51
|
Norouzi Jobie F, Ranjbar M, Hajizadeh Moghaddam A, Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
52
|
Prasad AR, Williams L, Garvasis J, Shamsheera K, Basheer SM, Kuruvilla M, Joseph A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115805] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Shabestarian H, Homayouni Tabrizi M, Movahedi M, Neamati A, Sharifnia F. Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. J Microencapsul 2021; 38:324-337. [PMID: 33951988 DOI: 10.1080/02652048.2021.1917715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis and investigation of biological activity of Peganum harmala smoke-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Peganum harmala smoke-loaded PLGA nanoparticles (PHSE-PNP) were produced by double emulsion solvent evaporation method and characterised by scanning electron microscopy (SEM), dynamic light scattering (DLS), and ζ-potential. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) for toxicity evaluation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assay for antioxidant power, chorioallantoic membrane (CAM), qPCR, and scratch assay for angiogenesis and mouse cancer model for antitumor effects of PHSE-PNP's were used. PHSE-PNP with a size of 216.33 nm, polydispersity index (PDI): 0.22 and ζ-potential: -25.41 mV inhibited A2780, PC3, A549, HepG2, Mda-mb-231, HT-29 as cancer cells and HUVEC as an normal cells with half-maximal inhibitory concentration (IC50) at about 208.62, 479.05, 1092.6, 1103.9, 1299.21, 3467.5, and <4000 µg/ml, respectively. Also PHSE-PNP inhibited ABTS (IC50: 0.720 mg/ml), DPPH (IC50: 1.36 mg/ml) free radicals and decreased the size of murine tumours (88.3% in 11 days) and suppressed angiogenesis in the CAM and scratch assays. PHSE-PNP can be considered as a potential chemopreventive agent in cancer therapy.
Collapse
Affiliation(s)
- Hoda Shabestarian
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fariba Sharifnia
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
54
|
Barma MD, Muthupandiyan I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol 2021; 126:105132. [PMID: 33895543 DOI: 10.1016/j.archoralbio.2021.105132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Zinc is a potent antimicrobial against cariogenic bacteria and effective anti-plaque agent. The present study investigated the efficacy of zinc oxide nanoparticles (ZnO-NP) varnish to inhibit S. mutans growth, biofilm, acid production, and its antioxidant potential and cytotoxicity. DESIGN Green synthesized ZnO-NP were characterized using ultraviolet-visible spectroscopy, x-ray diffraction spectroscopy, and transmission electron microscopy. Secondary metabolites were assessed using fourier transform infrared spectroscopy. Anti-oxidant potential was ascertained using 2,2-diphenyl-2-picrylhydrazyl hydrate (DDPH) assay and cytotoxicity of synthesized nanoparticles was evaluated on human liver cancer (Hep G2) and human embryonic kidney 293 (HEK-293T) cell lines. RESULTS Synthesized ZnO-NP showed excellent antimicrobial properties against S. mutans, as the minimum inhibitory and bactericidal concentrations were 0.53 μg/mL, and 1.3 μg/mL respectively. ZnO-NP at 0.1 mg/μl concentration had the greatest zone of inhibition (24 mm), followed by 0.05 mg/μl ZnO-NP (23 mm) and 0.05 mg/μl ampicillin (21 mm). Further, 0.1 mg/μl ZnO-NP varnish inhibited 90 % of S. mutans biofilms and reduced 24 h acid production closest to that of baseline and it also exhibited antioxidant capacity in a dose dependent manner (94 % inhibition-100 μg/mL). Biocompatibility of ZnO-NP varnish was evaluated on Hep G2 and HEK-293T cell lines; and the highest concentration of 0.1 mg/μl ZnO-NP used caused very low cytotoxicity to Hep G2 cells and was non-cytotoxic to HEK-293T cells. CONCLUSIONS Within the limits of this study, ZnO-NP varnish was effective in inhibiting S. mutans and holds great potential as an effective anticaries agent.
