51
|
Positive Effect of Cognitive Training in Older Adults with Different APOE Genotypes and COVID-19 History: A 1-Year Follow-Up Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102312. [PMID: 36292001 PMCID: PMC9600912 DOI: 10.3390/diagnostics12102312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Older people suffer from cognitive decline; several risk factors contribute to greater cognitive decline. We used acquired (COVID-19 infection) and non-modifiable (presence of APOE rs429358 and rs7412 polymorphisms) factors to study the progression of subjective cognitive impairment while observing patients for one year. Cognitive training was used as a protective factor. (2) Methods: Two groups of subjects over the age of 65 participated in the study: group with subjective cognitive decline receiving cognitive training and individuals who did not complain of cognitive decline without receiving cognitive training (comparison group). On the first visit, the concentration of antibodies to COVID-19 and APOE genotype was measured. At the first and last point (1 year later) the Mini-Mental State Examination scale and the Hospital Anxiety and Depression Scale were performed. (3) Results: COVID-19 infection did not affect cognitive function. A significant role of cognitive training in improving cognitive functions was revealed. Older adults with APOE-ε4 genotype showed no positive effect of cognitive training. (4) Conclusions: Future research should focus on cognitive dysfunction after COVID-19 in long-term follow-up. Attention to the factors discussed in our article, but not limited to them, are useful for a personalized approach to maintaining the cognitive health of older adults.
Collapse
|
52
|
Nikitina AY, Chimagomedova AS, Levin OS. Neurological Complications of COVID-19 in the Elderly. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:625-634. [PMID: 36119647 PMCID: PMC9468529 DOI: 10.1007/s11055-022-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 virus is a β-coronavirus and produces a severe viral pneumonia which can be complicated by acute respiratory distress syndrome and multiorgan failure. As knowledge of the new coronavirus infection (COVID-19) increases, it has become known that SARS-CoV-2 has pronounced neurotropism, producing a wide spectrum of neurological complications. This article addresses the characteristics of the neurological complications of COVID-19 in elderly people.
Collapse
Affiliation(s)
- A. Yu. Nikitina
- Russian Medical Academy of Continuing Professional Education, Russian Ministry of Health, Moscow, Russia
| | - A. Sh. Chimagomedova
- Russian Medical Academy of Continuing Professional Education, Russian Ministry of Health, Moscow, Russia
| | - O. S. Levin
- Russian Medical Academy of Continuing Professional Education, Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
53
|
Khoreva MA. Postcovid Syndrome – The New Reality. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:619-624. [PMID: 36119648 PMCID: PMC9468516 DOI: 10.1007/s11055-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2025]
Abstract
The second year of the COVID-19 pandemic has demonstrated the need for detection and assessment of the long-term consequences SARS-CoV-2 infection, including adequate cognitive functioning. This review addresses our current understanding of the direct and indirect mechanisms of nervous system infection in COVID-19, paying special attention to cause-effect relationships between SARS-CoV-2 infection and long-term neuropsychological disorders. Understanding the pathogenesis of neurological impairments in COVID-19 is important for studies of the long-term sequelae of the disease and for identifying preventive and therapeutic possibilities in relation to brain damage. Further studies of nervous system lesions in COVID-19 are clearly needed to expand existing knowledge. Early initiation of therapeutic measures for emerging disorders will probably have decisive importance for improving quality of life for many COVID-19 survivors.
Collapse
|
54
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
55
|
Effects of Varying Glucose Concentrations on ACE2's Hypothalamic Expression and Its Potential Relation to COVID-19-Associated Neurological Dysfunction. Int J Mol Sci 2022; 23:ijms23179645. [PMID: 36077041 PMCID: PMC9455961 DOI: 10.3390/ijms23179645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has negatively impacted millions of lives, despite several vaccine interventions and strict precautionary measures. The main causative organism of this disease is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which infects the host via two key players: the angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2). Some reports revealed that patients with glycemic dysregulation could have increased susceptibility to developing COVID-19 and its related neurological complications. However, no previous studies have looked at the involvement of these key molecules within the hypothalamus, which is the central regulator of glucose in the brain. By exposing embryonic mouse hypothalamic neurons to varying glucose concentrations, we aimed to investigate the expression of ACE2 and TMPRSS2 using quantitative real time polymerase chain reaction and western blotting. A significant and time-dependent increase and decrease was observed on the viability of hypothalamic neurons with increasing and decreasing glucose concentrations, respectively (p < 0.01 and p < 0.001, respectively). Under the same increasing and decreasing glucose conditions, the expression of hypothalamic ACE2 also revealed a significant and time-dependent increase (p < 0.01). These findings suggest that SARS-CoV-2 invades the hypothalamic circuitry. In addition, it highlights the importance of strict glycemic control for COVID-19 in diabetic patients.
Collapse
|
56
|
Badillo-Almaraz JI, Cardenas-Cadena SA, Gutierrez-Avella FD, Villegas-Medina PJ, Garza-Veloz I, Almaraz VB, Martinez-Fierro ML. COVID-19 Syndemic: Convergence of COVID-19, Pulmonary Aspergillosis (CAPA), Pulmonary Tuberculosis, Type 2 Diabetes Mellitus, and Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12092058. [PMID: 36140460 PMCID: PMC9498291 DOI: 10.3390/diagnostics12092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial coinfections, which increase the severity of respiratory viral infections, are frequent causes of mortality in influenza pandemics but have not been well characterized in patients with Coronavirus disease 2019 (COVID-19). Moreover, the association of COVID-19 infection with pulmonary Mycobacterium tuberculosis disease (TB) and concurrent pulmonary fungal infection is not well known. The classification of patients with COVID-19-associated pulmonary aspergillosis (CAPA) using the current definitions for invasive fungal diseases has proven difficult. In this study, we aimed to provide information about three patients with underlying diseases ongoing with COVID-19 and co-infection with pulmonary TB, and with COVID-19-associated pulmonary aspergillosis (CAPA). At the time of hospital admission, each patient presented complications such as decompensated T2DM with diabetic ketoacidosis and/or hypertension. Findings of chest computed tomography and serum galactomannan by radioimmunoassay were useful for classifying them as possible CAPA. One of the three possible CAPA cases was fatal. These three cases are rare and are the first of their kind reported worldwide. The generation of reliable algorithms, early diagnosis, standardization of classification criteria, and the selection of specific and personalized treatments for COVID-19-associated opportunistic infections, including CAPA, are necessary to improve outcomes in these kinds of patients.
Collapse
Affiliation(s)
- Jose Isaias Badillo-Almaraz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
- Hospital General Luz Gonzalez Cosio, Circuito ciudad Gobierno, Zacatecas 98160, Mexico
- Clinica San Antonio Memorial Center, Rio Grande, Zacatecas 98400, Mexico
| | - Sergio Andres Cardenas-Cadena
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
| | | | | | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
| | - Valentin Badillo Almaraz
- Unidad Academica de Estudios Nucleares. Universidad Autonoma de Zacatecas, Zacatecas 98000, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
- Correspondence: ; Tel.: +52-(492)-9256690 (ext. 2102)
| |
Collapse
|
57
|
Lai PY, Wang WF, Chang MC, Jhang KM. The Effectiveness of Community Aging Care Centers on Global Function for People Living with Dementia. J Alzheimers Dis 2022; 89:553-562. [PMID: 35912745 DOI: 10.3233/jad-220372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The global population with dementia is growing rapidly. Dementia patients have been included in the services of the long-term care Act 2.0, supported by Taiwan's government since 2017. Community aging care centers are extensively established, which are places providing social connections and group physical and cognitive training programs for elderly people. OBJECTIVE To elucidate the efficacy of community aging care centers on cognitive function in people with dementia. METHODS A total of 1,277 patients with dementia diagnosed at the Changhua Christian Hospital outpatient departments were enrolled. A total of 113 patients who used community aging care centers and 452 subjects matched for age, education, and initial score of clinical dementia rating scale sum of boxes (CDR-SOB) control group were analyzed. The primary outcome was the change in CDR-SOB scores before and after utilization of community aging care centers. RESULTS The mean annual change of CDR-SOB scores were 1.72±2.97, 1.08±2.36, and 1.04±3.64 in control, Community Service Centers for Dementia, and community elderly stations, respectively, after about 1.5 years follow-up. Patients with dementia using community aging care centers had significantly less progression in CDR-SOB scores than those in the control group (-0.65; 95% CI: -1.27, -0.03; p = 0.041). Using one more day of community aging care centers per week significantly promotes 0.16 points of CDR-SOB decline (-0.16, 95% CI: -0.31; -0.00; p = 0.045). CONCLUSION Community aging care centers, based on the long-term care Act 2.0 in Taiwan, were effective in delaying the decline in global function in people living with dementia.
