51
|
Lazzaro A, De Girolamo G, Filippi V, Innocenti GP, Santinelli L, Ceccarelli G, Trecarichi EM, Torti C, Mastroianni CM, d’Ettorre G, Russo A. The Interplay between Host Defense, Infection, and Clinical Status in Septic Patients: A Narrative Review. Int J Mol Sci 2022; 23:ijms23020803. [PMID: 35054993 PMCID: PMC8776148 DOI: 10.3390/ijms23020803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. Despite significant morbidity and mortality throughout the world, its pathogenesis and mechanisms are not clearly understood. In this narrative review, we aimed to summarize the recent developments in our understanding of the hallmarks of sepsis pathogenesis (immune and adaptive immune response, the complement system, the endothelial disfunction, and autophagy) and highlight novel laboratory diagnostic approaches. Clinical management is also discussed with pivotal consideration for antimicrobic therapy management in particular settings, such as intensive care unit, altered renal function, obesity, and burn patients.
Collapse
Affiliation(s)
- Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella De Girolamo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Valeria Filippi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giuseppe Pietro Innocenti
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00161 Rome, Italy; (A.L.); (G.D.G.); (V.F.); (G.P.I.); (L.S.); (G.C.); (C.M.M.); (G.d.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (E.M.T.); (C.T.)
- Correspondence:
| |
Collapse
|
52
|
Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Pérez-Carrasco M, Palmada C, Ribas V, Martínez-Gallo M, Hernández-González M, Gonzalez-Lopez JJ, Larrosa N, Ferrer R. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J Crit Care Med 2022; 11:1-21. [PMID: 35433311 PMCID: PMC8788206 DOI: 10.5492/wjccm.v11.i1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As it is associated with an increased risk of death, patients with this condition are candidates for receipt of a very well-structured and protocolized treatment. All patients should receive the fundamental pillars of sepsis management, which are infection control, initial resuscitation, and multiorgan support. However, specific subgroups of patients may benefit from a personalized approach with interventions targeted towards specific pathophysiological mechanisms. Herein, we will review the framework for identifying subpopulations of patients with sepsis, septic shock, and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches are still in the early stages of research, while others are already in routine use in clinical practice, but together will help in the effective generation and safe implementation of precision medicine in sepsis.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Erika P Plata-Menchaca
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Intensive Care, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Adolfo Ruiz-Sanmartin
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Vicent Ribas
- Data Analytics in Medicine, Digital Health Unit, Eurecat, Centre Tecnològic de Catalunya, Barcelona 08005, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manuel Hernández-González
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Juan J Gonzalez-Lopez
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
53
|
Yao L, Zhang L, Zhou C. Analysis of Prognostic Risk Factors of Sepsis Patients in Intensive Care Unit Based on Data Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3746640. [PMID: 35035827 PMCID: PMC8759882 DOI: 10.1155/2022/3746640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
In this paper, a data-enabled analysis of the prognostic risk factors of sepsis patients in the intensive care unit is presented. For this purpose, we have selected 220 sepsis patients, preferably those admitted to the intensive care unit for treatment in a tertiary a hospital in Tianjin from June 2018 to June 2019 and received complete data as the research objects, to explore the prognostic risk factors of sepsis patients in the intensive care unit. All patients met the SSC sepsis diagnosis guidelines and recorded the patients' age, gender, underlying disease, and infection site. Laboratory indicators, such as blood routine, electrolytes, arterial blood gas, liver function, and renal function, were collected within 24 hours of admission. Furthermore, the corresponding specimens were cultured for pathogenic microorganisms according to the site of infection. The LAC value was measured at admission and 24 h after admission, and the 24 h lactate clearance rate was calculated. The Acute Physiological and Chronic Health Status Score II (APACHE-II) and SOFA score were calculated, which were based on the worst value of the index within 24 hours after admission. According to the prognosis of patients during hospitalization, they are divided into two groups: (i) survival group and (ii) death group. We entered all the data into Excel and used SPSS21.0 statistical software for data analysis and processing. Quantitative data are tested for normality. Quantitative data for normal distribution are expressed as mean ± standard deviation, and normal distribution and uniform variance are measured. The factors affecting the prognosis of patients with sepsis were first subjected to a single-factor logistic regression analysis, and a multiple logistic regression analysis was performed on the basis of the significance of the single-factor analysis. The results found that the prognosis of patients with sepsis in the ICU is affected by multiple factors such as underlying diseases, infectious microorganisms, comorbidities, and interventional therapy. APACHE-II score, 24 h lactate clearance rate, ARDS, and DIC are independent risk factors that affect the prognosis of ICU patients.
Collapse
Affiliation(s)
- Lina Yao
- Department of ICU, People's Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Lei Zhang
- Department of ICU, People's Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Chengjie Zhou
- Department of ICU, People's Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
54
|
Prediction of 90-Day Mortality among Sepsis Patients Based on a Nomogram Integrating Diverse Clinical Indices. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1023513. [PMID: 34722755 PMCID: PMC8550845 DOI: 10.1155/2021/1023513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022]
Abstract
Background Sepsis is prevalent among intensive care units and is a frequent cause of death. Several studies have identified individual risk factors or potential predictors of sepsis-associated mortality, without defining an integrated predictive model. The present work was aimed at defining a nomogram for reliably predicting mortality. Methods We carried out a retrospective, single-center study based on 231 patients with sepsis who were admitted to our intensive care unit between May 2018 and October 2020. Patients were randomly split into training and validation cohorts. In the training cohort, multivariate logistic regression and a stepwise algorithm were performed to identify risk factors, which were then integrated into a predictive nomogram. Nomogram performance was assessed against the training and validation cohorts based on the area under receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis. Results Among the 161 patients in the training cohort and 70 patients in the validation cohort, 90-day mortality was 31.6%. Older age and higher values for the international normalized ratio, lactate level, and thrombomodulin level were associated with greater risk of 90-day mortality. The nomogram showed an AUC of 0.810 (95% CI 0.739 to 0.881) in the training cohort and 0.813 (95% CI 0.708 to 0.917) in the validation cohort. The nomogram also performed well based on the calibration curve and decision curve analysis. Conclusion This nomogram may help identify sepsis patients at elevated risk of 90-day mortality, which may help clinicians allocate resources appropriately to improve patient outcomes.
Collapse
|
55
|
Watanabe E, Akamatsu T, Ohmori M, Kato M, Takeuchi N, Ishiwada N, Nishimura R, Hishiki H, Fujimura L, Ito C, Hatano M. Recombinant thrombomodulin attenuates hyper-inflammation and glycocalyx damage in a murine model of Streptococcus pneumoniae-induced sepsis. Cytokine 2021; 149:155723. [PMID: 34662822 DOI: 10.1016/j.cyto.2021.155723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/20/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE The anticoagulant agent recombinant thrombomodulin (rTM) activates protein C to prevent excessive coagulation and also possibly regulates hyper-inflammation via neutralization of high-mobility-group B1 (HMG-B1). The glycocalyx layer in endothelial cells also plays a pivotal role in preventing septic shock-associated hyperpermeability. The present study examined the effect of rTM in a murine model of Streptococcus pneumoniae-induced sepsis. METHODS Male C57BL/6N mice were injected intratracheally via midline cervical incision with 2 × 107 CFU of S. pneumoniae (capsular subtype 19A). Control mice were sham-treated identically but injected with saline. rTM (10 mg/kg) was injected intraperitoneally 3 h after septic insult. Blood concentrations of soluble inflammatory mediators (interleukin [IL]-1β, IL-6, IL-10, and tumor necrosis factor [TNF]-α) were determined using a microarray immunoassay. Serum concentrations of HMG-B1 and syndecan-1, as a parameter of glycocalyx damage, were determined by enzyme-linked immunosorbent assay. The glycocalyx was also evaluated with electron microscopy. The lungs were removed, and digested to cells, which were then stained with a mixture of fluorophore-conjugated antibodies. Anti-mouse primary antibodies included PE-Cy7-conjugated anti-CD31, AlexaFluor 700-conjugated anti-CD45, PerCP-Cy5.5-conjugated anti-CD326, APC-conjugated anti-TNF-α, PE-conjugated anti-IL-6, and PE-conjugated anti-IL-10. A total of 1 × 106 cells per sample were analyzed, and 2 × 105 events were recorded by flow cytometry, and parameters were compared with/without rTM treatment. RESULTS The blood concentration of TNF-α was significantly reduced 24 h after intratracheal injection in S. pneumoniae-challenged mice treated with rTM (P = 0.016). Levels of IL-10 in the lung endothelium of rTM-treated S. pneumoniae-challenged mice increased significantly 12 h after intratracheal injection (P = 0.03). Intriguingly, serum HMGB-1 and syndecan-1 levels decreased significantly (P = 0.010 and 0.015, respectively) in rTM-treated mice 24 h after intratracheal injection of S. pneumoniae. Electron microscopy indicated that rTM treatment preserved the morphology of the glycocalyx layer in septic mice. CONCLUSIONS These data suggest that rTM modulates local inflammation in the lung endothelium, thus diminishing systemic inflammation, i.e., hypercytokinemia. Furthermore, rTM treatment reduced serum syndecan-1 levels, thus preventing glycocalyx damage. The use of rTM to treat sepsis caused by bacterial pneumonia could therefore help prevent both excessive inflammation and glycocalyx injury in the lung endothelium.
