51
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
52
|
Buyel JF. Plant Molecular Farming - Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2019; 9:1893. [PMID: 30713542 PMCID: PMC6345721 DOI: 10.3389/fpls.2018.01893] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 05/22/2023]
Abstract
Plants have unique advantages over other systems such as mammalian cells for the production of valuable small molecules and proteins. The benefits cited most often include safety due to the absence of replicating human pathogens, simplicity because sterility is not required during production, scalability due to the potential for open-field cultivation with transgenic plants, and the speed of transient expression potentially providing gram quantities of product in less than 4 weeks. Initially there were also significant drawbacks, such as the need to clarify feed streams with a high particle burden and the large quantities of host cell proteins, but efficient clarification is now readily achieved. Several additional advantages have also emerged reflecting the fact that plants are essentially biodegradable, single-use bioreactors. This article will focus on the exploitation of this concept for the production of biopharmaceutical proteins, thus improving overall process economics. Specifically, we will discuss the single-use properties of plants, the sustainability of the production platform, and the commercial potential of different biomass side streams. We find that incorporating these side streams through rational process integration has the potential to more than double the revenue that can currently be achieved using plant-based production systems.
Collapse
Affiliation(s)
- Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
53
|
Singh G, Patel AK, Gupta A, Gupta D, Mishra VK. Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Xu Q, Alahuhta M, Wei H, Knoshaug EP, Wang W, Baker JO, Vander Wall T, Himmel ME, Zhang M. Expression of an endoglucanase-cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:322. [PMID: 30524504 PMCID: PMC6278004 DOI: 10.1186/s13068-018-1301-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 05/28/2023]
Abstract
The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the leading gene due to its previously demonstrated outstanding secretion in yeast. To comprehensively characterize the effects of this fusion protein, we tested this hypothesis in three industrially relevant yeasts: Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Our initial assays with the L. starkeyi secretome expressing differing TrEGII domains fused to a chimeric Talaromyces emersonii-T. reesei CBHI (TeTrCBHI) showed that the complete TrEGII enzyme, including the glycoside hydrolase (GH) 5 domain is required for increased expression level of the fusion protein when linked to CBHI. We found that this new construct (TrEGII-TeTrCBHI, Fusion 3) had an increased secretion level of at least threefold in L. starkeyi compared to the expression level of the chimeric TeTrCBHI. However, the same improvements were not observed when Fusion 3 construct was expressed in S. cerevisiae and Y. lipolytica. Digestion of pretreated corn stover with the secretomes of Y. lipolytica and L. starkeyi showed that conversion was much better using Y. lipolytica secretomes (50% versus 29%, respectively). In Y. lipolytica, TeTrCBHI performed better than the fusion construct. Furthermore, S. cerevisiae expression of Fusion 3 construct was poor and only minimal activity was observed when acting on the substrate, pNP-cellobiose. No activity was observed for the pNP-lactose substrate. Clearly, this approach is not universally applicable to all yeasts, but works in specific cases. With purified protein and soluble substrates, the exoglucanase activity of the GH7 domain embedded in the Fusion 3 construct in L. starkeyi was significantly higher than that of the GH7 domain in TeTrCBHI expressed alone. It is probable that a higher fraction of fusion construct CBHI is in an active form in Fusion 3 compared to just TeTrCBHI. We conclude that the strategy of leading TeTrCBHI expression with a linked TrEGII module significantly improved the expression of active CBHI in L. starkeyi.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Eric P. Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - John O. Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
55
|
Jain KK, Kumar S, Bhardwaj KN, Kuhad RC. Functional Expression of a Thermostable Endoglucanase from Thermoascus aurantiacus RCKK in Pichia pastoris X-33 and Its Characterization. Mol Biotechnol 2018; 60:736-748. [PMID: 30076532 DOI: 10.1007/s12033-018-0106-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Thermostable cellulases offer several advantages like higher rates of substrate hydrolysis, lowered risk of contamination, and increased flexibility with respect to process design. In the present study, a thermostable native endoglucanase nEG (EC 3.2.1.4) was purified and characterized from T. aurantiacus RCKK. Further, it was cloned in P. pastoris X-33 and processed for over expression. Expression of recombinant endoglucanase (rEG) of molecular size ~ 33 kDa was confirmed by SDS-PAGE and western blotting followed by in gel activity determination by zymogram analysis. Similar to nEG, the purified rEG was characterized to harbor high thermostability while retaining 50% of its initial activity even after 6- and 10-h incubation at 80 and 70 °C, respectively, and exhibited considerable stability in pH range 3.0-7.0. CD spectroscopy revealed more than 20% β-sheets in protein structure consistently when incubated upto 85 °C as a speculated reason for protein high thermostability. Interestingly, both nEG and rEG were found tolerant up to 10% of the presence of 1-ethyl-3-methylimidazolium acetate [C2mim][OAc]. Values of the catalytic constants Km and Vmax for rEG were recorded as 2.5 mg/ml and 303.4 µmol/mg/min, respectively. Thermostability, pH stability, and resistance to the presence of ionic liquid signify the potential applicability of present enzyme in cellulose hydrolysis and enzymatic deinking of recycled paper pulp.
