer type in addition to regulating the efficacy of standard chemotherapy and natural anticancer agents. However, further research is warranted to understand the complex role of gut microbiota in the prevention, diagnosis, treatment, and prognoses of cancer.
Collapse
Affiliation(s)
- Kayla Jaye
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
82
|
Dalal N, Jalandra R, Bayal N, Yadav AK, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol 2021; 147:3141-3155. [PMID: 34273006 DOI: 10.1007/s00432-021-03729-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Based on recent research reports, dysbiosis and improper concentrations of microbial metabolites in the gut may result into the carcinogenesis of colorectal cancer. Recent advancement also highlights the involvement of bacteria and their secreted metabolites in the cancer causation. Gut microbial metabolites are functional output of the host-microbiota interactions and produced by anaerobic fermentation of food components in the diet. They contribute to influence variety of biological mechanisms including inflammation, cell signaling, cell-cycle disruption which are majorly disrupted in carcinogenic activities. PURPOSE In this review, we intend to discuss recent updates and possible molecular mechanisms to provide the role of bacterial metabolites, gut bacteria and diet in the colorectal carcinogenesis. Recent evidences have proposed the role of bacteria, such as Fusobacterium nucleaturm, Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis and Clostridium septicum, in the carcinogenesis of CRC. Metagenomic study confirmed that these bacteria are in increased abundance in CRC patient as compared to healthy individuals and can cause inflammation and DNA damage which can lead to development of cancer. These bacteria produce metabolites, such as secondary bile salts from primary bile salts, hydrogen sulfide, trimethylamine-N-oxide (TMAO), which are likely to promote inflammation and subsequently cancer development. CONCLUSION Recent studies suggest that gut microbiota-derived metabolites have a role in CRC progression and causation and hence, could be implicated in CRC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Nitin Bayal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, 110029, India
| | - Pramod Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
83
|
[The association of Streptococcus gallolyticus meningitis and inflammatory bowel disease: Apropos of a case]. Rev Esp Geriatr Gerontol 2021; 57:55-56. [PMID: 34247899 DOI: 10.1016/j.regg.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022]
|
84
|
Chirikian D, Awsare S, Fitzgibbon J, Lee L. Concurrent Clostridium septicum bacteremia and colorectal adenocarcinoma with metastasis to the brain - A Case Report. IDCases 2021; 25:e01189. [PMID: 34189038 PMCID: PMC8220233 DOI: 10.1016/j.idcr.2021.e01189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
There is a known relationship between Clostridium septicum bacteremia and colorectal malignancies. C. septicum is a gram-positive, anaerobic, spore-forming bacterium that can survive the acidic colorectal tumor microenvironment, where it is thought to enter the blood by tumor-mediated epithelial tissue damage. While in circulation, C. septicum can release exotoxins which may lead to life-threatening sepsis. The patient in this case presented with a mild fever, abdominal pain, and left hand weakness. Imaging of the head and abdomen revealed a right frontal lucency and wall thickening of the ascending colon. Two colonic adenocarcinomas were found and removed via an exploratory laparotomy and right hemicolectomy. The blood culture was positive for C. septicum. Brain MRI confirmed a right frontal mass concerning for metastasis. Here, we discuss the relationship between colonic cancers and Clostridium septicum bacteremia.
