51
|
Sharland AF, Hill AE, Son ET, Scull KE, Mifsud NA, Purcell AW. Are Induced/altered Self-peptide Antigens Responsible for De Novo Autoreactivity in Transplantation? Transplantation 2023; 107:1232-1236. [PMID: 36706066 PMCID: PMC10205114 DOI: 10.1097/tp.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Alexandra F. Sharland
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra E. Hill
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Eric T. Son
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katherine E. Scull
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
52
|
Deck J, Hartley M, Akhter M, Wang D, Bogart JA, Mix MD. Effect of Lymphopenia on Tumor Response and Clinical Outcomes Following Chemoradiotherapy in Stage III Non-Small Cell Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:47-55. [PMID: 37228390 PMCID: PMC10204762 DOI: 10.2147/lctt.s386344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Background Prior studies suggest lymphopenia, systemic immune-inflammatory index, and tumor response all impact clinical outcomes in Stage III NSCLC. We hypothesized that tumor response after CRT would be associated with hematologic metrics and might predict clinical outcomes. Materials and Methods Patients with stage III NSCLC treated at a single institution between 2011 and 2018 were retrospectively reviewed. Pre-treatment gross tumor volume (GTV) was recorded then reassessed at 1-4 months post-CRT. Complete blood counts before, during and after treatment were recorded. Systemic immune-inflammation index (SII) was defined as neutrophil × platelet/lymphocyte. Overall survival (OS) and progression free survival (PFS) were calculated using Kaplan-Meier estimates, and compared with Wilcoxon tests. A multivariate analysis of hematologic factors impacting restricted mean survival was then performed using pseudovalue regression, accounting for other baseline factors. Results 106 patients were included. After median follow-up of 24 months, median PFS and OS were 16 and 40 months, respectively. Within the multivariate model, baseline SII was associated with OS (p = 0.046) but not PFS (p = 0.09), and baseline ALC correlated with both PFS and OS (p = 0.03 and p = 0.02, respectively). Nadir ALC, nadir SII, and recovery SII were not associated with PFS or OS. Conclusion In this cohort of patients with stage III NSCLC, baseline hematologic factors were associated with clinical outcomes including baseline ALC, baseline SII and recovery ALC. Disease response was not well correlated with hematologic factors or clinical outcomes.
Collapse
Affiliation(s)
- Jared Deck
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marissa Hartley
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mohammad Akhter
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey A Bogart
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael D Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
53
|
Saxena A. Combining radiation therapy with immune checkpoint blockade for the treatment of small cell lung cancer. Semin Cancer Biol 2023; 90:45-56. [PMID: 36787870 DOI: 10.1016/j.semcancer.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The addition of immune checkpoint blockade (ICB) therapy to standard chemotherapy has been shown to improve survival in patients with metastatic small cell lung cancer. However, the benefit is modest and there remains an unmet need for novel therapeutic approaches to enhance the effectiveness of immunotherapy in this disease, both in the early and late stages. Ionizing radiation, which is a standard treatment for small cell lung cancer, is known to trigger immunogenic cell death in tumor cells, making it an attractive partner for ICB therapies in multiple solid tumor types. However, the optimal radiation dosage and fractionation scheme, target sites for radiation, and sequencing of radiation in relation to ICB treatment are still unclear. In this review we discuss the molecular biology underlying radiation-induced tumor immunity as well as pre-clinical and clinical studies combining radiation with ICB treatments, with a focus on translational and clinical trials in small cell lung cancer.
Collapse
Affiliation(s)
- Ashish Saxena
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, 1305 York Ave, 7th Floor, New York, NY 10021, USA.
| |
Collapse
|
54
|
Storozynsky QT, Agopsowicz KC, Noyce RS, Bukhari AB, Han X, Snyder N, Umer BA, Gamper AM, Godbout R, Evans DH, Hitt MM. Radiation combined with oncolytic vaccinia virus provides pronounced antitumor efficacy and induces immune protection in an aggressive glioblastoma model. Cancer Lett 2023; 562:216169. [PMID: 37061120 DOI: 10.1016/j.canlet.2023.216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.
Collapse
Affiliation(s)
- Quinn T Storozynsky
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | | | - Ryan S Noyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Amirali B Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - Xuefei Han
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Natalie Snyder
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Brittany A Umer
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta (CRINA), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
55
|
Lhuillier C, Van Nest SJ, Rudqvist NP, Demaria S. Pipeline to identify neoantigens exposed by radiation. Methods Cell Biol 2023; 180:25-37. [PMID: 37890930 DOI: 10.1016/bs.mcb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Mutation-associated neoantigens are key targets of tumor-specific T cells and thus play a major role in driving responses to immune checkpoint blockade (ICB) therapy in tumors with high mutational burden. However, only a small number of mutated peptides are actually presented by MHC molecules and only a minority can induce T cell responses. In addition, the recognition of these neoantigens by T cells is limited by the level of expression of the mutated gene product in the tumor cells. Preclinical studies have shown that radiation can convert the irradiated tumor into an in situ vaccine, leading to the priming of tumor-specific T cells and to the rejection of otherwise ICB-resistant tumors. There is now preclinical and clinical evidence that radiation can upregulate the expression of genes containing immunogenic mutations and expose them to the immune system. Therefore, the identification of neoantigens upregulated by radiation could help to predict which patients might benefit from treatment with combinations of radiotherapy and ICB and could also be incorporated into personalized neoantigen vaccination strategies. In this chapter, we present the pipeline that we used to identify relevant radiation-upregulated neoantigens in a poorly immunogenic mouse model of metastatic breast cancer.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| | - Samantha J Van Nest
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Nils-Petter Rudqvist
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
56
|
Baude J, Limagne E, Ladjohounlou R, Mirjolet C. Combining radiotherapy and NK cell-based therapies: The time has come. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:31-60. [PMID: 37438020 DOI: 10.1016/bs.ircmb.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural killer (NK) cells are innate lymphoid cells that play an essential role in the anti-tumor response through immunosurveillance, multiple mechanisms of cytotoxicity and the synthesis of cytokines modulating the immune tumor microenvironment (TME). After the dramatic advances in immunotherapy targeting T cells including the success of checkpoint inhibitors or autologous chimeric antigen receptor (CAR) expressing T cells in clinical practice, NK cells have gained growing interest for the development of new therapies. Although NK cells have shown promising responses in leukemia patients, the effects of NK-targeted therapies are currently limited in the treatment of solid tumors. Thus, radiotherapy could provide a valuable solution to improve treatments targeting NK cells. Indeed, ionizing radiations represent a powerful immuno-modulator that can either induce a pro-inflammatory and anti-tumor TME, or conversely lead to immunosuppression of effector immune cells in favor of tumor growth and therapeutic escape, depending on how it is delivered and tumor models. However, the effects of ionizing radiation on NK cells are only partially understood. Therefore, we review the effects of radiotherapy on the NK cell-mediated anti-tumor response, and propose potential strategies to reinvigorate NK cells by combining radiotherapy with NK cell-targeted therapies.