Collapse
Affiliation(s)
- Kavish Kumar Jain
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.,Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Kumar
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Kailash N Bhardwaj
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.,Uttarakhan State Council of Science and Technology [UCOST], Vigyan Dham, Post Office- Jhajra, Dehradun, Uttarakhand, 248007, India
| | - Ramesh Chander Kuhad
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Central University of Haryana, Jant-Pali Village, Mahendergarh District, Haryana, 123029, India.
| |
Collapse
|
56
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
57
|
Van de Wouwer D, Boerjan W, Vanholme B. Plant cell wall sugars: sweeteners for a bio-based economy. PHYSIOLOGIA PLANTARUM 2018; 164:27-44. [PMID: 29430656 DOI: 10.1111/ppl.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| |
Collapse
|
58
|
Chen L, Du JL, Zhan YJ, Li JA, Zuo RR, Tian S. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 2018; 48:653-661. [PMID: 29995567 DOI: 10.1080/10826068.2018.1487846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Consolidated bioprocessing (CBP) strategy was developed to construct a cell-surface displayed consortium for heterologously expressing functional lignocellulytic enzymes. The reaction system composed of two engineered yeast strains: Y5/XynII-XylA (co-displaying two types of xylanases) and Y5/EG-CBH-BGL (co-displaying three types of cellulases). The immobilization of recombinant fusion proteins and their cell-surface accessibility of were analyzed by flow cytometry and immunofluorescence. The feasibility of consolidated bioprocessing by using pretreated corn stover (CS) as substrate for direct bioconversion was further investigated, and the synergistic activity and proximity effect between cellulases and xylanases on lignocelluloses degradation were also discussed in this work. Without any commercial enzyme addition, the combined yeast consortium produced 1.61 g/L ethanol which achieved 64.7% of the theoretical ethanol yield during 144 h from steam-exploded CS. The results indicated that the assembly of cellulases and xylanases using a synthetic consortium capable of combined displaying lignocellulytic enzymes is a promising approach for simultaneous saccharification and fermentation to ethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Le Chen
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ji-Liang Du
- a College of Life Science , Capital Normal University , Beijing , China
| | - Yong-Jia Zhan
- a College of Life Science , Capital Normal University , Beijing , China
| | - Jian-An Li
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ran-Ran Zuo
- a College of Life Science , Capital Normal University , Beijing , China
| | - Shen Tian
- a College of Life Science , Capital Normal University , Beijing , China
| |
Collapse
|
59
|
Chang JJ, Anandharaj M, Ho CY, Tsuge K, Tsai TY, Ke HM, Lin YJ, Ha Tran MD, Li WH, Huang CC. Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:157. [PMID: 29930703 PMCID: PMC5991470 DOI: 10.1186/s13068-018-1151-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in Bacillus subtilis. RESULTS According to the proteomic analysis of Clostridium thermocellum ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (cipA), a cell-surface anchor gene (sdbA), two exoglucanase genes (celK and celS), two endoglucanase genes (celA and celR), and two xylanase genes (xynC and xynZ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in Bacillus method. This is the first study to express the whole CipA along with cellulolytic enzymes in B. subtilis. Each operon was successfully expressed in B. subtilis RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon. CONCLUSIONS In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.