Collapse
Affiliation(s)
- David Chirikian
- California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Sohun Awsare
- California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - John Fitzgibbon
- California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Lenora Lee
- Department of Infectious Disease, Kaiser Permanente Sacramento Medical Center, 2025 Morse Avenue, Sacramento, CA, 95825, USA
| |
Collapse
|
85
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
86
|
Bonde A, Daly S, Kirsten J, Kondapaneni S, Mellnick V, Menias CO, Katabathina VS. Human Gut Microbiota-associated Gastrointestinal Malignancies: A Comprehensive Review. Radiographics 2021; 41:1103-1122. [PMID: 33989072 DOI: 10.1148/rg.2021200168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract houses trillions of microbes. The gut and various types of microorganisms, including bacteria, viruses, fungi, and archaea, form a complex ecosystem known as the gut microbiota, and the whole genome of the gut microbiota is referred to as the gut microbiome. The gut microbiota is essential for homeostasis and the overall well-being of a person and is increasingly considered an adjunct "virtual organ," with a complexity level comparable to that of the other organ systems. The gut microbiota plays an essential role in nutrition, local mucosal homeostasis, inflammation, and the mucosal immune system. An imbalanced state of the gut microbiota, known as dysbiosis, can predispose to development of various gastrointestinal malignancies through three speculated pathogenic mechanisms: (a) direct cytotoxic effects with damage to the host DNA, (b) disproportionate proinflammatory signaling inducing inflammation, and (c) activation of tumorigenic pathways or suppression of tumor-suppressing pathways. Several microorganisms, including Helicobacter pylori, Epstein-Barr virus, human papillomavirus, Mycoplasma species, Escherichia coli, and Streptococcus bovis, are associated with gastrointestinal malignancies such as esophageal adenocarcinoma, gastric adenocarcinoma, gastric mucosa-associated lymphoid tissue lymphoma, colorectal adenocarcinoma, and anal squamous cell carcinoma. Imaging plays a pivotal role in diagnosis and management of microbiota-associated gastrointestinal malignancies. Appropriate use of probiotics, fecal microbiota transplantation, and overall promotion of the healthy gut are ongoing areas of research for prevention and treatment of malignancies. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Apurva Bonde
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sean Daly
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Julia Kirsten
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sainath Kondapaneni
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Vincent Mellnick
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (A.B., S.D., J.K., V.S.K.); University of Texas at Austin, Austin, Tex (S.K.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
87
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
88
|
Fan Q, Shang F, Chen C, Zhou H, Fan J, Yang M, Nie X, Liu L, Cai K, Liu H. Microbial Characteristics of Locally Advanced Rectal Cancer Patients After Neoadjuvant Chemoradiation Therapy According to Pathologic Response. Cancer Manag Res 2021; 13:2655-2667. [PMID: 33776484 PMCID: PMC7989702 DOI: 10.2147/cmar.s294936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal microbiota play a critical role in the development of colorectal cancer. However, little is known about the structure and characteristics of gut microbial in colorectal cancer, especially in locally advanced rectal cancer after neoadjuvant chemoradiation therapy. Methods Here, we performed this study to evaluate microbial characteristics between pathologic complete response (pCR) (n=12) and non-pathological complete response (Non-pCR) (n=45) tumor tissues from patients with locally advanced rectal cancer after neoadjuvant chemoradiation therapy. In this study, 16S rRNA gene sequencing was used to detect the microbial diversity including Alpha diversity and Beta diversity. Moreover, we used PICRUSt from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to predict the microbial metabolism functions. Results There was significant statistical difference in PFS between pCR and Non-pCR group (p < 0.05). However, there was no significant difference in OS between pCR and Non-pCR group. The microbial compositions in the both groups were Proteobacteria, Actinobacteria, Firmicutes and Thermi and Bacteroidetes at the phylum level. The five most predominant genera in both pCR and Non-pCR tissue groups were Sphingobium, Acinetobacter, Cupriavidus, Thermi and Sphingomonas at the genus level. The key taxa identified in the pCR and Non-pCR tissues were Thermi and Sphingomonadaceae respectively. In addition, a series of human disease-related genes were also significantly different between pCR and Non-pCR group. Conclusion In summary, we demonstrated the characteristic differences in microbial communities between pCR tissues and Non-pCR tumor tissues from locally advanced rectal cancer patients after neoadjuvant chemoradiation therapy. Our results present new alterations in the microbiome in locally advanced rectal cancer after neoadjuvant chemoradiation therapy, suggesting that it will provide a new perspective for the precise treatment of neoadjuvant rectal cancer by targeting specific microbial species in the future.
