51
|
Ueno T, Saji S, Chiba T, Kamma H, Isaka H, Itoh H, Imi K, Miyamoto K, Tada M, Sasano H, Toi M, Imoto S. Progesterone receptor expression in proliferating cancer cells of hormone-receptor-positive breast cancer. Tumour Biol 2019; 40:1010428318811025. [PMID: 30841783 DOI: 10.1177/1010428318811025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Breast cancer has been suggested to have two distinct driving mechanisms: the hormone receptor and the growth factor receptor pathways. We hypothesized that each driving system produces a different expression pattern of estrogen-regulated genes, such as progesterone receptor, in proliferating cells. Progesterone receptor and Ki67 expressions were assessed by dual-fluorescence immunohistochemistry in estrogen-receptor-positive breast cancer tissues. Two distinct proliferating cell populations were observed: progesterone-receptor-positive and progesterone-receptor-negative. In the training cohort, tissues with progesterone-receptor-positive proliferating cells were associated with lower grade and better disease-free survival (p = 0.0055 and 0.0026, respectively). These associations were confirmed in the validation cohort from the neoadjuvant endocrine trial JFMC34 (p = 0.033 and 0.0003, respectively). In the validation cohort, patients with progesterone-receptor-positive proliferating cells responded better to endocrine therapy and had a lower Oncotype DX Recurrence Score. In the multivariate analysis, progesterone receptor status of proliferating cells, but not progesterone receptor or Ki67 alone, was an independent predictor of disease-free survival in both cohorts (p = 0.0043 and 0.0026). In conclusion, the progesterone receptor status of proliferating cancer cells was associated with histological grade and Recurrence Score, and a potent prognostic factor in estrogen-receptor-positive breast cancers. Results suggest that different driving systems generate different expression patterns of progesterone receptor in proliferating cancer cells. Further studies are warranted to validate the findings.
Collapse
Affiliation(s)
- Takayuki Ueno
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan.,2 Department of Breast Surgery, Breast Oncology Center, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigehira Saji
- 3 Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Tomohiro Chiba
- 4 Department of Pathology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hiroshi Kamma
- 4 Department of Pathology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirotsugu Isaka
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hiroki Itoh
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Kentaro Imi
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Kaisuke Miyamoto
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Manami Tada
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hironobu Sasano
- 5 Department of Pathology, School of Medicine, Tohoku University, Sendai, Japan
| | - Masakazu Toi
- 6 Department of Breast Surgery, School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeru Imoto
- 1 Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
52
|
Truong TH, Dwyer AR, Diep CH, Hu H, Hagen KM, Lange CA. Phosphorylated Progesterone Receptor Isoforms Mediate Opposing Stem Cell and Proliferative Breast Cancer Cell Fates. Endocrinology 2019; 160:430-446. [PMID: 30597041 PMCID: PMC6349004 DOI: 10.1210/en.2018-00990] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
Progesterone receptors (PRs) are key modifiers of estrogen receptor (ER) target genes and drivers of luminal breast cancer progression. Total PR expression, rather than isoform-specific PR expression, is measured in breast tumors as an indicator of functional ER. We identified phenotypic differences between PR-A and PR-B in luminal breast cancer models with a focus on tumorsphere biology. Our findings indicated that PR-A is a dominant driver of cancer stem cell (CSC) expansion in T47D models, and PR-B is a potent driver of anchorage-independent proliferation. PR-A+ tumorspheres were enriched for aldehyde dehydrogenase (ALDH) activity, CD44+/CD24-, and CD49f+/CD24- cell populations relative to PR-B+ tumorspheres. Progestin promoted heightened expression of known CSC-associated target genes in PR-A+ but not PR-B+ cells cultured as tumorspheres. We report robust phosphorylation of PR-A relative to PR-B Ser294 and found that this residue is required for PR-A-induced expression of CSC-associated genes and CSC behavior. Cells expressing PR-A S294A exhibited impaired CSC phenotypes but heightened anchorage-independent cell proliferation. The PR target gene and coactivator, FOXO1, promoted PR phosphorylation and tumorsphere formation. The FOXO1 inhibitor (AS1842856) alone or combined with onapristone (PR antagonist), blunted phosphorylated PR, and tumorsphere formation in PR-A+ and PR-B+ T47D, MCF7, and BT474 models. Our data revealed unique isoform-specific functions of phosphorylated PRs as modulators of distinct and opposing pathways relevant to mechanisms of late recurrence. A clear understanding of PR isoforms, phosphorylation events, and the role of cofactors could lead to novel biomarkers of advanced tumor behavior and reveal new approaches to pharmacologically target CSCs in luminal breast cancer.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
- Correspondence: Carol A. Lange, PhD, Masonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th Street Southeast, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
53
|