Collapse
Affiliation(s)
- Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 402 Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Cheng-Yu Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Kenji Tsuge
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017 Japan
| | - Tsung-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Minh Dung Ha Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
60
|
Basit A, Akhtar MW. Truncation of the processive Cel5A ofThermotoga maritimaresults in soluble expression and several fold increase in activity. Biotechnol Bioeng 2018; 115:1675-1684. [DOI: 10.1002/bit.26602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Abdul Basit
- School of Biological Sciences; University of the Punjab; Lahore Pakistan
| | - Muhammad W. Akhtar
- School of Biological Sciences; University of the Punjab; Lahore Pakistan
| |
Collapse
|
61
|
Muck R, Nadeau E, McAllister T, Contreras-Govea F, Santos M, Kung L. Silage review: Recent advances and future uses of silage additives. J Dairy Sci 2018; 101:3980-4000. [DOI: 10.3168/jds.2017-13839] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
|
62
|
Mohapatra S, Padhy S, Das Mohapatra PK, Thatoi HN. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. BIORESOURCE TECHNOLOGY 2018; 253:262-272. [PMID: 29353755 DOI: 10.1016/j.biortech.2018.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
A cellulose degrading fungus Aspergillus fumigatus (CWSF-7) isolated from decomposed lignocellulosic waste containing soil was found to produce high titer of cellulases. The optimum activity of CMCase and FPase were 1.9 U/mL and 0.9 U/mL respectively while the highest protein concentration was found to be 1.2 mg/mL. Saccharification of two Pennisetum grass varieties [dennanath (DG) and hybrid napier grass (HNG)] were optimized using partially purified CMCase and FPase in equal concentration, i.e. a ratios of 1:1 and further with addition of commercial xylanase using response surface methodology (RSM). The production of total reducing sugar (TRS) using isolated cellulase were 396.6 and 355.8 (mg/g), whereas further addition of xylanase had higher TRS titers of 478.7 and 483.3 (mg/g) for DG and HNG respectively as evident from HPLC analysis. Further, characterization of the enzyme saccharified DG and HNG by SEM and ATR-FTIR revealed efficient hydrolysis of cellulose and partially hydrolysis of hemicellulose.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engineering and Technology, Biju Pattnaik University of Technology, Bhubaneswar 751003, India
| | - Sameer Padhy
- Department of Biotechnology, College of Engineering and Technology, Biju Pattnaik University of Technology, Bhubaneswar 751003, India
| | | | - H N Thatoi
- Department of Biotechnology, North Orissa University, Sriram Chandra vihar, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
63
|
Scholz SA, Graves I, Minty JJ, Lin XN. Production of cellulosic organic acids via synthetic fungal consortia. Biotechnol Bioeng 2017; 115:1096-1100. [PMID: 29205274 DOI: 10.1002/bit.26509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022]
Abstract
Consolidated bioprocessing (CBP) is a potential breakthrough technology for reducing costs of biochemical production from lignocellulosic biomass. Production of cellulase enzymes, saccharification of lignocellulose, and conversion of the resulting sugars into a chemical of interest occur simultaneously within a single bioreactor. In this study, synthetic fungal consortia composed of the cellulolytic fungus Trichoderma reesei and the production specialist Rhizopus delemar demonstrated conversion of microcrystalline cellulose (MCC) and alkaline pre-treated corn stover (CS) to fumaric acid in a fully consolidated manner without addition of cellulase enzymes or expensive supplements such as yeast extract. A titer of 6.87 g/L of fumaric acid, representing 0.17 w/w yield, were produced from 40 g/L MCC with a productivity of 31.8 mg/L/hr. In addition, lactic acid was produced from MCC using a fungal consortium with Rhizopus oryzae as the production specialist. These results are proof-of-concept demonstration of engineering synthetic microbial consortia for CBP production of naturally occurring biomolecules.
