51
|
Rahman MH, Kim MS, Lee IK, Yu R, Suk K. Interglial Crosstalk in Obesity-Induced Hypothalamic Inflammation. Front Neurosci 2018; 12:939. [PMID: 30618568 PMCID: PMC6300514 DOI: 10.3389/fnins.2018.00939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022] Open
Abstract
Glial cells have recently gained particular attention for their close involvement in neuroinflammation and metabolic disorders including obesity and diabetes. In the central nervous system (CNS), different types of resident glial cells have been documented to express several signaling molecules and related receptors, and their crosstalks have been implicated in physiology and pathology of the CNS. Emerging evidence illustrates that malfunctioning glia and their products are an important component of hypothalamic inflammation. Recent studies have suggested that glia–glia crosstalk is a pivotal mechanism of overnutrition-induced chronic hypothalamic inflammation, which might be intrinsically associated with obesity/diabetes and their pathological consequences. This review covers the recent advances in the molecular aspects of interglial crosstalk in hypothalamic inflammation, proposing a central role of such a crosstalk in the development of obesity, diabetes, and related complications. Finally, we discuss the possibilities and challenges of targeting glial cells and their crosstalk for a better understanding of hypothalamic inflammation and related metabolic dysfunctions.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
52
|
Contribution of CD137L to Sensory Hypersensitivity in a Murine Model of Neuropathic Pain. eNeuro 2018; 5:eN-NWR-0218-18. [PMID: 30417077 PMCID: PMC6223109 DOI: 10.1523/eneuro.0218-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
CD137L (4-1BBL) is a costimulatory molecule whose signaling can promote monocyte/macrophage functions; however, CD137L-mediated microglial response and its role in neuropathic pain remain unknown. We investigated CD137L following peripheral nerve injury-induced neuropathic pain using a spinal nerve L5 transection (L5Tx) murine model in both sexes. First, C57BL/6_CD137L knock-out (KO) mice displayed decreased mechanical and diminished heat hypersensitivity compared to wild-type (WT) controls, beginning on day 3 to up to day 35 post-L5Tx. Purified anti-mouse CD137L neutralizing monoclonal antibody (0.1 or 0.5 µg) was also used to identify CD137L’s window of action in BALB/c mice. Anti-CD137L antibody was intrathecally administered either from day 0 (before surgery) to day 7 (early treatment), or from day 6 to 13 post-L5Tx (late treatment), and nociceptive thresholds were assessed before surgery to up to day 35 post-surgery. Early treatment with anti-CD137L reduced L5Tx-induced mechanical but not heat hypersensitivity, while later treatment did not alter either sensitivity. Pro- versus anti-inflammatory responses within the lumbar spinal cord following L5Tx were further evaluated via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) in time-course studies. Following L5Tx, female CD137L KO mice did not show increased iNOS mRNA and had reduced numbers of IL-1β+ cells compared to WT. At 21 d post-surgery, CD137L KO mice had higher total numbers of arginase (Arg)-1+ cells and Arg-1+ microglia. Altogether, results indicate that spinal cord CD137L contributes to the development of peripheral nerve injury-induced neuropathic pain, which may be in part mediated through CD137L’s modulation of the pro- and anti-inflammatory balance within the spinal cord.
Collapse
|
53
|
Global, Survival, and Apoptotic Transcriptome during Mouse and Human Early Embryonic Development. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5895628. [PMID: 30515407 PMCID: PMC6236930 DOI: 10.1155/2018/5895628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Survival and cell death signals are crucial for mammalian embryo preimplantation development. However, the knowledge on the molecular mechanisms underlying their regulation is still limited. Mouse studies are widely used to understand preimplantation embryo development, but extrapolation of these results to humans is questionable. Therefore, we wanted to analyse the global expression profiles during early mouse and human development with a special focus on genes involved in the regulation of the apoptotic and survival pathways. We used DNA microarray technology to analyse the global gene expression profiles of preimplantation human and mouse embryos (metaphase II oocytes, embryos at the embryonic genome activation stage, and blastocysts). Components of the major apoptotic and survival signalling pathways were expressed during early human and mouse embryonic development; however, most expression profiles were species-specific. Particularly, the expression of genes encoding components and regulators of the apoptotic machinery were extremely stable in mouse embryos at all analysed stages, while it was more stage-specific in human embryos. CASP3, CASP9, and AIF were the only apoptosis-related genes expressed in both species and at all studied stages. Moreover, numerous transcripts related to the apoptotic and survival pathway were reported for the first time such as CASP6 and IL1RAPL1 that were specific to MII oocytes; CASP2, ENDOG, and GFER to blastocysts in human. These findings open new perspectives for the characterization and understanding of the survival and apoptotic signalling pathways that control early human and mouse embryonic development.
Collapse
|
54
|
Lee HW. Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript. Mol Cells 2018; 41:917-922. [PMID: 30352492 PMCID: PMC6199566 DOI: 10.14348/molcells.2018.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022] Open
Abstract
The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet TCT of human TNSFSF9 in HepG2 cells to TAG to create an amber stop codon. The TCT triplet is the codon for Ser at the 172nd position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the TAG had been re-edited to the wild type triplet TCT, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.
Collapse
Affiliation(s)
- Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
55
|
Lu Y, Li C, Du S, Chen X, Zeng X, Liu F, Chen Y, Chen J. 4-1BB Signaling Promotes Alveolar Macrophages-Mediated Pro-Fibrotic Responses and Crystalline Silica-Induced Pulmonary Fibrosis in Mice. Front Immunol 2018; 9:1848. [PMID: 30250465 PMCID: PMC6139304 DOI: 10.3389/fimmu.2018.01848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022] Open
Abstract
Silicosis is caused by exposure to crystalline silica (CS). We have previously shown that blocking 4-1BB signaling attenuated CS-induced inflammation and pulmonary fibrosis. However, the cells that express 4-1BB, which plays a vital role in promoting fibrosis, are still unknown. In this study, we demonstrated that the expression of 4-1BB is elevated in alveolar macrophages (AMs) in the lungs of CS-injured mice. CS exposure also markedly enhanced the expression of 4-1BB in macrophage-like, MH-S cells. In these cells, activation of the 4-1BB signaling with an agonist antibody led to upregulated secretion of pro-fibrotic mediators. Consistently, blocking 4-1BB downstream signaling or genetic deletion of 4-1BB alleviated pro-fibrotic responses in vitro, while treatment with a 4-1BB fusion protein promoted pro-fibrotic responses. In vivo experiments showed that blocking 4-1BB signaling decreased the expressions of pro-fibrotic mediators and fibrosis. These data suggest that 4-1BB signaling plays an important role in promoting AMs-mediated pro-fibrotic responses and pulmonary fibrosis. Our findings may provide a potential molecular target to reduce CS-induced fibrotic responses in occupational lung disease.
Collapse
Affiliation(s)
- Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Sitong Du
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Xi Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Xinning Zeng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
56
|
Gainey SJ, Horn GP, Towers AE, Oelschlager ML, Tir VL, Drnevich J, Fent KW, Kerber S, Smith DL, Freund GG. Exposure to a firefighting overhaul environment without respiratory protection increases immune dysregulation and lung disease risk. PLoS One 2018; 13:e0201830. [PMID: 30130361 PMCID: PMC6103500 DOI: 10.1371/journal.pone.0201830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023] Open
Abstract
Firefighting activities appear to increase the risk of acute and chronic lung disease, including malignancy. While self-contained breathing apparatuses (SCBA) mitigate exposures to inhalable asphyxiates and carcinogens, firefighters frequently remove SCBA during overhaul when the firegrounds appear clear of visible smoke. Using a mouse model of overhaul without airway protection, the impact of fireground environment exposure on lung gene expression was assessed to identify transcripts potentially critical to firefighter-related chronic pulmonary illnesses. Lung tissue was collected 2 hrs post-overhaul and evaluated via whole genome transcriptomics by RNA-seq. Although gas metering showed that the fireground overhaul levels of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanine (HCN), hydrogen sulfide (H2S) and oxygen (O2) were within NIOSH ceiling recommendations, 3852 lung genes were differentially expressed when mice exposed to overhaul were compared to mice on the fireground but outside the overhaul environment. Importantly, overhaul exposure was associated with an up/down-regulation of 86 genes with a fold change of 1.5 or greater (p<0.5) including the immunomodulatory-linked genes S100a8 and Tnfsf9 (downregulation) and the cancer-linked genes, Capn11 and Rorc (upregulation). Taken together these findings indicate that, without respiratory protection, exposure to the fireground overhaul environment is associated with transcriptional changes impacting proteins potentially related to inflammation-associated lung disease and cancer.