Chen L, Yang G, Dong H. Everolimus Reverses Palbociclib Resistance in ER+ Human Breast Cancer Cells by Inhibiting Phosphatidylinositol 3-Kinase(PI3K)/Akt/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2019; 25:77-86. [PMID: 30605443 PMCID: PMC6327776 DOI: 10.12659/msm.912929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Palbociclib, a specific inhibitor of CDK4/6, has been shown to provide a survival benefit in hormone receptor-positive advanced breast cancer; however, its resistance and related mechanisms are unclear. Material/Methods In this study, we constructed palbociclib-resistant hormone receptor-positive breast cancer cells (MCF-7-P) via culturing with palbociclib for at least 6 months. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of stemness markers in MCF-7-P and MCF-7 cells. Additionally, cell spheroid formation, Transwell migration, ALDH1 activity, and flow cytometry assays were performed to detect stemness and migration ability of MCF-7-P cells, and the effects of everolimus on MCF-7-P cells stemness and migration ability. Growth inhibition assay was used to examine the effect of everolimus on the sensitivity of palbociclib in MCF-7-P and MCF-7 cells. Results MCF-7-P cells had stronger stemness and higher expression of ABCG2 and MDR1. Moreover, PI3K/Akt/mTOR signaling was hyper-activated in MCF-7-P cells. Additionally, everolimus, which is a mTOR inhibitor, attenuated MCF-7-P cells stemness and re-sensitized MCF-7-P cells to palbociclib. Importantly, everolimus enhanced the antitumor effect of palbociclib in palbociclib-sensitive hormone receptor-positive cells (MCF-7 cells). Conclusions These findings provide a rationale for future clinical trials of palbociclib and everolimus combination-based therapy in hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Lin Chen
- Department of Otolaryngology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China (mainland)
| | - Guangsheng Yang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China (mainland)
| | - Hongming Dong
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
54
|
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, Raj GV, Cidlowski JA, Ostrander JH, Schwertfeger KL, Seagroves TN, Lange CA. Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF-driven Signaling Axis. Mol Cancer Res 2018; 16:1761-1772. [PMID: 29991529 PMCID: PMC6214723 DOI: 10.1158/1541-7786.mcr-18-0410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023]
Abstract
The metastatic cascade is a complex process that requires cancer cells to survive despite conditions of high physiologic stress. Previously, cooperation between the glucocorticoid receptor (GR) and hypoxia-inducible factors (HIF) was reported as a point of convergence for host and cellular stress signaling. These studies indicated p38 MAPK-dependent phosphorylation of GR on Ser134 and subsequent p-GR/HIF-dependent induction of breast tumor kinase (PTK6/Brk), as a mediator of aggressive cancer phenotypes. Herein, p-Ser134 GR was quantified in human primary breast tumors (n = 281) and the levels of p-GR were increased in triple-negative breast cancer (TNBC) relative to luminal breast cancer. Brk was robustly induced following exposure of TNBC model systems to chemotherapeutic agents (Taxol or 5-fluorouracil) and growth in suspension [ultra-low attachment (ULA)]. Notably, both Taxol and ULA resulted in upregulation of the Aryl hydrocarbon receptor (AhR), a known mediator of cancer prosurvival phenotypes. Mechanistically, AhR and GR copurified and following chemotherapy and ULA, these factors assembled at the Brk promoter and induced Brk expression in an HIF-dependent manner. Furthermore, Brk expression was upregulated in Taxol-resistant breast cancer (MCF-7) models. Ultimately, Brk was critical for TNBC cell proliferation and survival during Taxol treatment and in the context of ULA as well as for basal cancer cell migration, acquired biological phenotypes that enable cancer cells to successfully complete the metastatic cascade. These studies nominate AhR as a p-GR binding partner and reveal ways to target epigenetic events such as adaptive and stress-induced acquisition of cancer skill sets required for metastatic cancer spread.Implication: Breast cancer cells enlist intracellular stress response pathways that evade chemotherapy by increasing cancer cell survival and promoting migratory phenotypes. Mol Cancer Res; 16(11); 1761-72. ©2018 AACR.
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shihong Ma
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carlos Perez Kerkvliet
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Taylor M Helle
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raisa I Krutilina
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ganesh V Raj
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Julie H Ostrander
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, Masonic Cancer Center and Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Carol A Lange
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
55
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
56
|
Wang T, Ha M. Silencing ARHGAP9 correlates with the risk of breast cancer and inhibits the proliferation, migration, and invasion of breast cancer. J Cell Biochem 2018; 119:7747-7756. [DOI: 10.1002/jcb.27127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyi Wang
- Department of Oncology The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Minwen Ha
- Department of Oncology The First Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|
57
|
Cappello AR, Curcio R, Lappano R, Maggiolini M, Dolce V. The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Front Chem 2018; 6:122. [PMID: 29719821 PMCID: PMC5913288 DOI: 10.3389/fchem.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-β are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-β is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.
