51
|
Redavid I, Conserva MR, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Single-Cell Sequencing: Ariadne’s Thread in the Maze of Acute Myeloid Leukemia. Diagnostics (Basel) 2022; 12:diagnostics12040996. [PMID: 35454044 PMCID: PMC9024495 DOI: 10.3390/diagnostics12040996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a haematological neoplasm resulting from the accumulation of genetic and epigenetic alterations. Patients’ prognoses vary with AML genetic heterogeneity, which hampers successful treatments. Single-cell approaches have provided new insights of the clonal architecture of AML, revealing the mutational history from diagnosis, during treatment and to relapse. In this review, we imagine single-cell technologies as the Ariadne’s thread that will guide us out of the AML maze, provide a precise identikit of the leukemic cell at single-cell resolution and explore genomic, transcriptomic, epigenetic and proteomic levels.
Collapse
Affiliation(s)
- Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
- Correspondence:
| |
Collapse
|
52
|
Hao S, Huang M, Xu X, Wang X, Huo L, Wang L, Gu J. MDN1 Mutation Is Associated With High Tumor Mutation Burden and Unfavorable Prognosis in Breast Cancer. Front Genet 2022; 13:857836. [PMID: 35386280 PMCID: PMC8978890 DOI: 10.3389/fgene.2022.857836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Breast cancer (BRCA) is the most common cancer worldwide and a serious threat to human health. MDN1 mutations have been observed in several cancers. However, the associations of MDN1 mutation with tumor mutation burden (TMB) and prognosis of BRCA have not been investigated. Methods: Genomic, transcriptomic, and clinical data of 973 patients with BRCA from The Cancer Genome Atlas (TCGA) database were analyzed. The clinical attributes of BRCA based on the MDN1 mutation status were assessed by comparing TMB and tumor infiltrating immune cells. Gene ontology analysis and gene set enrichment analysis (GSEA) were conducted to identify the key signaling pathways associated with MDN1 mutation. Moreover, univariate and multivariate Cox regression analyses were performed to assess the association between prognostic factors and survival outcomes. Finally, nomograms were used to determine the predictive value of MDN1 mutation on clinical outcomes in patients with BRCA. Results: MDN1 was found to have a relatively high mutation rate (2.77%). Compared to the MDN1 wild-type patients, the TMB value was significantly higher in MDN1 mutant patients (p < 0.001). Prognostic analysis revealed that MDN1 mutant patients had a worse survival probability than MDN1 wild-type patients (hazard ratio = 2.91; 95% CI:1.07–7.92; p = 0.036). GSEA revealed samples with MDN1 mutation enriched in retinol metabolism, drug metabolism cytochrome P450, glucuronidation, miscellaneous transport, and binding event pathways. Conclusion: MDN1 mutation was found to be associated with high TMB and inferior prognosis, suggesting that MDN1 mutation may play a potential role in prognosis prediction and immunotherapy guidance in BRCA.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
53
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
54
|
Yang YM, Karbstein K. The chaperone Tsr2 regulates Rps26 release and reincorporation from mature ribosomes to enable a reversible, ribosome-mediated response to stress. SCIENCE ADVANCES 2022; 8:eabl4386. [PMID: 35213229 PMCID: PMC8880767 DOI: 10.1126/sciadv.abl4386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 05/04/2023]
Abstract
Although ribosome assembly is quality controlled to maintain protein homeostasis, different ribosome populations have been described. How these form, especially under stress conditions that affect energy levels and stop the energy-intensive production of ribosomes, remains unknown. Here, we demonstrate how a physiologically relevant ribosome population arises during high Na+, sorbitol, or pH stress via dissociation of Rps26 from fully assembled ribosomes to enable a translational response to these stresses. The chaperone Tsr2 releases Rps26 in the presence of high Na+ or pH in vitro and is required for Rps26 release in vivo. Moreover, Tsr2 stores free Rps26 and promotes reincorporation of the protein, thereby repairing the subunit after the Na+ stress subsides. Our data implicate a residue in Rps26 involved in Diamond Blackfan Anemia in mediating the effects of Na+. These data demonstrate how different ribosome populations can arise rapidly, without major energy input and without bypass of quality control mechanisms.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- HHMI Faculty Scholar, Chevy Chase, MD 20815, USA
| |
Collapse
|
55
|
Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, Zhao Q, Li W, Xiang M, Ju R, Xie Z. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 2022; 50:6601-6617. [PMID: 35137207 PMCID: PMC9262593 DOI: 10.1093/nar/gkac053] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 01/05/2023] Open
Abstract
Human ribosomes have long been thought to be uniform factories with little regulatory function. Accumulating evidence emphasizes the heterogeneity of ribosomal protein (RP) expression in specific cellular functions and development. However, a systematic understanding of functional relevance of RPs is lacking. Here, we surveyed translational and transcriptional changes after individual knockdown of 75 RPs, 44 from the large subunit (60S) and 31 from the small subunit (40S), by Ribo-seq and RNA-seq analyses. Deficiency of individual RPs altered specific subsets of genes transcriptionally and translationally. RP genes were under cotranslational regulation upon ribosomal stress, and deficiency of the 60S RPs and the 40S RPs had opposite effects. RP deficiency altered the expression of genes related to eight major functional classes, including the cell cycle, cellular metabolism, signal transduction and development. 60S RP deficiency led to greater inhibitory effects on cell growth than did 40S RP deficiency, through P53 signaling. Particularly, we showed that eS8/RPS8 deficiency stimulated apoptosis while eL13/RPL13 or eL18/RPL18 deficiency promoted senescence. We also validated the phenotypic impacts of uL5/RPL11 and eL15/RPL15 deficiency on retina development and angiogenesis, respectively. Overall, our study provides a valuable resource for and novel insights into ribosome regulation in cellular activities, development and diseases.
Collapse
Affiliation(s)
- Yizhao Luan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chichi Cheng
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Congying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Nan Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Zhao
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
56
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:cells11030574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC’s role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| |
Collapse
|
57
|
Papagiannopoulos CI, Kyritsis KA, Psatha K, Mavridou D, Chatzopoulou F, Orfanoudaki G, Aivaliotis M, Vizirianakis IS. Invariable Ribosome Stoichiometry During Murine Erythroid Differentiation: Implications for Understanding Ribosomopathies. Front Mol Biosci 2022; 9:805541. [PMID: 35187080 PMCID: PMC8850788 DOI: 10.3389/fmolb.2022.805541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Heterogeneity of the main ribosomal composition represents an emerging, yet debatable, mechanism of gene expression regulation with a purported role in ribosomopathies, a group of disorders caused by mutations in ribosomal protein genes (RPs). Ribosomopathies, mysteriously relate with tissue-specific symptoms (mainly anemia and cancer predisposition), despite the ubiquitous expression and necessity of the associated RPs. An outstanding question that may shed light into disease pathogenicity and provide potential pharmacological interventions, is whether and how the ribosomal composition is modified during, the highly affected by RP mutations, process of erythroid differentiation. To address this issue, we analyzed ribosome stoichiometry using an established model of erythroid differentiation, through sucrose gradient ultracentrifugation and quantitative proteomics. We found that differentiation associates with an extensive reprogramming of the overall ribosomal levels, characterized by an increase in monosomes and a decrease in polysomes. However, by calculating a stoichiometry score for each independent ribosomal protein, we found that the main ribosomal architecture remained invariable between immature and differentiated cells. In total, none of the 78 Ribosomal Proteins (RPs- 74 core RPs, Rack1, Fau and 2 paralogs) detected was statistically different between the samples. This data was further verified through antibody-mediated quantification of 6 representative RPs. Moreover, bioinformatic analysis of whole cell proteomic data derived out of 4 additional models of erythropoiesis revealed that RPs were co-regulated across these cell types, too. In conclusion, ribosomes maintain an invariant protein stoichiometry during differentiation, thus excluding ribosome heterogeneity from a potential mechanism of toxicity in ribosomopathies and other erythroid disorders.