Collapse
Affiliation(s)
- Stephen J. Gainey
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Gavin P. Horn
- Illinois Fire Service Institute, Champaign, Illinois, United States of America
| | - Albert E. Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Maci L. Oelschlager
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana, Illinois, United States of America
| | - Vincent L. Tir
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana, Illinois, United States of America
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, United States of America
| | - Kenneth W. Fent
- Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, Ohio, United States of America
| | - Stephen Kerber
- Director, UL Firefighter Safety Research Institute, Columbia, Maryland, United States of America
| | - Denise L. Smith
- Illinois Fire Service Institute, Champaign, Illinois, United States of America
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Spring, New York, United States of America
| | - Gregory G. Freund
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana, Illinois, United States of America
| |
Collapse
|
57
|
Dharmadhikari B, Nickles E, Harfuddin Z, Ishak NDB, Zeng Q, Bertoletti A, Schwarz H. CD137L dendritic cells induce potent response against cancer-associated viruses and polarize human CD8 + T cells to Tc1 phenotype. Cancer Immunol Immunother 2018; 67:893-905. [PMID: 29508025 PMCID: PMC11028277 DOI: 10.1007/s00262-018-2144-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
Therapeutic tumor vaccination based on dendritic cells (DC) is safe; however, its efficacy is low. Among the reasons for only a subset of patients benefitting from DC-based immunotherapy is an insufficient potency of in vitro generated classical DCs (cDCs), made by treating monocytes with GM-CSF + IL-4 + maturation factors. Recent studies demonstrated that CD137L (4-1BBL, TNFSF9) signaling differentiates human monocytes to a highly potent novel type of DC (CD137L-DCs) which have an inflammatory phenotype and are closely related to in vivo DCs. Here, we show that CD137L-DCs induce potent CD8+ T-cell responses against Epstein-Barr virus (EBV) and Hepatitis B virus (HBV), and that T cells primed by CD137L-DCs more effectively lyse EBV+ and HBV+ target cells. The chemokine profile of CD137L-DCs identifies them as inflammatory DCs, and they polarize CD8+ T cells to a Tc1 phenotype. Expression of exhaustion markers is reduced on T cells activated by CD137L-DCs. Furthermore, these T cells are metabolically more active and have a higher capacity to utilize glucose. CD137L-induced monocyte to DC differentiation leads to the formation of AIM2 inflammasome, with IL-1beta contributing to CD137L-DCs possessing a stronger T cell activation ability. CD137L-DCs are effective in crosspresentation. PGE2 as a maturation factor is required for enhancing migration of CD137L-DCs but does not significantly reduce their potency. This study shows that CD137L-DCs have a superior ability to activate T cells and to induce potent Tc1 responses against the cancer-causing viruses EBV and HBV which suggest CD137L-DCs as promising candidates for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Emily Nickles
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Nur Diana Binte Ishak
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Qun Zeng
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | | | - Herbert Schwarz
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
58
|
He Y, Ao DH, Li XQ, Zhong SS, A R, Wang YY, Xiang YJ, Xu BL, Yang TT, Gao XG, Liu GZ. Increased Soluble CD137 Levels and CD4+ T-Cell-Associated Expression of CD137 in Acute Atherothrombotic Stroke. Clin Transl Sci 2018; 11:428-434. [PMID: 29697202 PMCID: PMC6039206 DOI: 10.1111/cts.12553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 12/28/2022] Open
Abstract
As a proinflammatory cytokine, CD137 (4‐1BB, TNFRSF9) is present in membrane‐bound and soluble forms. Increased expression of CD137 was recently found in T cells in human atherosclerotic plaques. However, the exact role of CD137 in ischemic stroke is not clear. In this study we analyzed the protein levels of soluble CD137 (sCD137) and the expression of CD137 on CD4+ T cells in the peripheral blood of patients with acute atherothrombotic stroke by using the cytometry beads array (CBA) and flow cytometry. Within 24 hours of onset, the stroke patients showed elevated levels of sCD137 (2.7 pg/ml) and CD137 expression on CD4+ T cells (4.9 ± 3.2%) compared with normal controls (1.1 pg/ml, P < 0.01; 1.3 ± 1.0%, P < 0.01). Alterations in CD137 expression may enhance ischemia‐induced inflammatory responses via bidirectional signaling and, consequently, aggravate brain injury in early stages of this disorder.
Collapse
Affiliation(s)
- Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Dong-Hui Ao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Rong A
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Ya-Juan Xiang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Yang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xu-Guang Gao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Guang-Zhi Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
59
|
The Costimulatory Pathways and T Regulatory Cells in Ischemia-Reperfusion Injury: A Strong Arm in the Inflammatory Response? Int J Mol Sci 2018; 19:ijms19051283. [PMID: 29693595 PMCID: PMC5983665 DOI: 10.3390/ijms19051283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023] Open
Abstract
Costimulatory molecules have been identified as crucial regulators in the inflammatory response in various immunologic disease models. These molecules are classified into four different families depending on their structure. Here, we will focus on various ischemia studies that use costimulatory molecules as a target to reduce the inherent inflammatory status. Furthermore, we will discuss the relevant role of T regulatory cells in these inflammatory mechanisms and the costimulatory pathways in which they are involved.
Collapse
|
60
|
Kim J, Kwon YH, Kim CS, Tu TH, Kim BS, Joe Y, Chung HT, Goto T, Kawada T, Park T, Choi MS, Kim MS, Yu R. The involvement of 4-1BB/4-1BBL signaling in glial cell-mediated hypothalamic inflammation in obesity. FEBS Open Bio 2018; 8:843-853. [PMID: 29744298 PMCID: PMC5929936 DOI: 10.1002/2211-5463.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Obesity‐induced inflammation occurs not only in peripheral tissues but also in areas of the central nervous system. Glial cells such as astrocytes and microglia play crucial roles in obesity‐related hypothalamic inflammation, leading to the derangement of energy metabolism and neurodegenerative pathologies. Here, we show that the interaction of 4‐1BB/4‐1BBL between lipid‐laden astrocytes/microglia promotes hypothalamic inflammation in obesity. Stimulation of 4‐1BB, a member of the TNF receptor superfamily, and/or its ligand 4‐1BBL on astrocytes and/or microglia with a specific agonist resulted in activation of the inflammatory signaling pathway and enhanced production of inflammatory mediators. Contact coculture of lipid‐laden astrocytes and microglia increased the production of inflammatory mediators, and blockade of the 4‐1BB/4‐1BBL interaction reduced the inflammatory response. Moreover, deficiency of 4‐1BB reduced hypothalamic inflammation in obese mice fed an high‐fat diet. These findings suggest that 4‐1BBL/4‐1BB signaling enhances the glial cell‐mediated inflammatory cross talk and participates in obesity‐induced hypothalamic inflammation.