Collapse
Affiliation(s)
- Eizo Watanabe
- Department of General Medical Science, Chiba University Graduate School of Medicine, Japan; Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Japan.
| | | | | | - Mayu Kato
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Japan
| | - Noriko Takeuchi
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Japan
| | - Rintaro Nishimura
- Departments of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Haruka Hishiki
- Departments of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | | | - Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Japan
| | | |
Collapse
|
56
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
57
|
Thoreau B, von Tokarski F, Bauvois A, Bayer G, Barbet C, Cloarec S, Mérieau E, Lachot S, Garot D, Bernard L, Gyan E, Perrotin F, Pouplard C, Maillot F, Gatault P, Sautenet B, Rusch E, Frémeaux-Bacchi V, Vigneau C, Fakhouri F, Halimi JM. Infection in Patients with Suspected Thrombotic Microangiopathy Based on Clinical Presentation. Clin J Am Soc Nephrol 2021; 16:1355-1364. [PMID: 34497111 PMCID: PMC8729578 DOI: 10.2215/cjn.17511120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES In contrast to shigatoxin-associated Escherichia coli (STEC) causing hemolytic uremic syndrome, STEC-unrelated infections associated with thrombotic microangiopathy are less characterized. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Our retrospective study in a four-hospital institution of 530 consecutive patients with adjudicated thrombotic microangiopathies during the 2009-2016 period studied STEC-unrelated infections' epidemiology and major outcomes (death, acute dialysis, and major cardiovascular events). RESULTS STEC-unrelated infection was present in 145 of 530 (27%) patients, thrombotic microangiopathies without infection were present in 350 of 530 (66%) patients, and STEC causing hemolytic and uremic syndrome was present in 35 of 530 (7%) patients. They (versus thrombotic microangiopathy without infection) were associated with age >60 years (36% versus 18%), men (53% versus 27%), altered consciousness (32% versus 11%), mean BP <65 mm Hg (21% versus 4%), lower hemoglobin and platelet count, and AKI (72% versus 49%). They were associated with more than one pathogen in 36 of 145 (25%) patients (either isolated [14%] or combined [86%] to other causes of thrombotic microangiopathy); however, no significant clinical or biologic differences were noted between the two groups. They were more frequently due to bacteria (enterobacteria [41%], Staphylococcus aureus [11%], and Streptococcus pneumonia [3%]) than viruses (Epstein-Barr [20%], cytomegalovirus [18%], influenza [3%], hepatitis C [1%], HIV [1%], and rotavirus [1%]). STEC-unrelated infections were independent risk factors for in-hospital death (odds ratio, 2.22; 95% confidence interval, 1.18 to 4.29), major cardiovascular event (odds ratio, 3.43; 95% confidence interval, 1.82 to 6.69), and acute dialysis (odds ratio, 3.48; 95% confidence interval, 1.78 to 7.03). Bacteria (versus other pathogens), and among bacteria, enterobacteria, presence of more than one bacteria, and E. coli without shigatoxin were risk factors for acute dialysis. CONCLUSIONS Infections are frequent thrombotic microangiopathy triggers or causes, and they are mostly unrelated to STEC. Infections convey a higher risk of death and major complications. The most frequent pathogens were enterobacteria, S. aureus, Epstein-Barr virus, and cytomegalovirus. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_09_07_CJN17511120.mp3.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Florent von Tokarski
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Adeline Bauvois
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Guillaume Bayer
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Christelle Barbet
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Sylvie Cloarec
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Elodie Mérieau
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France
| | - Sébastien Lachot
- Service d'Hématologie Biologique, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Denis Garot
- Service de Médecine Intensive Réanimation, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Louis Bernard
- Service de Maladies Infectieuses, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, Hôpital Bretonneau, CHU Tours, Equipe de recherche Labellisée, Centre National pour le Recherche Scientifique 7001, Université de Tours, Tours, France
| | - Franck Perrotin
- Service de Gynécologie Obstétrique B. Maternité Olympe de Gouges, Hôpital Bretonneau, CHU Tours, Tours, France.,Institut National de la Santé et de la Recherche Médicale U1253 Imaging and Brain (iBrain), Université de Tours, Tours, France
| | - Claire Pouplard
- Service d'Hématologie-Hémostase, Hôpital Trousseau, CHU Tours, Tours, France.,EA7501, François-Rabelais University, Tours, France
| | - François Maillot
- Service de Médecine interne, Hôpital Bretonneau, CHU Tours, Tours, France
| | - Philippe Gatault
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France.,EA4245, François-Rabelais University, Tours, France
| | - Bénédicte Sautenet
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France.,Institut National de la Santé et de la Recherche Médicale U1246 the methodS in Patient-centered outcomes and HEalth ResEarch, Université de Tours, Université de Nantes, Tours, France
| | - Emmanuel Rusch
- Laboratoire de Santé Publique, Hôpital Bretonneau, CHU Tours, Tours, France
| | | | - Cécile Vigneau
- CHU Pontchaillou, Service de Néphrologie, Rennes, France.,Université Rennes 1, Institut National de la Santé et de la Recherche Médicale Institut de Recherche en Santé, environnement et Travail, Unité Mixte de Recherche 1085, Rennes, France
| | - Fadi Fakhouri
- Service of Nephrology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and Université de Lausanne, Lausanne, Switzerland
| | - Jean-Michel Halimi
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Néphrologie Pédiatrique, Hôpital Bretonneau et Hôpital Clocheville, Centre Hospitalier Universitaire (CHU) Tours, Tours, France et French Clinical Research Network Infrastructure-Cardiovascular and Renal Clinical Trialists, Tours, France .,EA4245, François-Rabelais University, Tours, France
| |
Collapse
|
58
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Makatsariya NA, Akinshina SV, Shkoda AS, Pankratyeva LL, Di Renzo GC, Rizzo G, Grigorieva KN, Tsibizova VI, Gris JC, Elalamy I. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous studies have proven a close relationship between inflammatory diseases and the state of hypercoagulability. In fact, thromboembolic complications represent one of the main causes of disability and mortality in acute and chronic inflammatory diseases, cancer and obstetric complications. Despite this, the processes of hemostasis and immune responses have long been considered separately; currently, work is underway to identify the molecular basis for a relationship between such systems. It has been identified that various pro-inflammatory stimuli are capable of triggering a coagulation cascade, which in turn modulates inflammatory responses. Neutrophil extracellular traps (NETs) are the networks of histones of extracellular DNA generated by neutrophils in response to inflammatory stimuli. The hemostasis is activated against infection in order to minimize the spread of infection and, if possible, inactivate the infectious agent. Another molecular network is based on fibrin. Over the last 10 years, there has been accumulated a whole body of evidence that NETs and fibrin are able to form a united network within a thrombus, stabilizing each other. Similarities and molecular cross-reactions are also present in the processes of fibrinolysis and lysis of NETs. Both NETs and von Willebrand factor (vWF) are involved in thrombosis as well as inflammation. During the development of these conditions, a series of events occurs in the microvascular network, including endothelial activation, NETs formation, vWF secretion, adhesion, aggregation, and activation of blood cells. The activity of vWF multimers is regulated by the specific metalloproteinase ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). Studies have shown that interactions between NETs and vWF can lead to arterial and venous thrombosis and inflammation. In addition, the contents released from activated neutrophils or NETs result in decreased ADAMTS-13 activity, which can occur in both thrombotic microangiopathies and acute ischemic stroke. Recently, NETs have been envisioned as a cause of endothelial damage and immunothrombosis in COVID-19. In addition, vWF and ADAMTS-13 levels predict COVID-19 mortality. In this review, we summarize the biological characteristics and interactions of NETs, vWF, and ADAMTS-13, the effect of NETs on hemostasis regulation and discuss their role in thrombotic conditions, sepsis, COVID-19, and obstetric complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. Shkoda
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
| | - L. L. Pankratyeva
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
| | - G. C. Di Renzo
- Sechenov University; Center for Prenatal and Reproductive Medicine, University of Perugia
| | - G. Rizzo
- Sechenov University; University of Rome Tor Vergata
| | | | - V. I. Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation
| | - J.-C. Gris
- Sechenov University; University of Montpellier
| | - I. Elalamy
- Sechenov University; Medicine Sorbonne University; Hospital Tenon
| |
Collapse
|
59
|
Catenacci V, Sheikh F, Patel K, Fox-Robichaud A. Diagnostic and prognostic accuracy of Protein C in adult patients with sepsis: protocol for a systematic review and meta-analysis. BMJ Open 2021; 11:e050754. [PMID: 34497083 PMCID: PMC8438940 DOI: 10.1136/bmjopen-2021-050754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Sepsis is a dysregulated host response to infection characterised by activation of proinflammatory and procoagulant mechanisms. Protein C (PC)'s activity as an anticoagulant and antiinflammatory molecule makes it an appealing target for sepsis biomarker studies. To date, there has been no systematic review of PC as a sepsis biomarker. OBJECTIVES To evaluate the diagnostic accuracy and prognostic strength of PC as a biomarker for adult sepsis. METHODS AND ANALYSIS Medline, Embase, Cochrane Library, PubMed and Cumulative Index to Nursing and Allied Health Literature (CINAHL) will be searched from inception through 20 January 2021 for prospective observational studies that evaluate the use of PC as a diagnostic or prognostic biomarker for adult sepsis. Title and abstract screening, full-text screening and data extraction will be conducted in duplicate. Risk of bias will be assessed using the Quality Assessment of Diagnostic Accuracy Studies and Quality in Prognostic Studies tools. If sufficient data are available, a meta-analysis will be conducted. The standardised mean difference and 95% CI will be calculated for prognostic and diagnostic studies. If possible, a hierarchical summary receiver operator characteristic curve will be generated to assess overall prognostic and diagnostic biomarker accuracy. I2 statistics will be used to assess heterogeneity. Sensitivity analysis will be performed by removing studies with a high risk of bias and re-examining the meta-analysis results. ETHICS AND DISSEMINATION Given this is a systematic review and meta-analysis, there is no requirement for ethics approval. Findings will be disseminated through a peer-reviewed publication and social media. PROSPERO REGISTRATION NUMBER CRD42021229786.