Collapse
Affiliation(s)
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Psatha
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece
| | - Dimitra Mavridou
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece
| | - Michalis Aivaliotis
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- *Correspondence: Ioannis S. Vizirianakis,
| |
Collapse
|
58
|
Zhou J, Li Q, Wu H, Tsai SH, Yeh YT. Effective Inhibition of Mitochondrial Metabolism by Cryptotanshinone in MDA-MB231 cells: A Proteomic Analysis. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210208144542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background :
Triple-negative breast cancer (TNBC) is a subtype of invasive cancer in breast with the symptoms of unfavourable prognosis and limited targeted treatment options. Evidence of changes in the metabolic status of TNBC, characterised by increased glycolysis, mitochondrial oxidative phosphorylation, as well as production and utilization of tricarboxylic acid cycle intermediates.
Objective:
Investigate the proteins altered in cryptotanshinone treated MDA-MB-231 cells and explore the key pathways and specific molecular markers involved in cryptotanshinone treatment.
Method:
We use unlabeled quantitative proteomics to gain insight into the anticancer mechanism of cryptotanshinone on MDA-MB231 triple negative breast cancer cells. And flow cytometry was used to detect apoptosis and changes in cell mitochondrial membrane potential.
Results:
We show that inhibiting the expression of electron transport chain complex proteins, also inhibits mitochondrial oxidative phosphorylation. Additionally, down-regulation of the ribosime biogenesis pathway was found to inhibit cell metabolism.
Conclusion:
In summary, results show that cryptotanshinone can trigger rapid and irreversible apoptosis in MDA-MB-231 cells through effectively inhibiting cell metabolism.
Collapse
Affiliation(s)
- Jiefeng Zhou
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University,-
Taipei City, Taiwan
- Ningbo AJcore Biosciences Inc., 3rd Floor, Building One, East District, Ningbo New Materials
Innovation Center, High-Tech Zone, Ningbo, China
| | - Qingcao Li
- Laboratory Department,Ningbo Medical Center Li Huili Eastern Hospital,High-Tech Zone, Bingbo, China
| | - Haoran Wu
- Ningbo AJcore Biosciences Inc., 3rd Floor, Building One, East District, Ningbo New Materials
Innovation Center, High-Tech Zone, Ningbo, China
| | - Shin-Han Tsai
- Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical
University, Institute of Injury Prevention and Control, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Ting Yeh
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University,-
Taipei City, Taiwan
- Information Technology Office, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
59
|
Gene and metabolite expression dependence on body mass index in human myocardium. Sci Rep 2022; 12:1425. [PMID: 35082386 PMCID: PMC8791972 DOI: 10.1038/s41598-022-05562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that body mass index (BMI) dependent changes in myocardial gene expression and energy-related metabolites underlie the biphasic association between BMI and mortality (the obesity paradox) in cardiac surgery. We performed transcriptome profiling and measured a panel of 144 metabolites in 53 and 55, respectively, myocardial biopsies from a cohort of sixty-six adult patients undergoing coronary artery bypass grafting (registration: NCT02908009). The initial analysis identified 239 transcripts with biphasic BMI dependence. 120 displayed u-shape and 119 n-shape expression patterns. The identified local minima or maxima peaked at BMI 28–29. Based on these results and to best fit the WHO classification, we grouped the patients into three groups: BMI < 25, 25 ≤ BMI ≤ 32, and BMI > 32. The analysis indicated that protein translation-related pathways were downregulated in 25 ≤ BMI ≤ 32 compared with BMI < 25 patients. Muscle contraction transcripts were upregulated in 25 ≤ BMI ≤ 32 patients, and cholesterol synthesis and innate immunity transcripts were upregulated in the BMI > 32 group. Transcripts involved in translation, muscle contraction and lipid metabolism also formed distinct correlation networks with biphasic dependence on BMI. Metabolite analysis identified acylcarnitines and ribose-5-phosphate increasing in the BMI > 32 group and α-ketoglutarate increasing in the BMI < 25 group. Molecular differences in the myocardium mirror the biphasic relationship between BMI and mortality.
Collapse
|
60
|
The proteomic landscape of ovarian cancer cells in response to melatonin. Life Sci 2022; 294:120352. [PMID: 35074409 DOI: 10.1016/j.lfs.2022.120352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a highly negative prognosis. Melatonin is an indoleamine secreted by the pineal gland during darkness and has shown antitumor activity in both in vitro and in vivo experiments. Herein, we investigated the influence of melatonin on the proteome of human ovarian carcinoma cells (SKOV-3 cell line) using the Ultimate 3000 LC Liquid NanoChromatography equipment coupled to a Q-Exactive mass spectrometry. After 48 h of treatment, melatonin induced a significant cytotoxicity especially with the highest melatonin concentration. The proteomic profile revealed 639 proteins in the control group, and 98, 110, and 128 proteins were altered by melatonin at the doses of 0.8, 1.6, and 2.4 mM, respectively. Proteins associated with the immune system and tricarboxylic acid cycle were increased in the three melatonin-exposed groups of cells. Specifically, the dose of 2.4 mM led to a reduction in molecules associated with protein synthesis, especially those of the ribosomal protein family. We also identified 28 potential genes shared between normal ovarian tissue and OC in all experimental groups, and melatonin was predicted to alter genes encoding ribosomal proteins. Notably, the set of proteins changed by melatonin was linked to a better prognosis for OC patients. We conclude that melatonin significantly alters the proteome of SKOV-3 cells by changing proteins involved with the immune response and mitochondrial metabolism. The concentration of 2.4 mM of melatonin promoted the largest number of protein changes. The evidence suggests that melatonin may be an effective therapeutic strategy against OC.
Collapse
|
61
|
Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus-encoded ribosome-associated protein. Proc Natl Acad Sci U S A 2021; 118:2025546118. [PMID: 34725147 DOI: 10.1073/pnas.2025546118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to being required for protein synthesis, ribosomes and ribosomal proteins (RPs) also regulate messenger RNA translation in uninfected and virus-infected cells. By individually depleting 85 RPs using RNA interference, we found that overall protein synthesis in uninfected primary fibroblasts was more sensitive to RP depletion than those infected with herpes simplex virus-1 (HSV-1). Although representative RP depletion (uL3, uS4, uL5) inhibited protein synthesis in cells infected with two different DNA viruses (human cytomegalovirus, vaccinia virus), HSV-1-infected cell protein synthesis unexpectedly endured and required a single virus-encoded gene product, VP22. During individual RP insufficiency, VP22-expressing HSV-1 replicated better than a VP22-deficient variant. Furthermore, VP22 promotes polysome accumulation in virus-infected cells when uL3 or ribosome availability is limiting and cosediments with initiating and elongating ribosomes in infected and uninfected cells. This identifies VP22 as a virus-encoded, ribosome-associated protein that compensates for RP insufficiency to support viral protein synthesis and replication. Moreover, it reveals an unanticipated class of virus-encoded, ribosome-associated effectors that reduce the dependence of protein synthesis upon host RPs and broadly support translation during physiological stress such as infection.
Collapse
|
62
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
63
|
Dabbah M, Lishner M, Jarchowsky-Dolberg O, Tartakover-Matalon S, Brin YS, Pasmanik-Chor M, Neumann A, Drucker L. Ribosomal proteins as distinct "passengers" of microvesicles: new semantics in myeloma and mesenchymal stem cells' communication. Transl Res 2021; 236:117-132. [PMID: 33887527 DOI: 10.1016/j.trsl.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023]
Abstract
Aberrant mesenchymal stem cells (MSCs) in multiple myeloma (MM) bone marrows (BM) promote disease progression and drug resistance. Here, we assayed the protein cargo transported from MM-MSCs to MM cells via microvesicles (MVs) with focus on ribosomal proteins (RPs) and assessment of their influence on translation initiation and design of MM phenotype. Proteomics analysis (mass spectrometry) demonstrated increased levels and repertoire of RPs in MM-MSCs MVs compared to normal donors (ND) counterparts (n = 3-8; P = 9.96E - 08). We limited the RPs load in MM-MSCs MVs (starvation, RSK and XPO1 inhibitions), reapplied the modified MVs to MM cell lines (U266, MM1S), and demonstrated that the RPs are essential to the proliferative effect of MM-MSCs MVs on MM cells (n = 3; P < 0.05). We also observed that inhibition with KPT-185 (XPO1 inhibitor) displayed the most extensive effect on RPs delivery into the MVs (↓80%; P = 3.12E - 05). Using flow cytometry we assessed the expression of select RPs (n = 10) in BM-MSCs cell populations (ND and MM; n ≥ 6 each). This demonstrated a heterogeneous expression of RPs in MM-MSCs with distinct subgroups, a phenomenon absent from ND-MSCs samples. These findings bring to light a new mechanism in which the tumor microenvironment participates in cancer promotion. MVs-mediated horizontal transfer of RPs between niche MSCs and myeloma cells is a systemic way to bestow pro-cancer advantages. This capacity also differentiates normal MSCs from the MM-modified MSCs and may mark their reprogramming. Future studies will be aimed at assessing the clinical and therapeutic potential of the increased RPs levels in MM-MSCs MVs.