Collapse
Affiliation(s)
- Scott A Scholz
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Ian Graves
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeremy J Minty
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Xiaoxia N Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
64
|
Solution for promoting egl 3 gene of Trichoderma reesei high-efficiency secretory expression in Escherichia coli and Lactococcus lactis. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
65
|
Yan Q, Fong SS. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing. Front Microbiol 2017; 8:2060. [PMID: 29123506 PMCID: PMC5662904 DOI: 10.3389/fmicb.2017.02060] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephen S. Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
66
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
67
|
Hillman ET, Readnour LR, Solomon KV. Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Ye M, Sun L, Yang R, Wang Z, Qi K. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171012. [PMID: 29134097 PMCID: PMC5666280 DOI: 10.1098/rsos.171012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 05/21/2023]
Abstract
The proper culture conditions for producing cellulase of Bacillus amyloliquefaciens S1, isolated from the cecum of goose was optimized by single-factor experiment combined with orthogonal test. The properties of the cellulase were investigated by DNS method. The appropriate doses of B. amyloliquefaciens S1 were obtained by adding them to goose feed. It indicated that the suitable culture conditions of producing cellulase were the culture temperature of 37°C, the initial pH of 7.0, the incubation time of 72 h and the loaded liquid volume of 75 ml per 250 ml. The effects of each factor on producing cellulase by B. amyloliquefaciens S1 were as follows: initial pH > incubation time = culture temperature > loaded liquid volume. The optimum reaction temperature and pH were 50°C and 7.0, respectively. This enzyme is a kind of neutral cellulase that possesses resistance to heat and acidity. It showed high activity to absorbent cotton, soya bean meal and filter paper. By adding different doses of B. amyloliquefaciens S1 to the goose feed, it was found that the egg production, average egg weight, fertilization rate and the hatching rate were promoted both in experiment 1 (1.5 g kg-1) and experiment 2 (3 g kg-1). Also the difference of egg production, fertilization rate and hatching rate between experiment 1 and control group was obvious (p < 0.05), and the average egg weight was significantly increased in experiment 2 (p < 0.05).
Collapse
Affiliation(s)
- Miao Ye
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Linghong Sun
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Ru Yang
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Zaigui Wang
- Center for Developmental Biology, College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - KeZong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
69
|
Jilani SB, Venigalla SSK, Mattam AJ, Dev C, Yazdani SS. Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution. J Ind Microbiol Biotechnol 2017; 44:1375-1384. [PMID: 28676891 DOI: 10.1007/s10295-017-1966-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023]
Abstract
E. coli has the ability to ferment both C5 and C6 sugars and produce mixture of acids along with small amount of ethanol. In our previous study, we reported the construction of an ethanologenic E. coli strain by modulating flux through the endogenous pathways. In the current study, we made further changes in the strain to make the overall process industry friendly; the changes being (1) removal of plasmid, (2) use of low-cost defined medium, and (3) improvement in consumption rate of both C5 and C6 sugars. We first constructed a plasmid-free strain SSY13 and passaged it on AM1-xylose minimal medium plate for 150 days. Further passaging was done for 56 days in liquid AM1 medium containing either glucose or xylose on alternate days. We observed an increase in specific growth rate and carbon utilization rate with increase in passage numbers until 42 days for both glucose and xylose. The 42nd day passaged strain SSK42 fermented 113 g/L xylose in AM1 minimal medium and produced 51.1 g/L ethanol in 72 h at 89% of maximum theoretical yield with ethanol productivity of 1.4 g/L/h during 24-48 h of fermentation. The ethanol titer, yield and productivity were 49, 40 and 36% higher, respectively, for SSK42 as compared to unevolved SSY13 strain.