Collapse
Affiliation(s)
- Qilin Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fumei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chen Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongxia Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
89
|
Cabiltes I, Coghill S, Bowe SJ, Athan E. Enterococcal bacteraemia 'silent but deadly': a population-based cohort study. Intern Med J 2021; 50:434-440. [PMID: 31180166 DOI: 10.1111/imj.14396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The high mortality rate of patients with enterococcal infections has been shown to be associated with the severity of underlying comorbidities. AIMS To characterise the epidemiology, clinical characteristics, outcomes and predictors of mortality in patients with enterococcal bacteraemia. METHODS This was a retrospective cohort study of all enterococcal bacteraemia episodes in the Barwon region between January 2010 and March 2017. We assessed the epidemiology, clinical characteristics, outcomes and predictors of mortality using descriptive statistics and simple and multiple logistic regression analyses. RESULTS The incidence of enterococcal bacteraemia was 19.9/100 000 person-years. Males comprised 68.4%, and the median age was 71 years. Common comorbidities were gastrointestinal tract disease, urological disease, malignancies and cardiovascular disease. Infective endocarditis was observed in 15% of patients, and 1 of 27 also had colorectal cancer. Twelve patients referred for colonoscopy demonstrated previously undiagnosed colorectal neoplasia in 75% of these cases. The 30-day and 1-year mortality rates were 11.7 and 40.2% respectively. Sixty-nine cases with vancomycin-resistant Enterococcus were observed. Multiple logistic regression suggested that the presence of underlying urological malignancy (adjusted odds ratio = 3.57, 95% confidence intervals = 1.10-11.65, P = 0.035) and colorectal cancer (adjusted odds ratio = 4.47, 95% confidence intervals = 1.36-14.66, P = 0.014) were significant predictors of 1-year mortality. CONCLUSIONS Microbiological cure was inversely associated with 30-day mortality. The presence of underlying urological and colorectal malignancy was a predictor of 1-year mortality. We identified the importance of evaluating patients with Enterococcus faecalis bacteraemia for underlying colorectal neoplasia. Routine colonoscopy is recommended in patients with E. faecalis bacteraemia or infective endocarditis with an unclear source of infection.
Collapse
Affiliation(s)
- Ivana Cabiltes
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
| | - Sarah Coghill
- Department of Infectious Disease, Barwon Health, Geelong, Victoria, Australia
| | - Steven J Bowe
- Deakin Biostatistics Unit, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Eugene Athan
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia.,Department of Infectious Disease, Barwon Health, Geelong, Victoria, Australia
| |
Collapse
|
90
|
Huang K, Gao X, Wu L, Yan B, Wang Z, Zhang X, Peng L, Yu J, Sun G, Yang Y. Salivary Microbiota for Gastric Cancer Prediction: An Exploratory Study. Front Cell Infect Microbiol 2021; 11:640309. [PMID: 33777850 PMCID: PMC7988213 DOI: 10.3389/fcimb.2021.640309] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
To characterize the salivary microbiota in patients at different progressive histological stages of gastric carcinogenesis and identify microbial markers for detecting gastric cancer, two hundred and ninety-three patients were grouped into superficial gastritis (SG; n = 101), atrophic gastritis (AG; n = 93), and gastric cancer (GC; n = 99) according to their histology. 16S rRNA gene sequencing was used to access the salivary microbiota profile. A random forest model was constructed to classify gastric histological types based on the salivary microbiota compositions. A distinct salivary microbiota was observed in patients with GC when comparing with SG and AG, which was featured by an enrichment of putative proinflammatory taxa including Corynebacterium and Streptococcus. Among the significantly decreased oral bacteria in GC patients including Haemophilus, Neisseria, Parvimonas, Peptostreptococcus, Porphyromonas, and Prevotella, Haemophilus, and Neisseria are known to reduce nitrite, which may consequently result in an accumulation of carcinogenic N-nitroso compounds. We found that GC can be distinguished accurately from patients with AG and SG (AUC = 0.91) by the random forest model based on the salivary microbiota profiles, and taxa belonging to unclassified Streptophyta and Streptococcus have potential as diagnostic biomarkers for GC. Remarkable changes in the salivary microbiota functions were also detected across three histological types, and the upregulation in the isoleucine and valine is in line with a higher level of these amino acids in the gastric tumor tissues that reported by other independent studies. Conclusively, bacteria in the oral cavity may contribute gastric cancer and become new diagnostic biomarkers for GC, but further evaluation against independent clinical cohorts is required. The potential mechanisms of salivary microbiota in participating the pathogenesis of GC may include an accumulation of proinflammatory bacteria and a decline in those reducing carcinogenic N-nitroso compounds.