Collapse
Affiliation(s)
- Jiye Kim
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Yoon-Hee Kwon
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Chu-Sook Kim
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Thai H Tu
- Department of Food Science and Nutrition University of Ulsan South Korea
| | - Byung-Sam Kim
- Department of Biological Science University of Ulsan South Korea
| | - Yeonsoo Joe
- Department of Biological Science University of Ulsan South Korea
| | - Hun T Chung
- Department of Biological Science University of Ulsan South Korea
| | - Tsuyoshi Goto
- Graduate School of Agriculture Kyoto University Uji Japan
| | - Teruo Kawada
- Graduate School of Agriculture Kyoto University Uji Japan
| | - Taesun Park
- Department of Food and Nutrition Yonsei University Seoul South Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition Center for Food and Nutritional Genomics Research Kyungpook National University Daegu South Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism University of Ulsan College of Medicine Seoul South Korea
| | - Rina Yu
- Department of Food Science and Nutrition University of Ulsan South Korea
| |
Collapse
|
61
|
Segal NH, He AR, Doi T, Levy R, Bhatia S, Pishvaian MJ, Cesari R, Chen Y, Davis CB, Huang B, Thall AD, Gopal AK. Phase I Study of Single-Agent Utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in Patients with Advanced Cancer. Clin Cancer Res 2018; 24:1816-1823. [PMID: 29549159 DOI: 10.1158/1078-0432.ccr-17-1922] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/28/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Utomilumab (PF-05082566) is an agonistic mAb that engages the immune costimulatory molecule 4-1BB/CD137. In this first-in-human, phase I, open-label, multicenter, multiple-dose study (NCT01307267) we evaluated safety, tolerability, pharmacokinetics, preliminary clinical activity, and pharmacodynamics of single-agent utomilumab in patients with advanced malignancies.Experimental Design: Dose escalation was based on a standard 3+3 design for doses of utomilumab from 0.006 to 0.3 mg/kg every 4 weeks and a time-to-event continual reassessment method for utomilumab 0.6 to 10 mg/kg every 4 weeks. The primary study endpoint was dose-limiting toxicity (DLT) in the first two cycles.Results: Utomilumab demonstrated a well-tolerated safety profile (N = 55). None of the patients experienced a DLT at the dose levels evaluated. The most common treatment-related adverse events were fatigue, pyrexia, decreased appetite, dizziness, and rash (<10% of patients). Only one (1.8%) patient experienced a grade 3-4 treatment-related adverse event (fatigue), and no clinically relevant elevations in transaminases were noted. Utomilumab demonstrated linear pharmacokinetics at doses ranging from 0.006 to 10 mg/kg, with similar safety and pharmacokinetics in anti-drug antibody (ADA)-negative and ADA-positive patients. The overall objective response rate was 3.8% (95% CI, 0.5%-13.0%) in patients with solid tumors and 13.3% in patients with Merkel cell carcinoma, including a complete response and a partial response. Circulating biomarkers support 4-1BB/CD137 engagement by utomilumab and suggest that circulating lymphocyte levels may influence probability of clinical benefit.Conclusions: The favorable safety profile and preliminary antitumor activity demonstrated by utomilumab warrant further evaluation in patients with advanced malignancies. Clin Cancer Res; 24(8); 1816-23. ©2018 AACR.
Collapse
Affiliation(s)
- Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Aiwu R He
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, D.C
| | | | - Ronald Levy
- Stanford University Cancer Center, Stanford, California
| | - Shailender Bhatia
- University of Washington/Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance, Seattle, Washington
| | - Michael J Pishvaian
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, D.C
| | | | - Ying Chen
- Pfizer Oncology, San Diego, California
| | | | - Bo Huang
- Pfizer Oncology, Groton, Connecticut
| | | | - Ajay K Gopal
- University of Washington/Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
62
|
Söderström LÅ, Tarnawski L, Olofsson PS. CD137: A checkpoint regulator involved in atherosclerosis. Atherosclerosis 2018; 272:66-72. [PMID: 29571029 DOI: 10.1016/j.atherosclerosis.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Inflammation is associated with atherosclerotic plaque development and precipitation of myocardial infarction and stroke, and anti-inflammatory therapy may reduce disease severity. Costimulatory molecules are key regulators of immune cell activity and inflammation, and are associated with disease development in atherosclerosis. Accumulating evidence indicates that a costimulatory molecule of the Tumor Necrosis Factor Receptor superfamily, the checkpoint regulator CD137, promotes atherosclerosis and vascular inflammation in experimental models. In light of the burgeoning consideration of CD137-targeted therapy in the clinic, it will be important to better understand costimulator immunobiology in development of cardiovascular disease. Here, we review available data on the costimulator CD137 and its potential role in atherosclerosis.
Collapse
Affiliation(s)
- Leif Å Söderström
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Perioperative Medicine and Intensive Care Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Tarnawski
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peder S Olofsson
- Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
63
|
Xiang Z, Tu W. Dual Face of Vγ9Vδ2-T Cells in Tumor Immunology: Anti- versus Pro-Tumoral Activities. Front Immunol 2017; 8:1041. [PMID: 28894450 PMCID: PMC5581348 DOI: 10.3389/fimmu.2017.01041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Vγ9Vδ2-T cells are considered as potent effector cells for tumor immunotherapy through directly killing tumor cells and indirectly regulating other innate and adaptive immune cells to establish antitumoral immunity. The antitumoral activity of Vγ9Vδ2-T cells is governed by a complicated set of activating and inhibitory cell receptors. In addition, cytokine milieu in tumor microenvironment can also induce the pro-tumoral activities and functional plasticity of Vγ9Vδ2-T cells. Here, we review the anti- versus pro-tumoral activities of Vγ9Vδ2-T cells and discuss the mechanisms underlying the recognition, activation, differentiation and regulation of Vγ9Vδ2-T cells in tumor immunosurveillance. The comprehensive understanding of the dual face of Vγ9Vδ2-T cells in tumor immunology may improve the therapeutic efficacy and clinical outcomes of Vγ9Vδ2-T cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zheng Xiang
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| | - Wenwei Tu
- Li Ka Shing Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, Laboratory for Translational Immunology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
64
|
Zhang S, Li Z, Zhang R, Li X, Zheng H, Ma Q, Zhang H, Hou W, Zhang F, Wu Y, Sun L, Tian J. Novel CD137 Gene Polymorphisms and Susceptibility to Ischemic Stroke in the Northern Chinese Han Population. Neuromolecular Med 2017; 19:413-422. [DOI: 10.1007/s12017-017-8457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
|
65
|
The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16. Int J Mol Sci 2017; 18:ijms18071468. [PMID: 28698473 PMCID: PMC5535959 DOI: 10.3390/ijms18071468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo.
Collapse
|
66
|
Shen YL, Gan Y, Gao HF, Fan YC, Wang Q, Yuan H, Song YF, Wang JD, Tu H. TNFSF9 exerts an inhibitory effect on hepatocellular carcinoma. J Dig Dis 2017; 18:395-403. [PMID: 28547807 DOI: 10.1111/1751-2980.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Tumor necrosis factor superfamily member 9 (TNFSF9), also known as 4-1BBL and CD137L, has been implicated in cancer immunotherapy due to its function as a T-cell co-stimulator. We aimed to investigate the role of TNFSF9 in the cancer pathogenesis in hepatocellular carcinoma (HCC). METHODS TNFSF9 expression was examined by immunohistochemistry in 106 pairs of HCC and adjacent non-tumorous tissues, and by quantitative polymerase chain reaction and Western blot in HCC cell lines. The impact of TNFSF9 on the proliferation, migration and invasion of HCC cells was determined using the 3-(4,5-diethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and transwell assays in vitro. We also assessed the influence of TNFSF9 on the growth and metastasis of HCC tumors in an orthotopic mouse model of human HCC. RESULTS TNFSF9 expression was downregulated in approximately 70% of HCC tissues. A decreased expression of TNFSF9 was also consistently observed in all the four HCC cell lines. Either the overexpression of TNFSF9 or treatment with recombinant TNFSF9 protein could significantly inhibit the proliferation, migration and invasion of Huh7 and SMMC-7721 HCC cells in vitro. The inhibitory effect of TNFSF9 on HCC was further confirmed in vivo. Mice orthotopically transplanted with TNFSF9-overexpressing Huh7 cells developed significantly smaller tumors with less intrahepatic metastasis and distant metastasis compared with the control group. CONCLUSIONS TNFSF9 may be a tumor suppressor in HCC. Based on its immune stimulatory aspect and the tumor inhibition property, TNFSF9 may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Ling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Feng Gao
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Chao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Fang Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Dong Wang
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
67
|
Harfuddin Z, Dharmadhikari B, Wong SC, Duan K, Poidinger M, Kwajah S, Schwarz H. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep 2016; 6:29712. [PMID: 27431276 PMCID: PMC4949477 DOI: 10.1038/srep29712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
The importance of monocyte-derived dendritic cells (DCs) is evidenced by the fact that they are essential for the elimination of pathogens. Although in vitro DCs can be generated by treatment of monocytes with GM-CSF and IL-4, it is unknown what stimuli induce differentiation of DCs in vivo. CD137L-DCs are human monocyte-derived DC that are generated by CD137 ligand (CD137L) signaling. We demonstrate that the gene signature of in vitro generated CD137L-DCs is most similar to those of GM-CSF and IL-4-generated immature DCs and of macrophages. This is reminiscent of in vivo inflammatory DC which also have been reported to share gene signatures with monocyte-derived DCs and macrophages. Performing direct comparison of deposited human gene expression data with a CD137L-DC dataset revealed a significant enrichment of CD137L-DC signature genes in inflammatory in vivo DCs. In addition, surface marker expression and cytokine secretion by CD137L-DCs resemble closely those of inflammatory DCs. Further, CD137L-DCs express high levels of adhesion molecules, display strong attachment, and employ the adhesion molecule ALCAM to stimulate T cell proliferation. This study characterizes the gene expression profile of CD137L-DCs, and identifies significant similarities of CD137L-DCs with in vivo inflammatory monocyte-derived DCs and macrophages.
