51
|
Donev E, Gandla ML, Jönsson LJ, Mellerowicz EJ. Engineering Non-cellulosic Polysaccharides of Wood for the Biorefinery. FRONTIERS IN PLANT SCIENCE 2018; 9:1537. [PMID: 30405672 PMCID: PMC6206411 DOI: 10.3389/fpls.2018.01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/28/2018] [Indexed: 05/10/2023]
Abstract
Non-cellulosic polysaccharides constitute approximately one third of usable woody biomass for human exploitation. In contrast to cellulose, these substances are composed of several different types of unit monosaccharides and their backbones are substituted by various groups. Their structural diversity and recent examples of their modification in transgenic plants and mutants suggest they can be targeted for improving wood-processing properties, thereby facilitating conversion of wood in a biorefinery setting. Critical knowledge on their structure-function relationship is slowly emerging, although our understanding of molecular interactions responsible for observed phenomena is still incomplete. This review: (1) provides an overview of structural features of major non-cellulosic polysaccharides of wood, (2) describes the fate of non-cellulosic polysaccharides during biorefinery processing, (3) shows how the non-cellulosic polysaccharides impact lignocellulose processing focused on yields of either sugars or polymers, and (4) discusses outlooks for the improvement of tree species for biorefinery by modifying the structure of non-cellulosic polysaccharides.
Collapse
Affiliation(s)
- Evgeniy Donev
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
52
|
Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 2018; 293:19047-19063. [PMID: 30327429 DOI: 10.1074/jbc.ra118.004463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Indexed: 11/06/2022] Open
Abstract
Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.
Collapse
Affiliation(s)
- Robert A Amos
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | | | - Melani A Atmodjo
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | | | - Kelley W Moremen
- From the Complex Carbohydrate Research Center and.,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- From the Complex Carbohydrate Research Center and .,the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
53
|
Ratke C, Terebieniec BK, Winestrand S, Derba-Maceluch M, Grahn T, Schiffthaler B, Ulvcrona T, Özparpucu M, Rüggeberg M, Lundqvist SO, Street NR, Jönsson LJ, Mellerowicz EJ. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. THE NEW PHYTOLOGIST 2018; 219:230-245. [PMID: 29708593 DOI: 10.1111/nph.15160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/02/2018] [Indexed: 05/23/2023]
Abstract
Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Barbara K Terebieniec
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Thomas Grahn
- Material Processes, RISE Innventia AB, SE-114-86, Stockholm, Sweden
| | | | - Thomas Ulvcrona
- Department of Forest Resource Management, SLU, S-901-83, Umeå, Sweden
| | - Merve Özparpucu
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | | | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, S-901-87, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| |
Collapse
|
54
|
Alessi AM, Bird SM, Oates NC, Li Y, Dowle AA, Novotny EH, deAzevedo ER, Bennett JP, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:166. [PMID: 29946357 PMCID: PMC6004670 DOI: 10.1186/s13068-018-1164-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform "community-level" metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes. RESULTS Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements. CONCLUSIONS A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.