Collapse
Affiliation(s)
- Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France
| | - Emeric Limagne
- TIReCS Team, UMR INSERM 1231, Dijon, France; Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Equipe Labellisée Ligue Contre le Cancer, Dijon, France; University of Bourgogne Franche-Comté, Dijon, France
| | - Riad Ladjohounlou
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| |
Collapse
|
57
|
Dehghankelishadi P, Badiee P, Maritz MF, Dmochowska N, Thierry B. Bosutinib high density lipoprotein nanoformulation has potent tumour radiosensitisation effects. J Nanobiotechnology 2023; 21:102. [PMID: 36945003 PMCID: PMC10028769 DOI: 10.1186/s12951-023-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of the cell cycle is among the most effective approach to increase tumour cells' radio-sensitivity. However, the presence of dose-limiting side effects hampers the clinical use of tyrosine kinase inhibitors targeting the cell cycle. Towards addressing this challenge, we identified a bosutinib nanoformulation within high density lipoprotein nanoparticles (HDL NPs) as a promising radiosensitiser. Bosutinib is a kinase inhibitor clinically approved for the treatment of chronic myeloid leukemia that possesses radiosensitising properties through cell cycle checkpoint inhibition. We found that a remarkably high bosutinib loading (> 10%) within HDL NPs could be reliably achieved under optimal preparation conditions. The radiosensitisation activity of the bosutinib-HDL nanoformulation was first assessed in vitro in UM-SCC-1 head and neck squamous cell carcinoma (HNSCC) cells, which confirmed efficient disruption of the radiation induced G2/M cell cycle arrest. Interestingly, the bosutinib nanoformulation out-performed free bosutinib, likely because of the specific affinity of HDL NPs with tumour cells. The combination of bosutinib-HDL NPs and radiotherapy significantly controlled tumour growth in an immunocompetent murine HNSCC model. The bosutinib-HDL nanoformulation also enhanced the radiation induced immune response through the polarisation of tumour associated macrophages towards proinflammatory phenotypes.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
- UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA, 5000, Australia.
| |
Collapse
|
58
|
Iliadi C, Verset L, Bouchart C, Martinive P, Van Gestel D, Krayem M. The current understanding of the immune landscape relative to radiotherapy across tumor types. Front Immunol 2023; 14:1148692. [PMID: 37006319 PMCID: PMC10060828 DOI: 10.3389/fimmu.2023.1148692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Collapse
Affiliation(s)
- Chrysanthi Iliadi
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|
59
|
Negrao MV, Papadimitrakopoulou VA, Price AC, Tam AL, Furqan M, Laroia ST, Massarelli E, Pacheco J, Heymach JV, Tsao AS, Walker GV, Vora L, Mauro D, Kelley H, Wooldridge JE, Krieg AM, Niu J. Vidutolimod in Combination With Atezolizumab With and Without Radiation Therapy in Patients With Programmed Cell Death Protein 1 or Programmed Death-Ligand 1 Blockade-Resistant Advanced NSCLC. JTO Clin Res Rep 2023; 4:100423. [PMID: 36925644 PMCID: PMC10011508 DOI: 10.1016/j.jtocrr.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Vidutolimod, a CpG-A TLR9 agonist, was investigated in a phase 1b study (CMP-001-003; ClinicalTrials.gov, NCT03438318) in combination with atezolizumab with and without radiation therapy (RT) in patients with advanced NSCLC. Methods Patients with progressive disease after anti-programmed cell death protein 1 or programmed death-ligand 1 therapy received either vidutolimod and atezolizumab (part A) or vidutolimod, atezolizumab, and RT (part B). The primary objective was to evaluate the safety of vidutolimod and atezolizumab with and without RT. Key secondary end point was best objective response rate per Response Evaluation Criteria in Solid Tumors, version 1.1. Results Between March 28, 2018, and July 25, 2019, a total of 29 patients were enrolled and received at least one dose of vidutolimod (part A, n = 13; part B, n = 16). Intratumoral injections of vidutolimod were administered successfully, including injection of visceral lesions. The most common treatment-related adverse events (≥30%) were flu-like symptoms and hypotension. No objective responses were observed; 23.1% and 50.0% of the patients in parts A and B, respectively, had stable disease as best response. In parts A and B, 15.4% and 25.0% of the patients, respectively, had tumor shrinkage (<30% decrease in tumor size, nonirradiated). Enrollment was stopped owing to lack of objective responses. In the two patients with initial tumor shrinkage in part A, a strong serum induction of C-X-C motif chemokine ligand 10 was observed. Conclusions Vidutolimod and atezolizumab with and without RT had a manageable safety profile, with minimal clinical activity in heavily pretreated patients with programmed cell death protein 1 or programmed death-ligand 1 blockade-resistant NSCLC.
Collapse
Affiliation(s)
- Marcelo V. Negrao
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vassiliki A. Papadimitrakopoulou
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew C. Price
- Department of Radiology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Alda L. Tam
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muhammad Furqan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Health Care, Iowa City, Iowa
| | - Sandeep T. Laroia
- Department of Radiology, Division of Vascular and Interventional Radiology, Carver College of Medicine, University of Iowa Health Care, Iowa City, Iowa
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Jose Pacheco
- Department of Medicine-Medical Oncology, University of Colorado, Aurora, Colorado
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne S. Tsao
- Department of Thoracic/Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary V. Walker
- Department of Radiology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Lalit Vora
- Department of Diagnostic Radiology, City of Hope, Duarte, California
| | - David Mauro
- Checkmate Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Jiaxin Niu
- Department of Medical Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| |
Collapse
|
60
|
Zhang X, Zhang H, Zhang J, Yang M, Zhu M, Yin Y, Fan X, Yu F. The paradoxical role of radiation-induced cGAS-STING signalling network in tumour immunity. Immunology 2023; 168:375-388. [PMID: 36217274 DOI: 10.1111/imm.13592] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an essential component of the innate immune system and is central to the identification of abnormal DNA leakage caused by ionising radiation (IR) damage. Cell-intrinsic cGAS-STING initiation has been revealed to have tremendous potential for facilitating interferon synthesis and T-cell priming. Targeting the cGAS-STING axis has been proposed as a strategy to improve radiosensitivity or enhance immunosurveillance. However, due to the complex biology of the irradiated tumour microenvironment and the extensive involvement of the cGAS-STING pathway in various physiological and pathological processes, many defects in this strategy limit the therapeutic effect. Here, we outline the molecular mechanisms by which IR activates the cGAS-STING pathway and analyse the dichotomous roles of the cGAS-STING pathway in modulating cancer immunity after radiotherapy (RT). Then, based on the crosstalk between the cGAS-STING pathway and other signalling events induced by IR, such as necroptosis, autophagy and other cellular effects, we discuss the immunomodulatory actions of the broad cGAS-STING signalling network in RT and their potential therapeutic applications. Finally, recent advances in combination therapeutic strategies targeting cGAS-STING in RT are explored.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
61
|
Chen J, Niu C, Yang N, Liu C, Zou SS, Zhu S. Biomarker discovery and application-An opportunity to resolve the challenge of liver cancer diagnosis and treatment. Pharmacol Res 2023; 189:106674. [PMID: 36702425 DOI: 10.1016/j.phrs.2023.106674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Liver cancer is one of the most common malignancies, with severe morbidity and mortality. While considerable progress has been made in liver cancer treatment, the 5-year overall survival (OS) of patients has not improved significantly. Reasons include the inadequate capability of early screening and diagnosis, a high incidence of recurrence and metastasis, a high degree of tumor heterogeneity, and an immunosuppressive tumor microenvironment. Therefore, the identification and validation of specific and robust liver cancer biomarkers are of major importance for early screening, timely diagnosis, accurate prognosis, and the prevention of tumor progression. In this review, we highlight some of the latest research progress and potential applications of liver cancer biomarkers, describing hotspots and prospective directions in biomarker discovery.