Collapse
Affiliation(s)
- Vanessa Catenacci
- Biochemistry, McMaster University Faculty of Science, Hamilton, Canada
| | - Fatima Sheikh
- Department of Health Research Methods Evidence and Impact, McMaster University Faculty of Health Sciences, Hamilton, Canada
| | - Kush Patel
- Biochemistry and Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Canada
| | | |
Collapse
|
60
|
Yang Y, Xue J, Qin L, Zhang J, Liu J, Yu J. LncRNA NEAT1 Promotes Inflammatory Response in Sepsis via the miR-31-5p/POU2F1 Axis. Inflammation 2021; 44:1518-1528. [PMID: 33710444 PMCID: PMC8285354 DOI: 10.1007/s10753-021-01436-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Sepsis is considered to be a systemic inflammatory response, which results in organ dysfunction. LncRNA nuclear-enriched abundant transcript 1 (NEAT1) involved in sepsis progression has been reported. However, the underlying mechanism of NEAT1 in sepsis-induced inflammatory response remains to be revealed. In this study, NEAT1 and POU domain class 2 transcription factor 1 (POU2F1) were highly expressed in LPS-induced septic RAW264.7 cells, opposite to miR-31-5p expression. Furthermore, we found that NEAT1 silencing inhibited LPS-induced inflammatory response and cell proliferation, and promoted cell apoptosis. Subsequently, we found that miR-31-5p interacted with NEAT1 and targeted the 3'UTR of POU2F1, and in LPS-induced RAW264.7 cells, the inhibition of NEAT1 silencing was reversed by miR-31-5p knockdown, while POU2F1 downregulation could cover the functions of miR-31-5p knockdown. In a word, this study indicates that NEAT1 inhibits the LPS-induced progression of sepsis in RAW264.7 cells by modulating miR-31-5p/POU2F1 axis, suggesting that NEAT1 will be the potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Lili Qin
- Department of Endoscopic Center, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China.
| | - Junbo Yu
- Department of Trauma Center, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
61
|
Fernández S, Palomo M, Molina P, Díaz-Ricart M, Escolar G, Téllez A, Seguí F, Ventosa H, Torramade-Moix S, Rovira M, Carreras E, Nicolás JM, Castro P. Progressive endothelial cell damage in correlation with sepsis severity. Defibrotide as a contender. J Thromb Haemost 2021; 19:1948-1958. [PMID: 33872468 DOI: 10.1111/jth.15343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The vascular endothelium plays a key role in sepsis pathophysiology and the associated organ dysfunction. METHODS We evaluated endothelial function in an experimental in vitro model of sepsis, using endothelial cells grown in the presence of serum from patients with septic syndromes (sepsis, severe sepsis, and septic shock), noninfectious systemic inflammatory response syndrome (NI-SIRS) and healthy volunteers. Experiments were performed in the absence and presence of defibrotide (DF) (100 µg/ml) to evaluate its potential protective effect. RESULTS After exposure to patients' sera, there was a progressive endothelial cell activation in correlation with sepsis severity, with a proinflammatory and prothrombotic phenotype, exhibiting significantly increased expression of adhesion receptors at the surface (intercellular adhesion molecule-1, p < .05 and vascular cell adhesion molecule-1, p < .05); higher production and release to the extracellular matrix (ECM) of von Willebrand factor (p < .001); augmented thrombogenicity of the ECM toward platelets (p < .001); and increased phosphorylation of intracellular p38MAPK. DF prevented these changes in all groups. CONCLUSIONS Markers of endothelial damage increased progressively in association with the severity of septic syndromes. The endothelium is therefore an important therapeutic target to prevent complications of sepsis. DF shows promising potential to modulate the endothelial damage associated with sepsis and may constitute a pharmacological tool to decrease its sequelae including multiorgan failure.
Collapse
Affiliation(s)
- Sara Fernández
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Patricia Molina
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Ginés Escolar
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Adrián Téllez
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Ferran Seguí
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Helena Ventosa
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
| | - Sergi Torramade-Moix
- Hematopathology, Pathology Department, CDB, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
| | - Montserrat Rovira
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- Stem Cell Transplantation Unit, Department of Haematology, Institute of Haematology and Oncology, Hospital Clinic, Barcelona, Spain
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Josep M Nicolás
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic, Barcelona, Spain
- IDIBAPS, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
Shaw RJ, Bradbury C, Abrams ST, Wang G, Toh CH. COVID-19 and immunothrombosis: emerging understanding and clinical management. Br J Haematol 2021; 194:518-529. [PMID: 34114204 DOI: 10.1111/bjh.17664] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the most significant health crisis in recent global history. Early studies from Wuhan highlighted COVID-19-associated coagulopathy and a significant association with mortality was soon recognised. As research continues across the world, more evidence is emerging of the cross-talk between the innate immune system, coagulation activation and inflammation. Immunothrombosis has been demonstrated to play a key role in the pathophysiology of severe COVID-19, with extracellular histones and neutrophil extracellular traps detected in the plasma and cardiopulmonary tissues of critically ill patients. Targeting the components of immunothrombosis is becoming an important factor in the treatment of patients with COVID-19 infection. Recent studies report outcomes of intermediate and therapeutic anticoagulation in hospitalised patients with varying severities of COVID-19 disease, including optimal dosing and associated bleeding risks. Immunomodulatory therapies, including corticosteroids and IL-6 receptor antagonists, have been demonstrated to significantly reduce mortality in COVID-19 patients. As the pandemic continues, more studies are required to understand the driving factors and upstream mechanisms for coagulopathy and immunothrombosis in COVID-19, and thus potentially develop more targeted therapies for SARS-CoV-2 infection, both in the acute phase and in those who develop longer-term symptom burden.
Collapse
Affiliation(s)
- Rebecca J Shaw
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
63
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|
64
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
65
|
Lambden S, Cowburn AS, Macias D, Garrud TAC, Krause BJ, Giussani DA, Summers C, Johnson RS. Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors. Intensive Care Med Exp 2021; 9:28. [PMID: 34114090 PMCID: PMC8192653 DOI: 10.1186/s40635-021-00390-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The vascular endothelium has important endocrine and paracrine roles, particularly in the regulation of vascular tone and immune function, and it has been implicated in the pathophysiology of a range of cardiovascular and inflammatory conditions. This study uses a series of transgenic murine models to explore for the first time the role of the hypoxia-inducible factors, HIF-1α and HIF-2α in the pulmonary and systemic circulations as potential regulators of systemic vascular function in normoxic or hypoxic conditions and in response to inflammatory stress. We developed a series of transgenic mouse models, the HIF-1α Tie2Cre, deficient in HIF1-α in the systemic and pulmonary vascular endothelium and the L1Cre, a pulmonary endothelium specific knockout of HIF-1α or HIF-2α. In vivo, arterial blood pressure and metabolic activity were monitored continuously in normal atmospheric conditions and following an acute stimulus with hypoxia (10%) or lipopolysaccharide (LPS). Ex vivo, femoral artery reactivity was assessed using wire myography. RESULTS Under normoxia, the HIF-1α Tie2Cre mouse had increased systolic and diastolic arterial pressure compared to litter mate controls over the day-night cycle under normal environmental conditions. VO2 and VCO2 were also increased. Femoral arteries displayed impaired endothelial relaxation in response to acetylcholine mediated by a reduction in the nitric oxide dependent portion of the response. HIF-1α L1Cre mice displayed a similar pattern of increased systemic blood pressure, metabolic rate and impaired vascular relaxation without features of pulmonary hypertension, polycythaemia or renal dysfunction under normal conditions. In response to acute hypoxia, deficiency of HIF-1α was associated with faster resolution of hypoxia-induced haemodynamic and metabolic compromise. In addition, systemic haemodynamics were less compromised by LPS treatment. CONCLUSIONS These data show that deficiency of HIF-1α in the systemic or pulmonary endothelium is associated with increased systemic blood pressure and metabolic rate, a pattern that persists in both normoxic conditions and in response to acute stress with potential implications for our understanding of the pathophysiology of vascular dysfunction in acute and chronic disease.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew S Cowburn
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Macias
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tessa A C Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Bernardo J Krause
- Department of Neonatology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | | | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK. .,Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
66
|
Kuo MJ, Chou RH, Lu YW, Guo JY, Tsai YL, Wu CH, Huang PH, Lin SJ. Premorbid β1-selective (but not non-selective) β-blocker exposure reduces intensive care unit mortality among septic patients. J Intensive Care 2021; 9:40. [PMID: 33985572 PMCID: PMC8116825 DOI: 10.1186/s40560-021-00553-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND β-blockers may protect against catecholaminergic myocardial injury in critically ill patients. Long-term β-blocker users are known to have lower lactate concentrations and favorable sepsis outcomes. However, the effects of β1-selective and nonselective β-blockers on sepsis outcomes have not been compared. This study was conducted to investigate the impacts of different β-blocker classes on the mortality rate in septic patients. METHODS We retrospectively screened 2678 patients admitted to the medical or surgical intensive care unit (ICU) between December 2015 and July 2017. Data from patients who met the Sepsis-3 criteria at ICU admission were included in the analysis. Premorbid β-blocker exposure was defined as the prescription of any β-blocker for at least 1 month. Bisoprolol, metoprolol, and atenolol were classified as β1-selective β-blockers, and others were classified as nonselective β-blockers. All patients were followed for 28 days or until death. RESULTS Among 1262 septic patients, 209 (16.6%) patients were long-term β-blocker users. Patients with premorbid β-blocker exposure had lower heart rates, initial lactate concentrations, and ICU mortality. After adjustment for disease severity, comorbidities, blood pressure, heart rate, and laboratory data, reduced ICU mortality was associated with premorbid β1-selective [adjusted hazard ratio, 0.40; 95% confidence interval (CI), 0.18-0.92; P = 0.030], but not non-selective β-blocker use. CONCLUSION Premorbid β1-selective, but not non-selective, β-blocker use was associated with improved mortality in septic patients. This finding supports the protective effect of β1-selective β-blockers in septic patients. Prospective studies are needed to confirm it.
Collapse
Affiliation(s)
- Ming-Jen Kuo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Wen Lu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-Yu Guo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shing-Jong Lin
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
67
|
Morrison JM, Betensky M, Kiskaddon AL, Goldenberg NA. Venous Thromboembolism among Noncritically Ill Hospitalized Children: Key Considerations for the Pediatric Hospital Medicine Specialist. Semin Thromb Hemost 2021; 48:434-445. [PMID: 33962474 DOI: 10.1055/s-0041-1729170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Venous thromboembolism (VTE) is a leading cause of morbidity and preventable harm among noncritically ill hospitalized children. Several clinical factors relevant to the noncritically ill hospitalized child significantly increase the risk of VTE including the presence of central venous catheters, systemic inflammation, and prolonged immobilization. Although risk mitigation strategies have been described, the diagnosis, treatment, and prevention of VTE require standardization of institutional practices combined with multidisciplinary collaboration among pediatric hospitalists, hematologists, and other care providers. In this narrative review, we summarize the epidemiology of VTE, risk models identifying high-risk conditions associated with VTE, and prevention and treatment strategies. We further describe successful quality improvement efforts implementing institutional VTE risk stratification and thromboprophylaxis procedures. Finally, we highlight unique challenges facing pediatric hospital medicine specialists in the era of the COVID-19 pandemic, including caring for adults admitted to pediatric hospital units, and describe future research opportunities for VTE in the noncritically ill hospitalized child.