Collapse
Affiliation(s)
- Manali Deb Barma
- Department of Public Health Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Indumathy Muthupandiyan
- Department of Public Health Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Srinivasan Raj Samuel
- Department of Public Health Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
55
|
Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and Biomedical Applications. Front Chem 2021; 9:626834. [PMID: 33937188 PMCID: PMC8085502 DOI: 10.3389/fchem.2021.626834] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the recent times, nanomaterials have emerged in the field of biology, medicine, electronics, and agriculture due to their immense applications. Owing to their nanoscale sizes, they present large surface/volume ratio, characteristic structures, and similar dimensions to biomolecules resulting in unique properties for biomedical applications. The chemical and physical methods to synthesize nanoparticles have their own limitations which can be overcome using biological methods for the synthesis. Moreover, through the biogenic synthesis route, the usage of microorganisms has offered a reliable, sustainable, safe, and environmental friendly technique for nanosynthesis. Bacterial, algal, fungal, and yeast cells are known to transport metals from their environment and convert them to elemental nanoparticle forms which are either accumulated or secreted. Additionally, robust nanocarriers have also been developed using viruses. In order to prevent aggregation and promote stabilization of the nanoparticles, capping agents are often secreted during biosynthesis. Microbial nanoparticles find biomedical applications in rapid diagnostics, imaging, biopharmaceuticals, drug delivery systems, antimicrobials, biomaterials for tissue regeneration as well as biosensors. The major challenges in therapeutic applications of microbial nanoparticles include biocompatibility, bioavailability, stability, degradation in the gastro-intestinal tract, and immune response. Thus, the current review article is focused on the microbe-mediated synthesis of various nanoparticles, the different microbial strains explored for such synthesis along with their current and future biomedical applications.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Science, King Khalid University (KKU), Khamis Mushait, Abha, Saudi Arabia
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
56
|
Green Synthesis and Biomedical Applications of ZnO Nanoparticles: Role of PEGylated-ZnO Nanoparticles as Doxorubicin Drug Carrier against MDA-MB-231(TNBC) Cells Line. CRYSTALS 2021. [DOI: 10.3390/cryst11040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.
Collapse
|
57
|
Jamil S, Tariq T, Khan SR, Ehsan MA, Rehman A, Janjua MRSA. Structural Characterization, Synthesis and Application of Zincite Nanoparticles as Fuel Additive. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
58
|
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front Microbiol 2021; 12:636588. [PMID: 33717030 PMCID: PMC7947885 DOI: 10.3389/fmicb.2021.636588] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Hassan I. Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, Ganjam, Odisha, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
59
|
Pouresmaeil V, Haghighi S, Raeisalsadati AS, Neamati A, Homayouni-Tabrizi M. The Anti-Breast Cancer Effects of Green-Synthesized Zinc Oxide Nanoparticles Using Carob Extracts. Anticancer Agents Med Chem 2021; 21:316-326. [PMID: 32698752 DOI: 10.2174/1871520620666200721132522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of nanoparticles synthesized by the green method to treat cancer is fairly recent. The aim of this study was to evaluate cytotoxicity, apoptotic and anti-angiogenic effects and the expression of involved genes, of Zinc Oxide Nanoparticles (ZnO-NPs) synthesized with Carob extracts on different human breast cancer cell lines. METHODS ZnO-NPs were synthesized using the extracts of Carob and characterized with various analytical techniques. The MCF-7 and MDA-MB231 cells were treated at different times and concentrations of ZnO-NPs. The cytotoxicity, apoptosis, and anti-angiogenic effects were examined using a series of cellular assays. Expression of apoptotic genes (Bax and Bcl2) and anti-angiogenic genes, Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGF-R) in cancer cells treated with ZnO-NPs were examined with Reverse Transcriptionquantitative Polymerase Chain Reaction (RT-qPCR). The anti-oxidant activities of ZnO-NPs were evaluated by ABTS and DPPH assay. RESULTS Exposure of cells to ZnO-NPs resulted in a dose-dependent loss of cell viability. The IC50 values at 24, 48, and 72 hours were 125, 62.5, and 31.2μg/ml, respectively (p<0.001). ZnO-NPs treated cells showed, in fluorescent microscopy, that ZnO-NPs are able to upregulate apoptosis and RT-qPCR revealed the upregulation of Bax (p<0.001) and downregulation of Bcl-2 (p<0.05). ZnO-NPs increased VEGF gene expression while decreasing VEGF-R (p<0.001). The anti-oxidant effects of ZnO-NPs were higher than the control group and were dose-dependent (p<0.001). CONCLUSION ZnO-NPs synthetized using Carob extract have the ability to eliminate breast cancer cells and inhibit angiogenesis, therefore, they could be used as an anticancer agent.