Collapse
Affiliation(s)
- Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
58
|
Singhal H, Greene ME, Zarnke AL, Laine M, Al Abosy R, Chang YF, Dembo AG, Schoenfelt K, Vadhi R, Qiu X, Rao P, Santhamma B, Nair HB, Nickisch KJ, Long HW, Becker L, Brown M, Greene GL. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling. Oncotarget 2018; 9:4282-4300. [PMID: 29435103 PMCID: PMC5796974 DOI: 10.18632/oncotarget.21378] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Hari Singhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marianne E. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Allison L. Zarnke
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Muriel Laine
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Rose Al Abosy
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Ya-Fang Chang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Anna G. Dembo
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Kelly Schoenfelt
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Raga Vadhi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prakash Rao
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | - Henry W. Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lev Becker
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
59
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
60
|
Trinca GM, Goodman ML, Papachristou EK, D'Santos CS, Chalise P, Madan R, Slawson C, Hagan CR. O-GlcNAc-Dependent Regulation of Progesterone Receptor Function in Breast Cancer. Discov Oncol 2017; 9:12-21. [PMID: 28929346 DOI: 10.1007/s12672-017-0310-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging clinical trial data implicate progestins in the development of breast cancer. While the role for the progesterone receptor (PR) in this process remains controversial, it is clear that PR, a steroid-activated nuclear receptor, alters the transcriptional landscape of breast cancer. PR interacts with many different types of proteins, including transcriptional co-activators and co-repressors, transcription factors, nuclear receptors, and proteins that post-translationally modify PR (i.e., kinases and phosphatases). Herein, we identify a novel interaction between PR and O-GlcNAc transferase (OGT), the enzyme that catalyzes the addition of a single N-acetylglucosamine sugar, referred to as O-GlcNAc, to acceptor serines and threonines in target proteins. This interaction between PR and OGT leads to the post-translational modification of PR by O-GlcNAc. Moreover, we show that O-GlcNAcylated PR is more transcriptionally active on PR-target genes, despite the observation that PR messenger RNA and protein levels are decreased when O-GlcNAc levels are high. O-GlcNAcylation in breast cancer is clinically relevant, as we show that O-GlcNAc levels are higher in breast cancer as compared to matched normal tissues, and PR-positive breast cancers have higher levels of OGT. These data predict that under conditions where O-GlcNAc levels are high (breast cancer), PR, through an interaction with the modifying enzyme OGT, will exhibit increased O-GlcNAcylation and potentiated transcriptional activity. Therapeutic strategies aimed at altering cellular O-GlcNAc levels may have profound effects on PR transcriptional activity in breast cancer.
Collapse
Affiliation(s)
- Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Division of Hematology/Oncology, Department of Pathology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Cancer Biology, and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
61
|
Wang W, Xu ZZ, Costanzo M, Boone C, Lange CA, Myers CL. Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet 2017; 13:e1006973. [PMID: 28957314 PMCID: PMC5619706 DOI: 10.1371/journal.pgen.1006973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions.
Collapse
Affiliation(s)
- Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Zack Z. Xu
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
- HealthPartners Institute, Minneapolis, MN, United States of America
| | | | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Carol A. Lange
- Departments of Medicine and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
62
|
Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, Wu K. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol 2017; 10:97. [PMID: 28438180 PMCID: PMC5404666 DOI: 10.1186/s13045-017-0467-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 01/15/2023] Open
Abstract
Uncontrolled cell division is the hallmark of cancers. Full understanding of cell cycle regulation would contribute to promising cancer therapies. In particular, cyclin-dependent kinases 4/6 (CDK4/6), which are pivotal drivers of cell proliferation by combination with cyclin D, draw more and more attention. Subsequently, extensive studies were carried out to explore drugs inhibiting CDK4/6 and assess the efficacy and safety of these drugs in cancer, especially breast cancer. Due to the insuperable adverse events and the less activity observed in vivo, the drug development of the initial pan-CDK inhibitor flavopiridol was consequently discontinued, and then highly specific inhibitors were extensively researched and developed, including palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219). Food and Drug Administration has approved palbociclib and ribociclib for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer, and recent clinical trial data suggest that palbociclib significantly improved clinical outcome when combined with letrozole or fulvestrant. Besides, the favorable effects of abemaciclib on prolonging survival of breast cancer patients have also been observed in clinical trials both for single-agent and combination strategy. In this review, we outline the preclinical and clinical advancement of these three orally bioavailable and highly selective CDK4/6 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Richard G. Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA 19096 USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| |
Collapse
|