Collapse
Affiliation(s)
- Mahmoud Dabbah
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Resaerch Institute, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Jarchowsky-Dolberg
- Hematology Unit, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Autoimmunity laboratory, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron S Brin
- Orthopedics Department, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W. Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Neumann
- Oncology Department, Rambam Medical Center, Haifa, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
64
|
Zou Q, Qi H. Deletion of ribosomal paralogs Rpl39 and Rpl39l compromises cell proliferation via protein synthesis and mitochondrial activity. Int J Biochem Cell Biol 2021; 139:106070. [PMID: 34428590 DOI: 10.1016/j.biocel.2021.106070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022]
Abstract
Accumulating evidences suggest that the composition and functional roles of ribosomes are heterogeneous in cells, partly due to the temporal-spatial expression of paralogous ribosomal proteins (RPs), of which functional relationships remain largely unexplored. In mouse, the X chromosome-linked RPL39 and its male germline specific paralog RPL39L are thought to express mutually exclusively due to the meiotic sex chromosome inactivation, hinders the understanding of their functional relationships. In the present study, we investigated the expression and functional relations of Rpl39 and Rpl39l in a proliferative mouse cell line, in which both genes are expressed simultaneously, with the expression level of Rpl39 higher than that of Rpl39l. Disruption of Rpl39 via CRISPR/Cas9 method caused decreased cell proliferation, nascent protein synthesis and altered mitochondrial functions, whereas double mutations of Rpl39 and Rpl39l augmented these phenotypes, suggesting that both RPs contribute to the cellular physiology. Consistently, overexpression of Rpl39, Rpl39l or an alanine mutant of RPL39, rescued cell proliferation similarly in Rpl39-/-::Rpl39l-/- dual gene null cells. Deletion of Rpl39l induced compensatory expression of Rpl39, rendering the deleterious effects of Rpl39l mutation. Supporting this, Rpl39l mutation was more detrimental to cells under a low serum condition, under which the compensatory expression of Rpl39 was inhibited. Moreover, the low serum condition induced expression of both genes, suggesting that they possess stress responsive roles. Taken together, these data indicate that both RPL39 and RPL39L influence cell proliferation via protein synthesis and mitochondrial functions, suggesting a link between protein translation and cellular metabolism through these ribosomal protein paralogs.
Collapse
Affiliation(s)
- Qianxing Zou
- CAS Key Laboratory of Regenerative Biology; Center for Cell Lineage and Development; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayu Qi
- CAS Key Laboratory of Regenerative Biology; Center for Cell Lineage and Development; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
65
|
Lari A, Pourbadie HG, Sharifi-Zarchi A, Akhtari M, Samimi LN, Jamshidi A, Mahmoudi M. Dysregulation of ribosome-related genes in ankylosing spondylitis: a systems biology approach and experimental method. BMC Musculoskelet Disord 2021; 22:789. [PMID: 34521416 PMCID: PMC8442383 DOI: 10.1186/s12891-021-04662-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ankylosing spondylitis (AS) is an autoimmune rheumatic disease. Few candidate gene associations have been reported for AS and the current understanding of its pathogenesis remains still poor. Thus, the exact mechanism of AS is needed to urgently be disclosed. The purpose of this study was to identify candidate genes involving in AS disease. Methods and results GSE25101 publicly available microarray and GSE117769 RNA-seq datasets of AS patients were obtained for bioinformatics analyses. Gene set enrichment analysis showed that in the microarray dataset, the ribosome pathway was significantly up-regulated in AS compared with controls. Furthermore, some ribosomal components demonstrated overexpression in patients in the RNA-seq dataset. To confirm the findings, 20 AS patients and 20 matching controls were selected from the Rheumatology Research Center clinic, Shariati Hospital. PBMCs were separated from whole blood and RNA contents were extracted. Following the results of datasets analysis, the expression level of rRNA5.8S pseudogene, rRNA18S pseudogene, RPL23, RPL7, and RPL17 genes were measured through real-time PCR. Our findings showed dysregulation of rRNA5.8S and rRNA18S pseudogenes, and also the RPL17 gene in patients. Conclusion Considering that genes involved in ribosome biogenesis contributed to some AS-associated biological processes as well as diseases that have comorbidities with AS, our results might advance our understanding of the pathological mechanisms of ankylosing spondylitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04662-2.
Collapse
Affiliation(s)
- Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran.,Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave, Tehran, Iran
| | | | - Ali Sharifi-Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nejatbakhsh Samimi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, PO-BOX: 1411713137, Kargar Ave, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
66
|
Zhao Y, Dukler N, Barshad G, Toneyan S, Danko CG, Siepel A. Deconvolution of Expression for Nascent RNA sequencing data (DENR) highlights pre-RNA isoform diversity in human cells. Bioinformatics 2021; 37:4727-4736. [PMID: 34382072 PMCID: PMC8665767 DOI: 10.1093/bioinformatics/btab582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Motivation Quantification of isoform abundance has been extensively studied at the mature RNA level using RNA-seq but not at the level of precursor RNAs using nascent RNA sequencing. Results We address this problem with a new computational method called Deconvolution of Expression for Nascent RNA-sequencing data (DENR), which models nascent RNA-sequencing read-counts as a mixture of user-provided isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and an adjustment for the typical ‘shape profile’ of read-counts along a transcription unit. We show that DENR outperforms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of multiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide evidence that a majority of human isoform diversity derives from primary transcription rather than from post-transcriptional processes. Availability and implementation DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shushan Toneyan
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
67
|
Ilott NE, Neyazi M, Arancibia-Cárcamo CV, Powrie F, Geremia A. Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease. Wellcome Open Res 2021; 6:199. [PMID: 36447600 PMCID: PMC9664024 DOI: 10.12688/wellcomeopenres.16901.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 06/30/2024] Open
Abstract
Background: Primary sclerosing cholangitis (PSC) is a disease of the bile duct and liver. However, patients frequently have co-morbidities including inflammatory bowel disease (IBD) and colorectal cancer. Colorectal cancer risk in patients with PSC-associated ulcerative colitis (PSC/UC) is elevated relative to patients with ulcerative colitis (UC) alone, reasons for which remain obscure. Further, clinical and immunological features, and involved intestinal sites differ between PSC/UC and UC. Understanding the molecular and microbial basis for differences in cancer risk between these two patient groups and how these differ across intestinal sites is important for the development of therapies to prevent colorectal cancer development in at-risk individuals. Methods: We employed ribonucleic acid sequencing (RNA-seq) analysis of biopsy samples across three intestinal tissue locations (ileum, caecum and rectum) in patients with PSC/UC (n = 8), UC (n = 10) and healthy controls (n = 12) to determine tissue-dependent transcriptional alterations in PSC/UC. We also performed 16S ribosomal RNA (rRNA) amplicon sequencing to determine bacterial associations with PSC/UC and host-microbiome associations. Results: Tissue-defining transcriptional signatures revealed that the ileum was enriched for genes involved in lipid and drug metabolism, the caecum for activated immune cells and the rectum for enteric neurogenesis. Transcriptional alterations relative to healthy control samples were largely shared between patients with PSC/UC or UC although were distinct across tissue locations. Nevertheless, we observed reduced expression of gamma-glutamyl transferase 1 ( GGT1) specifically in the ileum and caecum of patients with PSC/UC. Analysis of the bacterial component of the microbiome revealed high inter-individual variability of microbiome composition and little evidence for tissue-dependency. We observed a reduction in Parabacteroides relative abundance in the rectum of patients with PSC/UC. Conclusions: The role of gamma-glutamyl transferase in maintaining the redox environment through the glutathione salvage pathway makes our observed alterations a potential pathway to PSC-associated colorectal cancer.