Collapse
Affiliation(s)
- Vahid Pouresmaeil
- Department of Biochemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Shaghayegh Haghighi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
60
|
Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol Rep 2021; 8:295-302. [PMID: 33552928 PMCID: PMC7850960 DOI: 10.1016/j.toxrep.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023] Open
Abstract
ZnONPs enhanced plant growth and biomass by alleviation of heavy metal toxicity. Increased level photosynthetic pigments, MDA and protein contents recorded in cotton leaves in co-presence of ZnONPs. The activity of antioxidative enzymes was promoted significantly in the presence of ZnONPs under Cd and Pb induced stress. No distinct genomic alterations were recorded in the RAPD banding pattern.
Cadmium (Cd) and Lead (Pb) heavy metal pollution induced toxicity severely affects the plant growth and yield of various agriculutral crops worldwide. The present study discuss the prime role of phycomolecules coated zinc oxide nanoparticles (ZnONPs) application on development of heavy metal tolerance mechanism in cotton (Gossypium hirsutum L.) seedlings better than exposed to Cd and Pb treatments alone. Co-exposure of ZnONPs along with heavy metal treatments significantly promoted the shoot, and root growth as well as biomass compared to control, while it was down-regulated in Cd and Pb exposed seedlings. The intervention of ZnONPs had up-regulated the level of chlorophyll a, b and carotenoid contents in leaves grown under Cd and Pb treatments than the untreated control. Similarly, the level of total soluble protein and malondialdehyde (MDA-lipid peroxidation) contents was significantly increased in the co-presence of ZnONPs along with Cd and Pb treatments over their respective control. Accumulation of antioxidant defense enzymes viz., superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX) was up-regulated significantly in seedlings upon co-exposure of ZnONPs with Cd and Pb treatments. Random amplified polymorphic DNA (RAPD) fingerprinting analysis exhibited no genomic changes/alterations in seedlings by co-existence of ZnONPs with heavy metals. Overall, the present results indicate that the addition of ZnONPs with Cd and Pb ion exposure protects cotton seedlings by alleviating heavy metal induced phytotoxicity and promoted physiochemical characteristics via differential regulation of photosynthetic machinery as well as antioxidative defense mechanisms in cotton seedlings. Results strongly suggest that phycomolecule coated ZnO nanoparticles could be effectively used as nanofertilizer to cultivate agronomically important crops in heavy metal polluted soil in the future.
Collapse
|
61
|
Anjali KP, Sangeetha BM, Raghunathan R, Devi G, Dutta S. Seaweed Mediated Fabrication of Zinc Oxide Nanoparticles and their Antibacterial, Antifungal and Anticancer Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202003517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. P. Anjali
- Department of Chemical Engineering National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| | - B. M. Sangeetha
- Mechanical and Industrial Engineering Department National University of Science and Technology P.O Box 2322 Sultanate of Oman India
| | - R. Raghunathan
- Center for Bioscience and Nanoscience Research Tamil Nadu−21 India
| | - Geetha Devi
- Mechanical and Industrial Engineering Department National University of Science and Technology P.O Box 2322 Sultanate of Oman India
| | - Susmita Dutta
- Department of Chemical Engineering National Institute of Technology Durgapur Durgapur West Bengal 713209 India
| |
Collapse
|
62
|
Green Synthesis of Zinc Oxide Nanoparticles: Fortification for Rice Grain Yield and Nutrients Uptake Enhancement. Molecules 2021; 26:molecules26030584. [PMID: 33499293 PMCID: PMC7865578 DOI: 10.3390/molecules26030584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.