Collapse
Affiliation(s)
- Syed Bilal Jilani
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology (ICGEB), P.O. Box No. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Siva Sai Krishna Venigalla
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology (ICGEB), P.O. Box No. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anu Jose Mattam
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology (ICGEB), P.O. Box No. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chandra Dev
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology (ICGEB), P.O. Box No. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Center for Genetic Engineering and Biotechnology (ICGEB), P.O. Box No. 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
70
|
Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. ACTA ACUST UNITED AC 2017; 44:453-464. [DOI: 10.1007/s10295-016-1893-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Abstract
To achieve a cost-effective bioconversion of lignocellulosic materials, a novel xylose/glucose co-fermentation process by co-culture of cellulose-utilizing recombinant Saccharomyces cerevisiae (S. cerevisiae) and xylan-utilizing recombinant Pichia pastoris (P. pastoris) was developed, in which ethanol was produced directly from wheat straw without additional hydrolytic enzymes. Recombinant S. cerevisiae coexpressing three types of cellulase and recombinant P. pastoris coexpressing two types of xylanase were constructed, respectively. All cellulases and xylanases were successfully expressed and similar extracellular activity was demonstrated. The maximum ethanol concentration of 32.6 g L−1 with the yield 0.42 g g−1 was achieved from wheat straw corresponding to 100 g L−1 of total sugar after 80 h co-fermentation, which corresponds to 82.6% of the theoretical yield. These results demonstrate that the direct and efficient ethanol production from lignocellulosic materials is accomplished by simultaneous saccharification (cellulose and hemicellulose) and co-fermentation (glucose and xylose) with the co-culture of the two recombinant yeasts.
Collapse
|
71
|
Han X, Song W, Liu G, Li Z, Yang P, Qu Y. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. BIORESOURCE TECHNOLOGY 2017; 227:155-163. [PMID: 28013132 DOI: 10.1016/j.biortech.2016.11.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture.
Collapse
Affiliation(s)
- Xiaolong Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Wenxia Song
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Zhonghai Li
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Piao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
72
|
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15:83-95. [PMID: 27941816 DOI: 10.1038/nrmicro.2016.164] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
73
|
Willis JD, Grant JN, Mazarei M, Kline LM, Rempe CS, Collins AG, Turner GB, Decker SR, Sykes RW, Davis MF, Labbe N, Jurat-Fuentes JL, Stewart CN. The TcEG1 beetle ( Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:230. [PMID: 29213306 PMCID: PMC5707894 DOI: 10.1186/s13068-017-0918-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pH 12.0. RESULTS TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16-0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was "dropped-in" into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. CONCLUSIONS This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua N. Grant
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lindsey M. Kline
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Caroline S. Rempe
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - A. Grace Collins
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Geoffrey B. Turner
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen R. Decker
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Robert W. Sykes
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mark F. Davis
- The National Research Energy Laboratory, Golden, CO 80401 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Nicole Labbe
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996 USA
| | - Juan L. Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
74
|
Ábrego U, Chen Z, Wan C. Consolidated Bioprocessing Systems for Cellulosic Biofuel Production. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
75
|
Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:53. [PMID: 28261326 PMCID: PMC5327580 DOI: 10.1186/s13068-017-0738-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/17/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.
Collapse
Affiliation(s)
- Hongting Tang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Meihui Song
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yao He
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jiajing Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Shenghuan Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yu Shen
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jin Hou
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Xiaoming Bao
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353 China
| |
Collapse
|
76
|
Lin CC, Yap CJS, Kan SC, Hsueh NC, Yang LY, Shieh CJ, Huang CC, Liu YC. Deciphering characteristics of the designer cellulosome from Bacillus subtilis WB800N via enzymatic analysis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
77
|
Basotra N, Kaur B, Di Falco M, Tsang A, Chadha BS. Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. BIORESOURCE TECHNOLOGY 2016; 222:413-421. [PMID: 27744242 DOI: 10.1016/j.biortech.2016.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 05/25/2023]
Abstract
Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based production medium. The sequential and differential expression profile of endoglucanases, β-glucosidases, cellobiohydrolases and xylanases using zymography was studied. Mass spectrometry analysis of secretome (Q-TOF LC/MS) revealed a total of 240 proteins with 92 CAZymes of which 62 glycosyl hydrolases belonging to 30 different families were present. Cellobiohydrolase I (17.42%), β glucosidase (8.69%), endoglucanase (6.2%), xylanase (4.16%) and AA9 (3.95%) were the major proteins in the secretome. In addition, carbohydrate esterases, polysaccharide lyases, auxiliary activity and a variety of carbohydrate binding modules (CBM) were identified using genomic database of the culture indicating to an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. The cellulases from the strain hydrolyzed alkali treated rice straw and bagasse into fermentable sugars efficiently.