Collapse
Affiliation(s)
- John M Morrison
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hospital Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Marisol Betensky
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hematology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Amy L Kiskaddon
- Department of Pharmacy, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Neil A Goldenberg
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hematology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| |
Collapse
|
68
|
Zinger A, Sushnitha M, Naoi T, Baudo G, De Rosa E, Chang J, Tasciotti E, Taraballi F. Enhancing Inflammation Targeting Using Tunable Leukocyte-Based Biomimetic Nanoparticles. ACS NANO 2021; 15:6326-6339. [PMID: 33724785 PMCID: PMC8155322 DOI: 10.1021/acsnano.0c05792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/22/2021] [Indexed: 05/02/2023]
Abstract
Biomimetic nanoparticles aim to effectively emulate the behavior of either cells or exosomes. Leukocyte-based biomimetic nanoparticles, for instance, incorporate cell membrane proteins to transfer the natural tropism of leukocytes to the final delivery platform. However, tuning the protein integration can affect the in vivo behavior of these nanoparticles and alter their efficacy. Here we show that, while increasing the protein:lipid ratio to a maximum of 1:20 (w/w) maintained the nanoparticle's structural properties, increasing protein content resulted in improved targeting of inflamed endothelium in two different animal models. Our combined use of a microfluidic, bottom-up approach and tuning of a key synthesis parameter enabled the synthesis of reproducible, enhanced biomimetic nanoparticles that have the potential to improve the treatment of inflammatory-based conditions through targeted nanodelivery.
Collapse
Affiliation(s)
- Assaf Zinger
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Manuela Sushnitha
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department
of Bioengineering, Rice University, Houston, Houston, Texas 77030, United States
| | - Tomoyuki Naoi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Gherardo Baudo
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Enrica De Rosa
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Jenny Chang
- Houston
Methodist Cancer Center, Houston Methodist
Hospital, Houston, Texas 77030, United
States
| | - Ennio Tasciotti
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Biotechnology
Program, San Raffaele University and IRCCS
San Raffaele Pisana, 00166 Roma RM, Italy
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030, United States
- Orthopedics
and Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
69
|
Abstract
The actual Coronavirus Disease (COVID 19) pandemic is due to Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the coronavirus family. Besides the respiratory involvement, COVID 19 patients frequently develop a pro-coagulative state caused by virus-induced endothelial dysfunction, cytokine storm and complement cascade hyperactivation. It is common to observe diffuse microvascular thrombi in multiple organs, mostly in pulmonary microvessels. Thrombotic risk seems to be directly related to disease severity and worsens patients’ prognosis. Therefore, the correct understanding of the mechanisms underlying COVID-19 induced prothrombotic state can lead to a thorough assessment of the possible management strategies. Hence, we review the pathogenesis and therapy of COVID 19-related thrombosis disease, focusing on the available evidence on the possible treatment strategies and proposing an algorithm for the anticoagulation strategy based on disease severity.
Collapse
|
70
|
An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian J Clin Biochem 2021; 36:387-403. [PMID: 33875909 PMCID: PMC8047580 DOI: 10.1007/s12291-021-00972-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease which has affected more than 6.2 million people globally, with numbers mounting considerably daily. However, till date, no specific treatment modalities are available for Covid-19 and also not much information is known about this disease. Recent studies have revealed that SARS-CoV-2 infection is associated with the generation of thrombosis and coagulopathy. Fundamentally, it has been believed that a diverse array of signalling pathways might be responsible for the activation of coagulation cascade during SARS-CoV-2 infection. Henceforth, a detailed understanding of these probable underlying molecular mechanistic pathways causing thrombosis in Covid-19 disease deserves an urgent exploration. Therefore, in this review, the hypothetical crosstalk between distinct signalling pathways including apoptosis, inflammation, hypoxia and angiogenesis attributable for the commencement of thrombotic events during SARS-CoV-2 infection has been addressed which might further unravel promising therapeutic targets in Covid-19 disease.
Collapse
|
71
|
Bayraktutan Z, Dincer B, Keskin H, Kose D, Bilen A, Toktay E, Sirin B, Halici Z. Roflumilast as a Potential Therapeutic Agent for Cecal Ligation and Puncture-Induced Septic Lung Injury. J INVEST SURG 2021; 35:605-613. [PMID: 33843406 DOI: 10.1080/08941939.2021.1908462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE/AIMS This study focused on delineating the possible effects of roflumilast (ROF), a selective phosphodiesterase 4 (PDE4) inhibitor, in rats with cecal ligation and puncture (CLP)-induced polymicrobial sepsis, and investigated whether ROF can act as a protective agent in sepsis-induced lung damage. MATERIAL AND METHODS Four experimental groups were organized, each comprising eight rats: Control, Sepsis, Sepsis + ROF 0.5 mgkg-1, and Sepsis + ROF 1 mgkg-1 groups. A polymicrobial sepsis model was induced in the rats by cecal ligation and puncture under anesthesia. Twelve hours after sepsis induction, the lungs were obtained for biochemical, molecular, and histopathological analyses. RESULTS In the sepsis group's lungs, the TNF-α, IL-1β, and IL-6 mRNA expression levels peaked in the sepsis group's lung tissues, and ROF significantly decreased these levels compared with the sepsis group dose-dependently. ROF also significantly decreased MDA levels in septic lungs and increased antioxidant parameters (SOD and GSH) compared with the sepsis group. Histopathological analysis results supported biochemical and molecular results. CONCLUSIONS ROF, a PDE4 inhibitor, suppressed the expression levels of pro-inflammatory cytokines, alleviated lung damage (probably by blocking neutrophil infiltration), and increased the capacity of the antioxidant system.
Collapse
Affiliation(s)
| | - Busra Dincer
- Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Halil Keskin
- Department of Child Health and Diseases, Ataturk University, Erzurum, Turkey
| | - Duygu Kose
- Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Arzu Bilen
- Department of Internal Medicine, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Busra Sirin
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University, Erzurum, Turkey.,Department of Internal Medicine, Ataturk University, Erzurum, Turkey.,Department of Histology and Embryology, Kafkas University, Kars, Turkey.,Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
72
|
Qi L, Yan Y, Chen B, Cao J, Liang G, Xu P, Wang Y, Ren Y, Mao G, Huang Z, Xu C, Jiang H. Research progress of circRNA as a biomarker of sepsis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:720. [PMID: 33987418 PMCID: PMC8106021 DOI: 10.21037/atm-21-1247] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective Explore the possibility of circRNAs as markers of sepsis. Background Sepsis is an abnormal immune response of our body to infection that can lead to organ failure and death. Although the research on sepsis has been extensive in the past few years, sepsis-associated morbidity and mortality are still increasing. Early diagnosis and early treatment are important for patients with sepsis. Although many markers, including procalcitonin and C-reactive protein, have been proposed as diagnostic indicators of sepsis, there are still challenges in the early diagnosis and treatment of sepsis due to the lack of sensitivity and specificity of these substances. Recently, a large number of studies have found that circular RNAs (circRNAs) participate in a variety of biological functions, such as immune response, regulating the expression of miRNAs, and they are closely related to the occurrence and development of many diseases, including sepsis. However, the clear mechanism of the role of circRNAs has not been fully elucidated. An increasing number of studies have confirmed that circRNAs have potential in the diagnosis and treatment of sepsis. By studying the regulatory mechanism of circRNAs in sepsis, we can search for new molecular intervention targets for the treatment of sepsis, which is conducive to the development of new molecular therapeutic drugs for sepsis. Methods In the present study, we summarize and analyze the role of circRNAs in the pathogenesis of sepsis and discuss the possibility of circRNA as a biomarker for the diagnosis of sepsis. Conclusions The biological characteristics of circRNAs and their role in the occurrence and development of sepsis make them possible markers of sepsis.
Collapse
Affiliation(s)
- Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Rugao Branch Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Bairong Chen
- Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, China
| | - Jiling Cao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Pan Xu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuting Ren
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guomin Mao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Xu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
73
|
Keshava S, Magisetty J, Tucker TA, Kujur W, Mulik S, Esmon CT, Idell S, Rao LVM, Pendurthi UR. Endothelial Cell Protein C Receptor Deficiency Attenuates Streptococcus pneumoniae-induced Pleural Fibrosis. Am J Respir Cell Mol Biol 2021; 64:477-491. [PMID: 33600743 PMCID: PMC8008801 DOI: 10.1165/rcmb.2020-0328oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.
Collapse
Affiliation(s)
| | | | | | - Weshely Kujur
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Sachin Mulik
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | | | | |
Collapse
|
74
|
Rahmawati PL, Tini K, Susilawathi NM, Wijayanti IAS, Samatra DP. Pathomechanism and Management of Stroke in COVID-19: Review of Immunopathogenesis, Coagulopathy, Endothelial Dysfunction, and Downregulation of ACE2. J Clin Neurol 2021; 17:155-163. [PMID: 33835735 PMCID: PMC8053537 DOI: 10.3988/jcn.2021.17.2.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can reportedly manifest as an acute stroke, with most cases presenting as large vessel ischemic stroke in patients with or without comorbidities. The exact pathomechanism of stroke in COVID-19 remains ambiguous. The findings of previous studies indicate that the most likely underlying mechanisms are cerebrovascular pathological conditions following viral infection, inflammation-induced endothelial dysfunction, and hypercoagulability. Acute endothelial damage due to inflammation triggers a coagulation cascade, thrombosis propagation, and destabilization of atherosclerosis plaques, leading to large-vessel occlusion and plaque ulceration with concomitant thromboemboli, and manifests as ischemic stroke. Another possible mechanism is the downregulation of angiotensin-converting enzyme 2 as the target action of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Acute stroke management protocols need to be modified during the COVID-19 pandemic in order to adequately manage stroke patients with COVID-19.