Collapse
Affiliation(s)
- Anna M. Alessi
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Susannah M. Bird
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Nicola C. Oates
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Adam A. Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, YO10 5DD UK
| | | | - Eduardo R. deAzevedo
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP Brazil
| | - Joseph P. Bennett
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP Brazil
| | | | - Simon J. McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Neil C. Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| |
Collapse
|
55
|
Tsai CJ, Harding SA, Cooke JEK. Branching out: a new era of investigating physiological processes in forest trees using genomic tools. TREE PHYSIOLOGY 2018; 38:303-310. [PMID: 29506180 DOI: 10.1093/treephys/tpy026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|
56
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
57
|
Biswal AK, Atmodjo MA, Pattathil S, Amos RA, Yang X, Winkeler K, Collins C, Mohanty SS, Ryno D, Tan L, Gelineo-Albersheim I, Hunt K, Sykes RW, Turner GB, Ziebell A, Davis MF, Decker SR, Hahn MG, Mohnen D. Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 ( GAUT12) causes increased recalcitrance and decreased growth in Populus. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:9. [PMID: 29371885 PMCID: PMC5771077 DOI: 10.1186/s13068-017-1002-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The development of fast-growing hardwood trees as a source of lignocellulosic biomass for biofuel and biomaterial production requires a thorough understanding of the plant cell wall structure and function that underlie the inherent recalcitrance properties of woody biomass. Downregulation of GAUT12.1 in Populus deltoides was recently reported to result in improved biomass saccharification, plant growth, and biomass yield. To further understand GAUT12.1 function in biomass recalcitrance and plant growth, here we report the effects of P. trichocarpa GAUT12.1 overexpression in P. deltoides. RESULTS Increasing GAUT12.1 transcript expression by 7-49% in P. deltoides PtGAUT12.1-overexpression (OE) lines resulted in a nearly complete opposite biomass saccharification and plant growth phenotype to that observed previously in PdGAUT12.1-knockdown (KD) lines. This included significantly reduced glucose, xylose, and total sugar release (12-13%), plant height (6-54%), stem diameter (8-40%), and overall total aerial biomass yield (48-61%) in 3-month-old, greenhouse-grown PtGAUT12.1-OE lines compared to controls. Total lignin content was unaffected by the gene overexpression. Importantly, selected PtGAUT12.1-OE lines retained the recalcitrance and growth phenotypes upon growth for 9 months in the greenhouse and 2.8 years in the field. PtGAUT12.1-OE plants had significantly smaller leaves with lower relative water content, and significantly reduced stem wood xylem cell numbers and size. At the cell wall level, xylose and galacturonic acid contents increased markedly in total cell walls as well as in soluble and insoluble cell wall extracts, consistent with increased amounts of xylan and homogalacturonan in the PtGAUT12.1-OE lines. This led to increased cell wall recalcitrance, as manifested by the 9-15% reduced amounts of recovered extractable wall materials and 8-15% greater amounts of final insoluble pellet in the PtGAUT12.1-OE lines compared to controls. CONCLUSIONS The combined phenotype and chemotype data from P. deltoides PtGAUT12.1-OE and PdGAUT12.1-KD transgenics clearly establish GAUT12.1 as a recalcitrance- and growth-associated gene in poplar. Overall, the data support the hypothesis that GAUT12.1 synthesizes either an HG-containing primer for xylan synthesis or an HG glycan required for proper xylan deposition, anchoring, and/or architecture in the wall, and the possibility of HG and xylan glycans being connected to each other by a base-sensitive covalent linkage.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Mascoma LLC (Lallemand Inc.), 67 Etna Rd., Lebanon, NH 03766 USA
| | - Robert A. Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Kim Winkeler
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- ArborGen, Inc., 2011 Broadbank Ct., Ridgeville, SC 29472 USA
| | - Cassandra Collins
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- ArborGen, Inc., 2011 Broadbank Ct., Ridgeville, SC 29472 USA
| | - Sushree S. Mohanty
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Li Tan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ivana Gelineo-Albersheim
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Kimberly Hunt
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: South Georgia State College, 100 West College Park Dr., Douglas, GA 31533 USA
| | - Robert W. Sykes
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- National Renewable Energy Laboratory, Golden, CO 80401-3305 USA
- Present Address: Nuclear Materials Science, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545-1663 USA
| | - Geoffrey B. Turner
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- National Renewable Energy Laboratory, Golden, CO 80401-3305 USA
- Present Address: Nu Mark LLC, 6601 W. Broad St., Richmond, VA 23230 USA
| | - Angela Ziebell
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- National Renewable Energy Laboratory, Golden, CO 80401-3305 USA
| | - Mark F. Davis
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- National Renewable Energy Laboratory, Golden, CO 80401-3305 USA
| | - Stephen R. Decker
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- National Renewable Energy Laboratory, Golden, CO 80401-3305 USA
| | - Michael G. Hahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
58
|
Gilna P, Lynd LR, Mohnen D, Davis MF, Davison BH. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:285. [PMID: 29213324 PMCID: PMC5707806 DOI: 10.1186/s13068-017-0971-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. A perspective on the aspects of successful center operation is presented.