Collapse
Affiliation(s)
- Jingtao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ning Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyan Liu
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zhu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
62
|
Stereotactic Body Radiotherapy for Kidney Cancer: Ready for Prime Time? Clin Oncol (R Coll Radiol) 2023; 35:163-176. [PMID: 36443137 DOI: 10.1016/j.clon.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The standard treatment for renal cell carcinoma (RCC) is surgery. However, a number of patients will not be candidates for surgical treatment or will reject this therapeutic approach. Therefore, alternative approaches are required. Historically, radiotherapy has been considered an ineffective treatment for RCC due to the radioresistance of renal tumour cells to conventional fractionation and the increased rate of toxicity. Stereotactic body radiotherapy (SBRT) is a radiotherapy technique that provides a non-invasive ablative treatment with remarkable rates of local control in both primary tumours and metastases in several locations, with a low associated morbidity due to the highly conformal dose and the use of image-guided techniques. Current evidence shows that a higher dose per fraction, achieving a higher biological effective dose, can overcome the radioresistance of RCC cells. Therefore, SBRT, as well as the combination of SBRT and new emerging immune therapies, has a potential role in the local treatment of primary RCC and oligometastatic RCC patients.
Collapse
|
63
|
Jing X, Luo X, Fang C, Zhang B. N-acetylserotonin inhibits oxidized mitochondrial DNA-induced neuroinflammation by activating the AMPK/PGC-1α/TFAM pathway in neonatal hypoxic-ischemic brain injury model. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
64
|
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J, Jha SK. CAR T cells: engineered immune cells to treat brain cancers and beyond. Mol Cancer 2023; 22:22. [PMID: 36721153 PMCID: PMC9890802 DOI: 10.1186/s12943-022-01712-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.
Collapse
Affiliation(s)
- Zoufang Huang
- grid.452437.3Department of Hematology, Ganzhou Key Laboratory of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Saikat Dewanjee
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Pratik Chakraborty
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Niraj Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| | - Abhijit Dey
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700032 India
| | - Moumita Gangopadhyay
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, West Bengal 700126 India
| | - Xuan-Yu Chen
- grid.264091.80000 0001 1954 7928Institute for Biotechnology, St. John’s University, Queens, New York, 11439 USA
| | - Jian Wang
- Department of Radiotherapy, the Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, 214400 China
| | - Saurabh Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India ,grid.448792.40000 0004 4678 9721Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India ,grid.449906.60000 0004 4659 5193Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007 India
| |
Collapse
|
65
|
Kase AM, George DJ, Ramalingam S. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers (Basel) 2023; 15:665. [PMID: 36765622 PMCID: PMC9913203 DOI: 10.3390/cancers15030665] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The majority of kidney cancers are detected incidentally and typically diagnosed at a localized stage, however, the development of regional or distant disease occurs in one-third of patients. Over 90% of kidney tumors are renal cell carcinomas, of which, clear cell is the most predominate histologic subtype. Von Hippel Lindau (VHL) gene alterations result in the overexpression of growth factors that are central to the pathogenesis of clear cell carcinoma. The therapeutic strategies have revolved around this tumor suppressor gene and have led to the approval of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor (VEGF) axis. The treatment paradigm shifted with the introduction of immune checkpoint inhibitors (ICI) and programed death-1 (PD-1) inhibition, leading to durable response rates and improved survival. Combinations of TKI and/or ICIs have become the standard of care for advanced clear cell renal cell carcinoma (ccRCC), changing the outlook for patients, with several new and promising therapeutic targets under development.
Collapse
Affiliation(s)
- Adam M. Kase
- Mayo Clinic, Division of Hematology Oncology, Jacksonville, FL 32224, USA
| | - Daniel J. George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sundhar Ramalingam
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
66
|
Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M, Bähr O, Lombardi G, Mulholland P, Tabatabai G, Lassen U, Sepulveda JM, Khasraw M, Vauleon E, Muragaki Y, Di Giacomo AM, Butowski N, Roth P, Qian X, Fu AZ, Liu Y, Potter V, Chalamandaris AG, Tatsuoka K, Lim M, Weller M. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol 2023; 25:123-134. [PMID: 35419607 PMCID: PMC9825306 DOI: 10.1093/neuonc/noac099] [Citation(s) in RCA: 195] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Addition of temozolomide (TMZ) to radiotherapy (RT) improves overall survival (OS) in patients with glioblastoma (GBM), but previous studies suggest that patients with tumors harboring an unmethylated MGMT promoter derive minimal benefit. The aim of this open-label, phase III CheckMate 498 study was to evaluate the efficacy of nivolumab (NIVO) + RT compared with TMZ + RT in newly diagnosed GBM with unmethylated MGMT promoter. METHODS Patients were randomized 1:1 to standard RT (60 Gy) + NIVO (240 mg every 2 weeks for eight cycles, then 480 mg every 4 weeks) or RT + TMZ (75 mg/m2 daily during RT and 150-200 mg/m2/day 5/28 days during maintenance). The primary endpoint was OS. RESULTS A total of 560 patients were randomized, 280 to each arm. Median OS (mOS) was 13.4 months (95% CI, 12.6 to 14.3) with NIVO + RT and 14.9 months (95% CI, 13.3 to 16.1) with TMZ + RT (hazard ratio [HR], 1.31; 95% CI, 1.09 to 1.58; P = .0037). Median progression-free survival was 6.0 months (95% CI, 5.7 to 6.2) with NIVO + RT and 6.2 months (95% CI, 5.9 to 6.7) with TMZ + RT (HR, 1.38; 95% CI, 1.15 to 1.65). Response rates were 7.8% (9/116) with NIVO + RT and 7.2% (8/111) with TMZ + RT; grade 3/4 treatment-related adverse event (TRAE) rates were 21.9% and 25.1%, and any-grade serious TRAE rates were 17.3% and 7.6%, respectively. CONCLUSIONS The study did not meet the primary endpoint of improved OS; TMZ + RT demonstrated a longer mOS than NIVO + RT. No new safety signals were detected with NIVO in this study. The difference between the study treatment arms is consistent with the use of TMZ + RT as the standard of care for GBM.ClinicalTrials.gov NCT02617589.