Collapse
Affiliation(s)
- Zulkarnain Harfuddin
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Bhushan Dharmadhikari
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Siew Cheng Wong
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Shaqireen Kwajah
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
68
|
Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How Mouse Macrophages Sense What Is Going On. Front Immunol 2016; 7:204. [PMID: 27313577 PMCID: PMC4890338 DOI: 10.3389/fimmu.2016.00204] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023] Open
Abstract
Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Akula Bala Pramod
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, VA , USA
| | - Jenny P Ting
- Department of Genetics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|
69
|
Abstract
Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin-angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development - including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation - has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.
Collapse
|
70
|
Rajendran S, Ho WT, Schwarz H. CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncoimmunology 2016; 5:e1160188. [PMID: 27471634 DOI: 10.1080/2162402x.2016.1160188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/13/2016] [Accepted: 02/25/2016] [Indexed: 01/05/2023] Open
Abstract
CD137 and its ligand, CD137L, are expressed on activated T cells and antigen-presenting cells (APC), respectively, and are powerful inducers of cellular, type 1 immune responses. CD137 is ectopically expressed by Hodgkin and Reed-Sternberg (HRS) cells, the malignant cells in Hodgkin lymphoma (HL). Here we report that CD137 transmits signals into HRS cells, which induce the secretion of IL-13. IL-13 in conditioned supernatants of HRS cell lines inhibits the secretion of IFNγ by peripheral blood mononuclear cells (PBMC). Since IFNγ is essential for the development of a type 1 immune response, CD137-induced IL-13 secretion facilitates escape from immune surveillance. Further, CD137-induced IL-13 enhances the growth of HRS cell lines. CD137, IL-13 double-positive cells could be detected in the majority (58%) of HL patient samples, providing clinical evidence for a role of IL-13 induction by CD137 during HL pathogenesis. This study validates CD137 as a candidate target for immunotherapy of HL.
Collapse
Affiliation(s)
| | | | - Herbert Schwarz
- Department of Physiology; NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
71
|
Hattermann K, Gebhardt H, Krossa S, Ludwig A, Lucius R, Held-Feindt J, Mentlein R. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. eLife 2016; 5:e10820. [PMID: 26796342 PMCID: PMC4739769 DOI: 10.7554/elife.10820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023] Open
Abstract
The transmembrane chemokines CX3CL1/fractalkine and CXCL16 are widely expressed in different types of tumors, often without an appropriate expression of their classical receptors. We observed that receptor-negative cancer cells could be stimulated by the soluble chemokines. Searching for alternative receptors we detected that all cells expressing or transfected with transmembrane chemokine ligands bound the soluble chemokines with high affinity and responded by phosphorylation of intracellular kinases, enhanced proliferation and anti-apoptosis. This activity requires the intracellular domain and apparently the dimerization of the transmembrane chemokine ligand. Thus, shed soluble chemokines can generate auto- or paracrine signals by binding and activating their transmembrane forms. We term this novel mechanism “inverse signaling”. We suppose that inverse signaling is an autocrine feedback and fine-tuning system in the communication between cells that in tumors supports stabilization and proliferation. DOI:http://dx.doi.org/10.7554/eLife.10820.001 The cells that make up an animal need to communicate with each other for a variety of purposes, including controlling the growth and repair of tissues. Commonly, such signaling involves ‘ligand’ molecules binding to specific ‘receptor’ proteins embedded in the cell membrane. When a ligand docks to the right receptor protein, the parts of the receptor inside the cell change shape. This activates signaling pathways within that cell. Types of ligands called transmembrane ligands are found embedded in cell membranes. Some cancer cells have high levels of transmembrane ligands called CXCL16 and CX3CL1 but do not produce the corresponding receptors for these molecules. The part of these ligands that sits outside of the cells can also be separated from the rest of the molecule to produce a soluble ligand that can move around outside the cell. By studying cancer cells using microscopy and biochemical approaches, Hattermann, Gebhardt et al. now show that the soluble forms of CXCL16 and CX3CL1 bind to their transmembrane equivalents. This activates signaling pathways that promote cell growth and make the cancer cells more resistant to cell death. However, this signaling did not occur if the transmembrane ligands were altered to lack the part normally found inside the cell, which suggests that transmembrane CXCL16 and CX3CL1 act as receptors. It was not previously known that a soluble ligand could activate its transmembrane equivalent. Hattermann, Gebhardt et al. have named this process “inverse signaling”, and suggest that it helps to fine-tune the communication between cells. Future experiments will need to study the importance of inverse signaling in living animals and investigate how it works alongside other signaling methods. DOI:http://dx.doi.org/10.7554/eLife.10820.002
Collapse
Affiliation(s)
| | | | - Sebastian Krossa
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | - Andreas Ludwig
- Institute for Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rolf Mentlein
- Department of Anatomy, University of Kiel, Kiel, Germany
| |
Collapse
|
72
|
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, Harfuddin Z, Schwarz H. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 2015; 5:e1113367. [PMID: 27141396 DOI: 10.1080/2162402x.2015.1113367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases. Upon co-stimulation by CD137, Th1 CD4+ T cells together with Tc1 CD8+ T cells and NK cells inhibit other T cell subsets, thereby promoting antitumor responses and mitigating non-type 1 auto-immune diseases.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Meihui Wu
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Sharalyn Abdullah
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Sakthi Rajendran
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Diana Ishak
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
73
|
Abstract
Tumor is one of the most common lethal diseases in the world. Current progress of therapy remains insufficient survival benefit. Tumor immunotherapies have been proposed for more than a century. With the improvement in the understanding of the role of the immune system in the tumorigenesis and immune response to tumor, immunotherapy has obtained a rapid development and plays the significant role in tumor therapy nowadays. This review designs to provide a general overview of immunotherapy in tumors. We will introduce the landmark events in the past research of immunotherapy and elaborate a range of strategies using different immune response mechanism, which have been demonstrated successfully and even some of them have been approved by US Food and Drug Administration (FDA) to certain tumor therapy. Finally, we will discuss the future direction of immunotherapy so that we can predict the possible and valuable strategies for future tumor therapy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
74
|
Karrasch T, Brünnler T, Hamer OW, Schmid K, Voelk M, Herfarth H, Buechler C. Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity. Exp Mol Pathol 2015. [PMID: 26209500 DOI: 10.1016/j.yexmp.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Macrophages are crucially involved in the pathophysiology of acute pancreatitis. Soluble CD163 (sCD163) is specifically released from macrophages and systemic levels are increased in inflammatory diseases. Here, sCD163 was measured in serum of 50 patients with acute pancreatitis to find out possible associations with disease activity. Admission levels of systemic sCD163 were nearly three-fold higher in patients with acute pancreatitis compared to controls. In patients sCD163 did not correlate with C-reactive protein and leukocyte count as established markers of inflammation. Levels were not associated with disease severity assessed by the Schroeder score, Balthazar score, Acute Physiology, Age, and Chronic Health Evaluation (Apache) II score and peripancreatic necrosis score. Soluble CD163 was not related to complications of acute pancreatitis. These data show that serum sCD163 is increased in acute pancreatitis indicating activation of macrophages but is not associated with disease severity and outcome.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Tanja Brünnler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Okka W Hamer
- Department of Radiology, Regensburg University Hospital, Regensburg, Germany
| | - Karin Schmid
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Markus Voelk
- Department of Radiology, Regensburg University Hospital, Regensburg, Germany
| | - Hans Herfarth
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany; Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
75
|
Kwon B. Is CD137 Ligand (CD137L) Signaling a Fine Tuner of Immune Responses? Immune Netw 2015; 15:121-4. [PMID: 26140043 PMCID: PMC4486774 DOI: 10.4110/in.2015.15.3.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 12/01/2022] Open
Abstract
Now, it has been being accepted that reverse signaling through CD137 ligand (CD137L) plays an important role in vivo during hematopoiesis and in immune regulation. However, due to technical difficulty in dissecting both directional signaling events simultaneously in vivo, most biological activities caused by CD137-CD137L interactions are considered as results from signaling events of the CD137 receptor. To make the story more complex, CD137(-/-) and CD137L(-/-) mice have increased or decreased immune responses in a context-dependent manner. In this Mini review, I will try to provide a plausible explanation for how CD137L signaling is controlled during immune responses.