Collapse
Affiliation(s)
- Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | | |
Collapse
|
78
|
Forde GM, Rainey TJ, Speight R, Batchelor W, Pattenden LK. Matching the biomass to the bioproduct. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
79
|
Jiang X, Zhou X, Liu Q, Zheng L, Yu N, Li W. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1236671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xiran Jiang
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, PR China
| | - Xiaoya Zhou
- Molecular Medicine and Chemistry Laboratory Foundation College, Jining Medical University, Jining, PR China
| | - Qi Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China
| | - Lulu Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China
| | - Ning Yu
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Wenli Li
- School of Life Science and Medicine, Dalian University of Technology, Panjin, PR China
| |
Collapse
|
80
|
Saveleva NV, Burlakovskiy MS, Yemelyanov VV, Lutova LA. Transgenic plants as bioreactors to produce substances for medical and veterinary uses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716060071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
81
|
Liguori R, Faraco V. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. BIORESOURCE TECHNOLOGY 2016; 215:13-20. [PMID: 27131870 DOI: 10.1016/j.biortech.2016.04.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy.
Collapse
Affiliation(s)
- Rossana Liguori
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Naples, Italy; European Center "Europe Direct LUPT", Italy; Interdepartmental Center "R. d'Ambrosio, LUPT", Italy.
| |
Collapse
|
82
|
Sun L, Cao J, Liu Y, Wang J, Guo P, Wang Z. Gene Cloning and Expression of Cellulase of Bacillus amyloliquefaciens Isolated from the Cecum of Goose. Anim Biotechnol 2016; 28:74-82. [DOI: 10.1080/10495398.2016.1205594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Linghong Sun
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Jiangyan Cao
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Ying Liu
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Junjie Wang
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Panpan Guo
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Zaigui Wang
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| |
Collapse
|
83
|
Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2016; 100:8241-54. [PMID: 27470141 DOI: 10.1007/s00253-016-7735-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.
Collapse
|
84
|
Mattam AJ, Kuila A, Suralikerimath N, Choudary N, Rao PVC, Velankar HR. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:157. [PMID: 27462368 PMCID: PMC4960679 DOI: 10.1186/s13068-016-0575-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/14/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. RESULTS A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). CONCLUSIONS During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of various cellulosic substrates. The cellulolytic enzymes produced by the yeast were effectively used for the hydrolysis of pretreated biomass. The released sugars, xylose and glucose were, respectively, converted into xylitol and ethanol. The potential shown by the new inhibitor tolerant cellulolytic C. tropicalis to produce ethanol or xylitol is of great industrial significance.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| | - Arindam Kuila
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| | - Niranjan Suralikerimath
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| | - Nettem Choudary
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| | - Peddy V. C. Rao
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| | - Harshad Ravindra Velankar
- Bioprocess Group, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bengaluru, 560067 India
| |
Collapse
|
85
|
Rosnow JJ, Anderson LN, Nair RN, Baker ES, Wright AT. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Crit Rev Biotechnol 2016; 37:626-640. [PMID: 27439855 DOI: 10.1080/07388551.2016.1209158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
Collapse
Affiliation(s)
- Joshua J Rosnow
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Lindsey N Anderson
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Reji N Nair
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Erin S Baker
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Aaron T Wright
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
86
|
Martinez-Anaya C. Understanding the structure and function of bacterial expansins: a prerequisite towards practical applications for the bioenergy and agricultural industries. Microb Biotechnol 2016; 9:727-736. [PMID: 27365165 PMCID: PMC5072189 DOI: 10.1111/1751-7915.12377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Since the publication of a landmark article on the structure of EXLX1 from Bacillus subtilis in 2011, our knowledge of bacterial expansins has steadily increased and our view and understanding of these enigmatic proteins has advanced with relation to their structure, phylogenetic relationships and substrate interaction, although the molecular basis for their mechanism of action remains to be determined. Lignocellulosic material represents a source of fermentable sugars for the production of biofuels, and cell‐wall degrading activities are essential to efficiently release such sugars from their polymeric structures. Because expansins from fungi and bacteria seem to be required to properly colonize or cause disease to plant tissues, and because they share some characteristics with their plant counterparts for loosening the cell wall they have been seen as a promising tool to overcome the recalcitrance of these materials. However, microbial expansins activity is at best, very low compared with plant expansins activity. This revision analyses recent work on bacterial expansins structure, function and biological role, emphasizing our need to focus on their mechanism of action as a means to design better strategies for their use, in both in the energy and agricultural industries.