Collapse
Affiliation(s)
- Antonio Omuro
- Corresponding Author: Antonio Omuro, MD, Yale Cancer Center, 15 York Street, New Haven, CT 06520, USA ()
| | - Alba A Brandes
- Present affiliation: IRCCS Istituto Scienze Neurologiche, Bologna, Italy; Nervous System Medical Oncology Department, Bologna, Italy
| | - Antoine F Carpentier
- Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Service de Neurologie, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Paris, France
| | - David A Reardon
- Dana-Farber Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, California, USA
| | | | - Joachim Baehring
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University, Tuebingen, Germany
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Mustafa Khasraw
- The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Huang KCY, Lai CY, Hung WZ, Chang HY, Lin PC, Chiang SF, Ke TW, Liang JA, Shiau AC, Yang PC, Chen WTL, Chao KSC. A Novel Engineered AAV-Based Neoantigen Vaccine in Combination with Radiotherapy Eradicates Tumors. Cancer Immunol Res 2023; 11:123-136. [PMID: 36315960 DOI: 10.1158/2326-6066.cir-22-0318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 01/05/2023]
Abstract
The potency of tumor-specific antigen (TSA) vaccines, such as neoantigen (neoAg)-based cancer vaccines, can be compromised by host immune checkpoint inhibitory mechanisms, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), that attenuate neoAg presentation on dendritic cells (DC) and hinder T cell-mediated cytotoxicity. To overcome PD-1/PD-L1 inhibition in DCs, we developed a novel adeno-associated virus (meAAV) neoAg vaccine, modified with TLR9 inhibitory fragments, PD-1 trap, and PD-L1 miRNA, which extend the persistence of meAAV and activate neoAg-specific T-cell responses in immune-competent colorectal and breast cancer murine models. Moreover, we found that in combination with radiotherapy, the meAAV-based neoAg cancer vaccine not only elicited higher antigen presentation ability, but also maintained neoAg-specific cytotoxic T lymphocyte (CTL) responses. These functional PD-1 traps and PD-L1 miRNAs overcome host PD-1/PD-L1 inhibitory mechanisms and boost the therapeutic efficacy of radiotherapy. More importantly, combined radiotherapy and meAAV neoAg cancer vaccines significantly enhanced neoAg-specific CTL responses, increased CTL infiltration in tumor microenvironment, and decreased tumor-associated immunosuppression. This process led to the complete elimination of colorectal cancer and delayed tumor growth of breast cancer in tumor-bearing mice. Taken together, our results demonstrated a novel strategy that combines neoAg cancer vaccine and radiotherapy to increase the therapeutic efficacy against colorectal and breast cancers.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Ying Lai
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Ze Hung
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Yu Chang
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Chun Lin
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Chen Yang
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, Taiwan
| | - K S Clifford Chao
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
68
|
Palm RF, Liveringhouse CL, Gonzalez RJ, Bui MM, Binitie O, Yang GQ, Naghavi AO. Effect of Favorable Pathologic Response After Neoadjuvant Radiation Therapy Alone in Soft-tissue Sarcoma. Adv Radiat Oncol 2023; 8:101086. [PMID: 36483058 PMCID: PMC9723307 DOI: 10.1016/j.adro.2022.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Whether the therapeutic response of soft-tissue sarcoma to neoadjuvant treatment is predictive for clinical outcomes is unclear. Given the rarity of this disease and the confounding effects of chemotherapy, this study analyzes whether a favorable pathologic response (fPR) after neoadjuvant radiation therapy (RT) alone is associated with clinical benefits. Methods and Materials An institutional review board-approved retrospective review was conducted on a database of patients with primary soft-tissue sarcoma treated at our institution between 1987 and 2015 with neoadjuvant RT alone followed by surgical resection. Time-to-event outcomes estimated with a Kaplan-Meier analysis included overall survival, progression-free survival (PFS), locoregional control, and distant control (DC). Cox regression analyses were performed to determine prognostic variables associated with clinical outcomes. Results Of the overall cohort of 315 patients, 181 patients (57%) were included in the primary analysis with documented pathologic necrosis (PN) rates (mean: 59%) and a median follow up from diagnosis of 48 months (range, 4-170 months). The median neoadjuvant RT dose was 50 Gy (range, 40-60 Gy), and the majority of patients had negative surgical margins (79%). Only 35 patients (19%) achieved a fPR (PN ≥95%), which was associated with a higher R0 resection rate (94% vs. 75%; P = .013), a significant 5-year PFS benefit (74% vs. 43%; P = .014), and a nonsignificant 5-year DC benefit (76% vs. 62%; P = .12) compared with PN <95%. On multivariable analysis, fPR was an independent predictor for PFS (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; P = .022). Conclusions Achieving fPR with neoadjuvant RT alone is associated with a higher R0 resection rate and possible DC benefit, translating into a significant improvement in PFS. Further studies to improve pathologic response rates and prospectively validate this endpoint are warranted.
Collapse
Affiliation(s)
- Russell F. Palm
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | | - Marilyn M. Bui
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | - Odion Binitie
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | |
Collapse
|
69
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
70
|
Nasr D, Kumar PA, Zerdan MB, Ghelani G, Dutta D, Graziano S, Lim SH. Radioimmunoconjugates in the age of modern immuno-oncology. Life Sci 2022; 310:121126. [DOI: 10.1016/j.lfs.2022.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
|
71
|
Chibaya L, Snyder J, Ruscetti M. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol 2022; 86:827-845. [PMID: 35143990 PMCID: PMC9357237 DOI: 10.1016/j.semcancer.2022.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Cancer therapies, including conventional chemotherapy, radiation, and molecularly targeted agents, can lead to tumor eradication through a variety of mechanisms. In addition to their effects on tumor cell growth and survival, these regimens can also influence the surrounding tumor-immune microenvironment in ways that ultimately impact therapy responses. A unique biological outcome of cancer therapy is induction of cellular senescence. Senescence is a damage-induced stress program that leads to both the durable arrest of tumor cells and remodeling the tumor-immune microenvironment through activation of a collection pleiotropic cytokines, chemokines, growth factors, and proteinases known as the senescence-associated secretory phenotype (SASP). Depending on the cancer context and the mechanism of action of the therapy, the SASP produced following therapy-induced senescence (TIS) can promote anti-tumor immunity that enhances therapeutic efficacy, or alternatively chronic inflammation that leads to therapy failure and tumor relapse. Thus, a deeper understanding of the mechanisms regulating the SASP and components necessary for robust anti-tumor immune surveillance in different cancer and therapy contexts are key to harnessing senescence for tumor control. Here we draw a roadmap to modulate TIS and its immune-stimulating features for cancer immunotherapy.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jarin Snyder
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
72
|
Hsieh CH, Kuan WH, Chang WL, Kuo IY, Liu H, Shieh DB, Liu H, Tan B, Wang YC. Dysregulation of SOX17/NRF2 axis confers chemoradiotherapy resistance and emerges as a novel therapeutic target in esophageal squamous cell carcinoma. J Biomed Sci 2022; 29:90. [PMID: 36310172 PMCID: PMC9618214 DOI: 10.1186/s12929-022-00873-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of cancer-associated death worldwide with a dismal overall 5-year survival rate of less than 20%. The standard first-line therapy for advanced ESCC is concomitant chemo-radiation therapy (CCRT); however, patients usually develop resistance, resulting in unfavorable outcomes. Therefore, it is urgent to identify the mechanisms underlying CCRT resistance and develop effective treatment strategies. Methods Patients’ endoscopic biopsy tumor tissues obtained before CCRT treatment were used to perform RNA-seq and GSEA analysis. Immunohistochemical (IHC) staining, chromatin immunoprecipitation (ChIP), and promoter reporter analyses were conducted to investigate the relationship between SOX17 and NRF2. Xenograft mouse models were used to study the role of SOX17/NRF2 axis in tumor growth and the efficacy of carboxymethyl cellulose-coated zero-valent-iron (ZVI@CMC). Results In this study, a notable gene expression signature associated with NRF2 activation was observed in the poor CCRT responders. Further, IHC staining of endoscopic biopsy of 164 ESCC patients revealed an inverse correlation between NRF2 and SOX17, a tumor-suppressive transcription factor with low expression in ESCC due to promoter hypermethylation. Using ChIP and promoter reporter analyses, we demonstrated that SOX17 was a novel upstream transcriptional suppressor of NRF2. In particular, SOX17low/NRF2high nuclear level significantly correlated with poor CCRT response and poor survival, indicating that the dysregulation of SOX17/NRF2 axis played a pivotal role in CCRT resistance and tumor progression. Notably, the in-house developed nanoparticle ZVI@CMC functioned as an inhibitor of DNA methyltransferases to restore expression of SOX17 that downregulated NRF2, thereby overcoming the resistance in ESCC. Additionally, the combination of ZVI@CMC with radiation treatment significantly augmented anticancer efficacy to inhibit tumor growth in CCRT resistant cancer. Conclusion This study identifies a novel SOX17low/NRF2high signature in ESCC patients with poor prognosis, recognizes SOX17 as a transcriptional repressor of NRF2, and provides a promising strategy targeting SOX17/NRF2 axis to overcome resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00873-4.