Collapse
|
63
|
D'Souza JN, Prabhu A, Nagaraja GK, Navada K M, Kouser S, Manasa DJ. Unravelling the human triple negative breast cancer suppressive activity of biocompatible zinc oxide nanostructures influenced by Vateria indica (L.) fruit phytochemicals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111887. [PMID: 33641895 DOI: 10.1016/j.msec.2021.111887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023]
Abstract
The present study delineates the biosynthesis of ZnOVI nanostructures by using aqueous fruit extract of V. indica. The study has disclosed the role of V. indica fruit extract as both reducing and capping agents, ushering the formation of ZnOVI nanostructures with distinct morphologies. The formation of ZnOVI nanostructures was corroborated by FT-IR and UV-visible spectroscopy which was further substantiated by the elemental composition study through EDS spectroscopy. The nanostructures were also investigated by Rietveld refinement of PXRD data, FE-SEM, and BET analysis. The morphology, size, and surface area were found to be precursor stoichiometry dependent. The in-vitro cytotoxicity study of ZnOVI nanostructures carried out on MDA-MB468 human triple-negative breast cancer (TNBC) cells has revealed their potential cytotoxicity (91.18 ± 1.98). MTT assay performed on the NIH3T3 mouse fibroblast cells has unfolded the non-toxic nature of ZnOVI nanostructures. Additionally, the results of the AO-EB dual staining assay indicated early apoptosis in TNBC cells by displaying greenish yellow-fluorescence in the nuclei. Reactive oxygen species (ROS) measurement study has confirmed the elevated intracellular levels of ROS, supporting the oxidative-stress induced cytotoxicity in ZnOVI nanostructures treated TNBC cells. Furthermore, the haemocompatibility of ZnOVI nanostructures was evaluated using human erythrocytes. Thus, the obtained results have shown greater potential in the anticancer activity of bio-fabricated ZnOVI nanostructures.
Collapse
Affiliation(s)
- Josline Neetha D'Souza
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte 575018, Karnataka, India
| | - G K Nagaraja
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India.
| | - Meghana Navada K
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - Sabia Kouser
- Department of Chemistry, Mangalore University, Mangaloagangothri 574199, Karnataka, India
| | - D J Manasa
- Department of Botany, Davanagere University, Davanagere 577007, Karnataka, India
| |
Collapse
|
64
|
Tetraselmis indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-020-00817-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
65
|
El-Belely EF, Farag MMS, Said HA, Amin AS, Azab E, Gobouri AA, Fouda A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E95. [PMID: 33406606 PMCID: PMC7823323 DOI: 10.3390/nano11010095] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O at different varied bending energies. Data analyses exhibit that the activities of biosynthesized ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, respectively, and these activities were reduced as the NPs concentration decreased. The minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared with normal (WI38) cell line (IC50 = 53.34 ppm).
Collapse
Affiliation(s)
- Ehab F. El-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Hanan A. Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63511, Egypt;
| | - Abeer S. Amin
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| |
Collapse
|
66
|
Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 2021; 199:344-370. [PMID: 32377944 DOI: 10.1007/s12011-020-02138-3] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Collapse
Affiliation(s)
- Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
67
|
Almnhawy M, Jebur M, Alhajamee M, Marai K, Tabrizi MH. PLGA-Based Nano-Encapsulation of Trachyspermum Ammi Seed Essential Oil (TSEO-PNP) as a Safe, Natural, Efficient, Anticancer Compound in Human HT-29 Colon Cancer Cell Line. Nutr Cancer 2020; 73:2808-2820. [PMID: 33319599 DOI: 10.1080/01635581.2020.1862256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Colorectal cancer is a lethal and commonly diagnosed cancer worldwide. To halt its burden more efficient targeted strategies are needed. Trachyspermum ammi seed essential oil (TSEO) contains several anticancer phytochemicals that maybe more effective via PLGA-based nano-encapsulation. TSEO-PNP nanoparticles were synthesized utilizing evaporation and ultra-sonication-based emulsification methods. Their size, morphology, and stability were defined by DLS, SEM, and surface zeta-potential data, respectively. The TSEO-PNP antioxidant apoptotic, cytotoxic, and antiangiogenic impacts on both cell lines (HT-29 and HUVEC) were studied by FRAP/ABTS, Q-PCR, MTT, and CAM assays, respectively. Moreover, further confirmatory measurements such as AO/EB fluorescent staining and flow cytometry analysis were performed to verify apoptosis. Stable (-32.42 mV) 206.21-nm TSEO-PNP induced apoptosis in the HT-29 cells. Apoptosis was confirmed by significant overexpression of apoptotic genes (Cas-9 and BAX), down-regulation of the anti-apoptotic (BCL-2) gene, fluorescent AO/EB staining, and flow cytometry data following increased TSEO-PNP treatment doses. TSEO-PNP exhibited a meaningful dose- and time-dependent cancer-specific cytotoxic impact on HT-29 cells. The TSEO-PNP has three main anticancer activities on HT-29 colon cancer cells including oxidant reduction, apoptosis induction, and angiogenesis suppression.