Collapse
Affiliation(s)
- Po-Yu Lai
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Fu Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Recreation and Holistic Wellness, Ming Dao University, Changhua, Taiwan
| | - Ming-Che Chang
- Department of Nuclear Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Kai-Ming Jhang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
58
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
59
|
Li C, Liu J, Lin J, Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl Psychiatry 2022; 12:283. [PMID: 35835752 PMCID: PMC9281279 DOI: 10.1038/s41398-022-02052-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has suggested a close correlation between COVID-19 and neurodegenerative disorders. However, whether there exists a causal association and the effect direction remains unknown. To examine the causative role of COVID-19 in the risk of neurodegenerative disorders, we estimated their genetic correlation, and then conducted a two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of susceptibility, hospitalization, and severity of COVID-19, as well as six major neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis, frontotemporal dementia, Lewy body dementia, multiple sclerosis, and Parkinson's disease. We identified a significant and positive genetic correlation between hospitalization of COVID-19 and AD (genetic correlation: 0.23, P = 8.36E-07). Meanwhile, hospitalization of COVID-19 was significantly associated with a higher risk of AD (OR: 1.02, 95% CI: 1.01-1.03, P: 1.19E-03). Consistently, susceptibility (OR: 1.05, 95% CI: 1.01-1.09, P: 9.30E-03) and severity (OR: 1.01, 95% CI: 1.00-1.02, P: 0.012) of COVID-19 were nominally associated with higher risk of AD. The results were robust under all sensitivity analyses. These results demonstrated that COVID-19 could increase the risk of AD. Future development of preventive or therapeutic interventions could attach importance to this to alleviate the complications of COVID-19.
Collapse
Affiliation(s)
- Chunyu Li
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jiayan Liu
- grid.412901.f0000 0004 1770 1022Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Junyu Lin
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
60
|
Pozdnyakova N, Krisanova N, Pastukhov A, Tarasenko A, Dudarenko M, Chernykh A, Pashenko A, Ryabukhin S, Tolstanova G, Volochnyuk D, Borisova T. Neuromodulation by selective angiotensin-converting enzyme 2 inhibitors. Neuroscience 2022; 498:155-173. [PMID: 35817218 DOI: 10.1016/j.neuroscience.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022]
Abstract
Here, neuromodulatory effects of selective angiotensin-converting enzyme 2 (ACE2) inhibitors were investigated. Two different types of small molecule ligands for ACE2 inhibition were selected using chemical genetic approach, they were synthesized using developed chemical method and tested using presynaptic rat brain nerve terminals (synaptosomes). EBC-36032 (1 µM) increased in a dose-dependent manner spontaneous and stimulated ROS generation in nerve terminals that was of non-mitochondrial origin. Another inhibitor EBC-36033 (MLN-4760) was inert regarding modulation of ROS generation. EBC-36032 and EBC-36033 (100 µM) did not modulate the exocytotic release of L-[14C]glutamate, whereas both inhibitors decreased the initial rate of uptake, but not accumulation (10 min) of L-[14C]glutamate by nerve terminals. EBC-36032 (100 µM) decreased the exocytotic release as well as the initial rate and accumulation of [3H]GABA by nerve terminals. EBC-36032 and EBC-36033 did not change the extracellular levels and transporter-mediated release of [3H]GABA and L-[14C]glutamate, and tonic leakage of [3H]GABA from nerve terminals. Therefore, synthesized selective ACE2 inhibitors decreased uptake of glutamate and GABA as well as exocytosis of GABA at the presynaptic level. The initial rate of glutamate uptake was the only parameter that was mitigated by both ACE2 inhibitors despite stereochemistry issues. In terms of ACE2-targeted antiviral/anti-SARS-CoV-2 and other therapies, novel ACE2 inhibitors should be checked on the subject of possible renin-angiotensin system (RAS)-independent neurological side effects.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine
| | - Anton Chernykh
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Alexander Pashenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Sergey Ryabukhin
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine
| | - Ganna Tolstanova
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine
| | - Dmitriy Volochnyuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine; Enamine Ltd, 78 Chervonotkatska Street, Kyiv 02094, Ukraine; Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kyiv 01054, Ukraine.
| |
Collapse
|
61
|
Trifan G, Testai FD. Neurological Manifestations of Myocarditis. Curr Neurol Neurosci Rep 2022; 22:363-374. [PMID: 35588043 PMCID: PMC9117837 DOI: 10.1007/s11910-022-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW The present review discusses the neurological complications associated with myocarditis of different etiologies. RECENT FINDINGS Myocarditis can be idiopathic or caused by different conditions, including toxins, infections, or inflammatory diseases. Clinical findings are variable and range from mild self-limited shortness of breath or chest pain to hemodynamic instability which may result in cardiogenic shock and death. Several neurologic manifestations can be seen in association with myocarditis. Tissue remodeling, fibrosis, and myocyte dysfunction can result in heart failure and arrhythmias leading to intracardiac thrombus formation and cardioembolism. In addition, peripheral neuropathies, status epilepticus, or myasthenia gravis have been reported in association with specific types of myocarditis. Multiple studies suggest the increasing risk of neurologic complications in patients with myocarditis. Neurologists should maintain a high suspicion of myocarditis in cases presenting with both cardiovascular and neurological dysfunction without a clear etiology.
Collapse
Affiliation(s)
- Gabriela Trifan
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, 912 S. Wood Street, M/C 796, Chicago, IL, 172C60612, USA.
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, 912 S. Wood Street, M/C 796, Chicago, IL, 172C60612, USA
| |
Collapse
|
62
|
Rehabilitation for COVID-19 in conjunction with early awake extracorporeal membrane oxygenation support: a case report. Int J Rehabil Res 2022; 45:287-290. [PMID: 35730065 DOI: 10.1097/mrr.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 can lead to acute respiratory distress syndrome. Awake venovenous extracorporeal membrane oxygenation is known to be effective in patients with critical COVID-19 and respiratory failure. This report describes the rehabilitation course and functional progress of a 63-year-old man who contracted severe COVID-19 and underwent awake venovenous extracorporeal membrane oxygenation. He started rehabilitation from the time of isolation while receiving venovenous extracorporeal membrane oxygenation and underwent a 30-day course of inpatient comprehensive rehabilitation. He regained functional independence and cognitive abilities and was able to walk without assistance at hospital discharge without any complications. This study demonstrates the feasibility of starting rehabilitation for COVID-19 early while the patient is on awake venovenous extracorporeal membrane oxygenation and eventually achieving a favorable outcome.
Collapse
|
63
|
Relationships between the Fear of COVID-19 Scale and regional brain atrophy in mild cognitive impairment. Acta Neuropsychiatr 2022; 34:153-162. [PMID: 35156604 DOI: 10.1017/neu.2022.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several studies have reported that the pandemic of coronavirus disease 2019 (COVID-19) influenced cognitive function in the elderly. However, the effect of COVID-19-related fear on brain atrophy has not been evaluated. In this study, we evaluated the relation between brain atrophy and the effect of COVID-19-related fear by analysing changes in brain volume over time using magnetic resonance imaging (MRI). METHODS Participants were 25 Japanese patients with mild cognitive impairment (MCI) or subjective cognitive decline (SCD), who underwent 1.5-tesla MRI scan twice, once before and once after the pandemic outbreak of COVID-19, and the Fear of Coronavirus Disease 2019 Scale (FCV-19S) assessment during that period. We computed regional brain atrophy per day between the 1st and 2nd scan, and evaluated the relation between the FCV-19S scores and regional shrinkage. RESULTS There was significant positive correlation between the total FCV-19S score and volume reduction per day in the right posterior cingulate cortex. Regarding the subscales of FCV-19S, we found significant positive correlation between factor 2 of the FCV-19S and shrinkage of the right posterior cingulate cortex. CONCLUSIONS There was positive correlation between the FCV-19S score and regional brain atrophy per day. Although it is already known that the psychological effects surrounding the COVID-19 pandemic cause cognitive function decline, our results further suggest that anxiety and fear related to COVID-19 cause regional brain atrophy.
Collapse
|
64
|
Neurological and Psychiatric Symptoms of COVID-19: A Narrative Review. PSYCHIATRY INTERNATIONAL 2022. [DOI: 10.3390/psychiatryint3020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recently dubbed Long COVID or Long-Haul COVID, those recovering from the initial COVID-19 infection may maintain clinical signs for longer than two or more weeks following the initial onset of the infection. The virus can gain entry into the CNS through axonal transport mediated through the olfactory nerve or hematogenous spread and can also cross the blood–brain barrier to access the temporal lobe and the brainstem. The neurologic and neuropsychiatric symptoms associated with COVID-19 patients are becoming a highly studied area due to the increased frequency of reported cases. Multiple hospital case series and observational studies have found a headache to be a common symptom among patients who are symptomatic with the SARS-CoV-2 virus. The headache described by many of these patients is similar to new daily persistent headache (NDPH). NDPH potentially develops in response to pro-inflammatory cytokines during a persistent systemic or CNS inflammation, mostly due to the initial infection. The treatments investigated were high-dose steroids, tetracycline derivatives, onabotulinum toxin type A, and long-term multidrug regimens. Among the identified symptoms of post-COVID-19 viral illness, fatigue appears to be the most ubiquitous. High-dose vitamin C is currently a suggested therapy proposed for its antioxidant, anti-inflammatory, and immunomodulatory properties. The mental health consequences of this diagnosis are being identified among large portions of COVID-19 survivors. Among these consequences, cases of major depressive disorder (MDD) and anxiety are being reported and closely examined. The aim of this narrative review is to highlight the neurological and psychiatric symptoms that have been associated with Long-Haul COVID and their possible treatments.