Collapse
Affiliation(s)
- Nicholas E. Ilott
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Mastura Neyazi
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Oxford Translational Gastroenterology Unit Investigators
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Fiona Powrie
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
68
|
Hopes T, Norris K, Agapiou M, McCarthy CGP, Lewis PA, O'Connell MJ, Fontana J, Aspden JL. Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching. Nucleic Acids Res 2021; 50:2240-2257. [PMID: 34283226 PMCID: PMC8887423 DOI: 10.1093/nar/gkab606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/02/2022] Open
Abstract
Ribosomes have long been thought of as homogeneous macromolecular machines, but recent evidence suggests they are heterogeneous and could be specialised to regulate translation. Here, we have characterised ribosomal protein heterogeneity across 4 tissues of Drosophila melanogaster. We find that testes and ovaries contain the most heterogeneous ribosome populations, which occurs through a combination of paralog-enrichment and paralog-switching. We have solved structures of ribosomes purified from in vivo tissues by cryo-EM, revealing differences in precise ribosomal arrangement for testis and ovary 80S ribosomes. Differences in the amino acid composition of paralog pairs and their localisation on the ribosome exterior indicate paralog-switching could alter the ribosome surface, enabling different proteins to regulate translation. One testis-specific paralog-switching pair is also found in humans, suggesting this is a conserved site of ribosome heterogeneity. Overall, this work allows us to propose that mRNA translation might be regulated in the gonads through ribosome heterogeneity, providing a potential means of ribosome specialisation.
Collapse
Affiliation(s)
- Tayah Hopes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK
| | - Karl Norris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Michaela Agapiou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Charley G P McCarthy
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Philip A Lewis
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
69
|
Norris K, Hopes T, Aspden JL. Ribosome heterogeneity and specialization in development. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1644. [PMID: 33565275 PMCID: PMC8647923 DOI: 10.1002/wrna.1644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Regulation of protein synthesis is a vital step in controlling gene expression, especially during development. Over the last 10 years, it has become clear that rather than being homogeneous machines responsible for mRNA translation, ribosomes are highly heterogeneous and can play an active part in translational regulation. These "specialized ribosomes" comprise of specific protein and/or rRNA components, which are required for the translation of particular mRNAs. However, while there is extensive evidence for ribosome heterogeneity, support for specialized functions is limited. Recent work in a variety of developmental model organisms has shed some light on the biological relevance of ribosome heterogeneity. Tissue-specific expression of ribosomal components along with phenotypic analysis of ribosomal gene mutations indicate that ribosome heterogeneity and potentially specialization are common in key development processes like embryogenesis, spermatogenesis, oogenesis, body patterning, and neurogenesis. Several examples of ribosome specialization have now been proposed but strong links between ribosome heterogeneity, translation of specific mRNAs by defined mechanisms, and role of these translation events remain elusive. Furthermore, several studies have indicated that heterogeneous ribosome populations are a product of tissue-specific expression rather than specialized function and that ribosomal protein phenotypes are the result of extra-ribosomal function or overall reduced ribosome levels. Many important questions still need to be addressed in order to determine the functional importance of ribosome heterogeneity to development and disease, which is likely to vary across systems. It will be essential to dissect these issues to fully understand diseases caused by disruptions to ribosomal composition, such as ribosomopathies. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Structure/Function RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Karl Norris
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Julie Louise Aspden
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| |
Collapse
|
70
|
Panici B, Nakajima H, Carlston CM, Ozadam H, Cenik C, Cenik ES. Loss of coordinated expression between ribosomal and mitochondrial genes revealed by comprehensive characterization of a large family with a rare Mendelian disorder. Genomics 2021; 113:1895-1905. [PMID: 33862179 PMCID: PMC8266734 DOI: 10.1016/j.ygeno.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Non-canonical intronic variants are a poorly characterized yet highly prevalent class of alterations associated with Mendelian disorders. Here, we report the first RNA expression and splicing analysis from a family whose members carry a non-canonical splice variant in an intron of RPL11 (c.396 +3A>G). This mutation is causative for Diamond Blackfan Anemia (DBA) in this family despite incomplete penetrance and variable expressivity. Our analyses revealed a complex pattern of disruptions with many novel junctions of RPL11. These include an RPL11 transcript that is translated with a late stop codon in the 3' untranslated region (3'UTR) of the main isoform. We observed that RPL11 transcript abundance is comparable among carriers regardless of symptom severity. Interestingly, both the small and large ribosomal subunit transcripts were significantly overexpressed in individuals with a history of anemia in addition to congenital abnormalities. Finally, we discovered that coordinated expression between mitochondrial components and RPL11 was lost in all carriers, which may lead to variable expressivity. Overall, this study highlights the importance of RNA splicing and expression analyses in families for molecular characterization of Mendelian diseases.
Collapse
Affiliation(s)
- Brendan Panici
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Hosei Nakajima
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA
| | | | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, USA.
| |
Collapse
|
71
|
Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription. Genes (Basel) 2021; 12:genes12070961. [PMID: 34202617 PMCID: PMC8303148 DOI: 10.3390/genes12070961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Ribosomal transcription constitutes the major energy consuming process in cells and is regulated in response to proliferation, differentiation and metabolic conditions by several signalling pathways. These act on the transcription machinery but also on chromatin factors and ncRNA. The many ribosomal gene repeats are organised in a number of different chromatin states; active, poised, pseudosilent and repressed gene repeats. Some of these chromatin states are unique to the 47rRNA gene repeat and do not occur at other locations in the genome, such as the active state organised with the HMG protein UBF whereas other chromatin state are nucleosomal, harbouring both active and inactive histone marks. The number of repeats in a certain state varies on developmental stage and cell type; embryonic cells have more rRNA gene repeats organised in an open chromatin state, which is replaced by heterochromatin during differentiation, establishing different states depending on cell type. The 47S rRNA gene transcription is regulated in different ways depending on stimulus and chromatin state of individual gene repeats. This review will discuss the present knowledge about factors involved, such as chromatin remodelling factors NuRD, NoRC, CSB, B-WICH, histone modifying enzymes and histone chaperones, in altering gene expression and switching chromatin states in proliferation, differentiation, metabolic changes and stress responses.
Collapse
|
72
|
West PT, Peters SL, Olm MR, Yu FB, Gause H, Lou YC, Firek BA, Baker R, Johnson AD, Morowitz MJ, Hettich RL, Banfield JF. Genetic and behavioral adaptation of Candida parapsilosis to the microbiome of hospitalized infants revealed by in situ genomics, transcriptomics, and proteomics. MICROBIOME 2021; 9:142. [PMID: 34154658 PMCID: PMC8215838 DOI: 10.1186/s40168-021-01085-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context. RESULTS Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples, three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use. Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over time, accompanied by changes in bacterial and fungal gene expression and proteome composition. CONCLUSIONS The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer into premature infant microbiomes. Video abstract.