Collapse
Affiliation(s)
- Mokhalad Almnhawy
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammed Jebur
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maitham Alhajamee
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Khadeeja Marai
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
68
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
69
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
70
|
Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108140] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
71
|
Keykhasalar R, Tabrizi MH, Ardalan P, Khatamian N. The Apoptotic, Cytotoxic, and Antiangiogenic Impact of Linum usitatissimum Seed Essential Oil Nanoemulsions on the Human Ovarian Cancer Cell Line A2780. Nutr Cancer 2020; 73:2388-2396. [PMID: 32959696 DOI: 10.1080/01635581.2020.1824001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Linum usitatissimum seed essential oil (LSEO) has been used to reduce the risk of prostate and colon cancer. In this study, we optimized the bio-accessibility and bio-compatibility of LSEO to evaluate its cytotoxic, apoptotic and anti-angiogenic impact on the human ovarian cancer cell line A2780. METHOD We produced LSEO nanoemulsions (LSEO-NEs) utilizing the ultrasound-based technique and the size, its droplets' morphology and stability were characterized. LSEO-NE cytotoxicity was studied by estimating the viability of A2780 human ovarian cancer cell and normal human foreskin fibroblasts (HFFS). Their apoptotic activity was evaluated measuring the Caspase-3, 8 and nine gene expression. Finally, its anti-angiogenic potential was measured applying Chick Chorioallantoic Membrane (CAM) assay. RESULTS A significant dose-dependent cytotoxic impact of LSEO-NE was detected in the A2780 cells and not in HFF cellsThe apoptotic genes expression profile confirmed the A2780 cell apoptosis death. Moreover, the reduction in length and number of blood vessels in the CAM assay demonstrated the anti-angiogenic activity of LSEO-NE. CONCLUSION The cancer cell-selective cytotoxicity apoptosis, and anti-angiogenic effects of LSEO-NE indicate its potential as a novel anticancer compound. However, further cell lines have to be analyzed in case of its potential anticancer impacts on human ovarian cancer cells.
Collapse
Affiliation(s)
- Roghaye Keykhasalar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Pouran Ardalan
- Department of chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
72
|
Kaur T, Putatunda C, Vyas A, Kumar G. Zinc oxide nanoparticles inhibit bacterial biofilm formation via altering cell membrane permeability. Prep Biochem Biotechnol 2020; 51:309-319. [PMID: 32921268 DOI: 10.1080/10826068.2020.1815057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the current scenario nanoparticles (NPs) have gained a breathtaking impetus due to their multidimensional applications in varied fields. In the present effort, biogenic synthesis of Zinc Oxide nanoparticles (ZnO NPs) was carried out using aqueous extract of dried powder of Emblica officinalis (Amla). Physicochemical characterization of nanoparticles was carried out via UV-Visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) wherein the particles were found to be quasi spherical and with a size ranging between 3 and 11 nm. The ZnO nanoparticles exhibited significant antibacterial activity against bacteria as Streptococcus pyogenes MTCC 442, Bacillus cereus MTCC 1272, Escherichia coli MTCC 1687 and Pseudomonas aeruginosa MTCC 4673. The nanoparticles displayed high anti-biofilm activity toward all the bacterial strains, when tested against three different base materials viz. glass, plastic and metal (Aluminum). Further, the nanoparticle treatment of bacterial cells caused changes in their cell membrane permeability, leading to leakage of nucleic acid from the bacterial cells, thereby defining it as the most probable mechanism for their anti-biofilm potential.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chayanika Putatunda
- Department of Microbiology, Om Sterling Global University, Hisar, Haryana, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
73
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
74
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
75
|
Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int J Mol Sci 2020; 21:E4412. [PMID: 32575884 PMCID: PMC7352233 DOI: 10.3390/ijms21124412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023] Open