Collapse
|
65
|
Silva J, Patricio F, Patricio-Martínez A, Santos-López G, Cedillo L, Tizabi Y, Limón ID. Neuropathological Aspects of SARS-CoV-2 Infection: Significance for Both Alzheimer's and Parkinson's Disease. Front Neurosci 2022; 16:867825. [PMID: 35592266 PMCID: PMC9111171 DOI: 10.3389/fnins.2022.867825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Evidence suggests that SARS-CoV-2 entry into the central nervous system can result in neurological and/or neurodegenerative diseases. In this review, routes of SARS-Cov-2 entry into the brain via neuroinvasive pathways such as transcribrial, ocular surface or hematogenous system are discussed. It is argued that SARS-Cov-2-induced cytokine storm, neuroinflammation and oxidative stress increase the risk of developing neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Further studies on the effects of SARS-CoV-2 and its variants on protein aggregation, glia or microglia activation, and blood-brain barrier are warranted.
Collapse
Affiliation(s)
- Jaime Silva
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
66
|
Hampshire A, Chatfield DA, MPhil AM, Jolly A, Trender W, Hellyer PJ, Giovane MD, Newcombe VF, Outtrim JG, Warne B, Bhatti J, Pointon L, Elmer A, Sithole N, Bradley J, Kingston N, Sawcer SJ, Bullmore ET, Rowe JB, Menon DK. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. EClinicalMedicine 2022; 47:101417. [PMID: 35505938 PMCID: PMC9048584 DOI: 10.1016/j.eclinm.2022.101417] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Background Preliminary evidence has highlighted a possible association between severe COVID-19 and persistent cognitive deficits. Further research is required to confirm this association, determine whether cognitive deficits relate to clinical features from the acute phase or to mental health status at the point of assessment, and quantify rate of recovery. Methods 46 individuals who received critical care for COVID-19 at Addenbrooke's hospital between 10th March 2020 and 31st July 2020 (16 mechanically ventilated) underwent detailed computerised cognitive assessment alongside scales measuring anxiety, depression and post-traumatic stress disorder under supervised conditions at a mean follow up of 6.0 (± 2.1) months following acute illness. Patient and matched control (N = 460) performances were transformed into standard deviation from expected scores, accounting for age and demographic factors using N = 66,008 normative datasets. Global accuracy and response time composites were calculated (G_SScore & G_RT). Linear modelling predicted composite score deficits from acute severity, mental-health status at assessment, and time from hospital admission. The pattern of deficits across tasks was qualitatively compared with normal age-related decline, and early-stage dementia. Findings COVID-19 survivors were less accurate (G_SScore=-0.53SDs) and slower (G_RT=+0.89SDs) in their responses than expected compared to their matched controls. Acute illness, but not chronic mental health, significantly predicted cognitive deviation from expected scores (G_SScore (p=0.0037) and G_RT (p = 0.0366)). The most prominent task associations with COVID-19 were for higher cognition and processing speed, which was qualitatively distinct from the profiles of normal ageing and dementia and similar in magnitude to the effects of ageing between 50 and 70 years of age. A trend towards reduced deficits with time from illness (r∼=0.15) did not reach statistical significance. Interpretation Cognitive deficits after severe COVID-19 relate most strongly to acute illness severity, persist long into the chronic phase, and recover slowly if at all, with a characteristic profile highlighting higher cognitive functions and processing speed. Funding This work was funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC), NIHR Cambridge Clinical Research Facility (BRC-1215-20014), the Addenbrooke's Charities Trust and NIHR COVID-19 BioResource RG9402. AH is funded by the UK Dementia Research Institute Care Research and Technology Centre and Imperial College London Biomedical Research Centre. ETB and DKM are supported by NIHR Senior Investigator awards. JBR is supported by the Wellcome Trust (220258) and Medical Research Council (SUAG/051 G101400). VFJN is funded by an Academy of Medical Sciences/ The Health Foundation Clinician Scientist Fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
Collapse
Affiliation(s)
- Adam Hampshire
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Doris A. Chatfield
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
| | - Anne Manktelow MPhil
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
| | - Amy Jolly
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
| | - William Trender
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Peter J. Hellyer
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Martina Del Giovane
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
| | | | - Joanne G. Outtrim
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
| | - Ben Warne
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
| | - Junaid Bhatti
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Linda Pointon
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Anne Elmer
- National Institute for Health Research Cambridge Clinical Research Facility, Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
| | - Nyarie Sithole
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, United Kingdom
| | - John Bradley
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
- National Institute for Health Research Cambridge BioResource, United Kingdom
| | - Nathalie Kingston
- National Institute for Health Research COVID-19 BioResource, United Kingdom
| | - Stephen J. Sawcer
- Department of Clinical Neurosciences, and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Edward T. Bullmore
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, United Kingdom
- Cambridgeshire and Peterborough National Health Service Foundation Trust, United Kingdom
| | - James B. Rowe
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, United Kingdom
- Department of Clinical Neurosciences, and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - David K. Menon
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Division of Anaesthesia, Department of Medicine, University of Cambridge
| | - the Cambridge NeuroCOVID Group, the NIHR COVID-19 BioResource, and Cambridge NIHR Clinical Research Facility
- UK DRI Care Research and Technology Centre, Department of Brain Sciences, Imperial College London, United Kingdom
- Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, United Kingdom
- National Institute for Health Research Cambridge Clinical Research Facility, Cambridge University Hospitals National Health Service Foundation Trust, United Kingdom
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, United Kingdom
- National Institute for Health Research Cambridge BioResource, United Kingdom
- Department of Clinical Neurosciences, and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
- Cambridgeshire and Peterborough National Health Service Foundation Trust, United Kingdom
- Division of Anaesthesia, Department of Medicine, University of Cambridge
- National Institute for Health Research COVID-19 BioResource, United Kingdom
| |
Collapse
|
67
|
Noris-García E, Robinson-Agramonte MDELA, Gonçalves CA. Utility of Serum S100B as A Marker in Systemic Lupus Erythematosus Patients During and After the SARS-CoV-2 Pandemic. Arch Med Res 2022; 53:543-544. [PMID: 35637047 PMCID: PMC9130637 DOI: 10.1016/j.arcmed.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Carlos-Alberto Gonçalves
- Universidade Federal do Rio Grande do Sul, Programas de Pós-Graduação em Bioquímica e Neurociências, Porto Alegre, Brazil.
| |
Collapse
|
68
|
Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 2022; 19:101. [PMID: 35488237 PMCID: PMC9051822 DOI: 10.1186/s12974-022-02464-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes cerebral dysfunction in the short and long term and induces disruption of the blood–brain barrier (BBB), neuroinflammation, hypoperfusion, and accumulation of amyloid β (Aβ) and tau protein in the brain. White matter changes and brain atrophy can be detected using brain imaging, but unfortunately, there is no specific treatment that directly addresses the underlying mechanisms of cognitive impairments in sepsis. Here, we review the underlying mechanisms of sepsis-associated brain injury, with a focus on BBB dysfunction and Aβ and tau protein accumulation in the brain. We also describe the neurological manifestations and imaging findings of sepsis-associated brain injury, and finally, we propose potential therapeutic strategies for acute and long-term cognitive impairments associated with sepsis. In the acute phase of sepsis, we suggest using antibiotics (such as rifampicin), targeting proinflammatory cytokines, and preventing ischemic injuries and hypoperfusion. In the late phase of sepsis, we suggest targeting neuroinflammation, BBB dysfunction, Aβ and tau protein phosphorylation, glycogen synthase kinase-3 beta (GSK3β), and the receptor for advanced glycation end products (RAGE). These proposed strategies are meant to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating acute and long-term cognitive impairments in patients with sepsis.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Medicine, Translational Therapeutics Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Magdy Selim
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA.
| |
Collapse
|
69
|
Long COVID-19 Syndrome: Multiorgan Damage and Recommendations for Follow-Up and Rehabilitation. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The majority of the SARS-CoV-2 infected patients fully recover within a few weeks. However, a significant proportion of them, independently of their age, still have multi-organ damage, similar to that during the acute phase of infection, or symptoms for a longer term afte r recovery. “Postacute-COVID-19 (Long COVID-19 Syndrome)” is a term used for COVID-19 patients who are still symptomatic 4 and 12 weeks after the onset of acute symptoms and “Post-COVID-19-syndrome” ‒ for those with symptoms for longer than 12 weeks after the onset of acute symptoms. The severity of the initial infection does not correlate with the probability for and with the severity of long-term symptoms. This review comments on the multiorgan effects of Long COVID-19 Syndrome: respiratory, cardiovascular, hematological, renal, gastrointestinal, neurological, and metabolic ones. Recommendations for follow-up and rehabilitation for the recovery of Long COVID-19 Syndrome patients are discussed in detail.