Collapse
Affiliation(s)
- Patrick T. West
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Samantha L. Peters
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | | - Haley Gause
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA USA
| | - Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Brian A. Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Robyn Baker
- Division of Newborn Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA USA
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jillian F. Banfield
- Chan Zuckerberg Biohub, San Francisco, CA USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
73
|
Castro‐Gil MP, Sánchez‐Rodríguez R, Torres‐Mena JE, López‐Torres CD, Quintanar‐Jurado V, Gabiño‐López NB, Villa‐Treviño S, del‐Pozo‐Jauner L, Arellanes‐Robledo J, Pérez‐Carreón JI. Enrichment of progenitor cells by 2-acetylaminofluorene accelerates liver carcinogenesis induced by diethylnitrosamine in vivo. Mol Carcinog 2021; 60:377-390. [PMID: 33765333 PMCID: PMC8251613 DOI: 10.1002/mc.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
The potential role of hepatocytes versus hepatic progenitor cells (HPC) on the onset and pathogenesis of hepatocellular carcinoma (HCC) has not been fully clarified. Because the administration of 2-acetylaminofluorene (2AAF) followed by a partial hepatectomy, selectively induces the HPC proliferation, we investigated the effects of chronic 2AAF administration on the HCC development caused by the chronic administration of the carcinogen diethylnitrosamine (DEN) for 16 weeks in the rat. DEN + 2AAF protocol impeded weight gain of animals but promoted prominent hepatomegaly and exacerbated liver alterations compared to DEN protocol alone. The tumor areas detected by γ-glutamyl transferase, prostaglandin reductase-1, and glutathione S-transferase Pi-1 liver cancer markers increased up to 80% as early as 12 weeks of treatment, meaning 6 weeks earlier than DEN alone. This protocol also increased the number of Ki67-positive cells and those of CD90 and CK19, two well-known progenitor cell markers. Interestingly, microarray analysis revealed that DEN + 2AAF protocol differentially modified the global gene expression signature and induced the differential expression of 30 genes identified as HPC markers as early as 6 weeks of treatment. In conclusion, 2AAF induces the early appearance of HPC markers and as a result, accelerates the hepatocarcinogenesis induced by DEN in the rat. Thus, since 2AAF simultaneously administrated with DEN enriches HPC during hepatocarcinogenesis, we propose that DEN + 2AAF protocol might be a useful tool to investigate the cellular origin of HCC with progenitor features.
Collapse
Affiliation(s)
| | - Ricardo Sánchez‐Rodríguez
- Foundation Istituto di Ricerca Pediatrica‐Città della SperanzaPadovaItaly
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | | | | | | | | | - Saúl Villa‐Treviño
- Department of Cell BiologyCenter for Research and Advanced Studies of the National Polytechnic InstituteCiudad de MéxicoMexico
| | | | - Jaime Arellanes‐Robledo
- Laboratory of Liver DiseasesNational Institute of Genomic MedicineCiudad de MéxicoMexico
- Directorate of CátedrasNational Council of Science and TechnologyCiudad de MéxicoMexico
| | | |
Collapse
|
74
|
Hassan FM, Alsultan A, Alzehrani F, Albuali W, Bubshait D, Abass E, Elbasheer M, Alkhanbashi A. Genetic Variants of RPL5 and RPL9 Genes among Saudi Patients Diagnosed with Thrombosis. Med Arch 2021; 75:188-193. [PMID: 34483448 PMCID: PMC8385736 DOI: 10.5455/medarh.2021.75.188-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/20/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Thrombosis directly affects the quality of life with increased mortality. The RPL5 (L5) gene on intron 6 on chromosome 1p22, rs6604026 is associated with multiple sclerosis risk, whereas RPL9 (L9) on 8 exons on chromosome 4p14 has been documented so far as being an essential involvement in the proliferation of protein synthesized cells mostly by gene products. OBJECTIVE The aim of this work was to assess genetic variants of RPL5 and RPL9 and thrombosis to characterize their role in the diagnosis of thrombosis among the Saudi population. METHODS The cross-sectional study involved 100 Saudi patients diagnosed with thrombosis (arterial or venous) in 50 healthy individuals as controls in the same age and sex groups. Primers were designed RPL5 and RPL9 for molecular analysis. The Sanger System ABI-3730xL (Hong Kong) automatic sequencing was used for DNA sequencing. Statistical analysis was performed using the Prism 5 and SPSS version-21 programs. RESULTS The male / female age ratio was 66.7 / 57.4, and the mean age was 61.2 years. Most of the patients were self-identifiable and without a previous history of thrombosis (61.0%). Most of the patients had just been diagnosed, that is, in the last five years (74.0%), about 43% of the patients underwent treatment using combination therapy (Aspirin and oral anticoagulants). New gene variants of RPL5 (5 SNPs) and RPL9 (9 SNPs) were detected in Saudi thrombotic patients. CONCLUSION Mutations in RPL5 and RPL9 were reported in all thrombotic patients, represented by a new variant of the ribosomal protein gene and correlated with thrombosis in the Saudi population. These results may reflect an association between the ribosomal protein SNP gene and the incidence and progression of thrombosis in the Saudi population.
Collapse
Affiliation(s)
- Fathelrahman Mahdi Hassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Afnan Alsultan
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Alzehrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Waleed Albuali
- Department of Pediatrics, College of Medicine. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dalal Bubshait
- Department of Pediatrics, College of Medicine. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Elfadil Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mudathir Elbasheer
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulmohsen Alkhanbashi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science. Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
75
|
Transcription Factor Activity Inference in Systemic Lupus Erythematosus. Life (Basel) 2021; 11:life11040299. [PMID: 33915751 PMCID: PMC8065841 DOI: 10.3390/life11040299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with diverse clinical manifestations. Although most of the SLE-associated loci are located in regulatory regions, there is a lack of global information about transcription factor (TFs) activities, the mode of regulation of the TFs, or the cell or sample-specific regulatory circuits. The aim of this work is to decipher TFs implicated in SLE. Methods: In order to decipher regulatory mechanisms in SLE, we have inferred TF activities from transcriptomic data for almost all human TFs, defined clusters of SLE patients based on the estimated TF activities and analyzed the differential activity patterns among SLE and healthy samples in two different cohorts. The Transcription Factor activity matrix was used to stratify SLE patients and define sets of TFs with statistically significant differential activity among the disease and control samples. Results: TF activities were able to identify two main subgroups of patients characterized by distinct neutrophil-to-lymphocyte ratio (NLR), with consistent patterns in two independent datasets—one from pediatric patients and other from adults. Furthermore, after contrasting all subgroups of patients and controls, we obtained a significant and robust list of 14 TFs implicated in the dysregulation of SLE by different mechanisms and pathways. Among them, well-known regulators of SLE, such as STAT or IRF, were found, but others suggest new pathways that might have important roles in SLE. Conclusions: These results provide a foundation to comprehend the regulatory mechanism underlying SLE and the established regulatory factors behind SLE heterogeneity that could be potential therapeutic targets.
Collapse
|
76
|
Huang H, Ghalei H, Karbstein K. Quality control of 40S ribosome head assembly ensures scanning competence. J Cell Biol 2021; 219:152152. [PMID: 33007085 PMCID: PMC7534925 DOI: 10.1083/jcb.202004161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
During translation initiation, 40S ribosomes scan the mRNA until they encounter the start codon, where conformational changes produce a translation-competent 80S complex. Destabilizing the scanning complex results in misinitiation at non-AUG codons, demonstrating its importance for fidelity. Here, we use a combination of biochemical and genetic analyses to demonstrate that the ability of the nascent subunit to adopt the scanning complex is tested during assembly via structural mimicry. Specifically, formation of the 80S-like assembly intermediate, which structurally resembles scanning complexes, requires the correct folding of two rRNA elements in the subunit head and the proper positioning of the universally conserved head proteins Rps3, Rps15, Rps20, and Rps29. rRNA misfolding impairs the formation of 80S-like ribosomes, and bypass of individual checkpoints using cancer-associated mutations produces ribosomes defective in accurate start-site selection. Thus, the formation of 80S-like assembly intermediates is a quality control step that ensures scanning competence of the nascent subunit.