Collapse
|
73
|
DuRoss AN, Phan J, Lazar AJ, Walker JM, Guimaraes AR, Baas C, Krishnan S, Thomas CR, Sun C, Bagley AF. Radiotherapy reimagined: Integrating nanomedicines into radiotherapy clinical trials. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1867. [PMID: 36308008 DOI: 10.1002/wnan.1867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 04/16/2023]
Abstract
Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, Oregon State University, Portland, Oregon, USA
| | - Jack Phan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Pathology and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua M Walker
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Carole Baas
- National Cancer Institute, Bethesda, Maryland, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Oncology, Norris Cotton Cancer Center, Dartmouth University, Lebanon, New Hampshire, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, Oregon State University, Portland, Oregon, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander F Bagley
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Oncology, Samaritan Health Services, Corvallis, Oregon, USA
| |
Collapse
|
74
|
Jungles KM, Holcomb EA, Pearson AN, Jungles KR, Bishop CR, Pierce LJ, Green MD, Speers CW. Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Front Oncol 2022; 12:1022542. [PMID: 36387071 PMCID: PMC9643771 DOI: 10.3389/fonc.2022.1022542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body’s response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.
Collapse
Affiliation(s)
- Kassidy M. Jungles
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Erin A. Holcomb
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kalli R. Jungles
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Caroline R. Bishop
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| |
Collapse
|
75
|
Camero S, Cassandri M, Pomella S, Milazzo L, Vulcano F, Porrazzo A, Barillari G, Marchese C, Codenotti S, Tomaciello M, Rota R, Fanzani A, Megiorni F, Marampon F. Radioresistance in rhabdomyosarcomas: Much more than a question of dose. Front Oncol 2022; 12:1016894. [PMID: 36248991 PMCID: PMC9559533 DOI: 10.3389/fonc.2022.1016894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
76
|
Yu X, Ma H, Xu G, Liu Z. Radiotherapy assisted with biomaterials to trigger antitumor immunity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
78
|
Xie H, Gong M, Zhang J, Li Q. Construction of a predictive model for radiation proctitis after radiotherapy for female pelvic tumors based on machine learning. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1065-1074. [PMID: 36097774 PMCID: PMC10950104 DOI: 10.11817/j.issn.1672-7347.2022.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Radiation therapy is a main method for female pelvic malignancies, which can cause some adverse reactions, such as radiation proctitis (RP). The incidence of RP is highly positively correlated with radiation dose. There is an urgent need for a scientific method to accurately predict the occurrence of RP to help doctors make clinical decisions. In this study, based on the clinical data of female pelvic tumor patients and dosimetric parameters of radiotherapy, the random forest method was used to screen the hub features related to the occurrence of RP, and then a machine learning algorithm was used to construct a risk prediction model for the occurrence of RP, in order to provide technical support and theoretical basis for the prediction and prevention of RP. METHODS A total of 100 female patients with pelvic tumors, who received static three-dimensional conformal intensity-modulated radiation therapy in the Department of Radiation Oncology of the Affiliated Hospital of Xiangnan University from January 2019 to December 2020, were retrospectively collected, and their clinically relevant data and radiotherapy planning system data were collected. During radiotherapy and 18 months after radiotherapy, 35 cases developed RP (RP group), and the remaining 65 cases had no RP (non-RP group). The clinical and dosimetric characteristics of patients were ranked by the importance of random forest algorithm, and the independent prognostic characteristics associated with the occurrence of RP were selected for machine learning modeling. A total of 6 machine learning algorithms including support vector machines, random forests, logistic regression, lightweight gradient boosting machines, Gaussian naïve Bayes, and adaptive enhancement were used to build models. The performance of the model was evaluated by the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. Finally, the random forest model was determined as the prediction model, and the calibration curve and decision curve of the prediction model were drawn to evaluate the accuracy and clinical benefit of the model. RESULTS The parameters for random forest prediction model in the training set were as follow: AUC, 1.000, accuracy, 0.988, sensitivity, 1.000, specificity, 1.000, positive predictive value, 1.000, negative predictive value, 0.981, and F1 score, 1.000. In validation set, AUC was 0.713, accuracy was 0.640, sensitivity was 0.618, specificity was 0.822, positive predictive value was 0.500, negative predictive value was 0.656, and F1 score was 0.440. Random forest showed high predictive performance. Moreover, the Brief of the calibration curve for the prediction model was 0.178, the prediction accuracy was high, and the decision curve showed that the prediction model could benefit clinically. CONCLUSIONS Based on the clinical and dosimetric parameters for the female pelvic tumor patients, the prediction model of radiation proctitis constructed by random forest algorithm has high predictive ability and strong clinical usability.
Collapse
Affiliation(s)
- Hui Xie
- Department of Radiation Oncology, Affiliated Hospital of Xiangnan University, Chenzhou Hunan 423000.
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou Hunan 423000.
| | - Ming Gong
- Department of Radiation Oncology, Affiliated Hospital of Xiangnan University, Chenzhou Hunan 423000
- School of Nuclear Science and Techology, University of South China, Hengyang Hunan 421001
| | - Jianfang Zhang
- Department of Physical Examination, Beihu Centers for Disease Control and Prevention, Chenzhou Hunan 423000
| | - Qing Li
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Chenzhou Hunan 423000.
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou Hunan 423000, China.
| |
Collapse
|
79
|
Lu Z, Zheng X, Ding C, Zou Z, Liang Y, Zhou Y, Li X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022; 12:biom12091167. [PMID: 36139006 PMCID: PMC9496570 DOI: 10.3390/biom12091167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy remains an effective conventional method of treatment for patients with cancer. However, the clinical efficacy of radiotherapy is compromised by the development of radioresistance of the tumor cells during the treatment. Consequently, there is need for a comprehensive understanding of the regulatory mechanisms of tumor cells in response to radiation to improve radiotherapy efficacy. The current study aims to highlight new developments that illustrate various forms of cancer cell death after exposure to radiation. A summary of the cellular pathways and important target proteins that are responsible for tumor radioresistance and metastasis is also provided. Further, the study outlines several mechanistic descriptions of the interaction between ionizing radiation and the host immune system. Therefore, the current review provides a reference for future research studies on the biological effects of new radiotherapy technologies, such as ultra-high-dose-rate (FLASH) radiotherapy, proton therapy, and heavy-ion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| | - Xiaoan Li
- Correspondence: (Y.Z.); (X.L.); Tel.: +86-0816-225-2295 (Y.Z.); +86-0816-220-6272 (X.L.)
| |
Collapse
|
80
|
Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2255-2271. [PMID: 35913663 DOI: 10.1007/s12094-022-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy (RT), unlike chemotherapy, is one of the most routinely used and effective genotoxic and immune response inducing cancer therapies with an advantage of reduced side effects. However, cancer can relapse after RT owing to multiple factors, including acquired tumor resistance, immune suppressive microenvironment buildup, increased DNA repair, thus favoring tumor metastasis. Efforts to mitigate these undesirable effects have drawn interest in combining RT with immunotherapy, particularly the use of immune checkpoint inhibitors, to tilt the pre-existing tumor stromal microenvironment into long-lasting therapy-induced antitumor immunity at multiple metastatic sites (abscopal effects). This multimodal therapeutic strategy can alleviate the increased T cell priming and decrease tumor growth and metastasis, thus emerging as a significant approach to sustain as long-term antitumor immunity. To understand more about this synergism, a detailed cellular mechanism underlying the dynamic interaction between tumor and immune cells within the irradiated tumor microenvironment needs to be explored. Hence, in the present review, we have attempted to evaluate various RT-inducible immune factors, which can be targeted by immunotherapy and provide detailed explanation to optimally maximize their synergy with immunotherapy for long-lasting antitumor immunity. Moreover, we have critically assessed various combinatorial approaches along with their challenges and described strategies to modify them in addition to providing approaches for optimal synergistic effects of the combination.