Collapse
|
70
|
Huang Y, Ling Q, Manyande A, Wu D, Xiang B. Brain Imaging Changes in Patients Recovered From COVID-19: A Narrative Review. Front Neurosci 2022; 16:855868. [PMID: 35527821 PMCID: PMC9072792 DOI: 10.3389/fnins.2022.855868] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused several outbreaks of highly contagious respiratory diseases worldwide. The respiratory symptoms of Coronavirus Disease-19 (COVID-19) have been closely monitored and studied, while the central nervous system (CNS) and peripheral system (PNS) lesions induced by COVID-19 have not received much attention. Currently, patients with COVID-19-associated encephalopathy present with dizziness, headache, anxiety and depression, stroke, epileptic seizures, the Guillain-Barre syndrome (GBS), and demyelinating disease. The exact pathologic basis for these neurological symptoms is currently not known. Rapid mutation of the SARS-CoV-2 genome leads to the appearance of SARS-CoV-2 variants of concern (VOCs), which have higher infectivity and virulence. Therefore, this narrative review will focus on the imaging assessment of COVID-19 and its VOC. There has been an increase in technologies, such as [18F]fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and functional magnetic resonance imaging (fMRI), that have been used to observe changes in brain microstructure over time in patients with COVID-19 recovery. Medical imaging and pathological approaches aimed at exploring the associations between COVID-19 and its VOC, with cranial nerve and abnormal nerve discharge will shed light on the rehabilitation process of brain microstructural changes related to SARS-CoV-2, and aid future research in our understanding of the treatment and prognosis of COVID-19 encephalopathy.
Collapse
Affiliation(s)
- Yan Huang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Duozhi Wu
- Department of Anesthesiology, Hainan general Hospital, Haikou, China
- *Correspondence: Duozhi Wu,
| | - Boqi Xiang
- School of Public Health, Rutgers University, New Brunswick, NJ, United States
- Boqi Xiang,
| |
Collapse
|
71
|
Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report. Nutrients 2022; 14:nu14081580. [PMID: 35458142 PMCID: PMC9033019 DOI: 10.3390/nu14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous data indicate the presence of cognitive impairment in people who have undergone COVID-19, often called COVID Fog (CF). This phenomenon persists even 6 months after infection, and its etiology and pathogenesis are not fully known. The aim of this article was to analyze the relationship among cognitive functioning, clinical data and nutrition indexes in patients discharged from the COVID-19 hospital of the Military Institute of Medicine, Warsaw, Poland. The sample comprised 17 individuals—10 women and 7 men, with ages of 65 ± 14 years. Cognitive impairment was measured with the use of the Montreal Cognitive Assessment (MoCA). The nutrition parameters included: hemoglobin, red blood cells, total cholesterol and its fractions, triglycerides, total protein, albumin, urea, creatinine, phosphates, calcium and sodium. The analysis showed that albumin concentration significantly correlated with the total MoCA score and especially with the short-term memory test score. Conversely, total cholesterol, and especially LDL concentrations, were highly and negatively associated with the MoCA score. In conclusion: markers of nutritional status are correlated with the severity of CF. Individuals with malnutrition or risk of malnutrition should be screened for CF. Further studies need to be performed in this area.
Collapse
|
72
|
Andriuta D, Si-Ahmed C, Roussel M, Constans JM, Makki M, Aarabi A, Basille D, Andrejak C, Godefroy O. Clinical and Imaging Determinants of Neurocognitive Disorders in Post-Acute COVID-19 Patients with Cognitive Complaints. J Alzheimers Dis 2022; 87:1239-1250. [DOI: 10.3233/jad-215506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Neurocognitive disorders (NCDs) are a part of the post-acute coronavirus disease (COVID-19) syndrome. No study has specifically evaluated NCDs in post-acute COVID-19 patients with cognitive complaints or their MRI determinants. Objective: To characterize NCDs in post-acute COVID-19 patients with cognitive complaints. The secondary objectives were to assess their clinical and MRI determinants. Methods: We included 46 patients with a post-acute COVID-19 cognitive complaint referred to the Amiens University Hospital Memory Center. They underwent a neuropsychological assessment and 36 had cerebral MRI. The G3 overall summary score was the sum of the mean z scores for the executive function, language, and action speed domains. Neuropsychological profiles were compared in a general linear model. Clinical determinants were analyzed by stepwise linear regression. White matter hyperintensities (WMH) masks were analyzed using parcel-based WMH symptom mapping to identify the locations of WMHs associated with cognitive performance. Results: Repeated ANOVA showed a group effect (p = 0.0001) due to overall lower performance for patients and a domain effect (p = 0.0001) due to a lower (p = 0.007) action speed score. The G3 overall summary score was significantly associated with solely the requirement for oxygen (R2 = 0.319, p = 0.031). WHMs were associated with the G3 overall summary score in the following structures, all right-sided (p < 0.01): superior frontal region, postcentral region, cingulum, cortico-spinal tract, inferior longitudinal fasciculus, internal capsule, and posterior segment of the arcuate fasciculus. Conclusion: Post-acute COVID-19 patients with cognitive complaints had NCD, with prominent action slowing, significantly associated with the acute phase oxygen requirement and a right-sided WMH structure pattern.
Collapse
Affiliation(s)
- Daniela Andriuta
- Department of Neurology, Amiens University Medical Center, Amiens, France
- Laboratoire de Neurosciences Fonctionnelles et Pathologies (UR UPJV 4559), Jules Verne University of Picardy, Amiens, France
| | - Cherifa Si-Ahmed
- Department of Neurology, Amiens University Medical Center, Amiens, France
| | - Martine Roussel
- Department of Neurology, Amiens University Medical Center, Amiens, France
- Laboratoire de Neurosciences Fonctionnelles et Pathologies (UR UPJV 4559), Jules Verne University of Picardy, Amiens, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens University Medical Center, Amiens, France
| | - Malek Makki
- Laboratoire de Neurosciences Fonctionnelles et Pathologies (UR UPJV 4559), Jules Verne University of Picardy, Amiens, France
| | - Ardalan Aarabi
- Laboratoire de Neurosciences Fonctionnelles et Pathologies (UR UPJV 4559), Jules Verne University of Picardy, Amiens, France
| | - Damien Basille
- Department of Pneumology, Amiens University Medical Center and UR 4294 AGIR, JulesVerne University of Picardy, Amiens, France
| | - Claire Andrejak
- Department of Pneumology, Amiens University Medical Center and UR 4294 AGIR, JulesVerne University of Picardy, Amiens, France
| | - Olivier Godefroy
- Department of Neurology, Amiens University Medical Center, Amiens, France
| |
Collapse
|
73
|
Thams F, Antonenko D, Fleischmann R, Meinzer M, Grittner U, Schmidt S, Brakemeier EL, Steinmetz A, Flöel A. Neuromodulation through brain stimulation-assisted cognitive training in patients with post-COVID-19 cognitive impairment (Neuromod-COV): study protocol for a PROBE phase IIb trial. BMJ Open 2022; 12:e055038. [PMID: 35410927 PMCID: PMC9002255 DOI: 10.1136/bmjopen-2021-055038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION A substantial number of patients diagnosed with COVID-19 experience long-term persistent symptoms. First evidence suggests that long-term symptoms develop largely independently of disease severity and include, among others, cognitive impairment. For these symptoms, there are currently no validated therapeutic approaches available. Cognitive training interventions are a promising approach to counteract cognitive impairment. Combining training with concurrent transcranial direct current stimulation (tDCS) may further increase and sustain behavioural training effects. Here, we aim to examine the effects of cognitive training alone or in combination with tDCS on cognitive performance, quality of life and mental health in patients with post-COVID-19 subjective or objective cognitive impairments. METHODS AND ANALYSIS This study protocol describes a prospective randomised open endpoint-blinded trial. Patients with post-COVID-19 cognitive impairment will either participate in a 3-week cognitive training or in a defined muscle relaxation training (open-label interventions). Irrespective of their primary intervention, half of the cognitive training group will additionally receive anodal tDCS, all other patients will receive sham tDCS (double-blinded, secondary intervention). The primary outcome will be improvement of working memory performance, operationalised by an n-back task, at the postintervention assessment. Secondary outcomes will include performance on trained and untrained tasks and measures of health-related quality of life at postassessment and follow-up assessments (1 month after the end of the trainings). ETHICS AND DISSEMINATION Ethical approval was granted by the Ethics Committee of the University Medicine Greifswald (number: BB 066/21). Results will be available through publications in peer-reviewed journals and presentations at national and international conferences. TRIAL REGISTRATION NUMBER NCT04944147.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Fleischmann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sein Schmidt
- Clinical Research Unit, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eva-Lotta Brakemeier
- Department of Clinical Psychology and Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Anke Steinmetz
- Department of Physical and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases Site Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
74
|
Choe K, Park HY, Ikram M, Lee HJ, Park TJ, Ullah R, Kim MO. Systematic Review of the Common Pathophysiological Mechanisms in COVID-19 and Neurodegeneration: The Role of Bioactive Compounds and Natural Antioxidants. Cells 2022; 11:cells11081298. [PMID: 35455977 PMCID: PMC9031507 DOI: 10.3390/cells11081298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus (2019-nCoVCOVID-19) belongs to the Beta coronavirus family, which contains MERS-CoV (Middle East respiratory syndrome coronavirus) and SARS-CoV (severe acute respiratory syndrome coronavirus). SARS-CoV-2 activates the innate immune system, thereby activating the inflammatory mechanism, causing the release of inflammatory cytokines. Moreover, it has been suggested that COVID-19 may penetrate the central nervous system, and release inflammatory cytokines in the brains, inducing neuroinflammation and neurodegeneration. Several links connect COVID-19 with Alzheimer’s disease (AD), such as elevated oxidative stress, uncontrolled release of the inflammatory cytokines, and mitochondrial apoptosis. There are severe concerns that excessive immune cell activation in COVID-19 may aggravate the neurodegeneration and amyloid-beta pathology of AD. Here, we have collected the evidence, showing the links between the two diseases. The focus has been made to collect the information on the activation of the inflammation, its contributors, and shared therapeutic targets. Furthermore, we have given future perspectives, research gaps, and overlapping pathological bases of the two diseases. Lastly, we have given the short touch to the drugs that have equally shown rescuing effects against both diseases. Although there is limited information available regarding the exact links between COVID-19 and neuroinflammation, we have insight into the pathological contributors of the diseases. Based on the shared pathological features and therapeutic targets, we hypothesize that the activation of the immune system may induce neurological disorders by triggering oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, 6229 ER Maastricht, The Netherlands
| | - Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK;
| | - Rahat Ullah
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (K.C.); (M.I.); (H.J.L.); (R.U.)