Collapse
Affiliation(s)
- Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
76
|
Labiano S, Palazón A, Bolaños E, Azpilikueta A, Sánchez-Paulete AR, Morales-Kastresana A, Quetglas JI, Perez-Gracia JL, Gúrpide A, Rodriguez-Ruiz M, Aznar MA, Jure-Kunkel M, Berraondo P, Melero I. Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism. Oncoimmunology 2015; 5:e1062967. [PMID: 26942078 DOI: 10.1080/2162402x.2015.1062967] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is a common feature in solid tumors that has been implicated in immune evasion. Previous studies from our group have shown that hypoxia upregulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O2) promotes CD137 transcription. However, the resulting mRNA is predominantly an alternatively spliced form that encodes for a soluble variant, lacking the transmembrane domain. Accordingly, soluble CD137 (sCD137) is detectable by ELISA in the supernatant of hypoxia-exposed cell lines and in the serum of tumor-bearing mice. sCD137, as secreted by tumor cells, is able to bind to CD137-Ligand (CD137L). Our studies on primed T lymphocytes in co-culture with stable transfectants for CD137L demonstrate that tumor-secreted sCD137 prevents co-stimulation of T lymphocytes. Such an effect results from preventing the interaction of CD137L with the transmembrane forms of CD137 expressed on T lymphocytes undergoing activation. Indeed, silencing CD137 with shRNA renders more immunogenic tumor-cell variants upon inoculation to immunocompetent mice but which readily grafted on immunodeficient or CD8+ T-cell-depleted mice. These mechanisms are interpreted as a molecular strategy deployed by tumors to repress lymphocyte co-stimulation via CD137/CD137L.
Collapse
Affiliation(s)
- Sara Labiano
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Asis Palazón
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Elixabet Bolaños
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Arantza Azpilikueta
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | | | | | - Jose I Quetglas
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - José L Perez-Gracia
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Alfonso Gúrpide
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Maria Rodriguez-Ruiz
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - M Angela Aznar
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Maria Jure-Kunkel
- Bristol-Myers Squibb Pharmaceutical Research Institute , Princeton, NJ, USA
| | - Pedro Berraondo
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| | - Ignacio Melero
- CIMA, Clínica Universidad de Navarra, University of Navarra and IDISNA , Pamplona, Spain
| |
Collapse
|
77
|
Shao Z, Harfuddin Z, Pang WL, Nickles E, Koh LK, Schwarz H. Trogocytic CD137 transfer causes an internalization of CD137 ligand on murine APCs leading to reduced T cell costimulation. J Leukoc Biol 2015; 97:909-919. [DOI: 10.1189/jlb.3a0213-079rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
CD137 ligand (CD137L) is expressed on APCs and crosslinks CD137, a powerful costimulatory molecule on T cells during cognate interactions, and thereby greatly enhances immune responses. We report that CD137 can be transferred from activated T cells and from tumor cells that express CD137 to other cells via trogocytosis. This trogocytic transfer is independent of CD137L expression by the recipient cell. However, if CD137L is present on the recipient cell, the transferred CD137 binds to CD137L and the CD137-CD137L complex becomes internalized. The removal of CD137L from the surface of APCs lowers their ability to costimulate T cells, as evidenced by a reduced IFN-γ secretion. Removal of CD137L on APCs by trogocytic transfer of CD137 occurs within 1 h and requires cell-cell contact and the continuous presence of CD137-expressing cells. Bidirectional signaling exists for the CD137 receptor/ligand system, because CD137L also signals into APCs. We propose that the trogocytic transfer of CD137 from activated T cells to APCs and the subsequent removal of CD137L from APCs is a physiologic regulatory mechanism that limits immune activity. Furthermore, we hypothesize that the trogocytic transfer of CD137 occurs in cancers and quenches the activity of APCs, contributing to the cancer cells escaping immune surveillance. Taken together, our findings demonstrate that the trogocytic transfer of CD137 leads to an internalization of CD137L on APCs and a reduction in immune activity.
Collapse
Affiliation(s)
- Zhe Shao
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Wan Lu Pang
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Liang Kai Koh
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
78
|
CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med Oncol 2015; 32:44. [DOI: 10.1007/s12032-015-0499-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
79
|
Ribeiro ST, Ribot JC, Silva-Santos B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front Immunol 2015; 6:15. [PMID: 25674089 PMCID: PMC4306313 DOI: 10.3389/fimmu.2015.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
The contributions of γδ T-cells to immunity to infection or tumors critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate γδ T-cell physiology. The understanding of how environmental signals are integrated by γδ T-cells is critical for their manipulation in clinical settings. Here, we discuss how different classes of surface receptors impact on human and murine γδ T-cell differentiation, activation, and expansion. In particular, we review the role of five receptor types: the T-cell receptor (TCR), costimulatory receptors, cytokine receptors, NK receptors, and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of γδ T-cells; the cytokine receptors IL-2R, IL-7R, and IL-15R, which drive functional differentiation and expansion of γδ T-cells; the NK receptor NKG2D and its contribution to γδ T-cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control γδ T-cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signaling in γδ T-cell differentiation and activation, and discuss its implications for the manipulation of γδ T-cells in immunotherapy.
Collapse
Affiliation(s)
- Sérgio T Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
80
|
Kim EC, Moon JH, Kang SW, Kwon B, Lee HW. TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages. Mol Immunol 2014; 64:244-51. [PMID: 25549946 DOI: 10.1016/j.molimm.2014.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/08/2023]
Abstract
We showed previously that a novel protein, transmembrane protein 126A (TMEM126A), binds to CD137 ligand (CD137L, 4-1BBL) and couples with its reverse signals in macrophages. Here, we present data showing that TMEM126A relays TLR4 signaling. Thus, up-regulation of CD54 (ICAM-1), MHC II, CD86 and CD40 expression in response to TLR4 activation was diminished in TMEM126A-deficient macrophages. Moreover in TMEM126A-deficient RAW264.7 cells, LPS/TLR4-induced late-phase JNK/SAPK and IRF-3 phosphorylation was abolished. These findings indicate that TMEM126A contributes to the TLR4 signal up-regulating the expression of genes whose products are involved in antigen presentation.
Collapse
Affiliation(s)
- Eun-Cheol Kim
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Hoi Moon
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang W Kang
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
81
|
Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014; 47:122-9. [PMID: 24499671 PMCID: PMC4163883 DOI: 10.5483/bmbrep.2014.47.3.283] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/30/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Although considerable progress has been made in understanding how tumors evade immune surveillance, measures to counter the same have not kept pace with the advances made in designing effective strategies. 4-1BB (CD137; TNFRS9), an activation-induced costimulatory molecule, is an important regulator of immune responses. Targeting 4-1BB or its natural ligand 4-1BB ligand (4-1BBL) has important implications in many clinical conditions, including cancer. In-depth analysis revealed that 4-1BB-mediated anti-cancer effects are based on its ability to induce activation of cytotoxic T lymphocytes (CTL), and among others, high amounts of IFN-γ. In this review, we will discuss the various aspects of 4-1BB-mediated anti-tumor responses, the basis of such responses, and future directions. [BMB Reports 2014; 47(3): 122-129]
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA; Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center, Goyang 410-769, Korea
| |
Collapse
|
82
|
CD137 expression is induced by Epstein-Barr virus infection through LMP1 in T or NK cells and mediates survival promoting signals. PLoS One 2014; 9:e112564. [PMID: 25409517 PMCID: PMC4237363 DOI: 10.1371/journal.pone.0112564] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
To clarify the mechanism for development of Epstein-Barr virus (EBV)-positive T- or NK-cell neoplasms, we focused on the costimulatory receptor CD137. We detected high expression of CD137 gene and its protein on EBV-positive T- or NK-cell lines as compared with EBV-negative cell lines. EBV-positive cells from EBV-positive T- or NK-cell lymphoproliferative disorders (EBV-T/NK-LPDs) patients also had significantly higher CD137 gene expression than control cells from healthy donors. In the presence of IL-2, whose concentration in the serum of EBV-T/NK-LPDs was higher than that of healthy donors, CD137 protein expression was upregulated in the patients' cells whereas not in control cells from healthy donors. In vitro EBV infection of MOLT4 cells resulted in induction of endogenous CD137 expression. Transient expression of LMP1, which was enhanced by IL-2 in EBV-T/NK-LPDs cells, induced endogenous CD137 gene expression in T and NK-cell lines. In order to examine in vivo CD137 expression, we used EBV-T/NK-LPDs xenograft models generated by intravenous injection of patients' cells. We identified EBV-positive and CD8-positive T cells, as well as CD137 ligand-positive cells, in their tissue lesions. In addition, we detected CD137 expression on the EBV infected cells from the lesions of the models by immune-fluorescent staining. Finally, CD137 stimulation suppressed etoposide-induced cell death not only in the EBV-positive T- or NK-cell lines, but also in the patients' cells. These results indicate that upregulation of CD137 expression through LMP1 by EBV promotes cell survival in T or NK cells leading to development of EBV-positive T/NK-cell neoplasms.