Collapse
Affiliation(s)
- Claudia Martinez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
87
|
A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues. Molecules 2016; 21:molecules21070831. [PMID: 27347917 PMCID: PMC6274478 DOI: 10.3390/molecules21070831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/28/2023] Open
Abstract
Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).
Collapse
|
88
|
Lambertz C, Ece S, Fischer R, Commandeur U. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 2016; 7:145-54. [PMID: 27295524 DOI: 10.1080/21655979.2016.1191705] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin.
Collapse
Affiliation(s)
- Camilla Lambertz
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Selin Ece
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Rainer Fischer
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany.,b Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany
| | - Ulrich Commandeur
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
89
|
Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 2016; 15:106. [PMID: 27287427 PMCID: PMC4902900 DOI: 10.1186/s12934-016-0507-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
More than 70 years ago, the filamentous ascomycete Trichoderma reesei was isolated on the Solomon Islands due to its ability to degrade and thrive on cellulose containing fabrics. This trait that relies on its secreted cellulases is nowadays exploited by several industries. Most prominently in biorefineries which use T. reesei enzymes to saccharify lignocellulose from renewable plant biomass in order to produce biobased fuels and chemicals. In this review we summarize important milestones of the development of T. reesei as the leading production host for biorefinery enzymes, and discuss emerging trends in strain engineering. Trichoderma reesei has very recently also been proposed as a consolidated bioprocessing organism capable of direct conversion of biopolymeric substrates to desired products. We therefore cover this topic by reviewing novel approaches in metabolic engineering of T. reesei.
Collapse
Affiliation(s)
- Robert H Bischof
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Jonas Ramoni
- Molecular Biotechnology, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Bernhard Seiboth
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH c/o Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria. .,Molecular Biotechnology, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| |
Collapse
|
90
|
Tozakidis IEP, Brossette T, Lenz F, Maas RM, Jose J. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase. Microb Cell Fact 2016; 15:103. [PMID: 27287198 PMCID: PMC4901517 DOI: 10.1186/s12934-016-0505-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. RESULTS The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. CONCLUSION We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.
Collapse
Affiliation(s)
- Iasson E P Tozakidis
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany.,NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany
| | - Tatjana Brossette
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany
| | - Ruth M Maas
- Autodisplay Biotech GmbH, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany. .,NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
91
|
Xia W, Bai Y, Cui Y, Xu X, Qian L, Shi P, Zhang W, Luo H, Zhan X, Yao B. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1. Sci Rep 2016; 6:27062. [PMID: 27271847 PMCID: PMC4897640 DOI: 10.1038/srep27062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 11/09/2022] Open
Abstract
The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ying Cui
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Lichun Qian
- College of Animal Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiuan Zhan
- College of Animal Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
92
|
Willis JD, Mazarei M, Stewart CN. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels. FRONTIERS IN PLANT SCIENCE 2016; 7:675. [PMID: 27303411 PMCID: PMC4885837 DOI: 10.3389/fpls.2016.00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 05/25/2023]
Abstract
Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.
Collapse
Affiliation(s)
- Jonathan D. Willis
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- Oak Ridge National Laboratory, BioEnergy Science CenterOak Ridge, TN, USA
| |
Collapse
|
93
|
Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y, Hou J, Bao X. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 2016; 6:25654. [PMID: 27156860 PMCID: PMC4860636 DOI: 10.1038/srep25654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, β-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion.