Collapse
Affiliation(s)
- Kun Huang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
| | - Xuefeng Gao
- Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen, China
| | - Lili Wu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zikai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Xiaomei Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jiufei Yu
- Department of Gastroenterology, Civil Aviation General Hospital, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
91
|
Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, Lipkin SM, Shen X. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe 2021; 29:281-298.e5. [PMID: 33382980 PMCID: PMC7878430 DOI: 10.1016/j.chom.2020.12.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Studying the microbial composition of internal organs and their associations with disease remains challenging due to the difficulty of acquiring clinical biopsies. We designed a statistical model to analyze the prevalence of species across sample types from The Cancer Genome Atlas (TCGA), revealing that species equiprevalent across sample types are predominantly contaminants, bearing unique signatures from each TCGA-designated sequencing center. Removing such species mitigated batch effects and isolated the tissue-resident microbiome, which was validated by original matched TCGA samples. Gene copies and nucleotide variants can further distinguish mixed-evidence species. We, thus, present The Cancer Microbiome Atlas (TCMA), a collection of curated, decontaminated microbial compositions of oropharyngeal, esophageal, gastrointestinal, and colorectal tissues. This led to the discovery of prognostic species and blood signatures of mucosal barrier injuries and enabled systematic matched microbe-host multi-omic analyses, which will help guide future studies of the microbiome's role in human health and disease.
Collapse
Affiliation(s)
- Anders B Dohlman
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC 27708, USA.
| | - Diana Arguijo Mendoza
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC 27708, USA
| | - Michael Gao
- Duke Institute for Health Innovation, Duke University, Durham, NC 27701, USA
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Director of Duke Microbiome Center, Duke University, Durham, NC 27708, USA
| | - Iliyan D Iliev
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York City, NY 10065, USA
| | - Steven M Lipkin
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York City, NY 10065, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
92
|
Shangab MOM, Shaikh NA. Streptococcus suis and an Incidentally Diagnosed Metastatic Colon Cancer. EUROPEAN MEDICAL JOURNAL 2021. [DOI: 10.33590/emj/20-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Streptococcus suis is a zoonotic infection known to cause meningitis and sepsis, in addition to several other rare manifestations. Infection with this organism is rare in the absence of pork ingestion or a handling history.
Case presentation: The authors report the case of a 62-year-old male with no animal contact history, who presented with symptoms of urinary tract infection. It was his second infection over the course of 2 years. His urine culture was positive for Escherichia coli but his blood culture was positive for S. suis. Ultrasound of the abdomen ruled out underlying predisposing urinary pathology. However, it did show several heterogeneous liver masses with abnormal vascularity. A follow-up abdominal CT revealed a malignant neoplastic process involving the sigmoid colon with metastatic liver lesions. Colonoscopy demonstrated a fungating mass at the sigmoid colon and biopsies revealed a moderately differentiated adenocarcinoma.
Conclusion: This case suggests the possibility of associated colon cancer in patients presenting with S. suis with no explicit history of animal or pork contact. It also proposes the existence of an association between colon cancer with Streptococcus species other than bovis.