Abstract
Here, the various types of naturally synthesized metallic nanoparticles, which are essentially composed of Ce, Ag, Au, Pt, Pd, Cu, Ni, Se, Fe, or their oxides, are presented, based on a literature analysis. The synthesis methods used to obtain them most often involve the reduction of metallic ions by biological materials or organisms, i.e., essentially plant extracts, yeasts, fungus, and bacteria. The anti-tumor activity of these nanoparticles has been demonstrated on different cancer lines. They rely on various mechanisms of action, such as the release of chemotherapeutic drugs under a pH variation, nanoparticle excitation by radiation, or apoptotic tumor cell death. Among these natural metallic nanoparticles, one type, which consists of iron oxide nanoparticles produced by magnetotactic bacteria called magnetosomes, has been purified to remove endotoxins and abide by pharmacological regulations. It has been tested in vivo for anti-tumor efficacy. For that, purified and stabilized magnetosomes were injected in intracranial mouse glioblastoma tumors and repeatedly heated under the application of an alternating magnetic field, leading to the full disappearance of these tumors. As a whole, the results presented in the literature form a strong basis for pursuing the efforts towards the use of natural metallic nanoparticles for cancer treatment first pre-clinically and then clinically.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, IMPMC, 75005 Paris, France; ; Tel.: +33-632-697-020
- Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France
- Institute of Anatomy, UZH University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
76
|
Al Sharie AH, El‐Elimat T, Darweesh RS, Swedan S, Shubair Z, Al‐Qiam R, Albarqi H. Green synthesis of zinc oxide nanoflowers using
Hypericum triquetrifolium
extract: characterization, antibacterial activity and cytotoxicity against lung cancer A549 cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ahmed H. Al Sharie
- Faculty of Medicine Jordan University of Science and Technology Irbid 22110 Jordan
| | - Tamam El‐Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy Jordan University of Science and Technology Irbid 22110 Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy Jordan University of Science and Technology Irbid 22110 Jordan
| | - Samer Swedan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences Jordan University of Science and Technology Irbid 22110 Jordan
| | - Zaina Shubair
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences Jordan University of Science and Technology Irbid 22110 Jordan
| | - Reema Al‐Qiam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy Jordan University of Science and Technology Irbid 22110 Jordan
| | - Hadil Albarqi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy Jordan University of Science and Technology Irbid 22110 Jordan
| |
Collapse
|
77
|
Yousefian Rad E, Homayouni Tabrizi M, Ardalan P, Seyedi SMR, Yadamani S, Zamani-Esmati P, Haghani Sereshkeh N. Citrus lemon essential oil nanoemulsion (CLEO-NE), a safe cell-depended apoptosis inducer in human A549 lung cancer cells with anti-angiogenic activity. J Microencapsul 2020; 37:394-402. [PMID: 32400238 DOI: 10.1080/02652048.2020.1767223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Citrus lemon essential oil (CLEO) has been introduced as a strong antioxidant mixture. However, it is not efficient enough due to its hydrophobic nature. Nanoemulsions improve the drugs' bio-compatibility in aqueous conditions.Methods: The CLEO nanoemulsion (CLEO-NE) was formulated by ultrasound-based-emulsification and they were characterised. The anti-angiogenic and antioxidant activities were studied by the chicken chorioallantoic membrane (CAM) and antioxidant (ABTS and DPPH) assays, respectively. Finally, the apoptotic property of CLEO-NE on both HFF and A549 was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and real time-PCR (measuring Cas-3 gene expression).Results: The 30.2-nm CLEO-NE droplets significantly increased Cas-3 in A549 cells and decreased angiogenesis in chick embryo chorioallantoic membrane (p < 0.01).Conclusion: In conclusion, CLEO-NE has the potential to be used as a safe cell-depended anticancer agent for human lung cancer. However, further genes and cell lines have to be studied to clarify its targeted-anticancer activity.