Collapse
Affiliation(s)
- Paul Gilna
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| | - Lee R. Lynd
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Debra Mohnen
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Mark F. Davis
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Brian H. Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| |
Collapse
|
59
|
Escamez S, Latha Gandla M, Derba-Maceluch M, Lundqvist SO, Mellerowicz EJ, Jönsson LJ, Tuominen H. A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Sci Rep 2017; 7:15798. [PMID: 29150693 PMCID: PMC5693926 DOI: 10.1038/s41598-017-16013-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. However, breaking down lignocellulose requires costly pretreatments because lignocellulose is recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute to make wood a competitive alternative to petroleum, but this requires improving wood properties. To identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits associated in a predictive manner with saccharification of glucose after pretreatment. Four of these seven traits were also negatively associated with biomass production, suggesting a trade-off between saccharification potential and total biomass, which has previously been observed to offset the overall sugar yield from whole trees. We therefore estimated the "total-wood glucose yield" (TWG) from whole trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and rhamnose which possibly represent new markers for improved Populus feedstocks.
Collapse
Affiliation(s)
- Sacha Escamez
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden.
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden
| | - Sven-Olof Lundqvist
- INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden.
| |
Collapse
|
60
|
Wai CM, Zhang J, Jones TC, Nagai C, Ming R. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics 2017; 18:773. [PMID: 29020919 PMCID: PMC5637070 DOI: 10.1186/s12864-017-4158-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. RESULTS To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. CONCLUSIONS We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.
Collapse
Affiliation(s)
- Ching Man Wai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | | | | | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
61
|
Zhou M, Wu J, Wang T, Gao L, Yin H, Lü X. The purification and characterization of a novel alkali-stable pectate lyase produced by Bacillus subtilis PB1. World J Microbiol Biotechnol 2017; 33:190. [PMID: 28975516 DOI: 10.1007/s11274-017-2357-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Pectinase is an important kind of enzyme with many industrial applications, among which pectinases produced by bacteria were scarce compared with fungal sources. In this study, a novel bacterium which produced extracellular pectinase was firstly isolated from flue-cured tobacco leaves and identified as Bacillus subtilis PB1 according to its 16S rRNA gene. The pectinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography, after which molecular weight was determined as 43.1 ± 0.5 kDa by SDS-PAGE. Peptide mass fingerprinting of the pectinase by MALDI-TOF MS showed that the purified enzyme shared homology with pectate lyase and was designated as BsPel-PB1. The optimal temperature for BsPel-PB1 was 50 °C. The optimal pH was pH 9.5 for BsPel-PB1 while it had a broad pH stability from 5 to 11. The values of K m and V max were 0.312 mg/mL and 1248 U/mL, respectively. Accordingly, the BsPel-PB1 was a novel alkaline pectate lyase which could find potential application as a commercial candidate in the pectinolytic related industries.
Collapse
Affiliation(s)
- Man Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jingli Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lina Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huijun Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China.
| |
Collapse
|
62
|
Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7824076. [PMID: 28951875 PMCID: PMC5603102 DOI: 10.1155/2017/7824076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.
Collapse
|
63
|
Zhou M, Guo P, Wang T, Gao L, Yin H, Cai C, Gu J, Lü X. Metagenomic mining pectinolytic microbes and enzymes from an apple pomace-adapted compost microbial community. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:198. [PMID: 28852421 PMCID: PMC5568718 DOI: 10.1186/s13068-017-0885-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/10/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Degradation of pectin in lignocellulosic materials is one of the key steps for biofuel production. Biological hydrolysis of pectin, i.e., degradation by pectinolytic microbes and enzymes, is an attractive paradigm because of its obvious advantages, such as environmentally friendly procedures, low in energy demand for lignin removal, and the possibility to be integrated in consolidated process. In this study, a metagenomics sequence-guided strategy coupled with enrichment culture technique was used to facilitate targeted discovery of pectinolytic microbes and enzymes. An apple pomace-adapted compost (APAC) habitat was constructed to boost the enrichment of pectinolytic microorganisms. RESULTS Analyses of 16S rDNA high-throughput sequencing revealed that microbial communities changed dramatically during composting with some bacterial populations being greatly enriched. Metagenomics data showed that apple pomace-adapted compost microbial community (APACMC) was dominated by Proteobacteria and Bacteroidetes. Functional analysis and carbohydrate-active enzyme profiles confirmed that APACMC had been successfully enriched for the targeted functions. Among the 1756 putative genes encoding pectinolytic enzymes, 129 were predicted as novel (with an identity <30% to any CAZy database entry) and only 1.92% were more than 75% identical with proteins in NCBI environmental database, demonstrating that they have not been observed in previous metagenome projects. Phylogenetic analysis showed that APACMC harbored a broad range of pectinolytic bacteria and many of them were previously unrecognized. CONCLUSIONS The immensely diverse pectinolytic microbes and enzymes found in our study will expand the arsenal of proficient degraders and enzymes for lignocellulosic biofuel production. Our study provides a powerful approach for targeted mining microbes and enzymes in numerous industries.