Collapse
Affiliation(s)
- Putu Lohita Rahmawati
- Department of Neurology, Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia.
| | - Kumara Tini
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Ni Made Susilawathi
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - I A Sri Wijayanti
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Dpg Purwa Samatra
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| |
Collapse
|
75
|
Aghayari Sheikh Neshin S, Shahjouei S, Koza E, Friedenberg I, Khodadadi F, Sabra M, Kobeissy F, Ansari S, Tsivgoulis G, Li J, Abedi V, Wolk DM, Zand R. Stroke in SARS-CoV-2 Infection: A Pictorial Overview of the Pathoetiology. Front Cardiovasc Med 2021; 8:649922. [PMID: 33855053 PMCID: PMC8039152 DOI: 10.3389/fcvm.2021.649922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Since the early days of the pandemic, there have been several reports of cerebrovascular complications during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Numerous studies proposed a role for SARS-CoV-2 in igniting stroke. In this review, we focused on the pathoetiology of stroke among the infected patients. We pictured the results of the SARS-CoV-2 invasion to the central nervous system (CNS) via neuronal and hematogenous routes, in addition to viral infection in peripheral tissues with extensive crosstalk with the CNS. SARS-CoV-2 infection results in pro-inflammatory cytokine and chemokine release and activation of the immune system, COVID-19-associated coagulopathy, endotheliitis and vasculitis, hypoxia, imbalance in the renin-angiotensin system, and cardiovascular complications that all may lead to the incidence of stroke. Critically ill patients, those with pre-existing comorbidities and patients taking certain medications, such as drugs with elevated risk for arrhythmia or thrombophilia, are more susceptible to a stroke after SARS-CoV-2 infection. By providing a pictorial narrative review, we illustrated these associations in detail to broaden the scope of our understanding of stroke in SARS-CoV-2-infected patients. We also discussed the role of antiplatelets and anticoagulants for stroke prevention and the need for a personalized approach among patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| | - Eric Koza
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Isabel Friedenberg
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | | | - Mirna Sabra
- Neurosciences Research Center (NRC), Lebanese University/Medical School, Beirut, Lebanon
| | - Firas Kobeissy
- Program of Neurotrauma, Neuroproteomics and Biomarker Research (NNBR), University of Florida, Gainesville, FL, United States
| | - Saeed Ansari
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, United States
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States
| | - Donna M Wolk
- Molecular and Microbial Diagnostics and Development, Diagnostic Medicine Institute, Laboratory Medicine, Geisinger Health System, Danville, PA, United States
| | - Ramin Zand
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| |
Collapse
|
76
|
Rovai ES, Alves T, Holzhausen M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp Biol Med (Maywood) 2021; 246:688-694. [PMID: 33302737 PMCID: PMC7746952 DOI: 10.1177/1535370220978372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Emanuel S. Rovai
- Department of Dentistry, University of Taubate, Taubate 12010-490, Brazil
| | - Tomaz Alves
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
77
|
Fu G, Deng M, Neal MD, Billiar TR, Scott MJ. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock 2021; 55:156-166. [PMID: 32694394 PMCID: PMC8008955 DOI: 10.1097/shk.0000000000001619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Platelets have been shown to play an important immunomodulatory role in the pathogenesis of various diseases through their interactions with other immune and nonimmune cells. Sepsis is a major cause of death in the United States, and many of the mechanisms driving sepsis pathology are still unresolved. Monocytes have recently received increasing attention in sepsis pathogenesis, and multiple studies have associated increased levels of platelet-monocyte aggregates observed early in sepsis with clinical outcomes in sepsis patients. These findings suggest platelet-monocyte aggregates may be an important prognostic indicator. However, the mechanisms leading to platelet interaction and aggregation with monocytes, and the effects of aggregation during sepsis are still poorly defined. There are few studies that have really investigated functions of platelets and monocytes together, despite a large body of research showing separate functions of platelets and monocytes in inflammation and immune responses during sepsis. The goal of this review is to provide insights into what we do know about mechanisms and biological meanings of platelet-monocyte interactions, as well as some of the technical challenges and limitations involved in studying this important potential mechanism in sepsis pathogenesis. Improving our understanding of platelet and monocyte biology in sepsis may result in identification of novel targets that can be used to positively affect outcomes in sepsis.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China (visiting scholar in Pittsburgh 2018-09/2020-09)
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Trauma Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
78
|
Li C, Wang P, Li M, Zheng R, Chen S, Liu S, Feng Z, Yao Y, Shang H. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113301. [PMID: 32860891 DOI: 10.1016/j.jep.2020.113301] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/16/2019] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing (XBJ) injection is a Chinese medicine containing extracts from Carthamus tinctorius L. (Carthami Flos, hong hua, Asteraceae), Paeonia lactiflora Pall. (Paeoniae radix rubra, chi shao, Ranunculaceae), Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma, chuan xiong, Umbelliferae), Salvia miltiorrhiza Bge. (Salviae miltiorrhizae Radix Et Rhizoma, dan shen, Labiatae) and Angelica sinensis (Oliv.) Diels (Angelicae sinensis Radix, dang gui, Umbelliferae). It has been approved for the treatment of sepsis in China since 2004 and has been widely used as an add-on treatment for sepsis or septic shock with few side effects. AIM OF THE STUDY The aim of the present review was to analyse up-to-date information related to the treatment of sepsis with XBJ, including the bioactive constituents, clinical studies and potential mechanisms, and to discuss possible scientific gaps, to provide a reliable reference for future studies. MATERIALS AND METHODS Scientific resources concentrating on treating sepsis with XBJ were searched through PubMed, the Chinese National Knowledge Infrastructure (CNKI) and WanFang databases from inception to November 2018. Dissertations were also searched, and eligible dissertations were selected. Studies related to the identification of constituents, bioactive components and their targets of action or pathways, clinical trials, and animal or cellular experiments that explored pharmacological mechanisms were manually selected. The quality of reporting and methodology of the included pharmacological experiments were assessed using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool. RESULTS A total of 108 relative studies were eventually included, containing 12 bioactivity research studies, 10 systematic reviews on clinical trials and 86 animal or cellular experiments. We noted that as identification methods progressed, further constituents could be detected in XBJ. XBJ was also found to have "multi-ingredient, multi-target and multi-pathway" effects. The systematic review revealed that XBJ could improve the 28-day mortality and other indexes, such as the APACHE II score, body temperature, and white blood cell (WBC) count, to some extent. A major organ protection effect was demonstrated in septic rats. Pharmacological investigations suggested that XBJ acts in both the early and late stages of sepsis by anti-inflammatory, anti-coagulation, immune regulation, vascular endothelial protection, anti-oxidative stress and other mechanisms. However, most of the included studies were poorly reported, and the risk of bias was unclear. CONCLUSIONS With respect to the multiple therapeutic mechanisms contributing to both the early and late stages of sepsis, the multiple effective constituents detected and randomized controlled trials (RCTs) performed to prove its efficacy, XBJ is a promising therapy for the treatment of sepsis. However, although XBJ has shown some efficacy for the treatment of sepsis, there are currently some scientific gaps. More studies concerning the pharmacokinetics, interactions with antibiotics, real-world efficacy and safety, pharmacological mechanisms of the bioactive components and large-scale clinical trials should be conducted in the future.
Collapse
Affiliation(s)
- Chengyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Ping Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Fangshan District, Beijing, 102488, China.
| | - Min Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Shiqi Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| | - Si Liu
- Tianjin Chase Sun Pharmaceutical Co. LTD, 20 Quanfa Road, Tianjin Wuqing Development Area, Tianjin, 300170, China.
| | - Zhiqiao Feng
- Tianjin Chase Sun Pharmaceutical Co. LTD, 20 Quanfa Road, Tianjin Wuqing Development Area, Tianjin, 300170, China.
| | - Yongming Yao
- First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 51 Bucheng Road, Haidian District, Beijing, 100048, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
79
|
Sinha H, Maitra S, Anand RK, Aggarwal R, Rewari V, Subramaniam R, Trikha A, Arora MK, Batra RK, Saxena R, Baidya DK. Epidemiology and Prognostic Utility of Cellular Components of Hematological System in Sepsis. Indian J Crit Care Med 2021; 25:660-667. [PMID: 34316146 PMCID: PMC8286394 DOI: 10.5005/jp-journals-10071-23874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Data are lacking on the role of cellular components of hematological system as biomarkers for prognosis of sepsis. We planned to identify if these parameters measured at admission to ICU and at 72 hours can be useful as prognostic marker in septic critically ill patients. Materials and methods In this prospective observational study, 130 adult patients with sepsis were recruited. Various hematological study parameters (total, differential, and absolute leukocyte count, platelet count, platelet distribution width, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio) were noted at day 1 and day 3 of admission. Primary outcome was 28-day mortality, and secondary outcomes were duration of mechanical ventilation, vasopressor requirement, ICU length of stay, and requirement of renal replacement therapy. The variables were compared between two groups and using binary regression model and were evaluated as prognostic markers for 28-day mortality. Results Data from n = 129 were analyzed. At day-28, n = 58 (44.96%) patients survived. Baseline and demographic parameters were comparable between survivors and nonsurvivors. Admission Sequential Organ Failure Assessment score was more in nonsurvivors than survivors [8 (6–8) vs 6 (4–8); p = 0.002]. In nonsurvivors, monocyte, lymphocyte, basophil, eosinophil, and platelet count were significantly less at day 1 and lymphocyte, eosinophil, basophil and platelet count were significantly less at day 3. NLR and PLR at day 3 were significantly more in nonsurvivors. On logistic regression analysis, age, thrombocytopenia on day 1, and low eosinophil count on day 3 predicted 28-day mortality (p = 0.006, p = 0.02, and p = 0.04, respectively). Conclusion Thrombocytopenia on day 1 and eosinopenia on day 3 may predict 28-day mortality in sepsis. How to cite this article Sinha H, Maitra S, Anand RK, Aggarwal R, Rewari V, Subramaniam R, et al. Epidemiology and Prognostic Utility of Cellular Components of Hematological System in Sepsis. Indian J Crit Care Med 2021;25(6):660–667.