Collapse
Affiliation(s)
- Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
77
|
Li X, Guo X, Zhu Y, Wei G, Zhang Y, Li X, Xu H, Cui J, Wu W, He J, Ritchie ME, Weiskittel TM, Li H, Yu H, Ding L, Shao M, Luo Q, Xu X, Teng X, Chang AH, Zhang J, Huang H, Hu Y. Single-Cell Transcriptomic Analysis Reveals BCMA CAR-T Cell Dynamics in a Patient with Refractory Primary Plasma Cell Leukemia. Mol Ther 2021; 29:645-657. [PMID: 33278564 PMCID: PMC7854300 DOI: 10.1016/j.ymthe.2020.11.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized the clinical treatment of hematological malignancies due to the prominent anti-tumor effects. B cell maturation antigen (BCMA) CAR-T cells have demonstrated promising effects in patients with relapsed/refractory multiple myeloma. However, the dynamics of CAR-T cell proliferation and cytotoxicity in clinical patients remains unexplored. Here, we longitudinally profiled the transcriptomes of 55,488 T cells including CAR-T products, CAR-T cells, and endogenous T cells at the peak and remission phases in a plasma cell leukemia (PCL) patient treated with BCMA CAR-T cells by single-cell transcriptomic analysis. Our results showed distinct CAR-T and endogenous T cell subsets indicating stage-specific expression in proliferation, cytotoxicity, and intercellular signaling pathways. Furthermore, we found that CAR-T cells at peak phase gradually convert to a highly cytotoxic state from a highly proliferative state along a development trajectory. Moreover, re-analysis of a single cell study from CD8+ CD19 CAR-T confirmed our findings. These commonalities suggest conserved mechanisms for CAR-T treatment across hematological malignancies. Taken together, our current study provides insight into CAR-T cell dynamics during CAR-T therapy and proves that both BCMA CAR-T and CD19 CAR-T have similar transcriptional characteristics, especially at the CAR-T peak phase.
Collapse
MESH Headings
- Antigens, CD19/immunology
- B-Cell Maturation Antigen/immunology
- Drug Resistance, Neoplasm
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Plasma Cell/diagnosis
- Leukemia, Plasma Cell/genetics
- Leukemia, Plasma Cell/immunology
- Leukemia, Plasma Cell/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recurrence
- Single-Cell Analysis/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcriptome
- Treatment Outcome
Collapse
Affiliation(s)
- Xue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Xin Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Yuqing Zhu
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China; The First Hospital & Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd., Shanghai 200090, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Matthew E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Taylor M Weiskittel
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Hua Yu
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China; The First Hospital & Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Ding
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Xiaoxiao Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd., Shanghai 200090, China
| | - Jin Zhang
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China; The First Hospital & Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China.
| |
Collapse
|
78
|
Cancer, Retrogenes, and Evolution. Life (Basel) 2021; 11:life11010072. [PMID: 33478113 PMCID: PMC7835786 DOI: 10.3390/life11010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.
Collapse
|
79
|
Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. J Neurosci 2021; 41:1597-1616. [PMID: 33452227 DOI: 10.1523/jneurosci.2469-20.2020] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) can lead to significant neuropsychiatric problems and neurodegenerative pathologies, which develop and persist years after injury. Neuroinflammatory processes evolve over this same period. Therefore, we aimed to determine the contribution of microglia to neuropathology at acute [1 d postinjury (dpi)], subacute (7 dpi), and chronic (30 dpi) time points. Microglia were depleted with PLX5622, a CSF1R antagonist, before midline fluid percussion injury (FPI) in male mice and cortical neuropathology/inflammation was assessed using a neuropathology mRNA panel. Gene expression associated with inflammation and neuropathology were robustly increased acutely after injury (1 dpi) and the majority of this expression was microglia independent. At 7 and 30 dpi, however, microglial depletion reversed TBI-related expression of genes associated with inflammation, interferon signaling, and neuropathology. Myriad suppressed genes at subacute and chronic endpoints were attributed to neurons. To understand the relationship between microglia, neurons, and other glia, single-cell RNA sequencing was completed 7 dpi, a critical time point in the evolution from acute to chronic pathogenesis. Cortical microglia exhibited distinct TBI-associated clustering with increased type-1 interferon and neurodegenerative/damage-related genes. In cortical neurons, genes associated with dopamine signaling, long-term potentiation, calcium signaling, and synaptogenesis were suppressed. Microglial depletion reversed the majority of these neuronal alterations. Furthermore, there was reduced cortical dendritic complexity 7 dpi, reduced neuronal connectively 30 dpi, and cognitive impairment 30 dpi. All of these TBI-associated functional and behavioral impairments were prevented by microglial depletion. Collectively, these studies indicate that microglia promote persistent neuropathology and long-term functional impairments in neuronal homeostasis after TBI.SIGNIFICANCE STATEMENT Millions of traumatic brain injuries (TBIs) occur in the United States alone each year. Survivors face elevated rates of cognitive and psychiatric complications long after the inciting injury. Recent studies of human brain injury link chronic neuroinflammation to adverse neurologic outcomes, suggesting that evolving inflammatory processes may be an opportunity for intervention. Here, we eliminate microglia to compare the effects of diffuse TBI on neurons in the presence and absence of microglia and microglia-mediated inflammation. In the absence of microglia, neurons do not undergo TBI-induced changes in gene transcription or structure. Microglial elimination prevented TBI-induced cognitive changes 30 d postinjury (dpi). Therefore, microglia have a critical role in disrupting neuronal homeostasis after TBI, particularly at subacute and chronic timepoints.
Collapse
|
80
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
81
|
Zencir S, Dilg D, Rueda MP, Shore D, Albert B. Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Res 2020; 48:11408-11420. [PMID: 33084907 PMCID: PMC7672434 DOI: 10.1093/nar/gkaa852] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated. We demonstrate here that all RPGs are regulated by two distinct, but complementary mechanisms driven by the TFs Ifh1 and Sfp1, both of which are required for maximal expression in optimal conditions and coordinated downregulation upon stress. At the majority of RPG promoters, Ifh1-dependent regulation predominates, whereas Sfp1 plays the major role at all other genes. We also uncovered an unexpected protein homeostasis-dependent binding property of Hmo1 at RPG promoters. Finally, we show that the Ifh1 paralog Crf1, previously described as a transcriptional repressor, can act as a constitutive RPG activator. Our study provides a more complete picture of RPG regulation and may serve as a paradigm for unravelling RPG regulation in multicellular eukaryotes.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Daniel Dilg
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Maria Paula Rueda
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
82
|
Kyritsis KA, Ouzounis CA, Angelis L, Vizirianakis I. Sequence variation, common tissue expression patterns and learning models: a genome-wide survey of vertebrate ribosomal proteins. NAR Genom Bioinform 2020; 2:lqaa088. [PMID: 33575632 PMCID: PMC7671327 DOI: 10.1093/nargab/lqaa088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Ribosomal genes produce the constituents of the ribosome, one of the most conserved subcellular structures of all cells, from bacteria to eukaryotes, including animals. There are notions that some protein-coding ribosomal genes vary in their roles across species, particularly vertebrates, through the involvement of some in a number of genetic diseases. Based on extensive sequence comparisons and systematic curation, we establish a reference set for ribosomal proteins (RPs) in eleven vertebrate species and quantify their sequence conservation levels. Moreover, we correlate their coordinated gene expression patterns within up to 33 tissues and assess the exceptional role of paralogs in tissue specificity. Importantly, our analysis supported by the development and use of machine learning models strongly proposes that the variation in the observed tissue-specific gene expression of RPs is rather species-related and not due to tissue-based evolutionary processes. The data obtained suggest that RPs exhibit a complex relationship between their structure and function that broadly maintains a consistent expression landscape across tissues, while most of the variation arises from species idiosyncrasies. The latter may be due to evolutionary change and adaptation, rather than functional constraints at the tissue level throughout the vertebrate lineage.