- Alz-Dementia Korea Co., Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
75
|
Ziff OJ, Ashton NJ, Mehta PR, Brown R, Athauda D, Heaney J, Heslegrave AJ, Benedet AL, Blennow K, Checkley AM, Houlihan CF, Gauthier S, Rosa‐Neto P, Fox NC, Schott JM, Zetterberg H, Benjamin LA, Paterson RW. Amyloid processing in COVID-19-associated neurological syndromes. J Neurochem 2022; 161:146-157. [PMID: 35137414 PMCID: PMC9115071 DOI: 10.1111/jnc.15585] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain-Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1β, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p = 0.004) and sAPPβ (p = 0.03) as well as amyloid β (Aβ) 40 (p = 5.2 × 10-8 ), Aβ42 (p = 3.5 × 10-7 ), and Aβ42/Aβ40 ratio (p = 0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p = 0.001) and this negatively correlated with sAPPɑ and sAPPβ. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p = 0.0001) and this positively correlated with sAPPɑ and sAPPβ. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPβ. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation.
Collapse
Affiliation(s)
- Oliver J. Ziff
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Francis Crick InstituteLondonUK
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- King's College LondonInstitute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience InstituteLondonUK
| | - Puja R. Mehta
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
| | - Rachel Brown
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Dilan Athauda
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Francis Crick InstituteLondonUK
| | - Judith Heaney
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Advanced Pathogens Diagnostic UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Amanda J. Heslegrave
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Andrea Lessa Benedet
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Anna M. Checkley
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Advanced Pathogens Diagnostic UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Catherine F. Houlihan
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- Advanced Pathogens Diagnostic UnitUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Serge Gauthier
- Translational Neuroimaging LaboratoryMcGill University Research Centre for Studies in AgingMontrealCanada
- Alzheimer's Disease Research UnitMontréalCanada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryMcGill University Research Centre for Studies in AgingMontrealCanada
- Alzheimer's Disease Research UnitMontréalCanada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and TherapeuticsMcGill UniversityMontrealCanada
| | - Nick C. Fox
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Jonathan M. Schott
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
| | - Henrik Zetterberg
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- UK Dementia Research Institute, University College LondonLondonUK
| | - Laura A. Benjamin
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- University of LiverpoolBrain Infections GroupMerseysideLiverpoolUK
- Laboratory of Molecular and Cell BiologyUCLLondonUK
| | - Ross W. Paterson
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation Trust, Queen SquareLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
- Darent Valley HospitalKentUK
| |
Collapse
|
76
|
Szepietowska EM, Zawadzka E, Filipiak S. Symptoms of Post-Traumatic Stress Disorder and the Sense of Gains and Losses during the COVID-19 Pandemic: An International Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063504. [PMID: 35329192 PMCID: PMC8949522 DOI: 10.3390/ijerph19063504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022]
Abstract
This study was primarily designed to investigate the perception of changes in selected areas of life experienced by adults of various nationalities in connection to the long-lasting COVID-19 pandemic. The second objective was to identify the factors increasing the risk of perception of negative changes in life during the pandemic. The tools applied in the study include a self-report questionnaire designed to measure sociodemographic data and health status of the subjects, COVID-19 Sense of Life Changes Questionnaire, as well as the Impact of Event Scale: Revised. The study involved over 600 adult subjects. With increased intensity of intrusions, the likelihood of negative perception of the changes emerging as a result of the pandemic was reduced by approximately 7%, whereas a higher intensity of hyperarousal increased that risk. Individuals reporting a sense of negative changes presented a greater degree of hyperarousal compared to those reporting positive changes. In the group of subjects perceiving the changes in a positive way, increasing the intensity of intrusion and/or hyperarousal corresponded to a growing conviction about a negative nature of life changes concerning the relationship with their partner and affecting their work as well as regarding a positive meaning of the changes in relations with their parents and in daily life. Generally, there was a prevailing sense of negative changes; however, there was also a group of subjects that perceived these as positive. Intrusions and hyperarousal in certain individuals may play a role in motivating them to take action in protecting against effects of the pandemic and, in others, may lead to frustration and anxiety.
Collapse
|
77
|
Okolichany R, Padala P, Mooney S. Cognitive and Functional Abilities in an Older Adult Veteran Before and After Contracting COVID-19. J Alzheimers Dis Rep 2022; 6:115-120. [PMID: 35530116 PMCID: PMC9028709 DOI: 10.3233/adr-210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: A 76-year-old male Veteran with a historical diagnosis of mild cognitive impairment was assessed at baseline and follow-up as part of two separate, ongoing studies. He was diagnosed with COVID-19 during the interim. Objective: To report potential effects on cognitive and functional abilities measured before and after contracting COVID-19. Methods: The patient was administered a series of cognitive tests and self-report procedures assessing cognitive, functional, and neuropsychiatric status. Results: Overall, no discernable pattern of cognitive changes between pre-COVID and post-COVID assessments were noted. Only mild increases in agitation, depression, and irritability were noted on a self-report measure. However, this particular subject has relatively ideal psychosocial circumstances in comparison to the typical older adult Veteran male. It is hypothesized that improved psychosocial conditions will result in less negative cognitive and functional outcomes for older adults diagnosed with COVID-19. Conclusion: High levels of resilience, social support, and exercise, coupled with lower levels of perceived stress and loneliness may serve as protective factors against cognitive and functional decline in older adults who contract COVID-19.
Collapse
Affiliation(s)
- Ronald Okolichany
- Geriatric Research Education and Clinical Center(GRECC), Central Arkansas Veterans Healthcare System, North LittleRock, AR, USA
| | - Prasad Padala
- Geriatric Research Education and Clinical Center(GRECC), Central Arkansas Veterans Healthcare System, North LittleRock, AR, USA
| | - Scott Mooney
- Neuropsychology Service, Central Arkansas Veterans Healthcare System, North Little Rock, AR, USA
| |
Collapse
|
78
|
Vannorsdall TD, Brigham E, Fawzy A, Raju S, Gorgone A, Pletnikova A, Lyketsos CG, Parker AM, Oh ES. Cognitive Dysfunction, Psychiatric Distress, and Functional Decline After COVID-19. J Acad Consult Liaison Psychiatry 2022; 63:133-143. [PMID: 34793996 PMCID: PMC8591857 DOI: 10.1016/j.jaclp.2021.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is a limited understanding of the cognitive and psychiatric sequelae of COVID-19 during the post-acute phase, particularly among racially and ethnically diverse patients. OBJECTIVE We sought to prospectively characterize cognition, mental health symptoms, and functioning approximately four months after an initial diagnosis of COVID-19 in a racially and ethnically diverse group of patients. METHODS Approximately four months after COVID-19 diagnosis, patients in the Johns Hopkins Post-Acute COVID-19 Team Pulmonary Clinic underwent a clinical telephone-based assessment of cognition, depression, anxiety, trauma, and function. RESULTS Most Johns Hopkins Post-Acute COVID-19 Team patients assessed were women (59%) and members of racial/ethnic minority groups (65%). Of 82 patients, 67% demonstrated ≥1 abnormally low cognitive score. Patients requiring intensive care unit (ICU) stays displayed greater breadth and severity of impairment than those requiring less intensive treatment. Processing speed (35%), verbal fluency (26%-32%), learning (27%), and memory (27%) were most commonly impaired. Among all patients, 35% had moderate symptoms of depression (23%), anxiety (15%), or functional decline (15%); 25% of ICU patients reported trauma-related distress. Neuropsychiatric symptoms and functional decline did not differ by post-ICU versus non-ICU status and were unrelated to global cognitive composite scores. CONCLUSIONS At approximately 4 months after acute illness, cognitive dysfunction, emotional distress, and functional decline were common among a diverse clinical sample of COVID-19 survivors varying in acute illness severity. Patients requiring ICU stays demonstrated greater breadth and severity of cognitive impairment than those requiring less intensive treatment. Findings help extend our understanding of the nature, severity, and potential duration of neuropsychiatric morbidity after COVID-19 and point to the need for longitudinal assessment of cognitive and mental health outcomes among COVID-19 survivors of different demographic backgrounds and illness characteristics.