Collapse
|
81
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
82
|
Feng H, Lane KA, Roumeliotis TI, Jeggo PA, Somaiah N, Choudhary JS, Downs JA. PBAF loss leads to DNA damage-induced inflammatory signaling through defective G2/M checkpoint maintenance. Genes Dev 2022; 36:gad.349249.121. [PMID: 35902118 PMCID: PMC9480851 DOI: 10.1101/gad.349249.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
The PBRM1 subunit of the PBAF (SWI/SNF) chromatin remodeling complex is mutated in ∼40% of clear cell renal cancers. PBRM1 loss has been implicated in responses to immunotherapy in renal cancer, but the mechanism is unclear. DNA damage-induced inflammatory signaling is an important factor determining immunotherapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. We found that in the absence of PBRM1, p53-dependent p21 up-regulation is delayed after DNA damage, leading to defective transcriptional repression by the DREAM complex and premature entry into mitosis. Consequently, DNA damage-induced inflammatory signaling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in renal cancer, so PBRM1 mutational status is critical to G2/M checkpoint maintenance. Moreover, we found that the ability of PBRM1 deficiency to predict response to immunotherapy correlates with expression of the cytosolic DNA-sensing pathway in clinical samples. These findings have implications for therapeutic responses in renal cancer.
Collapse
Affiliation(s)
- Hugang Feng
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Karen A Lane
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | - Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Navita Somaiah
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5PT, United Kingdom
| | | | - Jessica A Downs
- The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
83
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
84
|
Zhou Z, Zhao Y, Chen S, Cui G, Fu W, Li S, Lin X, Hu H. Cisplatin Promotes the Efficacy of Immune Checkpoint Inhibitor Therapy by Inducing Ferroptosis and Activating Neutrophils. Front Pharmacol 2022; 13:870178. [PMID: 35784745 PMCID: PMC9240830 DOI: 10.3389/fphar.2022.870178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023] Open
Abstract
The combination of immunotherapy with platinum-based chemotherapy has become the first-line treatment for patients with advanced non–small cell lung cancer (NSCLC) with negative driver gene mutations. However, finding an ideal chemotherapeutic regimen for immunotherapy and exploring the underlying mechanism have noticeably attracted clinicians’ attention. In this study, we found that cisplatin induced ferroptosis of tumor cells, followed by N1 neutrophil polarization in the tumor microenvironment, which in turn remodeled the “cold” tumor to a “hot” one through enhancing T-cell infiltration and Th1 differentiation. Based on the important role of tumor ferroptosis in the immune-promoting effect of cisplatin, we noticed that the combination of a ferroptosis activator showed a synergistic effect with chemoimmunotherapy of epidermal growth factor receptor (EGFR)-mutant NSCLC, which would be an effective strategy to overcome immunotherapy resistance in NSCLC patients harboring driver mutations.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guohui Cui
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shouying Li
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Lin
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| |
Collapse
|
85
|
Ascierto PA, Avallone A, Bhardwaj N, Bifulco C, Bracarda S, Brody JD, Buonaguro L, Demaria S, Emens LA, Ferris RL, Galon J, Khleif SN, Klebanoff CA, Laskowski T, Melero I, Paulos CM, Pignata S, Ruella M, Svane IM, Taube JM, Fox BA, Hwu P, Puzanov I. Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st-2nd, 2021. J Transl Med 2022; 20:257. [PMID: 35672823 PMCID: PMC9172186 DOI: 10.1186/s12967-022-03471-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies.The virtual Immunotherapy Bridge (December 1st-2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlo Bifulco
- Providence Genomics and Earle A. Chiles Research Institute, Portland, OR, USA
| | - Sergio Bracarda
- Medical and Translational Oncology Unit, Department of Oncology, Azienda Ospedaliera Santa Maria, Terni, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luigi Buonaguro
- Department of Experimental Oncology, Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College; Sandra and Edward Meyer Cancer Center; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Leisha A Emens
- Magee Women's Hospital/UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology/Equipe Labellisée Ligue Contre Le Cancer/Centre de Recherche Des Cordeliers, Sorbonne Université, Université Paris Cité, Marseille, France
| | - Samir N Khleif
- The Loop Immuno Oncology Laboratory, Georgetown University Medical School, Washington, DC, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center (MSKCC)/Center for Cell Engineering, MSKCC/Parker Institute for Cancer Immunotherapy/Weill Cornell Medical College, New York, NY, USA
| | - Tamara Laskowski
- Head of New Therapeutic Products - Personalized Medicine, Lonza Global, Houston, TX, USA
| | - Ignacio Melero
- Department of Immunology and Immunotherapy, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain
| | | | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
86
|
McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, Barrott J. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals (Basel) 2022; 15:ph15060650. [PMID: 35745569 PMCID: PMC9228444 DOI: 10.3390/ph15060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Synovial sarcoma (SS) is a pediatric muscle cancer that primarily affects adolescents and young adults and has few treatment options. Complicating the treatment of synovial sarcoma is the low mutational burden of SS. Inflammatory pathways have been identified as being upregulated in some SS, leading to the discovery of upregulated oncostatin M receptor (OSMR). It was found that OSMR is upregulated in SS by RNAseq analysis and quantitative PCR, highlighting its potential in the treatment of SS. Also, OSMR is upregulated in mouse models for synovial sarcoma as demonstrated by western blot and immunohistochemistry, and the protein is present in both primary and metastatic sites of disease. Using a radioimmune therapy drug model, targeted therapy was synthesized for use in OSMR expressing SS and it was demonstrated that this drug is stable, while capable of efficient OSMR binding and isotope capture. Finally, this antibody conjugate exhibited ideal pharmacokinetics and targeted sites of disease in our mouse model and was taken up in both primary and metastatic diseased tissue. This suggests OSMR as an ideal target for therapy and this radioimmune therapy provides a novel treatment option for a disease with few therapy choices.
Collapse
|
87
|
Utilizing Carbon Ions to Treat Medulloblastomas that Exhibit Chromothripsis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
Novel radiation therapies with accelerated charged particles such as protons and carbon ions have shown encouraging results in oncology. We present recent applications as well as benefits and risks associated with their use.
Recent Findings
We discuss the use of carbon ion radiotherapy to treat a specific type of aggressive pediatric brain tumors, namely medulloblastomas with chromothripsis. Potential reasons for the resistance to conventional treatment, such as the presence of cancer stem cells with unique properties, are highlighted. Finally, advantages of particle radiation alone and in combination with other therapies to overcome resistance are featured.
Summary
Provided that future preclinical studies confirm the evidence of high effectiveness, favorable toxicity profiles, and no increased risk of secondary malignancy, carbon ion therapy may offer a promising tool in pediatric (neuro)oncology and beyond.