Collapse
Affiliation(s)
- Harsha Sinha
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Souvik Maitra
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul K Anand
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Aggarwal
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Vimi Rewari
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeshwari Subramaniam
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Anjan Trikha
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Mahesh K Arora
- Department of Anaesthesiology, Institute of Liver and Biliary Sciences, New Delhi, India; Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder K Batra
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Saxena
- Department of Hematopathology, Medanta: The Medicity, Gurugram, Haryana, India; Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Dalim K Baidya
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
80
|
Miljić P. Characteristics and treatment of coagulopathy associated with COVID-19. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-33067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coagulopathy in COVID-19 represents a thrombo-inflammatory condition, and it is one of the most important causes of morbidity and mortality in this disease. The occurrence of coagulopathy correlates with the intensity of the inflammatory response to SARS-Cov-2 virus infection, and its presence is characterized by laboratory markers of blood hypercoagulability and clinically pronounced prothrombotic condition. Although the mechanism of coagulopathy is not fully elucidated, dysregulated and overemphasized immune responses mediated by inflammatory cytokines, complement activation, leukocyte activation with release of free nucleic acids and histones into the circulation, hypoxia and endothelial damage play a very important role in its development. Thrombosis can occur in all parts of the circulatory system and is most often localized in the microcirculation and venous part of the vasculature. A number of studies have shown that the presence of thrombotic pulmonary embolism can be demonstrated by objective methods in approximately 15% of COVID-19 patients treated in intensive care units, while the incidence of total venous thromboembolism in this group of patients is over 20% despite antithrombotic prophylaxis. Although much less common than venous thrombosis, arterial thrombosis may also occur in COVID-19 patients, most often in the form of myocardial infarction, ischemic stroke and peripheral artery occlusion. Damage to the endothelium under the influence of virus or inflammatory response, activation of platelets and coagulation system with fibrin deposition leads to extensive thrombosis in the microcirculation of lungs and other tissues and directly contributes to respiratory failure, ARDS or multiorgan failure. Therefore, coagulopathy in COVID-19 is an integral part of the pathophysiological mechanism of the disease and contributes to its clinical manifestation and progression. Main laboratory characteristics of COVID-19 coagulopathy are elevated values of D-dimer in the blood, which occurs in the process of decomposition of precipitated fibrin under the action of fibrinolytic enzymes in the microcirculation of the lungs and other organs. Therefore, D-dimer values reflect the intensity of the inflammation in the lungs and have prognostic significance in recognizing patients at risk of serious complications and unfavorable course of the disease. In contrast to disseminated intravascular coagulation in sepsis, severe thrombocytopenia and hypofibrinogenemia as well as bleeding tendencies are rare in COVID-19 coagulopathy. Due to the high frequency and important role of coagulopathy in morbidity and mortality, the use of anticoagulant therapy is recommended in all hospitalized patients. However, the optimal way of treating coagulopathy and the intensity of antithrombotic prophylaxis are not known, and represent the subject of intensive research.
Collapse
|
81
|
Singh S, Jain K, Paul D, Singh J. A review of the pathological mechanisms and clinical implications of coagulopathy in COVID-19. JOURNAL OF APPLIED HEMATOLOGY 2021. [DOI: 10.4103/joah.joah_19_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
82
|
Tanak AS, Muthukumar S, Krishnan S, Schully KL, Clark DV, Prasad S. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens Bioelectron 2021; 171:112726. [PMID: 33113386 PMCID: PMC7569407 DOI: 10.1016/j.bios.2020.112726] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
The implementation of endotype-driven effective intervention strategies is now considered as an essential component for sepsis management. Rapid screening and frequent monitoring of immune responses are critical for evidence-based informed decisions in the early hours of patient arrival. Current technologies focus on pathogen identification that lack rapid testing of the patient immune response, impeding clinicians from providing appropriate sepsis treatment. Herein, we demonstrate a first-of-its-kind novel point-of-care device that uses a unique approach by directly monitoring a panel of five cytokine biomarkers (IL-6, IL-8, IL-10, TRAIL & IP-10), that is attributed as a sign of the body's host immune response to sepsis. The developed point-of-care device encompasses a disposable sensor cartridge attached to an electrochemical reader. High sensitivity is achieved owing to the unique sensor design with an array of nanofilm semiconducting/metal electrode interface, functionalized with specific capture probes to measure target biomarkers simultaneously using non-faradaic electrochemical impedance spectroscopy. The sensor has a detection limit of ~1 pg/mL and provides results in less than five minutes from a single drop of undiluted plasma sample. Furthermore, the sensor demonstrates an excellent correlation (Pearson's r > 0.90) with the reference method for a total n = 40 clinical samples, and the sensor's performance is ~30 times faster compared to the standard reference technique. We have demonstrated the sensor's effectiveness to enhance diagnosis with a mechanistic biomarker-guided approach that can help disease endotypying for effective clinical management of sepsis at the patient bedside.
Collapse
Affiliation(s)
- Ambalika S Tanak
- Department of Bioengineering, The University of Texas at Dallas, TX, USA
| | | | - Subramaniam Krishnan
- Austere Environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kevin L Schully
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, MD, USA
| | - Danielle V Clark
- Austere Environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, TX, USA.
| |
Collapse
|
83
|
Sepsis and Autoimmune Disease: Pathology, Systems Medicine, and Artificial Intelligence. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
84
|
Goldstein SL, Askenazi DJ, Basu RK, Selewski DT, Paden ML, Krallman KA, Kirby CL, Mottes TA, Terrell T, Humes HD. Use of the Selective Cytopheretic Device in Critically Ill Children. Kidney Int Rep 2020; 6:775-784. [PMID: 33732992 PMCID: PMC7938071 DOI: 10.1016/j.ekir.2020.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction Critically ill children with acute kidney injury (AKI) requiring continuous kidney replacement therapy (CKRT) are at increased risk of death. The selective cytopheretic device (SCD) promotes an immunomodulatory effect when circuit ionized calcium (iCa2+) is maintained at <0.40 mmol/l with regional citrate anticoagulation (RCA). In a randomized trial of adult patients on CRRT, those treated with the SCD maintaining an iCa2+ <0.40 mmol/l had improved survival/dialysis independence. We conducted a US Food and Drug Administration (FDA)–sponsored study to evaluate safety and feasibility of the SCD in 16 critically ill children. Methods Four pediatric intensive care units (ICUs) enrolled children with AKI and multiorgan dysfunction receiving CKRT to receive the SCD integrated post-CKRT membrane. RCA was used to achieve a circuit iCa2+ level <0.40 mmol/l. Subjects received SCD treatment for 7 days or CKRT discontinuation, whichever came first. Results The FDA target enrollment of 16 subjects completed the study from December 2016 to February 2020. Mean age was 12.3 ± 5.1 years, weight was 53.8 ± 28.9 kg, and median Pediatric Risk of Mortality II was 7 (range 2–19). Circuit iCa2+ levels were maintained at <0.40 mmol/l for 90.2% of the SCD therapy time. Median SCD duration was 6 days. Fifteen subjects survived SCD therapy; 12 survived to ICU discharge. All ICU survivors were dialysis independent at 60 days. No SCD-related adverse events (AEs) were reported. Conclusion Our data demonstrate that SCD therapy is feasible and safe in children who require CKRT. Although we cannot make efficacy claims, the 75% survival rate and 100% renal recovery rate observed suggest a possible favorable benefit-to-risk ratio.
Collapse
Affiliation(s)
| | | | - Rajit K Basu
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - David T Selewski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Kelli A Krallman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassie L Kirby
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Theresa A Mottes
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tara Terrell
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
85
|
El Tabaa MM, El Tabaa MM. New putative insights into neprilysin (NEP)-dependent pharmacotherapeutic role of roflumilast in treating COVID-19. Eur J Pharmacol 2020; 889:173615. [PMID: 33011243 PMCID: PMC7527794 DOI: 10.1016/j.ejphar.2020.173615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, coronavirus disease 2019 (COVID-19) represents the most serious inflammatory respiratory disease worldwide. Despite many proposed therapies, no effective medication has yet been approved. Neutrophils appear to be the key mediator for COVID-19-associated inflammatory immunopathologic, thromboembolic and fibrotic complications. Thus, for any therapeutic agent to be effective, it should greatly block the neutrophilic component of COVID-19. One of the effective therapeutic approaches investigated to reduce neutrophil-associated inflammatory lung diseases with few adverse effects was roflumilast. Being a highly selective phosphodiesterase-4 inhibitors (PDE4i), roflumilast acts by enhancing the level of cyclic adenosine monophosphate (cAMP), that probably potentiates its anti-inflammatory action via increasing neprilysin (NEP) activity. Because activating NEP was previously reported to mitigate several airway inflammatory ailments; this review thoroughly discusses the proposed NEP-based therapeutic properties of roflumilast, which may be of great importance in curing COVID-19. However, further clinical studies are required to confirm this strategy and to evaluate its in vivo preventive and therapeutic efficacy against COVID-19.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
86
|
Yuan X, Tong X, Wang Y, Wang H, Wang L, Xu X. Coagulopathy in elderly patients with coronavirus disease 2019. Aging Med (Milton) 2020; 3:260-265. [PMID: 33392432 PMCID: PMC7771561 DOI: 10.1002/agm2.12133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Since the outbreak of coronavirus disease 2019 (COVID-19), clinical features have been analyzed in detail. However, coagulopathy in elderly COVID-19 patients has been scarcely reported. METHODS Coagulation parameters of 189 patients with COVID-19 in Tongji hospital were retrospectively analyzed among age groups. RESULTS Patients were divided into 2 groups: older group (≥65 years, n = 87) and younger group (<65 years, n = 102). The proportion of patients with elevated fibrinogen (79.0% vs 59.6%, p = .005) and D-dimer (78.0% vs 55.2%, p = .001) shows the significant difference between the groups. The elderly patients revealed significantly longer prothrombin time (14.0 [13.4-14.4]s vs 13.6 [13.2-14.1]s, p = .026), higher D-dimer (1.00 [0.5-1.9] μg/mL vs 0.6 [0.3-1.6] μg/mL, p = .013) and fibrinogen (5.2 [4.1-6.2] g/L vs 4.4 [3.4-5.7] g/L, p = .004) levels, compared to the younger group. A positive correlation was observed between the coagulation parameters and inflammatory markers including high-sensitivity C-reactive protein and interleukin-6 (p < .05). CONCLUSIONS The hypercoagulable state is more common in elderly COVID-19 patients, and coagulopathy is associated with excessive systemic inflammation.