Collapse
Affiliation(s)
- Tracy D Vannorsdall
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Emily Brigham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ashraf Fawzy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarath Raju
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alesandra Gorgone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra Pletnikova
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ann M Parker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Outcomes After Critical Illness and Surgery (OACIS) Research Group, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Esther S Oh
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Johns Hopkins University School of Nursing, Baltimore, MD
| |
Collapse
|
79
|
Hypercoagulopathy as a severe Long-term complication of post SARS-CoV-19 infection. HUMAN PATHOLOGY REPORTS 2022. [PMCID: PMC8810306 DOI: 10.1016/j.hpr.2022.300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Melnikov K, Kondratyev V. Cognitive, emotional-affective, anxiety and autonomic disorders in patients with a new coronavirus infection (covid-19) in the acute period. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.21.6065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of this work is to identify neuropsychiatric functions in patients at Department No. 1 responsible for medical care of patients with a new coronavirus infection at the Samara City Hospital No. 7. Appropriate scales and questionnaires were used for this purpose. Cognitive impairments were found in 86% of the cases, emotional-affective impairments of varying severity in half of the subjects, an increase in reactive and personal anxiety was revealed, and vegetative disorders were observed in 78% of the subjects. Based on these data, it can be assumed that the new coronavirus infection affects the functioning of the nervous system of patients.
Collapse
|
81
|
Preobrazhenskaya IS. COVID-associated cognitive impairments: A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.2.201512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, began in March 2020 and continues to the present. The virus most often affects the respiratory system; to date, there is evidence of possible damage to the heart, skin, kidneys, central nervous system in this disease. In this regard, it is of great interest to study the neurological features of COVID-19, in particular, the development of cognitive disorders or the increase in the severity of already existing cognitive impairments. This review provides the latest data on the relationship of COVID-19 and cognitive impairment, the proposed etiology, pathogenesis and main clinical manifestations of cognitive disorders, and also discusses possible strategies for the treatment of cognitive impairment after suffering COVID-19.
Collapse
|
82
|
Pimentel GA, Guimarães TG, Silva GD, Scaff M. Case Report: Neurodegenerative Diseases After Severe Acute Respiratory Syndrome Coronavirus 2 Infection, a Report of Three Cases: Creutzfeldt–Jakob Disease, Rapidly Progressive Alzheimer's Disease, and Frontotemporal Dementia. Front Neurol 2022; 13:731369. [PMID: 35197920 PMCID: PMC8858976 DOI: 10.3389/fneur.2022.731369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurodegenerative diseases is yet to be fully clarified. Rapid worsening and even new-onset cases of those disorders have been reported in association with coronavirus disease 2019 (COVID-19). We describe three cases of neurodegenerative diseases in patients with SARS-CoV-2: a case of Creutzfeldt–Jakob disease during the COVID-19 acute phase, to our knowledge, is the second one described in the literature; a rapidly progressive Alzheimer's Disease; and a patient with frontotemporal dementia, and a quick decline of both cognitive and behavioral domains. This report suggests an association between SARS-CoV-2 infection and a higher probability of developing or accelerating neurodegenerative chronic neurologic conditions. We reinforce the need for a close cognitive follow-up in the aftermath of Sars-Cov2 infection.
Collapse
Affiliation(s)
- Gabriela Almeida Pimentel
- Hospital Sirio-Libanes and The University of São Paulo Medical School, Neurology, São Paulo, Brazil
- *Correspondence: Gabriela Almeida Pimentel
| | | | - Guilherme Diogo Silva
- Hospital Sirio-Libanes and The University of São Paulo Medical School, Neurology, São Paulo, Brazil
| | - Milberto Scaff
- Hospital Sirio-Libanes and Professor of The University of São Paulo Medical School, Neurology, São Paulo, Brazil
| |
Collapse
|
83
|
Scuteri D, Contrada M, Tonin P, Corasaniti MT, Nicotera P, Bagetta G. Dementia and COVID-19: A Case Report and Literature Review on Pain Management. Pharmaceuticals (Basel) 2022; 15:ph15020199. [PMID: 35215311 PMCID: PMC8879883 DOI: 10.3390/ph15020199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic imposes an unprecedented lifestyle, dominated by social isolation. In this frame, the population to pay the highest price is represented by demented patients. This group faces the highest risk of mortality, in case of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection, and they experience rapid cognitive deterioration, due to lockdown measures that prevent their disease monitoring. This complex landscape mirrors an enhancement of neuropsychiatric symptoms (NPSs), with agitation, delirium and reduced motor performances, particularly in non-communicative patients. Due to the consistent link between agitation and pain in these patients, the use of antipsychotics, increasing the risk of death during COVID-19, can be avoided or reduced through an adequate pain treatment. The most suitable pain assessment scale, also feasible for e-health implementation, is the Mobilization-Observation-Behaviour-Intensity-Dementia (MOBID-2) pain scale, currently under validation in the Italian real-world context. Here, we report the case of an 85-year-old woman suffering from mild cognitive impairment, subjected to off-label treatment with atypical antipsychotics, in the context of undertreated pain, who died during the pandemic from an extensive brain hemorrhage. This underscores the need for appropriate assessment and treatment of pain in demented patients.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy; (M.C.); (P.T.)
- Correspondence: ; Tel.: +39-0984/493462
| | - Marianna Contrada
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy; (M.C.); (P.T.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy; (M.C.); (P.T.)
| | | | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
84
|
Lee H, Sung HK, Lee D, Choi Y, Lee JY, Lee JY, Oh MD. Comparison of Complications after Coronavirus Disease and Seasonal Influenza, South Korea. Emerg Infect Dis 2022; 28:347-353. [PMID: 35076368 PMCID: PMC8798693 DOI: 10.3201/eid2802.211848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a retrospective cohort study using claims data to determine the number and types of complications from coronavirus disease (COVID-19) that patients experience and which patients are more vulnerable to those complications compared with complications in patients with influenza. Among the cohort, 19.6% of COVID-19 patients and 28.5% of influenza patients had >1 new complication. In most complications, COVID-19 patients had lower or similar relative risk compared with influenza patients; exceptions were hair loss, heart failure, mood disorder, and dementia. Young to middle-aged adult COVID-19 patients and patients in COVID-19 hotspots had a higher risk for complications. Overall, COVID-19 patients had fewer complications than influenza patients, but caution is necessary in high-risk groups. If the fatality rate for COVID-19 is reduced through vaccination, management strategies for this disease could be adapted, similar to those for influenza management, such as easing restrictions on economic activity or requirements for close-contact isolation.
Collapse
|
85
|
Reeves RR, Willoughby SG. Significant cognitive impairment likely associated with COVID-19 infection with relatively nonsevere symptoms. J Osteopath Med 2022; 122:119-123. [PMID: 35073472 DOI: 10.1515/jom-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023]
Abstract
COVID-19 infection may involve the nervous system and has been associated with a number of neuropsychiatric complications, including impairment of cognition and dementia. Such complications are more likely to occur in (but are not limited to) patients with severe COVID-19 infections and those with concomitant risk factors. In this case report, the authors describe a normally functioning 51-year-old woman who developed cognitive impairment of a degree that rendered her unable to care for herself most likely related to a relatively nonsevere infection with COVID-19 about 2 months earlier. A detailed report of her deficits of different areas of cognitive functioning is provided. This report aims to make clinicians more aware of the potential for cognitive impairment in patients who have suffered from COVID-19, including those with infections that were not severe.
Collapse
Affiliation(s)
- Roy R Reeves
- Clinical Director, South Mississippi State Hospital, Purvis, MS, USA.,Adjunct Professor of Clinical Sciences, William Carey University College of Osteopathic Medicine, Hattiesburg, MS, USA
| | - Scott G Willoughby
- Director of Psychology, South Mississippi State Hospital, Purvis, MS, USA.,Adjunct Professor of Clinical Sciences, William Carey University College of Osteopathic Medicine, Hattiesburg, MS, USA
| |
Collapse
|
86
|
Caradonna A, Patel T, Toleska M, Alabed S, Chang SL. Meta-Analysis of APP Expression Modulated by SARS-CoV-2 Infection via the ACE2 Receptor. Int J Mol Sci 2022; 23:ijms23031182. [PMID: 35163117 PMCID: PMC8835589 DOI: 10.3390/ijms23031182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Aβ) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of -1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.