Collapse
Affiliation(s)
| | - Niaz Ahmed Shaikh
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
93
|
Mori G, Pasca MR. Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031312. [PMID: 33525662 PMCID: PMC7865401 DOI: 10.3390/ijms22031312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer-related death and the third most common cancer in the world. Depending on the origin of the mutation, colorectal carcinomas are classified as sporadic or hereditary. Cancers derived from mutations appearing during life, affecting individual cells and their descendants, are called sporadic and account for almost 95% of the CRCs. Less than 5% of CRC cases result from constitutional mutations conferring a very high risk of developing cancer. Screening for hereditary-related cancers is offered to individuals at risk for hereditary CRC, who have either not undergone genetic evaluation or have uncertain genetic test results. In this review, we briefly summarize the main findings on the correlation between sporadic CRC and the gut microbiota, and we specifically focus on the few evidences about the role that gut microorganisms have on the development of CRC hereditary syndromes. The characterization of a gut microbiota associated with an increased risk of developing CRC could have a profound impact for prevention purposes. We also discuss the potential role of the gut microbiota as therapeutic treatment.
Collapse
Affiliation(s)
- Giorgia Mori
- Correspondence: (G.M.); (M.R.P.); Tel.: +61-4-66344648 (G.M.); +39-0382-985576 (M.R.P.)
| | - Maria Rosalia Pasca
- Correspondence: (G.M.); (M.R.P.); Tel.: +61-4-66344648 (G.M.); +39-0382-985576 (M.R.P.)
| |
Collapse
|
94
|
Taylor JC, Gao X, Xu J, Holder M, Petrosino J, Kumar R, Liu W, Höök M, Mackenzie C, Hillhouse A, Brashear W, Nunez MP, Xu Y. A type VII secretion system of Streptococcus gallolyticus subsp. gallolyticus contributes to gut colonization and the development of colon tumors. PLoS Pathog 2021; 17:e1009182. [PMID: 33406160 PMCID: PMC7815207 DOI: 10.1371/journal.ppat.1009182] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) has a strong clinical association with colorectal cancer (CRC) and actively promotes the development of colon tumors. However, the molecular determinants involved in Sgg pathogenicity in the gut are unknown. Bacterial type VII secretion systems (T7SS) mediate pathogen interactions with their host and are important for virulence in pathogenic mycobacteria and Staphylococcus aureus. Through genome analysis, we identified a locus in Sgg strain TX20005 that encodes a putative type VII secretion system (designated as SggT7SST05). We showed that core genes within the SggT7SST05 locus are expressed in vitro and in the colon of mice. Western blot analysis showed that SggEsxA, a protein predicted to be a T7SS secretion substrate, is detected in the bacterial culture supernatant, indicating that this SggT7SST05 is functional. Deletion of SggT7SST05 (TX20005Δesx) resulted in impaired bacterial adherence to HT29 cells and abolished the ability of Sgg to stimulate HT29 cell proliferation. Analysis of bacterial culture supernatants suggest that SggT7SST05-secreted factors are responsible for the pro-proliferative activity of Sgg, whereas Sgg adherence to host cells requires both SggT7SST05-secreted and bacterial surface-associated factors. In a murine gut colonization model, TX20005Δesx showed significantly reduced colonization compared to the parent strain. Furthermore, in a mouse model of CRC, mice exposed to TX20005 had a significantly higher tumor burden compared to saline-treated mice, whereas those exposed to TX20005Δesx did not. Examination of the Sgg load in the colon in the CRC model suggests that SggT7SST05-mediated activities are directly involved in the promotion of colon tumors. Taken together, these results reveal SggT7SST05 as a previously unrecognized pathogenicity determinant for Sgg colonization of the colon and promotion of colon tumors. Colorectal cancer (CRC) is a leading cause of cancer-related death. The development of CRC can be strongly influenced by specific gut microbes. Understanding how gut microbes modulate CRC is critical to developing novel strategies to improve clinical diagnosis and treatment of this disease. S. gallolyticus subsp. gallolyticus (Sgg) has a strong clinical association with CRC and actively promotes the development of colon tumors. However, the specific Sgg molecules that mediate its pro-tumor activity are unknown. Here we report the first characterization of a type VII secretion system (T7SS) in Sgg, designated as SggT7SST05. We further demonstrate that SggT7SST05-mediated activities are important for Sgg to colonize the colon and to promote the development of colon tumors. These findings reveal SggT7SST05 as a novel pathogenicity determinant of Sgg and provide a critical breakthrough in our efforts to understand how Sgg influences the development of CRC. Future investigations of the biological activities of specific effectors of SggT7SST05 will likely lead to the discovery of Sgg molecules that can be used as diagnostic markers and intervention targets aimed at mitigating the harmful effect of Sgg.