Collapse
Affiliation(s)
- Elnaz Yousefian Rad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Pouran Ardalan
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Seyed Mohammad Reza Seyedi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samira Yadamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | |
Collapse
|
78
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
79
|
Abstract
The current chapter highlights the use of chorioallantoic membrane (CAM) of fertilized chicken egg for the characterization of nanoparticles applied in cancer nanomedicine. The CAM assay represents a promising alternative to mouse models in term of costs, ease of use, rapidity and ethical issues in particular for the screening of nanoformulations. Hence, the features of nanoparticles including blood retention, biocompatibility, active targeting or tumor accumulation, angiogenic activity, drug delivery and tumor elimination might be simply evaluated via the CAM model. In particular, in this model, embryo organs and morphology, CAM vasculature and blood cells, transplanted tumors on CAM were typically monitored and used for the evaluation of the nanomaterials. With the above advantages, the CAM assay, as highly valuable in vivo model, could be used regularly in pharmaceutical industries.
Collapse
Affiliation(s)
- Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand; Institute for Integrated Cell-Material Sciences-Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| |
Collapse
|
80
|
Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 2019; 163:105656. [PMID: 31220512 DOI: 10.1016/j.mimet.2019.105656] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Nanomaterials (NMs) tailored via conventional physicochemical routes play havoc with the environment that has led to the evolution of competent green routes for the actualization of a circular economy on an industrial-scale. Algae belonging to the class Cyanophyceae, Chlorophyceae, Phaeophyceae and Rhodophyceae have been harnessed as nano-machineries through intracellular and extracellular synthesis of gold (Au), silver (Ag) and several other metallic nanoparticles. Algae are an appealing platform for the production of diverse NMs, primarily due to the presence of bioactive compounds such as pigments and antioxidants in their cell extracts that act as biocompatible reductants. Chlorella spp. and Sargassum spp. have been extensively explored for the synthesis of nanoparticles having antimicrobial properties, which can potentially substitute conventional antibiotics. Characterization of nanoparticles (NPs) synthesised from algae has been done using advanced spectroscopic, diffractographic and microscopic techniques such as UV-Vis FT-IR, DLS, XPS, XRD, SEM, TEM, AFM, HR-TEM, and EDAX. The present paper reviews the information available on algae-mediated biosynthesis of various NPs, their characterization and applications in different domains.
Collapse
Affiliation(s)
- Prerna Khanna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Amrit Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India.
| |
Collapse
|
81
|
Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 2019; 9:12944-12967. [PMID: 35520790 PMCID: PMC9064032 DOI: 10.1039/c8ra10483b] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Metal nanoparticles have received great attention from researchers across the world because of a plethora of applications in agriculture and the biomedical field as antioxidants and antimicrobial compounds. Over the past few years, green nanotechnology has emerged as a significant approach for the synthesis and fabrication of metal nanoparticles. This green route employs various reducing and stabilizing agents from biological resources for the synthesis of nanoparticles. The present article aims to review the progress made in recent years on nanoparticle biosynthesis by microbes. These microbial resources include bacteria, fungi, yeast, algae and viruses. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as silver, gold, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide and cadmium sulphide. These nanoparticles can be used in pharmaceutical products as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, water electrolysis, waste water treatment, biosensors, biocatalysis, crop protection against pathogens, degradation of dyes etc. This review will discuss in detail various microbial modes of nanoparticles synthesis and the mechanism of their synthesis by various bioreducing agents such as enzymes, peptides, proteins, electron shuttle quinones and exopolysaccharides. A thorough understanding of the molecular mechanism of biosynthesis is the need of the hour to develop a technology for large scale production of bio-mediated nanoparticles. The present review also discusses the advantages of various microbial approaches in nanoparticles synthesis and lacuna involved in such processes. This review also highlights the recent milestones achieved on large scale production and future perspectives of nanoparticles.