Collapse
Affiliation(s)
- Alyssa Caradonna
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Tanvi Patel
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
| | - Matea Toleska
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Sedra Alabed
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| |
Collapse
|
87
|
Ahmad W, Shabbiri K. Two years of SARS-CoV-2 infection (2019-2021): structural biology, vaccination, and current global situation. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:5. [PMID: 35043040 PMCID: PMC8759062 DOI: 10.1186/s43162-021-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
The deadly SARS-CoV-2 virus has infected more than 259,502,031 confirmed cases with 5,183,003 deaths in 223 countries during the last 22 months (Dec 2019-Nov 2021), whereas approximately 7,702,859,718, vaccine doses have been administered (WHO: https://covid19.who.int/) as of the 24th of Nov 2021. Recent announcements of test trial completion of several new vaccines resulted in the launching of immunization for the common person around the globe highlighting a ray of hope to cope with this infection. Meanwhile, genetic variations in SARS-CoV-2 and third layer of infection spread in numerous countries emerged as a stronger prototype than the parental. New and parental SARS-CoV-2 strains appeared as a risk factor for other pre-existing diseases like cancer, diabetes, neurological disorders, kidney, liver, heart, and eye injury. This situation requires more attention and re-structuring of the currently developed vaccines and/or drugs against SARS-CoV-2 infection. Although a decline in COVID-19 infection has been reported globally, an increase in COVID-19 cases in the subcontinent and east Mediterranean area could be alarming. In this review, we have summarized the current information about the SARS-CoV-2 biology, its interaction and possible infection pathways within the host, epidemiology, risk factors, economic collapse, and possible vaccine and drug development.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
88
|
Villa C, Rivellini E, Lavitrano M, Combi R. Can SARS-CoV-2 Infection Exacerbate Alzheimer's Disease? An Overview of Shared Risk Factors and Pathogenetic Mechanisms. J Pers Med 2022; 12:29. [PMID: 35055344 PMCID: PMC8780286 DOI: 10.3390/jpm12010029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, is affecting every aspect of global society, including public healthcare systems, medical care access, and the economy. Although the respiratory tract is primarily affected by SARS-CoV-2, emerging evidence suggests that the virus may also reach the central nervous system (CNS), leading to several neurological issues. In particular, people with a diagnosis of Alzheimer's disease (AD) are a vulnerable group at high risk of contracting COVID-19, and develop more severe forms and worse outcomes, including death. Therefore, understanding shared links between COVID-19 and AD could aid the development of therapeutic strategies against both. Herein, we reviewed common risk factors and potential pathogenetic mechanisms that might contribute to the acceleration of neurodegenerative processes in AD patients infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
89
|
Asanova A, Khaustova O, Abdriakhimov R, Sapon D, Kleban К, Rakhman L. COGNITIVE IMPAIRMENT IN PATIENTS HOSPITALIZED WITH COVID-19 PNEUMONIA: CORRELATION WITH DEMOGRAPHIC, CLINICAL AND EMOTIONAL PROFILE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1868-1875. [PMID: 36089871 DOI: 10.36740/wlek202208109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: To study the structure of cognitive impairment in patients who were hospitalized with moderate to severe COVID-19 pneumonia. Investigate the correlation with demographic, biochemical parameters, as well as the emotional state of the patient. PATIENTS AND METHODS Materials and methods: Cognitive functions were assessed using the MOCA test. PHQ-9 depression and GAD-7 anxiety questionnaires were used to study psychopathological symptoms. Demographic, clinical and laboratory data were extracted from medical records. RESULTS Results: Cognitive performance is impaired in 94% of patients with COVID-19. This allows to suggest that COVID-19 has a serious impact on cognition, especially in elder people. Among different domains only visuospatial and executive functioning, abstract thinking, attention and delayed recall were severely impaired, while other domains stayed relatively intact. Patients after COVID-19 also tend to have a mild depressive and anxiety state. Anxiety levels were higher than depressive levels, but not connected to cognitive functioning. Also, there was seen a positive correlation between anxiety and pO2 and negative between anxiety and comorbid cardiac pathology. However, this requires further studies to reveal. Another interesting finding was non-linear relationship between cognitive performance and depression, that allows to suggest rapidly evolving depressive mood in persons with severe cognitive impairment after COVID-19. Cognitive and emotional state of patients after COVID-19 was also highly connected with working status. CONCLUSION Conclusion: Significant cognitive impairment was presented in almost all patients with COVID-19. There was a selective impairment in domains of visuospatial/ executive functioning, abstract thinking, attention and delayed recall. Conclusions: Significant cognitive impairment was presented in almost all patients with COVID-19. There was a selective impairment in domains of visuospatial/ executive functioning, abstract thinking, attention and delayed recall.
Collapse
Affiliation(s)
- Azize Asanova
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | | | | | - Dariia Sapon
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| | | | | |
Collapse
|
90
|
Stoddart P, Satchell SC, Ramnath R. Cerebral microvascular endothelial glycocalyx damage, its implications on the blood-brain barrier and a possible contributor to cognitive impairment. Brain Res 2022; 1780:147804. [DOI: 10.1016/j.brainres.2022.147804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
|
91
|
Savostyanov V, Kobelev A, Kudashov I. Comprehensive Biotechnical System for Screening Risk-based Diagnosis of COVID-19 and Post-COVID Syndrome. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2022; 13:45-53. [PMID: 36196240 PMCID: PMC9487909 DOI: 10.2478/joeb-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
At present, there are no hardware or biochemical systems that allow to assess the severity of post-COVID syndrome in vivo. The hardware of the proposed biotechnical system is based on routine transthoracic electrical impedance rheography, which makes it possible to register the frequency characteristics of the patient's bioimpedance response to controlled stress stimulation, thereby simultaneously fixing the characteristics of his productive heart, the state of the hemomicrocirculatory bed, the efficiency of the gas transport function of his blood, and also reliably assess personal reactivity and adaptive potential. Subsequent mathematical approximation of the obtained biometric data by an original neural network makes it possible to rank the results obtained and automatically generate a program of medical rehabilitation for a particular patient, depending on the severity of his post-COVID syndrome. The study results proved two reliable physiological signs confirming the presence of latent post-COVID complications: a decrease in the base impedance value for light exercise and an increase in the length of the systolic arc of the rheocardiogram.
Collapse
Affiliation(s)
- Vladimir Savostyanov
- Faculty of Biomedical Engineering, Bauman Moscow State Technical University, Moscow, Russia
| | - Alexander Kobelev
- Faculty of Biomedical Engineering, Bauman Moscow State Technical University, Moscow, Russia
| | - Ivan Kudashov
- Faculty of Biomedical Engineering, Bauman Moscow State Technical University, Moscow, Russia
| |
Collapse
|
92
|
Radhakrishnan RK, Kandasamy M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221078418. [PMID: 35133907 PMCID: PMC10581113 DOI: 10.1177/15333175221078418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
Collapse
Affiliation(s)
- Risna K. Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| |
Collapse
|
93
|
Samartsev IN, Zhivolupov SA, Butakova JS, Parshin MS. [The open observational study of aceclofenac and vinpocetine effectiveness and tolerability in treatment of patients with chronic cerebrovascular disease after COVID-19 (AQUA study)]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:s1-s8. [PMID: 34968019 DOI: 10.17116/jnevro2021121111s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABSTRACT OBJECTIVE To estimate the frequency of long-COVID in patients with chronic cerebrovascular disease, to identify the risk factors for the development of this condition and to analyze effectiveness and tolerability of Vinpocetine and Aertal in treatment of this disease. MATERIAL AND METHODS The study included 97 patients (64.5±5.2 years), among which 42 were diagnosed with long-COVID. The effectiveness of treatment was analyzed with NRS-P, Post-COVID-19 Functional Status (PCFS), Global Rating of Change Scale (GROC). RESULTS Predictors of long-COVID was female gender (p=0.022), severe COVID-19 (p=0.035), comorbidities: cardiovascular diseases (p=0.032), endocrinopathies (p=0.041), affective disorders (p=0.021). Significant changes in the functional status of patients were recorded after 20 days of treatment (PCFS), in pain after 10 days (NRS-P). The most pronounced clinical effect (PCFS) was obtained after 1 mth of therapy with vinpocetine and 20 days with aceclofenac (NRS-P). After 30 days 25/59.5% of patients noted a «pronounced» improvement in their own well-being (GROC) without the development of significant side effects. CONCLUSIONS 43.3% of patients with chronic cerebrovascular disease and certain predictors develop long-COVID. Aceclofenac and vinpocetine are effective in relieving a number of symptoms of long-COVID, which requires further study.
Collapse
Affiliation(s)
- I N Samartsev
- Military Medical Academy named after S.M. Kirov, St. Petersburg, Russia
| | - S A Zhivolupov
- Military Medical Academy named after S.M. Kirov, St. Petersburg, Russia
| | - J S Butakova
- Novodvinsk Central City Hospital, Novodvinsk, Russia
| | - M S Parshin
- City Hospital No. 26, St. Petersburg, Russia
| |
Collapse
|
94
|
Kurki SN, Kantonen J, Kaivola K, Hokkanen L, Mäyränpää MI, Puttonen H, Martola J, Pöyhönen M, Kero M, Tuimala J, Carpén O, Kantele A, Vapalahti O, Tiainen M, Tienari PJ, Kaila K, Hästbacka J, Myllykangas L. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study. Acta Neuropathol Commun 2021; 9:199. [PMID: 34949230 PMCID: PMC8696243 DOI: 10.1186/s40478-021-01302-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein E ε4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.