Collapse
Affiliation(s)
- Man Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Peng Guo
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Lina Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Huijun Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Cheng Cai
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province China
| |
Collapse
|
64
|
Liu J, Hou J, Chen H, Pei K, Li Y, He XQ. Dynamic Changes of Pectin Epitopes in Cell Walls during the Development of the Procambium-Cambium Continuum in Poplar. Int J Mol Sci 2017; 18:E1716. [PMID: 28783076 PMCID: PMC5578106 DOI: 10.3390/ijms18081716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
The change of pectin epitopes during procambium-cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather than galactan, and HGA with low degree of esterification were located in the cell walls of procambial, while HGA with a low degree of esterification was located in the tangential walls, and galactan was located in both the tangential and radial walls of procambial, yet nearly no arabinan was located in the tangential walls of the cambial cells. The changes in pectin distribution took place when periclinal divisions appeared within a procambial trace. The distribution difference of pectin epitopes was also present in procambium-cambium derivatives. The arabinan existed in all cell walls of primary xylem, but was absent from the tangential walls of secondary xylem cells. The galactan existed only in mature primary phloem. Furthermore, 19 pectin methylesterases (PMEs) genes were identified by RNA sequencing, six genes presented highly differentially and were supposed to be involved in the cell wall esterification process. The results provide direct evidence of the dynamic changes of pectin epitopes during the development of the procambium-cambium continuum in poplar.
Collapse
Affiliation(s)
- Jundi Liu
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Jie Hou
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Huimin Chen
- Hefei No. 1 High School, Hefei 230601, China.
| | - Keliang Pei
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Yi Li
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Xin-Qiang He
- School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
65
|
Dumitrache A, Natzke J, Rodriguez M, Yee KL, Thompson OA, Poovaiah CR, Shen H, Mazarei M, Baxter HL, Fu C, Wang Z, Biswal AK, Li G, Srivastava AC, Tang Y, Stewart CN, Dixon RA, Nelson RS, Mohnen D, Mielenz J, Brown SD, Davison BH. Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:688-697. [PMID: 27862852 PMCID: PMC5425389 DOI: 10.1111/pbi.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.
Collapse
|
66
|
Belmokhtar N, Arnoult S, Chabbert B, Charpentier JP, Brancourt-Hulmel M. Saccharification Performances of Miscanthus at the Pilot and Miniaturized Assay Scales: Genotype and Year Variabilities According to the Biomass Composition. FRONTIERS IN PLANT SCIENCE 2017; 8:740. [PMID: 28611790 PMCID: PMC5447034 DOI: 10.3389/fpls.2017.00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
HIGHLIGHTS Biomass production and cell wall composition are differentially impacted by harvesting year and genotypes, influencing then cellulose conversion in miniaturized assay.Using a high-throughput miniaturized and semi-automated method for performing the pretreatment and saccharification steps at laboratory scale allows for the assessment of these factors on the biomass potential for producing bioethanol before moving to the industrial scale. The large genetic diversity of the perennial grass miscanthus makes it suitable for producing cellulosic ethanol in biorefineries. The saccharification potential and year variability of five genotypes belonging to Miscanthus × giganteus and Miscanthus sinensis were explored using a miniaturized and semi-automated method, allowing the application of a hot water treatment followed by an enzymatic hydrolysis. The studied genotypes highlighted distinct cellulose conversion yields due to their distinct cell wall compositions. An inter-year comparison revealed significant variations in the biomass productivity and cell wall compositions. Compared to the recalcitrant genotypes, more digestible genotypes contained higher amounts of hemicellulosic carbohydrates and lower amounts of cellulose and lignin. In contrast to hemicellulosic carbohydrates, the relationships analysis between the biomass traits and cellulose conversion clearly showed the same negative effect of cellulose and lignin on cellulose digestion. The miniaturized and semi-automated method we developed was usable at the laboratory scale and was reliable for mimicking the saccharification at the pilot scale using a steam explosion pretreatment and enzymatic hydrolysis. Therefore, this miniaturized method will allow the reliable screening of many genotypes for saccharification potential. These findings provide valuable information and tools for breeders to create genotypes combining high yield, suitable biomass composition, and high saccharification yields.