Collapse
Affiliation(s)
- Xueting Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
| | - Xunliang Tong
- Department of Pulmonary and Critical Care MedicineBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
| | - Yan Wang
- Department of Pulmonary and Critical Care MedicineBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
| | - He Wang
- Department of Pulmonary and Critical Care MedicineBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
| | - Liuming Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubeiChina
| | - Xiaomao Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
- Department of Pulmonary and Critical Care MedicineBeijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical SciencesP. R. China
| |
Collapse
|
87
|
Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clin Sci (Lond) 2020; 134:2987-3006. [PMID: 33210709 DOI: 10.1042/cs20200922] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for the global corona virus disease 2019 (COVID-19) pandemic enters host cells via a mechanism that includes binding to angiotensin converting enzyme (ACE) 2 (ACE2). Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence is that the protective renin-angiotensin system (RAS), of which ACE2 is an essential component, is compromised through lack of production of the protective peptides angiotensin-(1-7) and angiotensin-(1-9), and therefore decreased stimulation of Mas (receptor Mas) and angiotensin AT2-receptors (AT2Rs), while angiotensin AT1-receptors (AT1Rs) are overstimulated due to less degradation of angiotensin II (Ang II) by ACE2. The protective RAS has numerous beneficial actions, including anti-inflammatory, anti-coagulative, anti-fibrotic effects along with endothelial and neural protection; opposite to the deleterious effects caused by heightened stimulation of angiotensin AT1R. Given that patients with severe COVID-19 exhibit an excessive immune response, endothelial dysfunction, increased clotting, thromboses and stroke, enhancing the activity of the protective RAS is likely beneficial. In this article, we discuss the evidence for a dysfunctional protective RAS in COVID and develop a rationale that the protective RAS imbalance in COVID-19 may be corrected by using AT2R agonists. We further review preclinical studies with AT2R agonists which suggest that AT2R stimulation may be therapeutically effective to treat COVID-19-induced disorders of various organ systems such as lung, vasculature, or the brain. Finally, we provide information on the design of a clinical trial in which patients with COVID-19 were treated with the AT2R agonist Compound 21 (C21). This trial has been completed, but results have not yet been reported.
Collapse
|
88
|
Zhao L, Zhao L, Wang YY, Yang F, Chen Z, Yu Q, Shi H, Huang S, Zhao X, Xiu L, Li X, Li Y. Platelets as a prognostic marker for sepsis: A cohort study from the MIMIC-III database. Medicine (Baltimore) 2020; 99:e23151. [PMID: 33157998 PMCID: PMC7647525 DOI: 10.1097/md.0000000000023151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During sepsis, platelets dysfunction contributes to organ dysfunction. Studies on platelets dysfunction in the long-term prognosis of sepsis are lacking. The aim of this study was to assess the role of platelets in the long-term prognosis of sepsis patients.A total of 4576 sepsis patients were extracted from MIMIC III Database. Survival was analyzed by the Kaplan-Meier method. Univariate and multivariate cox analyses were performed to identify prognostic factors. Significant prognostic factors were combined to build a nomogram to predict 1 year overall survival (OS). The discriminative ability and predictive accuracy of the nomogram were evaluated using the receiver operating characteristic curve (ROC) analysis and calibration curves used for sepsis.The more abnormal the platelet level, the worse prognosis of patients. After final regression analysis, age, blood urea nitrogen, platelets, international normalized ratio, partial thromboplastin time, potassium, hemoglobin, white blood cell count, organ failures were found to be independent predictors of 1 year OS of sepsis patient and were entered into a nomogram. The nomogram showed a robust discrimination, with an area under the receiver operating characteristic curve of 0.752. The calibration curves for the probability of the prognosis of sepsis patients showed optimal agreement between the probability as predicted by the nomogram and the actual probability.Platelet was an independent prognostic predictor of 1 year OS for patients with sepsis. Platelet-related nomogram that can predict the 1 year OS of sepsis patients. It revealed optimal discrimination and calibration, indicating that the nomogram may have clinical utility.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Lijiao Zhao
- Department of Pharmaceutical Engineering, Inner Mongolia Agricultural University, Hohhot
| | - Yun ying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Zhuang Chen
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Qing Yu
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Hui Shi
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Shiying Huang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Xiaoli Zhao
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Limei Xiu
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Xiaolu Li
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Yun Li
- Department of Anesthesiology Medicine, Chifeng Municipal Hospital, Inner Mongolia, China
| |
Collapse
|
89
|
Kuo SW, Su WL, Chou TC. Baicalin improves the survival in endotoxic mice and inhibits the inflammatory responses in LPS-treated RAW 264.7 macrophages. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220967767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Sepsis is a severe disease with a high morbidity and mortality. Baicalin, an active compound of Chinese medicine, Scutellaria baicalensis Georgi (Huang Qui), exhibits several beneficial effects. In this study, we examined whether administration of baicalin increases the survival in mice with endotoxemia and investigated its anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: The production of NOx, PGE2, and pro-inflammatory cytokines, the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the nuclear translocation of NF-κB in LPS-stimulated macrophages or endotoxic mice were determined. The model of severe endotoxic mice was established by injection of LPS (60 mg/kg, i.p.). Results: Baicalin significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 in LPS-stimulated macrophages. Baicalin treatment also markedly suppressed LPS-induced iNOS and COX-2 expression at the transcriptional and translational levels, and the nuclear translocation of NF-κB in macrophages. Similarly, the serum concentrations of NOx, PGE2, and pro-inflammatory cytokines, and the lung myeloperoxidase activity were greatly reduced in baicalin-treated endotoxic mice. Notably, after LPS injection, the 3-day survival rate of mice treated with pre- or post-administration of baicalin (50 mg/kg, i.p.) remarkably increased to 100% and 90%, respectively compared with LPS-injected alone mice with a survival rate of 0%. Conclusion: Baicalin has a potent anti-inflammatory activity in LPS-stimulated macrophages and endotoxic mice. Moreover, treatment with baicalin dramatically increased the survival in the severe septic mice, suggesting that baicalin may be a potential agent for sepsis therapy.
Collapse
Affiliation(s)
- Shi-Wen Kuo
- Department of Endocrinology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
- School of Medicine, Tzu Chi University, Hualien
- National Defense Medical Center, Taipei
| | - Tz-Chong Chou
- China Medical University Hospital, China Medical University, Taichung
- Department of Pharmacology, National Defense Medical Center, Taipei
- Cathay Medical Research Institute, Cathay General Hospital, New Taipei City
| |
Collapse
|
90
|
Gutierrez Amezcua JM, Jain R, Kleinman G, Muh CR, Guzzetta M, Folkerth R, Snuderl M, Placantonakis DG, Galetta SL, Hochman S, Zagzag D. COVID-19-Induced Neurovascular Injury: a Case Series with Emphasis on Pathophysiological Mechanisms. SN COMPREHENSIVE CLINICAL MEDICINE 2020; 2:2109-2125. [PMID: 33106782 PMCID: PMC7577845 DOI: 10.1007/s42399-020-00598-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with a high inflammatory burden that can induce severe respiratory disease among other complications; vascular and neurological damage has emerged as a key threat to COVID-19 patients. Risk of severe infection and mortality increases with age, male sex, and comorbidities including cardiovascular disease, hypertension, obesity, diabetes, and chronic pulmonary disease. We review clinical and neuroradiological findings in five patients with COVID-19 who suffered severe neurological disease and illustrate the pathological findings in a 7-year-old boy with COVID-19-induced encephalopathy whose brain tissue sample showed angiocentric mixed mononuclear inflammatory infiltrate. We summarize the structural and functional properties of the virus including the molecular processes that govern the binding to its membrane receptors and cellular entry. In addition, we review clinical and experimental evidence in patients and animal models that suggests coronaviruses enter into the central nervous system (CNS), either via the olfactory bulb or through hematogenous spread. We discuss suspected pathophysiological mechanisms including direct cellular infection and associated recruitment of immune cells and neurovirulence, at least in part, mediated by cytokine secretion. Moreover, contributing to the vascular and neurological injury, coagulopathic disorders play an important pathogenic role. We survey the molecular events that contribute to the thrombotic microangiopathy. We describe the neurological complications associated with COVID-19 with a focus on the potential mechanisms of neurovascular injury. Our thesis is that following infection, three main pathophysiological processes-inflammation, thrombosis, and vascular injury-are responsible for the neurological damage and diverse pathology seen in COVID-19 patients.
Collapse
Affiliation(s)
- Jose Manuel Gutierrez Amezcua
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rajan Jain
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Radiology, Division of Neuroradiology, NYU Langone Health, New York, NY USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
| | - George Kleinman
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY USA
| | - Carrie R Muh
- Department of Neurosurgery, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, NY USA
| | - Melissa Guzzetta
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rebecca Folkerth
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Forensic Medicine, City of New York Office of the Chief Medical Examiner, New York, NY USA
| | - Matija Snuderl
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
| | - Dimitris G Placantonakis
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
- Kimmel Center for Stem Cell Biology, NYU Langone Health, New York, NY USA
| | - Steven L Galetta
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurology, NYU Langone Health, New York, NY USA
| | - Sarah Hochman
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Infection Prevention and Control, Department of Medicine, Division of Infectious Diseases, NYU Langone Health, New York, NY USA
| | - David Zagzag
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
- Microvascular and Molecular Neuro-Oncology Laboratory, NYU Grossman School of Medicine, New York, NY USA
| |
Collapse
|
91
|
Winer LK, Salyer C, Beckmann N, Caldwell CC, Nomellini V. Enigmatic role of coagulopathy among sepsis survivors: a review of coagulation abnormalities and their possible link to chronic critical illness. Trauma Surg Acute Care Open 2020; 5:e000462. [PMID: 33094168 PMCID: PMC7570228 DOI: 10.1136/tsaco-2020-000462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
There are sparse clinical data addressing the persistence of disordered coagulation in sepsis and its role in chronic critical illness. Coagulopathy in the absence of anticoagulant therapy and/or liver disease can be highly variable in sepsis, but it tends to be prolonged in patients in the intensive care unit with a length of stay greater than 14 days. These coagulation abnormalities tend to precede multisystem organ failure and persistence of these coagulation derangements can predict 28-day mortality. The studies evaluated in this review consistently link sepsis-associated coagulopathy to poor long-term outcomes and indicate that disordered coagulation is associated with unfavorable outcomes in chronic critical illness. However, the causative mechanism and the definitive link remain unclear. Longer follow-up and more granular data will be required to fully understand coagulopathy in the context of chronic critical illness.