Collapse
|
83
|
Eun SY, Lee SW, Xu Y, Croft M. 4-1BB ligand signaling to T cells limits T cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 194:134-41. [PMID: 25404362 DOI: 10.4049/jimmunol.1401383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
4-1BB ligand (4-1BBL) and its receptor, 4-1BB, are both induced on T cells after activation, but little is known about the role of 4-1BBL. In this study we show that 4-1BBL can transmit signals that limit T cell effector activity under tolerogenic conditions. Cross-linking 4-1BBL inhibited IL-2 production in vitro, primarily with suboptimal TCR stimulation. Furthermore, naive 4-1BBL-deficient OT-II transgenic T cells displayed a greater conversion to effector T cells in vivo when responding to soluble OVA peptide in wild-type hosts, whereas development of Foxp3(+) regulatory T cells was not altered. A greater number of effector T cells also differentiated from naive wild-type OT-II T cells when transferred into 4-1BB-deficient hosts, suggesting that APC-derived 4-1BB is likely to trigger 4-1BBL. Indeed, effector T cells that could not express 4-1BBL accumulated in larger numbers in vitro when stimulated with 4-1BB-expressing mesenteric lymph node dendritic cells. 4-1BBL was expressed on T cells when Ag presentation was limiting, and 4-1BBL was aberrantly expressed at very high levels on T cells that could not express 4-1BB. Trans-ligation, Ab capture, and endocytosis experiments additionally showed that T cell-intrinsic 4-1BB regulated internalization of membrane 4-1BBL, implying that the strong induction of 4-1BB on T cells may counteract the suppressive function of 4-1BBL by limiting its availability. These data suggest that 4-1BBL expressed on T cells can restrain effector T cell development, creating a more favorable regulatory T cell to effector cell balance under tolerogenic conditions, and this may be particularly active in mucosal barrier tissues where 4-1BB-expressing regulatory dendritic cells present Ag.
Collapse
Affiliation(s)
- So-Young Eun
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Seung-Woo Lee
- Laboratory of Immune Regulation, Division of Integrative Biosciences and Biotechnology, Biotechnology Center, Pohang University of Science and Technology, Pohang-Si, Gyeongsangbuk-Do 790-784, Korea
| | - Yanfei Xu
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| |
Collapse
|
84
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, Conejo-Garcia JR, Feldman M, Albelda SM, Singhal S. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 2014; 124:5466-80. [PMID: 25384214 DOI: 10.1172/jci77053] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%-25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62L(lo)CD54(hi)) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses.
Collapse
|
85
|
Park SJ, Lee JS, Kwon B, Cho HR. Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang June Park
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Jong Soo Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| |
Collapse
|
86
|
Sundar R, Soong R, Cho BC, Brahmer JR, Soo RA. Immunotherapy in the treatment of non-small cell lung cancer. Lung Cancer 2014; 85:101-9. [PMID: 24880938 PMCID: PMC4332778 DOI: 10.1016/j.lungcan.2014.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Advances in the understanding of the role of the immune system in tumor immunosurveillance have resulted in the recognition that tumors can evade immune destruction via the dysregulation of co-inhibitory or checkpoint signals. This has led to the development of a generation immunotherapeutic agents targeting the immune checkpoint pathway. Recent early phase studies of immune checkpoint modulators, such as CTLA-4, PD-1 and PD-L1 inhibitors in NSCLC have reported promising results with prolonged clinical responses and tolerable toxicity. This article provides an overview of co-stimulatory and inhibitory molecules that regulate the immune response to tumors, recent therapies that have been developed to exploit these interactions and the role of predictive biomarkers in treatment selection.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pathology, National University Health System, Singapore
| | - Byoung-Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Julie R Brahmer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, United States
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, University of Western Australia, Australia.
| |
Collapse
|
87
|
Jung I, Choi J, Jin J, Jeong S, Jeon S, Lim C, Lee M, Yoo J, Sonn S, Kim YH, Choi BK, Kwon BS, Seoh J, Lee CW, Kim D, Oh GT. CD137‐inducing factors from T cells and macrophages accelerate the destabilization of atherosclerotic plaques in hyperlipidemic mice. FASEB J 2014; 28:4779-91. [DOI: 10.1096/fj.14-253732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In‐Hyuk Jung
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Jae‐Hoon Choi
- Department of Life ScienceCollege of Natural SciencesHanyang UniversitySeoulKorea
| | - Jing Jin
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Se‐Jin Jeong
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Sejin Jeon
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Chaeji Lim
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Mi‐Ran Lee
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Ji‐Young Yoo
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Seong‐Keun Sonn
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Young Ho Kim
- Immune Cell Production UnitProgram for Immunotherapeutic ResearchNational Cancer CenterGoyangKorea
| | - Beom Kyu Choi
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Byoung S. Kwon
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Ju‐Young Seoh
- Department of MicrobiologyGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Cheol Whan Lee
- Department of MedicineAsan Medical CenterUniversity of UlsanSeoulKorea
| | - Dae‐Yong Kim
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Goo Taeg Oh
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| |
Collapse
|
88
|
Tang Q, Jiang D, Harfuddin Z, Cheng K, Moh MC, Schwarz H. Regulation of myelopoiesis by CD137L signaling. Int Rev Immunol 2014; 33:454-69. [PMID: 24941289 DOI: 10.3109/08830185.2014.921163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD137 ligand (CD137L) has emerged as a powerful regulator of myelopoiesis that links emergency situations, such as infections, to the generation of additional myeloid cells, and to their activation and maturation. CD137L is expressed on the cell surface of hematopoietic stem and progenitor cells (HSPC) and antigen presenting cells (APC) as a transmembrane protein. The signaling of CD137L into HSPC induces their proliferation and differentiation to monocytes and macrophages, and in monocytes CD137L signaling induces differentiation to potent dendritic cells (DC). CD137L signaling is initiated by CD137 which is expressed by T cells, once they become activated. Some of these activated, CD137-expressing T cells migrate from the site of infection to the bone marrow where they interact with HSPC to induce myelopoiesis, or they induce monocyte to DC differentiation locally at the site of infection. Therapeutically, induction of CD137L signaling can be utilized to reinitiate myeloid differentiation in acute myeloid leukemia cells, and to generate potent DC for immunotherapy.