Collapse
|
88
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
89
|
Charpentier M, Spada S, VanNest S, Demaria S. Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin Cancer Biol 2022; 86:737-747. [DOI: 10.1016/j.semcancer.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
|
90
|
Graham Martínez C, Kus Öztürk S, Al-Kaabi A, Valkema MJ, Bokhorst JM, Rosman C, Rütten H, Wauters CAP, Doukas M, van Lanschot JJB, Siersema PD, Nagtegaal ID, van der Post RS. Shrinkage versus fragmentation response in neoadjuvantly treated oesophageal adenocarcinoma: significant prognostic relevance. Histopathology 2022; 80:982-994. [PMID: 35352847 PMCID: PMC9325353 DOI: 10.1111/his.14644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Aims No consensus exists on the clinical value of tumour regression grading (TRG) systems for therapy effects of neoadjuvant chemoradiotherapy (nCRT) in oesophageal adenocarcinoma. Existing TRG systems lack standardization and reproducibility, and do not consider the morphological heterogeneity of tumour response. Therefore, we aim to identify morphological tumour regression patterns of oesophageal adenocarcinoma after nCRT and their association with survival. Methods and results Patients with oesophageal adenocarcinoma, who underwent nCRT followed by surgery and achieved a partial response to nCRT, were identified from two Dutch upper‐gastrointestinal (GI) centres (2005–18; test cohort). Resection specimens were scored for regression patterns by two independent observers according to a pre‐defined three‐step flowchart. The results were validated in an external cohort (2001–17). In total, 110 patients were included in the test cohort and 115 in the validation cohort. In the test cohort, two major regression patterns were identified: fragmentation (60%) and shrinkage (40%), with an excellent interobserver agreement (κ = 0.87). Here, patients with a fragmented pattern had a significantly higher pathological stage (stages III/IV: 52 versus 16%; P < 0.001), less downstaging (48 versus 91%; P < 0.001), a higher risk of recurrence [risk ratio (RR) = 2.9, 95% confidence interval (CI) = 1.5–5.6] and poorer 5‐year overall survival (30 versus 80% respectively, P = 0.001). Conclusions The validation cohort confirmed these findings, although had more advanced cases (case‐stages = III/IV 91 versus 73%, P = 0.005) and a higher prevalence of fragmented‐pattern cases (80 versus 60%, P = 0.002). When combining the cohorts in multivariate analysis, the pattern of response was an independent prognostic factor [hazard ratio (HR) = 1.76, 95% CI = 1.0–3.0]. In conclusion, we established an externally validated, reproducible and clinically relevant classification of tumour response.
Collapse
Affiliation(s)
| | - Sonay Kus Öztürk
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ali Al-Kaabi
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maria J Valkema
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - John-Melle Bokhorst
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Camiel Rosman
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Heidi Rütten
- Department of Radiotherapy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carla A P Wauters
- Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre Rotterdam, The Netherlands
| | - J Jan B van Lanschot
- Department of Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
91
|
Shanker MD, Garimall S, Gatt N, Foley H, Crowley S, Le Cornu E, Muscat K, Soon W, Atkinson V, Xu W, Watkins T, Huo M, Foote MC, Pinkham MB. Stereotactic radiosurgery for melanoma brain metastases: Concurrent immune checkpoint inhibitor therapy associated with superior clinicoradiological response outcomes. J Med Imaging Radiat Oncol 2022; 66:536-545. [PMID: 35343063 PMCID: PMC9311698 DOI: 10.1111/1754-9485.13403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION/PURPOSE This study assessed long-term clinical and radiological outcomes following treatment with combination stereotactic radiosurgery (SRS) and immunotherapy (IT) for melanoma brain metastases (BM). METHODS A retrospective review was performed in a contemporary cohort of patients with melanoma BM at a single tertiary institution receiving Gamma Knife® SRS for melanoma BM. Multivariate Cox proportional-hazards modelling was performed with a P <0.05 for significance. RESULTS 101 patients (435 melanoma BM) were treated with SRS between January-2015 and June-2019. 68.3% of patients received IT within 4 weeks of SRS (concurrent) and 31.7% received SRS alone or non-concurrently with IT. Overall, BM local control rate was 87.1% after SRS. Median progression free survival was 8.7 months. Median follow-up was 29.2 months. On multivariate analysis (MVA), patients receiving concurrent SRS-IT maintained a higher chance of achieving a complete (CR) or partial response (PR) [HR 2.6 (95% CI: 1.2-5.5, P = 0.012)] and a reduced likelihood of progression of disease (PD) [HR 0.52 (95% CI: 0.16-0.60), P = 0.048]. Any increase in BM volume on the initial MRI 3 months after SRS predicted a lower likelihood of achieving long-term CR or PR on MVA accounting for concurrent IT, BRAF status and dexamethasone use [HR = 0.048 (95% CI: 0.007-0.345, P = 0.0026)]. Stratified volumetric change demonstrated a sequential relationship with outcomes on Kaplan-Meier analysis. CONCLUSION Concurrent SRS-IT has favourable clinical and radiological outcomes with respect to CR, PR and a reduced likelihood of PD. Changes in BM volume on the initial MRI 3 months after SRS were predictive of long-term outcomes for treatment response.
Collapse
Affiliation(s)
- Mihir D Shanker
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital Research Foundation, Brisbane, Queensland, Australia
| | - Sidyarth Garimall
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nick Gatt
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Heath Foley
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel Crowley
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Emma Le Cornu
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kendall Muscat
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wei Soon
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Victoria Atkinson
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wen Xu
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Trevor Watkins
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michael Huo
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C Foote
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mark B Pinkham
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
92
|
Carbon ion radiotherapy in the management of non‐small cell lung cancer. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
93
|
Fabi F. Comment on “Abscopal effect in the radio and immunotherapy”. Radiat Oncol J 2022; 40:86-87. [PMID: 35368204 PMCID: PMC8984130 DOI: 10.3857/roj.2022.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- François Fabi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Correspondence: François Fabi Faculty of Medicine and Health Sciences, McGill University, 3605 Rue de la Montagne, Montreal, H3G 2M1, Canada Tel: +1-819-380-4952 E-mail:
| |
Collapse
|
94
|
Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23063238. [PMID: 35328658 PMCID: PMC8952261 DOI: 10.3390/ijms23063238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.