Collapse
Affiliation(s)
- Hongting Tang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Shenghuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jiajing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Meihui Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengyang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
94
|
Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol 2016; 86:656-69. [DOI: 10.1016/j.ijbiomac.2015.10.090] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
|
95
|
Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 2016; 32:105. [DOI: 10.1007/s11274-016-2060-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/27/2016] [Indexed: 12/14/2022]
|
96
|
Loaces I, Bottini G, Moyna G, Fabiano E, Martínez A, Noya F. EndoG: A novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
97
|
Burlakovskiy MS, Yemelyanov VV, Lutova LA. Plant Based Bioreactors of Recombinant Cytokines (Review). APPL BIOCHEM MICRO+ 2016; 52:121-137. [PMID: 32214409 PMCID: PMC7087682 DOI: 10.1134/s0003683816020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/16/2023]
Abstract
Cytokines are a family of signaling polypeptides involved in intercellular interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants.
Collapse
Affiliation(s)
- M. S. Burlakovskiy
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - V. V. Yemelyanov
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - L. A. Lutova
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
98
|
Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N. High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:154. [PMID: 27453729 PMCID: PMC4957871 DOI: 10.1186/s13068-016-0569-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/12/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archaea, respectively, and test their application in the bioconversion of an important industrially pretreated biomass feedstock (A. donax) for production of second-generation biofuels. RESULTS The selected enzymes, endoglucanase, endo-β-1,4-xylanase and β-glucosidase, were expressed in tobacco plastome with a protein yield range from 2 % to more than 75 % of total soluble proteins (TSP). The accumulation of endoglucanase (up to 2 % TSP) gave altered plant phenotypes whose severity was directly linked to the enzyme yield. The most severe seedling-lethal phenotype was due to the impairment of plastid development associated to the binding of endoglucanase protein to thylakoids. Endo-β-1,4-xylanase and β-glucosidase, produced at very high level without detrimental effects on plant development, were enriched (fourfold) by heat treatment (105.4 and 255.4 U/mg, respectively). Both plastid-derived biocatalysts retained the main features of the native or recombinantly expressed enzymes with interesting differences. Plastid-derived xylanase and β-glucosidase resulted more thermophilic than the E. coli recombinant and native counterpart, respectively. Bioconversion experiments, carried out at 50 and 60 °C, demonstrated that plastid-derived enzymes were able to hydrolyse an industrially pretreated giant reed biomass. In particular, the replacement of commercial enzyme with plastid-derived xylanase, at 60 °C, produced an increase of both xylose recovery and hydrolysis rate; whereas the replacement of both xylanase and β-glucosidase produced glucose levels similar to those observed with the commercial cocktails, and xylose yields always higher in the whole 24-72 h range. CONCLUSIONS The very high production level of thermophilic and hyperthermophilic enzymes, their stability and bioconversion efficiencies described in this study demonstrate that plastid transformation represents a real cost-effective production platform for cellulolytic enzymes.
Collapse
Affiliation(s)
- Daniela Castiglia
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Lorenza Sannino
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Loredana Marcolongo
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Elena Ionata
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Rachele Tamburino
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| | - Angelo De Stradis
- />CNR-IPSP UOS Bari, National Research Council of Italy, Institute for Sustainable Plant Protection, Research Division Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Beatrice Cobucci-Ponzano
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Marco Moracci
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Francesco La Cara
- />CNR-IBBR UOS Naples, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Naples, Via P. Castellino 111, Naples, Italy
- />CNR-IBAF UOS Napoli, National Research Council of Italy, Institute of Agro-environmental and Forest Biology, Research Division Naples, Via P. Castellino 111, Naples, Italy
| | - Nunzia Scotti
- />CNR-IBBR UOS Portici, National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici, Via Università 133, 80055 Portici, NA Italy
| |
Collapse
|
99
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
100
|
Hasunuma T, Ishii J, Kondo A. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 2015; 29:1-9. [DOI: 10.1016/j.cbpa.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022]
|