Collapse
Affiliation(s)
- Geeta Gahlawat
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology Sector 39A Chandigarh India +91 172 2695215 +91 172 6665312
| |
Collapse
|
82
|
Ahmad KS, Bibi Jaffri S. Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action. IET Nanobiotechnol 2019; 13:150-159. [PMID: 31051445 PMCID: PMC8676184 DOI: 10.1049/iet-nbt.2018.5006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2023] Open
Abstract
This investigation has for the first time utilised environmental resource Prunus cerasifera seed extract phytochemicals for the green synthesis of carpogenic ZnO nanoparticles (NPs). Spherical morphology and size range of 56.57-107.70 nm at variable calcination temperatures without the use of any external reducing agent was obtained. The synthesised NPs exhibited hexagonal wurtzite geometry with an average crystal size 5.62 nm and a band gap of 3.4 eV. Carpogenic NPs were investigated for optical, compositional, morphological, and phytochemical make up via ultraviolet spectroscopy (UV-Vis), Fourier transform infrared analysis, X-ray powder diffraction, scanning electron microscopy, and gas chromatography and mass spectrometry. Carpogenic NPs degraded methyl red up to 83% with pseudo-first-order degradation kinetics (R2 = 0.88) in 18 min signifying their remediation role in environment in conformity with all principles of green chemistry. Photocatalytic assays were performed in direct solar irradiance. Nine pathogens of biomedical and agricultural significance having multi-drug resistance were inhibited in vitro via the Kirby-Bauer disc diffusion assay. The enhanced photocatalytic and antimicrobial inhibition not only makes carpogenic ZnO NPs a future photo-degradative candidate for environmental remediation but also a nanofertiliser, nanofungicide, and nanobactericide synthesised via bioinspired, biomimetic, green, and unprecedented route.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan.
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| |
Collapse
|
83
|
Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 2019; 103:3297-3316. [PMID: 30847543 DOI: 10.1007/s00253-019-09685-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
The ungenerous release of metals from different industrial, agricultural, and anthropogenic sources has resulted in heavy metal pollution. Metals with a density larger than 5 g cm-3 have been termed as heavy metals and have been stated to be potentially toxic to human and animals. Algae are known to be pioneer organisms with the potential to grow under extreme conditions including heavy metal-polluted sites. They have evolved efficient defense strategies to combat the toxic effects exerted by heavy metal ions. Most of the algal strains are reported to accumulate elevated metal ion concentration in cellular organelles. With respect to that, this review focuses on understanding the various strategies used by algal system for heavy metal resistance. Additionally, the application of this metal resistance in biosynthesis of metal nanoparticles and metal oxide nanoparticles has been investigated in details. We thereby conclude that algae serve as an excellent system for understanding metal uptake and accumulation. This thereby assists in the design and development of low-cost approaches for large-scale synthesis of nanoparticles and bioremediation approach, providing ample opportunities for future work.
Collapse
|
84
|
Hussain A, Oves M, Alajmi MF, Hussain I, Amir S, Ahmed J, Rehman MT, El-Seedi HR, Ali I. Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv 2019; 9:15357-15369. [PMID: 35514831 PMCID: PMC9064228 DOI: 10.1039/c9ra01659g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
The continuously increasing incidence rates of cancer and infectious diseases are open threats to the sustainable survival of animals and humans.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies
- King Abdulaziz University
- Jeddah
- Kingdom of Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies
- Jubail Industrial College
- Jubail 31961
- Kingdom of Saudi Arabia
| | - Samira Amir
- Department of Chemistry
- College of Science & General Studies
- Alfaisal University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Jahangeer Ahmed
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Hesham R. El-Seedi
- Pharmacognosy Group
- Department of Medicinal Chemistry
- Uppsala University
- Biomedical Centre
- 751 23 Uppsala
| | - Imran Ali
- Department of Chemistry
- College of Sciences
- Taibah University
- Al-Medina Al-Munawara
- Saudi Arabia
| |
Collapse
|
85
|
Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. Int J Mol Sci 2018; 19:E4100. [PMID: 30567324 PMCID: PMC6321641 DOI: 10.3390/ijms19124100] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore 54000, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KPK), Chakdara 18000, Pakistan.
| | - Irshad Ahmad
- Department of Life sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|