Collapse
|
89
|
Bertolini M, Zilio F, Rossi A, Kleditzsch P, Emelianov VE, Gilhar A, Keren A, Meyer KC, Wang E, Funk W, McElwee K, Paus R. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS One 2014; 9:e94260. [PMID: 24832234 PMCID: PMC4022513 DOI: 10.1371/journal.pone.0094260] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/12/2014] [Indexed: 02/08/2023] Open
Abstract
Alopecia areata (AA) is a CD8+ T-cell dependent autoimmune disease of the hair follicle (HF) in which the collapse of HF immune privilege (IP) plays a key role. Mast cells (MCs) are crucial immunomodulatory cells implicated in the regulation of T cell-dependent immunity, IP, and hair growth. Therefore, we explored the role of MCs in AA pathogenesis, focusing on MC interactions with CD8+ T-cells in vivo, in both human and mouse skin with AA lesions. Quantitative (immuno-)histomorphometry revealed that the number, degranulation and proliferation of perifollicular MCs are significantly increased in human AA lesions compared to healthy or non-lesional control skin, most prominently in subacute AA. In AA patients, perifollicular MCs showed decreased TGFβ1 and IL-10 but increased tryptase immunoreactivity, suggesting that MCs switch from an immuno-inhibitory to a pro-inflammatory phenotype. This concept was supported by a decreased number of IL-10+ and PD-L1+ MCs, while OX40L+, CD30L+, 4–1BBL+ or ICAM-1+ MCs were increased in AA. Lesional AA-HFs also displayed significantly more peri- and intrafollicular- CD8+ T-cells as well as more physical MC/CD8+ T-cell contacts than healthy or non-lesional human control skin. During the interaction with CD8+ T-cells, AA MCs prominently expressed MHC class I and OX40L, and sometimes 4–1BBL or ICAM-1, suggesting that MC may present autoantigens to CD8+ T-cells and/or co-stimulatory signals. Abnormal MC numbers, activities, and interactions with CD8+ T-cells were also seen in the grafted C3H/HeJ mouse model of AA and in a new humanized mouse model for AA. These phenomenological in vivo data suggest the novel AA pathobiology concept that perifollicular MCs are skewed towards pro-inflammatory activities that facilitate cross-talk with CD8+ T-cells in this disease, thus contributing to triggering HF-IP collapse in AA. If confirmed, MCs and their CD8+ T-cell interactions could become a promising new therapeutic target in the future management of AA.
Collapse
Affiliation(s)
- Marta Bertolini
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Münster, Münster, Germany
| | - Federica Zilio
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Alfredo Rossi
- Department of Internal Medicine and Medical Specialties, University “La Sapienza”, Rome, Italy
| | - Patrick Kleditzsch
- Department of Gynaecology and Obstetrics, University of Rostock, Rostock, Germany
| | - Vladimir E. Emelianov
- Department of Pharmacology, Clinical Pharmacology and Biochemistry, Chuvash State University Medical School, Cheboksary, Russia
| | - Amos Gilhar
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Flieman Medical Center, Haifa, Israel
| | - Aviad Keren
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Katja C. Meyer
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kevin McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Münster, Münster, Germany
- Institute for Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
90
|
Cheng K, Wong SC, Linn YC, Ho LP, Chng WJ, Schwarz H. CD137 ligand signalling induces differentiation of primary acute myeloid leukaemia cells. Br J Haematol 2014; 165:134-44. [PMID: 24428589 DOI: 10.1111/bjh.12732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
CD137 ligand (CD137L), a member of the tumour necrosis factor family, is expressed as a cell surface molecule. Engagement of CD137L on haematopoietic progenitor cells induces monocytic differentiation, and in peripheral monocytes CD137L signalling promotes differentiation to mature dendritic cells. We hypothesized that CD137L signalling would also induce differentiation in transformed myeloid cells. Here we show that recombinant CD137 protein, which crosslinks CD137L and initiates reverse CD137L signalling in myeloid cells, induces morphological changes (adherence, spreading), loss of progenitor markers (CD117), expression of maturation markers (CD11b, CD13) and secretion of cytokines that are indicative of myeloid differentiation. Under the influence of CD137L signalling, acute myeloid leukaemia (AML) cells acquired expression of co-stimulatory molecules (CD80, CD86, CD40), the dendritic cell marker CD83 and dendritic cell activities, enabling them to stimulate T cells. CD137L signalling induced differentiation in 71% (15 of 21) of AML samples, irrespective of French-American-British classification and CD137L expression level. However, the type of response varied with the AML subtype and patient sample. In summary, this study demonstrated that CD137L signalling induced differentiation in malignant cells of AML patients, and suggests that it may be worthwhile to investigate treatment with recombinant CD137 protein as a potential novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Kin Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | | | | | | | | | | |
Collapse
|
91
|
Juhász K, Buzás K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol 2014; 9:335-48. [DOI: 10.1586/eci.13.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
92
|
Harfuddin Z, Kwajah S, Chong Nyi Sim A, Macary PA, Schwarz H. CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses. Oncoimmunology 2013; 2:e26859. [PMID: 24482752 DOI: 10.4161/onci.26859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) are highly potent initiators of adaptive immune responses and, as such, represent promising tools for immunotherapeutic applications. Despite their potential, the current efficacy of DC-based immunotherapies is poor. CD137 ligand (CD137L) signaling has been used to derive a novel type of DCs from human peripheral blood monocytes, termed CD137L-DCs. Here, we report that CD137L-DCs induce more potent cytotoxic T-cell responses than classical DCs (cDCs). Furthermore, in exploring several DC maturation factors for their ability to enhance the potency of CD137L-DCs, we found the combination of interferon γ (IFNγ) and the mixed Toll-like receptor (TLR)7/8 agonist R848, to display the highest efficacy in potentiating the T-cell co-stimulatory activity of CD137L-DCs. Of particular importance, CD137L-DCs were found to be more efficient than cDCs in activating autologous T cells targeting the cytomegalovirus (CMV)-derived protein pp65. Specifically, CD137L-DC-stimulated T cells were found to secrete higher levels of IFNγ and killed 2-3 times more HLA-matched, pp65-pulsed target cells than T cells activated by cDCs. Finally, in addition to stimulating CD8+ T cells, CD137L-DCs efficiently activated CD4+ T cells. Taken together, these findings demonstrate the superior potency of CD137L-stimulated DCs in activating CMV-specific, autologous T cells, and encourage the further development of CD137L-DCs for antitumor immunotherapy.
Collapse
Affiliation(s)
- Zulkarnain Harfuddin
- Department of Physiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Shaqireen Kwajah
- Department of Physiology; National University of Singapore; Singapore
| | - Adrian Chong Nyi Sim
- Department of Microbiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore
| | - Paul Anthony Macary
- Department of Microbiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Herbert Schwarz
- Department of Physiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
93
|
Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res 2013; 19:1044-53. [PMID: 23460535 DOI: 10.1158/1078-0432.ccr-12-2065] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Therapy for cancer can be achieved by artificially stimulating antitumor T and natural killer (NK) lymphocytes with agonist monoclonal antibodies (mAb). T and NK cells express several members of the TNF receptor (TNFR) family specialized in delivering a costimulatory signal on their surface. Engagement of these receptors is typically associated with proliferation, elevated effector functions, resistance to apoptosis, and differentiation into memory cells. These receptors lack any intrinsic enzymatic activity and their signal transduction relies on associations with TNFR-associated factor (TRAF) adaptor proteins. Stimulation of CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNFR (GITR; CD357) promotes impressive tumor-rejecting immunity in a variety of murine tumor models. The mechanisms of action depend on a complex interplay of CTL, T-helper cells, regulatory T cells, dendritic cells, and vascular endothelium in tumors. Agonist mAbs specific for CD137 have shown signs of objective clinical activity in patients with metastatic melanoma, whereas anti-OX40 and anti-GITR mAbs have entered clinical trials. Preclinical evidence suggests that engaging TNFR members would be particularly active with conventional cancer therapies and additional immunotherapeutic approaches. Indeed, T-cell responses elicited to tumor antigens by means of immunogenic tumor cell death are amplified by these immunostimulatory agonist mAbs. Furthermore, anti-CD137 mAbs have been shown to enhance NK-mediated cytotoxicity elicited by rituximab and trastuzumab. Combinations with other immunomodulatory mAb that block T-cell checkpoint blockade receptors such as CTLA-4 and PD-1 are also promising.