Collapse
Affiliation(s)
| | - Stéphanie Arnoult
- GCIE-Picardie, Institut National de la Recherche AgronomiqueEstrées-Mons, France
| | - Brigitte Chabbert
- FARE Laboratory, Institut National de la Recherche Agronomique, Université de Reims Champagne-ArdenneReims, France
| | | | | |
Collapse
|
67
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
68
|
Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proc Natl Acad Sci U S A 2017; 114:1195-1200. [PMID: 28096391 DOI: 10.1073/pnas.1620119114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.
Collapse
|
69
|
Macaya-Sanz D, Chen J, Kalluri UC, Muchero W, Tschaplinski TJ, Gunter LE, Simon SJ, Biswal AK, Bryan AC, Payyavula R, Xie M, Yang Y, Zhang J, Mohnen D, Tuskan GA, DiFazio SP. Agronomic performance of Populus deltoides trees engineered for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:253. [PMID: 29213313 PMCID: PMC5707814 DOI: 10.1186/s13068-017-0934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/19/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.
Collapse
Affiliation(s)
- David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Jin‐Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Udaya C. Kalluri
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Wellington Muchero
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sandra J. Simon
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Anthony C. Bryan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Raja Payyavula
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Meng Xie
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
70
|
Peralta AG, Venkatachalam S, Stone SC, Pattathil S. Xylan epitope profiling: an enhanced approach to study organ development-dependent changes in xylan structure, biosynthesis, and deposition in plant cell walls. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:245. [PMID: 29213310 PMCID: PMC5707906 DOI: 10.1186/s13068-017-0935-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Xylan is a major hemicellulosic component in the cell walls of higher plants especially in the secondary walls of vascular cells which are playing important roles in physiological processes and overall mechanical strength. Being the second most abundant cell wall polymer after cellulose, xylan is an abundant non-cellulosic carbohydrate constituent of plant biomass. Xylan structures have been demonstrated to contribute to plant biomass recalcitrance during bioenergy applications. A critical understanding of xylan composition, structure, and biosynthesis in developing plant stems will allow an increased understanding of how cell walls are put together in this organ in a basic research, and, in applied research, will improve strategies in xylan engineering to reduce biomass recalcitrance for economically feasible biofuel production. METHODS We describe an approach to enable the monitoring of xylan epitope structures in cell walls during the stem maturation process in Arabidopsis. The technique integrates glycome profiling, an in vitro immunoanalytical platform, and in situ immunolocalisation to provide comprehensive details on the presence, relative abundances, and dynamics with which diverse xylan epitope structures are integrated to the cell walls throughout the stem maturation process. RESULTS Our experimental results and the supporting in silico analysis demonstrated that xylan deposition in stems occurs early on in stem development; however, xylan epitope types (representing substituted and unsubstituted regions on xylan backbone made of β-(1,4)-linked xylose residues) and the strength of their integration into the final wall structure vary during stem maturation. CONCLUSIONS Our novel approach thus provides a method to comprehensively survey the differences in xylan epitope patterning and deposition occurring in stem development and thereby providing a robust tool for characterising altered xylan integration patterns in cell walls during the stem maturation process in diverse plant cell wall biosynthetic mutants. Our findings also suggest that this approach could rapidly and reliably delineate xylan deposition patterns in the cell walls of plants belonging to diverse phylogenetic classes providing novel insights into the functional roles of xylans in overall growth and development.