Collapse
Affiliation(s)
- Samu N. Kurki
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jonas Kantonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - FinnGen
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, Meilahti Infectious Diseases and Vaccine Research Center MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Virology, University of Helsinki, and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Intensive Care Unit, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Juha Martola
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Jarno Tuimala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Anu Kantele
- Department of Infectious Diseases, Meilahti Infectious Diseases and Vaccine Research Center MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Marjaana Tiainen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Johanna Hästbacka
- Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Intensive Care Unit, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| |
Collapse
|
95
|
Huang S, Zhou Z, Yang D, Zhao W, Zeng M, Xie X, Du Y, Jiang Y, Zhou X, Yang W, Guo H, Sun H, Liu P, Liu J, Luo H, Liu J. Persistent white matter changes in recovered COVID-19 patients at the 1-year follow-up. Brain 2021; 145:1830-1838. [PMID: 34918020 PMCID: PMC8754808 DOI: 10.1093/brain/awab435] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
There is growing evidence that severe acute respiratory syndrome coronavirus 2 can affect the CNS. However, data on white matter and cognitive sequelae at the one-year follow-up are lacking. Therefore, we explored these characteristics in this study. We investigated 22 recovered coronavirus disease 2019 (COVID-19) patients and 21 matched healthy controls. Diffusion tensor imaging, diffusion kurtosis imaging and neurite orientation dispersion and density imaging were performed to identify white matter changes, and the subscales of the Wechsler Intelligence scale were used to assess cognitive function. Correlations between diffusion metrics, cognitive function, and other clinical characteristics were then examined. We also conducted subgroup analysis based on patient admission to the intensive care unit. The corona radiata, corpus callosum and superior longitudinal fasciculus had lower volume fraction of intracellular water in the recovered COVID-19 group than in the healthy control group. Patients who had been admitted to the intensive care unit had lower fractional anisotropy in the body of the corpus callosum than those who had not. Compared with the healthy controls, the recovered COVID-19 patients demonstrated no significant decline in cognitive function. White matter tended to present with fewer abnormalities for shorter hospital stays and longer follow-up times. Lower axonal density was detected in clinically recovered COVID-19 patients after one year. Patients who had been admitted to the intensive care unit had slightly more white matter abnormalities. No significant decline in cognitive function was found in recovered COVID-19 patients. The duration of hospital stay may be a predictor for white matter changes at the one-year follow-up.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Zhou
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Mu Zeng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xingzhi Xie
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yanyao Du
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingjia Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianglin Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hu Guo
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Sun
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ping Liu
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jiyang Liu
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China.,Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
96
|
Kouzuki M, Furukawa S, Mitani K, Urakami K. Examination of the cognitive function of Japanese community-dwelling older adults in a class for preventing cognitive decline during the COVID-19 pandemic. PLoS One 2021; 16:e0248446. [PMID: 34898633 PMCID: PMC8668118 DOI: 10.1371/journal.pone.0248446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
We examined the changes in cognitive function due to restrictions in daily life during the coronavirus disease 2019 (COVID-19) pandemic in community-dwelling older adults with mild cognitive decline. This was a retrospective, case-control study. The participants include 88 older adults with mild cognitive decline (mean age = 81.0 [standard deviation = 6.5] years) who participated in a class designed to help prevent cognitive decline. This class was suspended from early-March to end of May 2020 to prevent the spread of COVID-19, and resumed in June 2020. We collected demographic and cognitive function test data (Touch Panel-type Dementia Assessment Scale [TDAS]) before and after class suspension and questionnaire data on their lifestyle and thoughts during the suspension. Change in TDAS scores from before and after the suspension was used to divide the participants into decline (2 or more points worsening) and non-decline (all other participants) groups, with 16 (18.2%) and 72 (81.8%) participants in each group, respectively. A logistic regression model showed that the odds ratio (OR) for cognitive decline was lower in participants whose responses were “engaged in hobbies” (OR = 0.07, p = 0.015), “worked on a worksheet about cognitive training provided by the town hall” (OR = 0.19, p = 0.026), and “had conversations over the phone” (OR = 0.28, p = 0.0495). There was a significant improvement in TDAS scores after class was resumed (p < 0.01). A proactive approach to intellectual activities and social ties may be important for the prevention of cognitive decline during periods of restrictions due to COVID-19. We found that cognitive function test scores before class suspension significantly improved after resuming classes. We speculate that continued participation in this class led to positive behavioral changes in daily life during periods of restriction due to COVID-19.
Collapse
Affiliation(s)
- Minoru Kouzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
- * E-mail:
| | - Shota Furukawa
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Keisuke Mitani
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Katsuya Urakami
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
97
|
Sun X, Zhang H, Yao D, Xu Y, Jing Q, Cao S, Tian L, Li C. Integrated Bioinformatics Analysis Identifies Hub Genes Associated with Viral Infection and Alzheimer's Disease. J Alzheimers Dis 2021; 85:1053-1061. [PMID: 34924389 DOI: 10.3233/jad-215232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal neurodegenerative disease, the etiology of which is unclear. Previous studies have suggested that some viruses are neurotropic and associated with AD. OBJECTIVE By using bioinformatics analysis, we investigated the potential association between viral infection and AD. METHODS A total of 5,066 differentially expressed genes (DEGs) in the temporal cortex between AD and control samples were identified. These DEGs were then examined via weighted gene co-expression network analysis (WGCNA) and clustered into modules of genes with similar expression patterns. Of identified modules, module turquoise had the highest correlation with AD. The module turquoise was further characterized using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. RESULTS Our results showed that the KEGG pathways of the module turquoise were mainly associated with viral infection signaling, specifically Herpes simplex virus, Human papillomavirus, and Epstein-Barr virus infections. A total of 126 genes were enriched in viral infection signaling pathways. In addition, based on values of module membership and gene significance, a total of 508 genes within the module were selected for further analysis. By intersecting these 508 genes with those 126 genes enriched in viral infection pathways, we identified 4 hub genes that were associated with both viral infection and AD: TLR2, COL1A2, NOTCH3, and ZNF132. CONCLUSION Through bioinformatics analysis, we demonstrated a potential link between viral infection and AD. These findings may provide a platform to further our understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Xiaoru Sun
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dongdong Yao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Anesthesiology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Yaru Xu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Qi Jing
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Silu Cao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Li Tian
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Cheng Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| |
Collapse
|
98
|
Abstract
The second year of the COVID-19 (Coronavirus Disease 2019) pandemic has seen the need to identify and assess the long-term consequences of a SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) infection on an individual's, including adequate cognitive functioning. This review is attempting to highlight the current understanding of the various direct and indirect mechanisms of nervous system damage, describing the causality of similar symptoms following SARS-CoV-2 infection. This understanding is essential to establish the long-term consequences from the disease (including the potential for increased risk of dementia in some cases) and to identify means of preventing or ameliorating the brain damage. There is urgent need for research to better understand the pathogenesis of neurological disturbances in COVID-19, some of which have probably been covert and the prevalence of which may be considerably underestimated. Neuropsychiatric monitoring follow-up of COVID-19 patients will be important in determining the extent and prevalence of long-term neurological and psychiatric consequences of COVID-19. Early intervention for emerging these problems will be critical for improving quality of life for many COVID-19 survivors.
Collapse
Affiliation(s)
- M A Khoreva
- Altai State Medical University, Barnaul, Russia
| |
Collapse
|
99
|
Nikitina AJ, Chimagomedova AS, Levin OS. [Neurological complications of COVID-19 in elderly people]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:5-15. [PMID: 34870908 DOI: 10.17116/jnevro20211211025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Virus SARS-CoV2 (beta-coronavirus) can induce severe pneumonia with acute respiratory distress syndrome, respiratory failure and multiorgan dysfunction. As more we learned about Covid-19, we understand that SARS-CoV-2 have neuroinvasive properties and can cause different neurological complications. In this article we discusses about the features of neurological sequences of Covid-19 in elderly people.
Collapse
Affiliation(s)
- A J Nikitina
- Russian Medical Academy of continuous Professional Education, Moscow, Russia
| | - A Sh Chimagomedova
- Russian Medical Academy of continuous Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of continuous Professional Education, Moscow, Russia
| |
Collapse
|
100
|
Di Ciaula A, Krawczyk M, Filipiak KJ, Geier A, Bonfrate L, Portincasa P. Noncommunicable diseases, climate change and iniquities: What COVID-19 has taught us about syndemic. Eur J Clin Invest 2021; 51:e13682. [PMID: 34551123 PMCID: PMC8646618 DOI: 10.1111/eci.13682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND COVID-19 is generating clinical challenges, lifestyle changes, economic consequences. The pandemic imposes to familiarize with concepts as prevention, vulnerability and resilience. METHODS We analysed and reviewed the most relevant papers in the MEDLINE database on syndemic, noncommunicable diseases, pandemic, climate changes, pollution, resilience, vulnerability, health costs, COVID-19. RESULTS We discuss that comprehensive strategies must face multifactorial consequences since the pandemic becomes syndemic due to interactions with noncommunicable diseases, climate changes and iniquities. The lockdown experience, on the other hand, demonstrates that it is rapidly possible to reverse epidemiologic trends and to reduce pollution. The worst outcome is evident in eight highly industrialized nations, where 12% of the world population experienced about one-third of all COVID-19-deaths worldwide. Thus, a great economic power has not been fully protective, and a change of policy is obviously needed to avoid irreversible consequences. CONCLUSIONS We are accumulating unhealthy populations living in unhealthy environments and generating unhealthy offspring. The winning policy should tackle structural inequities through a syndemic approach, to protect vulnerable populations from present and future harms.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| | - Marcin Krawczyk
- Department of Medicine IISaarland University Medical CenterSaarland UniversityHomburgGermany
- Laboratory of Metabolic Liver DiseasesDepartment of General, Transplant and Liver SurgeryCentre for Preclinical ResearchMedical University of WarsawWarsawPoland
| | | | - Andreas Geier
- Division of HepatologyDepartment of Internal Medicine IIUniversity Hospital WürzburgWürzburgGermany
| | - Leonilde Bonfrate
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| | - Piero Portincasa
- Department of Biomedical Sciences and Human OncologyClinica Medica ‘A. Murri’University of Bari ‘Aldo Moro’ Medical SchoolBariItaly
| |
Collapse
|