Collapse
Affiliation(s)
- Ignacio Melero
- Centro de Investigación Médica Aplicada, and Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | | | | | | | | |
Collapse
|
94
|
Martínez Gómez JM, Chen L, Schwarz H, Karrasch T. CD137 facilitates the resolution of acute DSS-induced colonic inflammation in mice. PLoS One 2013; 8:e73277. [PMID: 24023849 PMCID: PMC3762711 DOI: 10.1371/journal.pone.0073277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022] Open
Abstract
Background CD137 and its ligand (CD137L) are potent immunoregulatory molecules that influence activation, proliferation, differentiation and cell death of leukocytes. Expression of CD137 is upregulated in the lamina propria cells of Crohn’s disease patients. Here, the role of CD137 in acute Dextran-Sodium-Sulfate (DSS)-induced colitis in mice was examined. Methods We induced acute large bowel inflammation (colitis) via DSS administration in CD137−/− and wild-type (WT) mice. Colitis severity was evaluated by clinical parameters (weight loss), cytokine secretion in colon segment cultures, and scoring of histological inflammatory parameters. Additionally, populations of lamina propria mononuclear cells (LPMNC) and intraepithelial lymphocytes (IEL) were characterized by flow cytometry. In a subset of mice, resolution of intestinal inflammation was evaluated 3 and 7 days after withdrawal of DSS. Results We found that both CD137−/− and WT mice demonstrated a similar degree of inflammation after 5 days of DSS exposure. However, the resolution of colonic inflammation was impaired in the absence of CD137. This was accompanied by a higher histological score of inflammation, and increased release of the pro-inflammatory mediators granulocyte macrophage colony-stimulating factor (GM-CSF), CXCL1, IL-17 and IFN-γ. Further, there were significantly more neutrophils among the LPMNC of CD137−/− mice, and reduced numbers of macrophages among the IEL. Conclusion We conclude that CD137 plays an essential role in the resolution of acute DSS-induced intestinal inflammation in mice.
Collapse
Affiliation(s)
- Julia M. Martínez Gómez
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (HS); (TK)
| | - Thomas Karrasch
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
- * E-mail: (HS); (TK)
| |
Collapse
|
95
|
Yun CH, Lee HM, Lee SC, Kim BS, Park JW, Lee BJ. Involvement of CD137 ligand signaling in neural stem cell death. Mol Cells 2013; 36:245-51. [PMID: 23925549 PMCID: PMC3887980 DOI: 10.1007/s10059-013-0137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022] Open
Abstract
CD137 is a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Interaction of CD137 with its ligand (CD137L) affects the apoptosis, proliferation and differentiation of immune cells. Interestingly, the CD137 receptor/ligand system involves the bi-directional transduction of signals. The expression of CD137 and its ligand is not restricted to immune organs, but can also be detected in a wide variety of tissues such as the brain, kidney, lung and heart. However, its role in brain is largely unknown. This study was performed to determine the role of CD137L reverse signaling in the apoptosis of neural stem cells. We identified the expression of CD137 and its ligand in C17.2 neural stem cells derived from mouse embryonic cerebellum. We found that the activation of CD137L reverse signaling by CD137 resulted in a decrease in cell adhesion to the fibronectin-coated culture basement, thus causing detachment-induced cell death. Furthermore, we showed that the cell death induced by CD137 was completely ameliorated by integrin activators and caspase inhibitors. Therefore we suggest that CD137L reverse signaling exerts a pro-apoptotic effect by suppressing integrin-mediated survival signals in neural stem cells.
Collapse
Affiliation(s)
- Chang Ho Yun
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hye Myeong Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | - Byung Sam Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
96
|
Martínez Gómez JM, Koh VHQ, Yan B, Lin W, Ang MLT, Rahim SZZ, Pethe K, Schwarz H, Alonso S. Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Immunobiology 2013; 219:78-86. [PMID: 24091276 DOI: 10.1016/j.imbio.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
The role of the CD137-CD137 ligand (CD137L) signaling pathway in T cell co-stimulation has been well established. Dysregulated CD137 or CD137L stimulation can lead to pathological conditions such as inflammatory diseases or cancer. However, the contribution of CD137-CD137L interaction to the control of infectious diseases has not been extensively studied, with the few available reports focusing mainly on viral infections. Here we investigated the role of the CD137-CD137L interactions during Mycobacterium tuberculosis infection. Using CD137L-deficient mice, we found that absence of the CD137L-mediated signaling pathway during M. tuberculosis infection resulted in delayed activation of CD4(+) T cells in the draining lymph nodes. This finding was supported by an in vitro mixed lymphocyte reaction assay that revealed impaired priming of T cells by CD137L-deficient dendritic cells upon mycobacterial infection. In addition, greater numbers of CD4(+) T cells and antigen presenting cells were measured in the lungs of CD137L-deficient mice. Strikingly, the lung cytokine production profile was profoundly altered in M. tuberculosis-infected CD137L-deficient mice with lower levels of TNF-α, IL-12 and IL-6 and elevated concentrations of IL-17 compared to their wild type counterparts. However and surprisingly, these tangible immunological disorders translated only into a mild and transient increase in the bacterial loads and a higher number of granulomatous lesions with impaired architecture in the lungs of the CD137L-deficient infected mice. Together, while our data support the engagement of the CD137L signaling pathway during M. tuberculosis infection, they underscore the functional redundancy and robustness of the host defense arsenal deployed against mycobacterial infection.
Collapse
Affiliation(s)
- Julia María Martínez Gómez
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Moh MC, Lorenzini PA, Gullo C, Schwarz H. Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB J 2013; 27:2957-66. [PMID: 23620528 DOI: 10.1096/fj.12-225250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reverse signaling through CD137 ligand (CD137L) potently activates monocytes. However, the underlying mechanism is not well elucidated. This study provides evidence that tumor necrosis factor receptor 1 (TNFR1) acts as a coreceptor for CD137L and mediates CD137L signaling. CD137L colocalizes with TNFR1 on the plasma membrane and binds directly to TNFR1 via its extracellular domain. Using the human monocytic THP-1 cell line, we demonstrate that engagement of CD137L by recombinant CD137 protein promotes cell adhesion, apoptosis, expression of CD14, and production of IL-8 and tumor necrosis factor (TNF). Concomitantly, the expression of TNFR1 protein is down-regulated in response to CD137L activation, due to enhanced extracellular release and internalization of TNFR1. Activation of TNFR1 by TNF protein additively augments CD137L-induced IL-8 expression. Conversely, inhibition of TNFR1 activity by a TNFR1-neutralizing antibody inhibits CD137L-mediated cell adhesion, cell death, CD14 expression, and IL-8 production. Taken together, these data show that TNFR1 associates with CD137L and is required for CD137L reverse signaling.
Collapse
Affiliation(s)
- Mei Chung Moh
- Department of Physiology, Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | | | | | | |
Collapse
|
98
|
Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555-67. [DOI: 10.1002/eji.201243071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven; CT; USA
| | | |
Collapse
|
99
|
Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse. Clin Dev Immunol 2013; 2013:450291. [PMID: 23533456 PMCID: PMC3606757 DOI: 10.1155/2013/450291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
Abstract
To circumvent pathology caused by infectious microbes and tumor growth, the host immune system must constantly clear harmful microorganisms and potentially malignant transformed cells. This task is accomplished in part by T-cells, which can directly kill infected or tumorigenic cells. A crucial event determining the recognition and elimination of detrimental cells is antigen recognition by the T cell receptor (TCR) expressed on the surface of T cells. Upon binding of the TCR to cognate peptide-MHC complexes presented on the surface of antigen presenting cells (APCs), a specialized supramolecular structure known as the immunological synapse (IS) assembles at the T cell-APC interface. Such a structure involves massive redistribution of membrane proteins, including TCR/pMHC complexes, modulatory receptor pairs, and adhesion molecules. Furthermore, assembly of the immunological synapse leads to intracellular events that modulate and define the magnitude and characteristics of the T cell response. Here, we discuss recent literature on the regulation and assembly of IS and the mechanisms evolved by tumors to modulate its function to escape T cell cytotoxicity, as well as novel strategies targeting the IS for therapy.
Collapse
|
100
|
Development of experimental autoimmune encephalomyelitis critically depends on CD137 ligand signaling. J Neurosci 2013; 32:18246-52. [PMID: 23238738 DOI: 10.1523/jneurosci.2473-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative autoimmune disease of the CNS. Experimental autoimmune encephalomyelitis (EAE) is a commonly used murine model for MS. Here we report that CD137 ligand (CD137L, 4-1BB ligand, TNFS9), a member of the TNF superfamily, is critical for the development of EAE. EAE symptoms were significantly ameliorated in CD137L(-/-) mice. In the absence of CD137L, myelin oligodendrocyte glycoprotein (MOG)-specific T-cells secreted lower levels of T(h)1/T(h)17 cell-associated cytokines. MOG-specific T-cells also trafficked less efficiently to the CNS in CD137L(-/-) mice, possibly as a consequence of reduced expression of vascular cell adhesion molecule-1 (VCAM-1), which regulates leukocyte extravasation. Thus, CD137L regulates many functions of MOG-specific T-cells that contribute to EAE and may represent a novel therapeutic target for the treatment of MS.
Collapse
|