Collapse
Affiliation(s)
- Konstantinos A Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thessalonica, Greece
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thessalonica, Greece
- Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
- FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK—Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessalonica, Greece
- Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus
| |
Collapse
|
83
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
84
|
Petibon C, Malik Ghulam M, Catala M, Abou Elela S. Regulation of ribosomal protein genes: An ordered anarchy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1632. [PMID: 33038057 PMCID: PMC8047918 DOI: 10.1002/wrna.1632] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Ribosomal protein genes are among the most highly expressed genes in most cell types. Their products are generally essential for ribosome synthesis, which is the cornerstone for cell growth and proliferation. Many cellular resources are dedicated to producing ribosomal proteins and thus this process needs to be regulated in ways that carefully balance the supply of nascent ribosomal proteins with the demand for new ribosomes. Ribosomal protein genes have classically been viewed as a uniform interconnected regulon regulated in eukaryotic cells by target of rapamycin and protein kinase A pathway in response to changes in growth conditions and/or cellular status. However, recent literature depicts a more complex picture in which the amount of ribosomal proteins produced varies between genes in response to two overlapping regulatory circuits. The first includes the classical general ribosome‐producing program and the second is a gene‐specific feature responsible for fine‐tuning the amount of ribosomal proteins produced from each individual ribosomal gene. Unlike the general pathway that is mainly controlled at the level of transcription and translation, this specific regulation of ribosomal protein genes is largely achieved through changes in pre‐mRNA splicing efficiency and mRNA stability. By combining general and specific regulation, the cell can coordinate ribosome production, while allowing functional specialization and diversity. Here we review the many ways ribosomal protein genes are regulated, with special focus on the emerging role of posttranscriptional regulatory events in fine‐tuning the expression of ribosomal protein genes and its role in controlling the potential variation in ribosome functions. This article is categorized under:Translation > Ribosome Biogenesis Translation > Ribosome Structure/Function Translation > Translation Regulation
Collapse
Affiliation(s)
- Cyrielle Petibon
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mustafa Malik Ghulam
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Mathieu Catala
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Universite de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec, Canada
| |
Collapse
|
85
|
Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, Fu H, Yu C, E W, Lai S, Ma L, Li J, Fei L, Jiang M, Wang J, Ye F, Wang R, Zhou Z, Zhang G, Zhang T, Ding Q, Wang Z, Hao S, Liu L, Zheng W, He J, Huang W, Wang Y, Xie J, Li T, Cheng T, Han X, Huang H, Guo G. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol 2020; 13:128. [PMID: 32977829 PMCID: PMC7517826 DOI: 10.1186/s13045-020-00941-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Collapse
Affiliation(s)
- Junqing Wu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guodong Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tingyue Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Ding
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Zou Wang
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Sheng Hao
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Cheng
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300000, China.,Alliance for Atlas of Blood Cells, Tianjin, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - He Huang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
86
|
Ge J, Huang X, Wang P, Lu C. Expression of biogenesis of ribosomes BRX1 is associated with malignant progression and prognosis in colorectal cancer. Transl Cancer Res 2020; 9:5595-5602. [PMID: 35117923 PMCID: PMC8798812 DOI: 10.21037/tcr-20-2564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Upregulated ribosome synthesis is associated with an increased risk of cancer onset. However, the role of biogenesis of ribosomes BRX1 (BRIX1), which is involved in the synthesis of ribosomal 60S subunits, in the progression and prognosis of colorectal cancer (CRC) is not clear. METHODS Sixty CRC patients requiring surgical treatment were enrolled in the present prospective study. Patient characteristics were collected at admission. The CRC tissue samples and adjacent normal tissue samples from patients were collected for further quantitative reverse transcription-polymerase chain reaction and Western blot. All enrolled patients were followed up for 12 months, and overall patient survival during follow-up was recorded. RESULTS The level of BRIX1 mRNA in CRC tissues was higher compared with that in adjacent normal tissues (1.0±0.5 vs. 5.5±1.7, P<0.01). Similarly, the level of the BRIX1 protein in CRC tissues was significantly higher than that in adjacent normal tissues (1.0±0.6 vs. 6.4±2.1, P<0.01). On further analysis, we found that the levels of BRIX1 mRNA and protein were positively correlated with tumor stage. Patients at stages III-IV had a higher expression of BRIX1 mRNA and protein than at stages I-II. The Kaplan-Meier survival curve indicated that patients with higher level of the BRIX1 protein had a lower overall survival rate. The Cox proportional hazards model was used to identify tumor stage III or IV, poor differentiation, and elevated expression of the BRIX1 protein as risk factors for the overall survival of CRC patients. CONCLUSIONS BRIX1 expression is positively correlated with CRC tumor stage; it also acts as a risk factor for the overall survival of CRC patients.
Collapse
Affiliation(s)
- Jianxin Ge
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Xiaoli Huang
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Ping Wang
- Department of Gastroenterology, the Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, China
| | - Cuihua Lu
- Department of Gastroenterology, the Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
87
|
Dai D, Shi R, Han S, Jin H, Wang X. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e21478. [PMID: 32769881 PMCID: PMC7593058 DOI: 10.1097/md.0000000000021478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of current study was to use Weighted Gene Coexpression Network Analysis (WGCNA) to identify hub genes related to the incidence and prognosis of KRAS mutant (MT) lung adenocarcinoma (LUAD).We involved 184 stage IIB to IV LUAD samples and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA) database. The R package "limma" was used to identify differentially expressed genes (DEGs). WGCNA and survival analyses were performed by R packages "WGCNA" and "survival," respectively. The functional analyses were performed by R package "clusterProfiler" and GSEA software. Network construction and MCODE analysis were performed by Cytoscape_v3.6.1.Totally 2590 KRAS MT specific DEGs were found between LUAD and normal lung tissues, and 10 WGCNA modules were identified. Functional analysis of the key module showed the ribosome biogenesis related terms were enriched. We observed the expression of 8 genes were positively correlated to the worse survival of KRAS MT LUAD patients, the 7 of them were validated by Kaplan-Meier plotter database (kmplot.com/) (thymosin Beta 10 [TMSB10], ribosomal Protein S16 [RPS16], mitochondrial ribosomal protein L27 [MRPL27], cytochrome c oxidase subunit 6A1 [COX6A1], HCLS1-associated protein X-1 [HAX1], ribosomal protein L38 [RPL38], and ATP Synthase Membrane Subunit DAPIT [ATP5MD]). The GSEA analysis found mTOR and STK33 pathways were upregulated in KRAS MT LUAD (P < .05, false discovery rate [FDR] < 0.25).In summary, our study firstly used WGCNA to identify hub genes in the development of KRAS MT LUAD. The identified prognostic factors would be potential biomarkers in clinical use. Further molecular studies are required to confirm the mechanism of those genes in KRAS MT LUAD.
Collapse
Affiliation(s)
| | | | | | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
88
|
Heterogeneity in mRNA Translation. Trends Cell Biol 2020; 30:606-618. [DOI: 10.1016/j.tcb.2020.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
|
89
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
90
|
Panda A, Yadav A, Yeerna H, Singh A, Biehl M, Lux M, Schulz A, Klecha T, Doniach S, Khiabanian H, Ganesan S, Tamayo P, Bhanot G. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res 2020; 48:7079-7098. [PMID: 32525984 PMCID: PMC7367157 DOI: 10.1093/nar/gkaa485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
We give results from a detailed analysis of human Ribosomal Protein (RP) levels in normal and cancer samples and cell lines from large mRNA, copy number variation and ribosome profiling datasets. After normalizing total RP mRNA levels per sample, we find highly consistent tissue specific RP mRNA signatures in normal and tumor samples. Multiple RP mRNA-subtypes exist in several cancers, with significant survival and genomic differences. Some RP mRNA variations among subtypes correlate with copy number loss of RP genes. In kidney cancer, RP subtypes map to molecular subtypes related to cell-of-origin. Pan-cancer analysis of TCGA data showed widespread single/double copy loss of RP genes, without significantly affecting survival. In several cancer cell lines, CRISPR-Cas9 knockout of RP genes did not affect cell viability. Matched RP ribosome profiling and mRNA data in humans and rodents stratified by tissue and development stage and were strongly correlated, showing that RP translation rates were proportional to mRNA levels. In a small dataset of human adult and fetal tissues, RP protein levels showed development stage and tissue specific heterogeneity of RP levels. Our results suggest that heterogeneous RP levels play a significant functional role in cellular physiology, in both normal and disease states.