Collapse
Affiliation(s)
- John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Xinsheng Gao
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Juan Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Michael Holder
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Petrosino
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Wen Liu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Chris Mackenzie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M, Texas, United States of America
| | - Wesley Brashear
- Texas A&M Institute for Genome Sciences and Society, Texas A&M, Texas, United States of America
| | - Maria Patricia Nunez
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center Institute of Biosciences of Technology, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas, United States of America
- * E-mail:
| |
Collapse
|
95
|
Pitchumoni CS. Colorectal Cancer. GERIATRIC GASTROENTEROLOGY 2021:1963-1989. [DOI: 10.1007/978-3-030-30192-7_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
96
|
Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:251-275. [PMID: 33234022 DOI: 10.1146/annurev-pathol-030320-095722] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| |
Collapse
|
97
|
Enterococcus faecalis infective endocarditis associated with colorectal cancer: A case report. COR ET VASA 2020. [DOI: 10.33678/cor.2019.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management - fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes 2020; 11:1518-1530. [PMID: 32453670 PMCID: PMC7524363 DOI: 10.1080/19490976.2020.1764309] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The link between gut microbiota and the development of colorectal cancer has been investigated. An imbalance in the gut microbiota promotes the progress of colorectal carcinogenesis via multiple mechanisms, including inflammation, activation of carcinogens, and tumorigenic pathways as well as damaging host DNA. Several therapeutic methods are available with which to alter the composition and the activity of gut microbiota, such as administration of prebiotics, probiotics, and synbiotics; these can confer various benefits for colorectal cancer patients. Nowadays, fecal microbiota transplantation is the most modern way of modulating the gut microbiota. Even though data regarding fecal microbiota transplantation in colorectal cancer patients are still rather limited, it has been approved as a clinical method of treatment-recurrent Clostridium difficile infection, which may also occur in these patients. The major benefits of fecal microbiota transplantation include modulation of immunotherapy efficacy, amelioration of bile acid metabolism, and restoration of intestinal microbial diversity. Nonetheless, more studies are needed to assess the long-term effects of fecal microbiota transplantation. In this review, the impact of gut microbiota on the efficiency of anti-cancer therapy and colorectal cancer patients' overall survival is also discussed.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland,CONTACT Karolina Kaźmierczak-Siedlecka ul. Smoluchowskiego 17, 80-214 Gdańsk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdańsk, Poland
| | - Mateusz Fic
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University Szczecin, Szczecin, Poland
| | - Thierry van de Wetering
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdańsk, Poland
| | - Wojciech Makarewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
99
|
Wang Y, Wang H, Wang B, Zhang B, Li W. Effects of manganese and Bacillus subtilis on the reproductive performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. Poult Sci 2020; 99:6196-6204. [PMID: 33142537 PMCID: PMC7647850 DOI: 10.1016/j.psj.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