Collapse
Affiliation(s)
- Angelo G. Peralta
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30605 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sivasankari Venkatachalam
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30605 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sydney C. Stone
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30605 USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30605 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Mascoma LLC (Lallemand Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| |
Collapse
|
71
|
Grisolia MJ, Peralta DA, Valdez HA, Barchiesi J, Gomez-Casati DF, Busi MV. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. PLANT MOLECULAR BIOLOGY 2017; 93:121-135. [PMID: 27770231 DOI: 10.1007/s11103-016-0551-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/13/2016] [Indexed: 05/11/2023]
Abstract
Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates. The plant cell wall, which represents a major source of biomass for biofuel production, is composed of cellulose, hemicelluloses, pectins and lignin. A potential biotechnological target for improving the production of biofuels is the modification of plant cell walls. This modification is achieved via several strategies, including, among others, altering biosynthetic pathways and modifying the associations and structures of various cell wall components. In this study, we modified the cell wall of A. thaliana by targeting the starch-binding domains of A. thaliana starch synthase III to this structure. The resulting transgenic plants (E8-SDB123) showed an increased biomass, higher levels of both fermentable sugars and hydrolyzed cellulose and altered cell wall properties such as higher laxity and degradability, which are valuable characteristics for the second-generation biofuels industry. The increased biomass and degradability phenotype of E8-SBD123 plants could be explained by the putative cell-wall loosening effect of the in tandem starch binding domains. Based on these results, our approach represents a promising biotechnological tool for reducing of biomass recalcitrance and therefore, the need for pretreatments.
Collapse
Affiliation(s)
- Mauricio J Grisolia
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego A Peralta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Hugo A Valdez
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), 50 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Julieta Barchiesi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego F Gomez-Casati
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina
| | - María V Busi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
72
|
Smith PJ, Wang HT, York WS, Peña MJ, Urbanowicz BR. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:286. [PMID: 29213325 PMCID: PMC5708106 DOI: 10.1186/s13068-017-0973-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 05/02/2023]
Abstract
Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.
Collapse
Affiliation(s)
- Peter J. Smith
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| |
Collapse
|
73
|
Biswal AK, Tan L, Atmodjo MA, DeMartini J, Gelineo-Albersheim I, Hunt K, Black IM, Mohanty SS, Ryno D, Wyman CE, Mohnen D. Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:182. [PMID: 28725262 PMCID: PMC5513058 DOI: 10.1186/s13068-017-0866-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. RESULTS Arabidopsis, Populus, rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. CONCLUSIONS This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Li Tan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Jaclyn DeMartini
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- Center for Environmental Research and Technology (CE-CERT) and Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, 92507 CA USA
- DuPont Industrial Biosciences, Palo Alto, CA 94304 USA
| | - Ivana Gelineo-Albersheim
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Kimberly Hunt
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- South Georgia State College, Douglas, GA 31533 USA
| | - Ian M. Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
| | - Sushree S. Mohanty
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Charles E. Wyman
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- Center for Environmental Research and Technology (CE-CERT) and Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, 92507 CA USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| |
Collapse
|
74
|
Pigna G, Dhillon T, Dlugosz EM, Yuan JS, Gorman C, Morandini P, Lenaghan SC, Stewart CN. Methods for suspension culture, protoplast extraction, and transformation of high-biomass yielding perennial grass Arundo donax. Biotechnol J 2016; 11:1657-1666. [PMID: 27762502 DOI: 10.1002/biot.201600486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 11/11/2022]
Abstract
Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo.
Collapse
Affiliation(s)
- Gaia Pigna
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.,Department of Biosciences, University of Milan, Milano, Italy
| | - Taniya Dhillon
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth M Dlugosz
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Connor Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Piero Morandini
- Department of Biosciences, University of Milan, Milano, Italy.,National Research Council, Institute of Biophysics, Milano, Italy
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA.,Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
75
|
Healey AL, Lee DJ, Lupoi JS, Papa G, Guenther JM, Corno L, Adani F, Singh S, Simmons BA, Henry RJ. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa. FRONTIERS IN PLANT SCIENCE 2016; 7:1705. [PMID: 27917179 PMCID: PMC5114311 DOI: 10.3389/fpls.2016.01705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.