Collapse
Affiliation(s)
- Anshuman Panda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huwate Yeerna
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Michael Biehl
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, NL-9747 AG Groningen, The Netherlands
| | - Markus Lux
- Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, D-33619 Bielefeld, Germany
| | - Alexander Schulz
- Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, D-33619 Bielefeld, Germany
| | - Tyler Klecha
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ,08854, USA
| | - Sebastian Doniach
- Department of Applied Physics, Stanford University, Palo Alto, CA 94305, USA
| | | | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gyan Bhanot
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ,08854, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
91
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
92
|
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020; 53:e12822. [PMID: 32530560 PMCID: PMC7377933 DOI: 10.1111/cpr.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early‐stage breast cancer is significantly higher than those with middle‐ and late‐stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Miduo Tan
- Surgery Department of Galactophore, Central Hospital of Zhuzhou City, Zhuzhou, China
| | - Sauli Elingarami
- School of Life Sciences and Bioengineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Yuan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
93
|
Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 2020; 219:e202001108. [PMID: 32330234 PMCID: PMC7265316 DOI: 10.1083/jcb.202001108] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Translation control is critical to regulate protein expression. By directly adjusting protein levels, cells can quickly respond to dynamic transitions during stem cell differentiation and embryonic development. Ribosomes are multisubunit cellular assemblies that mediate translation. Previously seen as invariant machines with the same composition of components in all conditions, recent studies indicate that ribosomes are heterogeneous and that different ribosome types can preferentially translate specific subsets of mRNAs. Such heterogeneity and specialized translation functions are very important in stem cells and development, as they allow cells to quickly respond to stimuli through direct changes of protein abundance. In this review, we discuss ribosome heterogeneity that arises from multiple features of rRNAs, including rRNA variants and rRNA modifications, and ribosomal proteins, including their stoichiometry, compositions, paralogues, and posttranslational modifications. We also discuss alterations of ribosome-associated proteins (RAPs), with a particular focus on their consequent specialized translational control in stem cells and development.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
94
|
Schmidt S, Denk S, Wiegering A. Targeting Protein Synthesis in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12051298. [PMID: 32455578 PMCID: PMC7281195 DOI: 10.3390/cancers12051298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Sarah Denk
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany; (S.S.); (S.D.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Comprehensive Cancer Center Mainfranken, University of Würzburg, 97074 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-20138714
| |
Collapse
|
95
|
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol 2020; 21:97. [PMID: 32375858 PMCID: PMC7204298 DOI: 10.1186/s13059-020-02009-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA modifications play central roles in cellular fate and differentiation. However, the machinery responsible for placing, removing, and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification-related proteins (RMPs) may be dysregulated in each cancer type. RESULTS Here, we perform a comprehensive annotation and evolutionary analysis of human RMPs, as well as an integrative analysis of their expression patterns across 32 tissues, 10 species, and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. We uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO are not significantly upregulated in most cancer types, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers. CONCLUSIONS Our analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviors that are orchestrated by RNA modifications.
Collapse
Affiliation(s)
- Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Morghan C Lucas
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Huanle Liu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Jose Miguel Ramirez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- UNSW, Sydney, Sydney, NSW, 2052, Australia.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
96
|
Pereira-Fantini PM, Pang B, Byars SG, Oakley RB, Perkins EJ, Dargaville PA, Davis PG, Nie S, Williamson NA, Ignjatovic V, Tingay DG. Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. Am J Respir Cell Mol Biol 2020; 61:631-642. [PMID: 30995072 DOI: 10.1165/rcmb.2019-0084oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Collapse
Affiliation(s)
| | | | - Sean G Byars
- Department of Clinical Pathology.,Melbourne Integrative Genomics
| | | | | | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter G Davis
- Neonatal Research, and.,Department of Obstetrics and Gynaecology, and.,The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics
| | - David G Tingay
- Neonatal Research, and.,Department of Paediatrics.,Department of Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
97
|
Targeting the Human 80S Ribosome in Cancer: From Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies. Cells 2020; 9:cells9030629. [PMID: 32151059 PMCID: PMC7140421 DOI: 10.3390/cells9030629] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis. Here we review the role of the human ribosome as a medical target in cancer, and how functional and structural analysis combined with chemical synthesis of new inhibitors can synergize. The possible existence of oncoribosomes is also discussed. The emerging idea is that targeting the human ribosome could not only allow the interference with cancer cell addiction towards protein synthesis and possibly induce their death but may also be highly valuable to decrease the levels of oncogenic proteins that display a high turnover rate (MYC, MCL1). Cryo-electron microscopy (cryo-EM) is an advanced method that allows the visualization of human ribosome complexes with factors and bound inhibitors to improve our understanding of their functioning mechanisms mode. Cryo-EM structures could greatly assist the foundation phase of a novel drug-design strategy. One goal would be to identify new specific and active molecules targeting the ribosome in cancer such as derivatives of cycloheximide, a well-known ribosome inhibitor.
Collapse
|
98
|
Koldej R, Ritchie D. High multiplex analysis of the immune microenvironment in bone marrow trephine samples using GeoMX™ digital spatial profiling. IMMUNO-ONCOLOGY TECHNOLOGY 2020; 5:1-9. [PMID: 35756143 PMCID: PMC9216341 DOI: 10.1016/j.iotech.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background To date, studies into the bone marrow (BM) immune microenvironment have been limited due to reliance on the analysis of BM aspirates in which the microenvironmental context is lost. GeoMX™ digital spatial profiling (DSP) is a new technique developed for the analysis of formalin-fixed paraffin-embedded tissue samples which allows high multiplex analysis of protein expression in multiple user-defined regions within a tissue section. We examined the applicability of this technique to the analysis of protein expression in diagnostic BM trephine samples. Materials and methods Archival BM trephines were obtained from patient groups (normal, myelodysplasia and aplastic anaemia). Regions of interest in each section were identified by dual CD3+/CD45+ immunohistochemistry staining to identify immune infiltrates, and DSP was applied. Results Due to variability in cell number within regions of interest and differing cellular composition of the BM trephines, raw protein expression counts were normalised by internal controls and nuclei count to determine the expression level of each protein within each region of interest. In heat map analysis using Spearman's rank correlation, aplastic anaemia samples clustered away from both normal and myelodysplasia samples, demonstrating significant differences in their BM immunology. Conclusions GeoMX™ DSP is an innovative new technique that, for the first time, allows the analysis of archival BM trephines at an unprecedented level of detail. It will allow investigations in large cohorts of patients with haematological malignancies to identify new biomarkers, new mechanisms of disease pathogenesis and new drug targets.
Collapse
Affiliation(s)
- R.M. Koldej
- ACRF Translational Haematology Research Laboratory, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - D.S. Ritchie
- ACRF Translational Haematology Research Laboratory, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
99
|
Ford D. Ribosomal heterogeneity - A new inroad for pharmacological innovation. Biochem Pharmacol 2020; 175:113874. [PMID: 32105657 DOI: 10.1016/j.bcp.2020.113874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
The paradigm of ribosome usage in protein translation has shifted from a stance proposed as scientists began to unpick the genetic code that each mRNA was partnered by its own, unique ribosome to a rapid reversal of this view that ribosomes are completely interchangeable and simply recruited to mRNAs from a completely homogenous cellular pool. Evidence that the ribosomal proteome, ribosomal gene transcriptome and ribosome protein and RNA modifications differ between cells and tissues points to the fact that ribosomes are heterogeneous in their composition and have a degree of specialisation in their function. It has also been posited that the tissue-specificity of ribosome diseases provides an indication of functional ribosome heterogeneity, but there are substantial caveats to this interpretation. Only now have proteomic technologies developed to a level enabling accurate stoichiometric comparison of the abundance of specific ribosomal proteins in actively translating ribosomes and to measure protein in non-denatured ribosomes. This poises the field for the provocation that ribosome heterogeneity offers a novel and powerful inroad for the pharmacological targeting of disease. Such ribosome-targeted treatments may extend beyond specific ribosomopathies through strategies such as targeting features of ribosomes that are unique to diseased cells, particularly cancer cells, or to activated immune cells, as well as augmenting the action of other drugs through weakening the production of new proteins in target tissues. We may also be able to harness the potential power in ribosome diversity and specialism to better tune synthetic biology for the production of pharmaceutical proteins.
Collapse
Affiliation(s)
- Dianne Ford
- Northumbria University, Northumberland Building, Northumberland Road, Newcastle upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
100
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|