Collapse
|
95
|
Zheng H, Guo B, Qiu X, Xia Y, Qu Y, Cheng L, Meng F, Zhong Z. Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy. Bioact Mater 2022; 16:1-11. [PMID: 35386324 PMCID: PMC8958419 DOI: 10.1016/j.bioactmat.2022.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cyclic dinucleotides (CDNs) as stimulator of interferon genes (STING) agonists capable of inducing strong antitumor innate immune response are highly promising for tumor immunotherapy. The efficacy of these CDNs is, however, reduced greatly by their fast clearance, poor cell uptake and inefficient cytosolic transportation. Here, we report that reduction-responsive biodegradable chimaeric polymersomes (CPs) markedly enhance tumor retention and cytosolic delivery of a synthetic CDN, ADU-S100, and bolster STING pathway activation in the tumor microenvironment and tumor draining lymph nodes, giving significantly better tumor repression and survival of B16F10 melanoma-bearing mice compared with free CDN control. The superiority of CPs-mediated CDN delivery is further verified in combination therapy with low-dose fractionated radiation, which brings about clearly stronger and longer-term immunotherapeutic effects and protection against tumor re-challenge. The development of nano-STING agonists that are able to overcome the delivery barriers of CDNs represents an effective strategy to potentiate cancer immunotherapy. Chimaeric polymersomes (CPs) show efficient loading of STING agonist cyclic dinucleotide. Intratumoral injection of CPs-CDN gives notable tumor accumulation and cytosolic delivery of STING agonist. CPs-CDN activate STING pathway in tumor microenvironment and tumor draining lymph node, giving significant tumor repression and survival of melanoma mice. CPs-CDN combined with low-dose fractionated X ray irradiation led to further boosted immunotherapy with 3/7 cured mice. Nano-STING agonists can overcome the delivery barriers of CDNs and potentiate durable cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Yan Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- Corresponding author. Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
96
|
Ma X, Guo Z, Wei X, Zhao G, Han D, Zhang T, Chen X, Cao F, Dong J, Zhao L, Yuan Z, Wang P, Pang Q, Yan C, Zhang W. Spatial Distribution and Predictive Significance of Dendritic Cells and Macrophages in Esophageal Cancer Treated With Combined Chemoradiotherapy and PD-1 Blockade. Front Immunol 2022; 12:786429. [PMID: 35046943 PMCID: PMC8761740 DOI: 10.3389/fimmu.2021.786429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background The first clinical study (NCT03671265) of first-line chemoradiotherapy combined with PD-1 blockade showed promising treatment outcomes in locally advanced esophageal squamous cell carcinoma (ESCC). However, partial patients did not respond to the combination treatment. The roles of dendritic cells (DCs) and macrophages in this combination treatment remain poorly understood. Methods We performed multiplexed immunofluorescence method to identify CD11c+ DCs, CD68+ macrophages, and their PD-L1- or PD-L1+ subpopulations in paired tumor biopsies (n = 36) collected at baseline and during the combination treatment (after radiation, 40 Gy) from the phase Ib trial (NCT03671265). We applied whole exome sequencing in the baseline tumor biopsies (n = 14) to estimate tumor mutation burden (TMB). We dynamically investigated the spatial distribution of DCs and macrophages under chemoradiotherapy combined with PD-1 blockade, and evaluated the association between their spatial distribution and combination outcome, and TMB. Results The results showed that high percentages of PD-L1- DCs and macrophages in the baseline tumor compartment, but not in the stromal compartment, predicted improved OS and PFS. Chemoradiotherapy combined with PD-1 blockade promoted DCs and macrophages to migrate closer to tumor cells. During combination treatment, PD-L1- tumor cells were nearest to PD-L1- DCs and macrophages, while PD-L1+ tumor cells were next to PD-L1+ DCs and macrophages. High TMB was closely associated with a shorter distance from tumor cells to DCs and macrophages. Shorter distance between PD-L1+ tumor cells and PD-L1+ DCs or PD-L1- macrophages during the combination was correlated with better OS. Shorter distance between PD-L1- tumor cells and PD-L1- macrophages during combination was associated with both longer OS and PFS. Conclusions PD-L1- or PD-L1+ DCs and macrophages exhibit distinct spatial distribution in ESCC. The close distance between tumor cells and these antigen-presenting cells (APCs) is critical to the clinical outcome in chemoradiotherapy combined with PD-1 blockade in ESCC patients. Our results highlight the predictive potential of spatial patterns of APCs in chemoradiotherapy combined with immunotherapy and reveal the underlying mechanism of APCs participating in chemoradiotherapy-induced antitumor immune response in ESCC.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhoubo Guo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoying Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Han
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Dong
- Department of Nutrition Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
97
|
Karukonda P, Odhiambo D, Mowery YM. Pharmacologic inhibition of ataxia telangiectasia and Rad3-related (ATR) in the treatment of head and neck squamous cell carcinoma. Mol Carcinog 2022; 61:225-238. [PMID: 34964992 PMCID: PMC8799519 DOI: 10.1002/mc.23384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses significant treatment challenges, with high recurrence rates for locally advanced disease despite aggressive therapy typically involving a combination of surgery, radiation therapy, and/or chemotherapy. HNSCCs commonly exhibit reduced or absent TP53 function due to genomic alterations or human papillomavirus (HPV) infection, leading to dependence on the S- and G2/M checkpoints for cell cycle regulation. Both of these checkpoints are activated by Ataxia Telangiectasia and Rad3-related (ATR), which tends to be overexpressed in HNSCC relative to adjacent normal tissues and represents a potentially promising therapeutic target, particularly in combination with other treatments. ATR is a DNA damage signaling kinase that is activated in response to replication stress and single-stranded DNA breaks, such as those induced by radiation therapy and certain chemotherapies. ATR kinase inhibitors are currently being investigated in several clinical trials as part of the management of locally advanced, recurrent, or metastatic HNSCC, along with other malignancies. In this review article, we summarize the rationale and preclinical data supporting incorporation of ATR inhibition into therapeutic regimens for HNSCC.
Collapse
Affiliation(s)
- Pooja Karukonda
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Diana Odhiambo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA,Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
98
|
Colbert LE, El MB, Lynn EJ, Bronk J, Karpinets TV, Wu X, Chapman BV, Sims TT, Lin D, Kouzy R, Sammouri J, Biegert G, Delgado Medrano AY, Olvera A, Sastry KJ, Eifel PJ, Jhingran A, Lin L, Ramondetta LM, Futreal AP, Jazaeri AA, Schmeler KM, Yue J, Mitra A, Yoshida-Court K, Wargo JA, Solley TN, Hegde V, Nookala SS, Yanamandra AV, Dorta-Estremera S, Mathew G, Kavukuntla R, Papso C, Ahmed-Kaddar M, Kim M, Zhang J, Reuben A, Holliday EB, Minsky BD, Koong AC, Koay EJ, Das P, Taniguchi CM, Klopp A. Expansion of Candidate HPV-Specific T Cells in the Tumor Microenvironment during Chemoradiotherapy Is Prognostic in HPV16 + Cancers. Cancer Immunol Res 2022; 10:259-271. [PMID: 35045973 DOI: 10.1158/2326-6066.cir-21-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) infection causes 600,000 new cancers worldwide each year. HPV-related cancers express the oncogenic proteins E6 and E7, which could serve as tumor-specific antigens. It is not known whether immunity to E6 and E7 evolves during chemoradiotherapy or affects survival. Using T cells from 2 HPV16+ patients, we conducted functional T-cell assays to identify candidate HPV-specific T cells and common T-cell receptor motifs, which we then analyzed across 86 patients with HPV-related cancers. The HPV-specific clones and E7-related T-cell receptor motifs expanded in the tumor microenvironment over the course of treatment, whereas non-HPV-specific T cells did not. In HPV16+ patients, improved recurrence-free survival was associated with HPV-responsive T-cell expansion during chemoradiotherapy.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Molly B El
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julianna Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bhavana V Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis T Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramez Kouzy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Greyson Biegert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adilene Olvera
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - K Jagannadha Sastry
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew P Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingyan Yue
- McGovern Medical School at UTHealth, Houston, Texas
| | - Aparna Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis N Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkatesh Hegde
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sita S Nookala
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ananta V Yanamandra
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Dorta-Estremera
- McGovern Medical School at UTHealth, Houston, Texas.,Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohit Kavukuntla
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cassidy Papso
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minsoo Kim
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emma B Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bruce D Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
99
|
Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022; 24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.
Collapse
|
100
|
Lhuillier C, Van Nest SJ, Rudqvist NP, Demaria S. Pipeline to identify neoantigens exposed by radiation. Methods Cell Biol 2022. [DOI: 10.1016/bs.mcb.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|