This experiment was conducted to investigate the effects of manganese (Mn) and Bacillus subtilis (BS) on the production performance, egg quality, antioxidant capacity, and gut microbiota of breeding geese during laying period. A total of 120 forty-six-week-old breeding geese (Wulong) were randomly assigned to 1 of 6 treatment diets formulated to supply 10, 20, and 30 mg/kg Mn with 5 × 109 CFU/kg or 2.5 × 109 CFU/kg BS for a 10-wk trial. Results showed that dietary supplementation with 20 and 30 mg/kg Mn could decrease the daily feed intake (DFI) of geese. Moreover, 30 mg/kg Mn significantly increased the laying rate. Besides, although Mn addition had no obvious effect on egg quality, 5 × 109 CFU/kg BS was found to elevate the hatching egg hatching rate and eggshell thickness. For the serum hormones, 30 mg/kg Mn promoted estradiol secretion, while 5 × 109 CFU/kg BS increased the level of follicle-stimulating hormone. Furthermore, 20 and 30 mg/kg Mn and 5 × 109 CFU/kg BS significantly enhanced the total antioxidant capacity by increasing the activity of total superoxide dismutases or decreasing the content of malondialdehyde. Dietary supplementation with 5 × 109 CFU/kg BS also increased the intestinal villus height and upregulated the abundance of Fusobacteria, Fusobacteriaceae, Fusobacterium, and Faecalibacterium in cecal content. In addition, 20 and 30 mg/kg Mn elevated the levels of Bacteroidetes, Bacteroidaceae, Bacteroides, and Ruminococcaceae but decreased Streptococcaceae. Importantly, an interaction effect was observed between Mn and BS on the DFI, egg mass, average egg size, and the abundance of Bacteroides as well as Faecalibacterium. In conclusion, dietary inclusion of Mn and BS could improve the production performance, egg quality, antioxidant capacity, intestinal structure, as well as gut microbiota. Supplementation of 30 mg/kg Mn and 5.0 × 109 CFU/kg BS provided the optimal effect.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hefei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Baowei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
100
|
Sheikh AF, Masjedi Zadeh AR, Saki M, Khani P, Hashemi SJ, Shahin Zadeh S, Dastoorpoor M. Detection of Streptococcus gallolyticus in colorectal cancer and inflammatory bowel disease patients compared to control group in southwest of Iran. Mol Biol Rep 2020; 47:8361-8365. [PMID: 33128683 DOI: 10.1007/s11033-020-05807-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
There are several pieces of evidence regarding the role of bacteria, such as Streptococcus bovis/gallolyticus in the etiology of gastrointestinal diseases such as colorectal cancer (CRC) and inflammatory bowel disease (IBD). Therefore, the aim of this study was to detect S. gallolyticus subsp. gallolyticus (Sgg) in fecal samples of CRC and IBD patients by culture and molecular methods, in Ahvaz, southwest of Iran. A total of 106 fecal samples were collected from 22 CRC patients, 44 IBD patients, and 40 healthy individuals. The prevalence of Sgg was investigated by culture and polymerase chain reaction (PCR) with specific primers for sodA gene. The results of the stool culture showed that the overall prevalence of Sgg was 9 (13.6%) out of 66 patients. Meanwhile, the number of Sgg isolated from IBD and CRC patients was 7 (15.9%) and 2 (9%), respectively. The bacteria were not isolated from any of the control groups. On the basis of PCR, S. gallolyticus was detected in 24 (36.4%) out of 66 patients. Meanwhile, the number of IBD patients with positive sodA gene was 15 (34.1%) out of 44 cases. In CRC patients, the sodA gene was detected in 9 (40.9%) of 22 cases. Two (5%) of the specimens in the control group had the sodA gene. According to our results, S. gallolyticus subsp. gallolyticus might be involved in CRC and IBD pathogenesis. More investigation with different samples in the various areas might be shaded light on these results.
Collapse
Affiliation(s)
- Ahmad Farajzadeh Sheikh
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdol Rahim Masjedi Zadeh
- Alimentary Tract Research Center, Department of Gastroenterology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Khani
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Jalal Hashemi
- Alimentary Tract Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sam Shahin Zadeh
- Alimentary Tract Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|