Collapse
Affiliation(s)
- Adam L. Healey
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt. Lucia, QLD, Australia
| | - David J. Lee
- Forest Industries Research Centre, University of the Sunshine CoastMaroochydore, QLD, Australia
- Forestry & Biosciences, Agri-Science Queensland, Department of Agriculture and FisheriesGympie, QLD, Australia
| | | | - Gabriella Papa
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
| | - Joel M. Guenther
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Luca Corno
- Gruppo Ricicla – Biomass and Bioenergy Laboratory, DiSAA, University of MilanMilan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla – Biomass and Bioenergy Laboratory, DiSAA, University of MilanMilan, Italy
| | - Seema Singh
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
76
|
McKinley B, Rooney W, Wilkerson C, Mullet J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:662-680. [PMID: 27411301 DOI: 10.1111/tpj.13269] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products.
Collapse
Affiliation(s)
- Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| | - William Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Curtis Wilkerson
- MSU-DOE laboratory, Michigan State University, East Lansing, MI, 48823, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
77
|
Bryan AC, Jawdy S, Gunter L, Gjersing E, Sykes R, Hinchee MAW, Winkeler KA, Collins CM, Engle N, Tschaplinski TJ, Yang X, Tuskan GA, Muchero W, Chen JG. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2010-20. [PMID: 26997157 PMCID: PMC5043505 DOI: 10.1111/pbi.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 05/07/2023]
Abstract
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.
Collapse
Affiliation(s)
- Anthony C Bryan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sara Jawdy
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lee Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Erica Gjersing
- The Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Robert Sykes
- The Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | | | | | | | - Nancy Engle
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wellington Muchero
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Jin-Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
78
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
79
|
Abstract
This review is a short synopsis of some of the latest breakthroughs in the areas of lignocellulosic conversion to fuels and utilization of oils for biodiesel. Although four lignocellulosic ethanol factories have opened in the USA and hundreds of biodiesel installations are active worldwide, technological improvements are being discovered that will rapidly evolve the biofuels industry into a new paradigm. These discoveries involve the feedstocks as well as the technologies to process them.
Collapse
Affiliation(s)
- Elizabeth E Hood
- College of Agriculture and Technology, Arkansas State University, Arkanas, AR, USA
| |
Collapse
|
80
|
Tan HT, Corbin KR, Fincher GB. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. FRONTIERS IN PLANT SCIENCE 2016; 7:1854. [PMID: 28018390 PMCID: PMC5161040 DOI: 10.3389/fpls.2016.01854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/24/2016] [Indexed: 05/15/2023]
Abstract
Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called 'agnostic' technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries.
Collapse
Affiliation(s)
- Hwei-Ting Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, BrisbaneQLD, Australia
| | - Kendall R. Corbin
- Centre for Marine Bioproducts Development, School of Medicine, Flinders University, Bedford ParkSA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Geoffrey B. Fincher,
| |
Collapse
|
81
|
Amore A, Ciesielski PN, Lin CY, Salvachúa D, Sànchez i Nogué V. Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges. Aust J Chem 2016. [DOI: 10.1071/ch16022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments of the biorefinery concept are described within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. Despite the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors. In addition, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.
Collapse
|
82
|
Song D, Gui J, Liu C, Sun J, Li L. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus. FRONTIERS IN PLANT SCIENCE 2016; 7:493. [PMID: 27148318 PMCID: PMC4827005 DOI: 10.3389/fpls.2016.00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/02/2023]
Abstract
DUF579 (domain unknown function 579) genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX) synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA) in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus.
Collapse
|
83
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
84
|
Anami SE, Zhang L, Xia Y, Zhang Y, Liu Z, Jing H. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energy Secur 2015. [DOI: 10.1002/fes3.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sylvester Elikana Anami
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Institute of Biotechnology Research Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
| | - Li‐Min Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yan Xia
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yu‐Miao Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Zhi‐Quan Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Hai‐Chun Jing
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|