Collapse
Affiliation(s)
- Leah K Winer
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christen Salyer
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nadine Beckmann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Research, Shriners Hospitals for Children Cincinnati, Cincinnati, Ohio, USA
| | - Vanessa Nomellini
- Department of Research, Shriners Hospitals for Children Cincinnati, Cincinnati, Ohio, USA.,Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, University of Cincinnati Academic Health Center, Cincinnati, Ohio, USA
| |
Collapse
|
92
|
Mensah SA, Nersesyan AA, Ebong EE. Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Atherosclerosis and Cancer Metastasis. Cardiovasc Eng Technol 2020; 12:72-90. [PMID: 33000443 PMCID: PMC7904750 DOI: 10.1007/s13239-020-00487-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Purpose The endothelial glycocalyx (GCX) plays a critical role in the health of the vascular system. Degradation of the GCX has been implicated in the onset of diseases like atherosclerosis and cancer because it disrupts endothelial cell (EC) function that is meant to protect from atherosclerosis and cancer. Examples of such EC function include interendothelial cell communication via gap junctions and receptor-mediated interactions between endothelial and tumor cells. This review focuses on GCX-dependent regulation of these intercellular interactions in healthy and diseased states. The ultimate goal is to build new knowledge that can be applied to developing GCX regeneration strategies that can control intercellular interaction in order to combat the progression of diseases such as atherosclerosis and cancer. Methods In vitro and in vivo studies were conducted to determine the baseline expression of GCX in physiologically relevant conditions. Chemical and mechanical GCX degradation approaches were employed to degrade the GCX. The impact of intact versus degraded GCX on intercellular interactions was assessed using cytochemistry, histochemistry, a Lucifer yellow dye transfer assay, and confocal, intravital, and scanning electron microscopy techniques. Results Relevant to atherosclerosis, we found that GCX stability determines the expression and functionality of Cx43 in gap junction-mediated EC-to-EC communication. Relevant to cancer metastasis, we found that destabilizing the GCX through either disturbed flow-induced or enzyme induced GCX degradation results in increased E-selectin receptor-mediated EC-tumor cell interactions. Conclusion Our findings lay a foundation for future endothelial GCX-targeted therapy, to control intercellular interactions and limit the progression of atherosclerosis and cancer.
Collapse
Affiliation(s)
- Solomon A Mensah
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Alina A Nersesyan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA. .,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 335 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
93
|
The Heat Shock Protein 70 Plays a Protective Role in Sepsis by Maintenance of the Endothelial Permeability. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2194090. [PMID: 32964021 PMCID: PMC7492929 DOI: 10.1155/2020/2194090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022]
Abstract
Sepsis is a severe system inflammatory response syndrome in response to infection. The vascular endothelium cells play a key role in sepsis-induced organ dysfunction. The heat shock protein 70 (HSP70) has been reported to play an anti-inflammatory role and protect from sepsis. The present study is aimed at finding the function of HSP70 against sepsis in vascular endothelium cells. Lipopolysaccharide (LPS) and HSP70 agonist and inhibitor were used to treat HUVEC. Cell permeability was measured by transepithelial electrical resistance (TEER) assay and FITC-Dextrans. Cell junction protein levels were measured by western blot. Mice were subjected to cecal ligation and puncture (CLP) to establish a sepsis model and were observed for survival. After LPS incubation, HSP70 expression was decreased in HUVEC. LPS induced the inhibition of cell viability and the increases of IL-1β, IL-6, and TNF-α. Furthermore, cell permeability was increased and cell junction proteins (E-cadherin, occludin, and ZO-1) were downregulated after treatment with LPS. However, HSP70 could reverse these effects induced by LPS in HUVEC. In addition, LPS-induced elevated phosphorylation of p38 can be blocked by HSP70. On the other hand, we found that inhibition of HSP70 had similar effects as LPS and these effects could be alleviated by the inhibitor of p38. Subsequently, HSP70 was also found to increase survival of sepsis mice in vivo. In conclusion, HSP70 plays a protective role in sepsis by maintenance of the endothelial permeability via regulating p38 signaling.
Collapse
|
94
|
Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. AN ACAD BRAS CIENC 2020; 92:e20200834. [PMID: 32844987 DOI: 10.1590/0001-3765202020200834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 213 countries in a matter of weeks. In this context, several studies correlating hemostatic disorders with the infection dynamics of the new coronavirus have emerged. These studies have shown that a portion of the patients affected by Coronavirus Disease 2019 (COVID-19) have prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), elevated D-dimer levels and other fibrinolytic products, antithrombin (AT) activity reduced and decrease of platelet count. Based on these hallmarks, this review proposes to present possible pathophysiological mechanisms involved in the hemostatic changes observed in the pathological progression of COVID-19. In this analysis, it is pointed the relationship between the downregulation of angiotensin-converting enzyme 2 (ACE2) and storm cytokines action with the onset of hypercoagulability state, other than the clinical events involved in thrombocytopenia and hyperfibrinolysis progression.
Collapse
Affiliation(s)
- PlÍnio C Sathler
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
95
|
Plasma and Cellular Forms of Fibronectin as Prognostic Markers in Sepsis. Mediators Inflamm 2020; 2020:8364247. [PMID: 32801997 PMCID: PMC7416265 DOI: 10.1155/2020/8364247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background There is a pressing need for specific prognostic markers that could be used to monitor the severity of sepsis. The aims of our study were to investigate changes in the expression of different molecular forms of fibronectin in sepsis and to assess their relationship to the clinical severity and mortality of patients. Material and Methods. Forms of fibronectin: plasma (pFN), cellular (EDA-FN), FN-fibrin complexes, and fibronectin fragments were analyzed in 71 sepsis patients (survivors and nonsurvivors) and in the control by ELISA and immunoblotting. Results The baseline pFN concentration of patients with sepsis was significantly lower than in the control (133.0 mg/L vs. 231.2 mg/L) (P < 0.001), and in nonsurvivors, it was lower than in survivors (106.0 mg/L vs. 152.8 mg/L) (P = 0.004). The baseline EDA-FN was significantly elevated in both sepsis groups (survivors: 6.7 mg/L; nonsurvivors: 9.4 mg/L) compared to the control (1.4 mg/L) (P < 0.001). It should be noted that among patients with more severe sepsis, the EDA-FN level was higher in nonsurvivors than in survivors. Furthermore, molecular FN-fibrin complexes as well as FN fragments occurred much more frequently in nonsurvivors than in survivors. Conclusion The study showed that in sepsis, changes in plasmatic and cellular form of fibronectin were associated with the severity of sepsis and may be useful predictors of outcome.
Collapse
|
96
|
Lafon T, Cazalis MA, Vallejo C, Tazarourte K, Blein S, Pachot A, Laterre PF, Laribi S, François B. Prognostic performance of endothelial biomarkers to early predict clinical deterioration of patients with suspected bacterial infection and sepsis admitted to the emergency department. Ann Intensive Care 2020; 10:113. [PMID: 32785865 PMCID: PMC7423829 DOI: 10.1186/s13613-020-00729-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The objective of this study was to evaluate the ability of endothelial biomarkers to early predict clinical deterioration of patients admitted to the emergency department (ED) with a suspected sepsis. This was a prospective, multicentre, international study conducted in EDs. Adult patients with suspected acute bacterial infection and sepsis were enrolled but only those with confirmed infection were analysed. The kinetics of biomarkers and organ dysfunction were collected at T0, T6 and T24 hours after ED admission to assess prognostic performances of sVEGFR2, suPAR and procalcitonin (PCT). The primary outcome was the deterioration within 72 h and was defined as a composite of relevant outcomes such as death, intensive care unit admission and/or SOFA score increase validated by an independent adjudication committee. RESULTS After adjudication of 602 patients, 462 were analysed including 124 who deteriorated (27%). On admission, those who deteriorated were significantly older (73 [60-82] vs 63 [45-78] y-o, p < 0.001) and presented significantly higher SOFA scores (2.15 ± 1.61 vs 1.56 ± 1.40, p = 0.003). At T0, sVEGFR2 (5794 [5026-6788] vs 6681 [5516-8059], p < 0.0001), suPAR (6.04 [4.42-8.85] vs 4.68 [3.50-6.43], p < 0.0001) and PCT (7.8 ± 25.0 vs 5.4 ± 17.9 ng/mL, p = 0.001) were associated with clinical deterioration. In multivariate analysis, low sVEGFR2 expression and high suPAR and PCT levels were significantly associated with early deterioration, independently of confounding parameters (sVEGFR2, OR = 1.53 [1.07-2.23], p < 0.001; suPAR, OR = 1.57 [1.21-2.07], p = 0.003; PCT, OR = 1.10 [1.04-1.17], p = 0.0019). Combination of sVEGFR2 and suPAR had the best prognostic performance (AUC = 0.7 [0.65-0.75]) compared to clinical or biological variables. CONCLUSIONS sVEGFR2, either alone or combined with suPAR, seems of interest to predict deterioration of patients with suspected bacterial acute infection upon ED admission and could help front-line physicians in the triage process.
Collapse
Affiliation(s)
- Thomas Lafon
- Emergency Department, Dupuytren University Hospital, Limoges, France.,Inserm CIC 1435, Dupuytren University Hospital, Limoges, France
| | | | - Christine Vallejo
- Emergency Department, Dupuytren University Hospital, Limoges, France.,Inserm CIC 1435, Dupuytren University Hospital, Limoges, France
| | - Karim Tazarourte
- Emergency Department, University Hospital Edouard Herriot - HCL, Lyon, France
| | - Sophie Blein
- Medical Diagnostic Discovery Department MD3, bioMerieux SA, Marcy L'Etoile, France
| | - Alexandre Pachot
- Medical Diagnostic Discovery Department MD3, bioMerieux SA, Marcy L'Etoile, France
| | - Pierre-François Laterre
- Departments of Emergency and Intensive Care, Cliniques Universitaires Saint Luc, UCL, Brussels, Belgium
| | - Said Laribi
- School of Medicine and Tours University Hospital, Emergency Medicine Department, Tours University, Tours, France
| | - Bruno François
- Inserm CIC 1435, Dupuytren University Hospital, Limoges, France. .,Medical-Surgical Intensive Care Unit, Dupuytren University Hospital, Limoges, France. .,UMR 1092, University of Limoges, Limoges, France.
| | | |
Collapse
|
97
|
Luo L, Xu M, Liao D, Deng J, Mei H, Hu Y. PECAM-1 protects against DIC by dampening inflammatory responses via inhibiting macrophage pyroptosis and restoring vascular barrier integrity. Transl Res 2020; 222:1-16. [PMID: 32417429 DOI: 10.1016/j.trsl.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Disseminated intravascular coagulation (DIC) is a frequent complication of sepsis that affects patient outcomes due to accompanying thrombo-inflammation and microvascular permeability changes. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a cellular adhesion and signaling receptor that is expressed on both hematopoietic and endothelial cells, plays an important anti-inflammatory role in acute and chronic inflammatory disease models. Little is known, however, about role and mechanism of PECAM-1 in septic DIC. Here, we investigated whether PECAM-1 might play a protective role in hindering the development of septic DIC. Plasma levels of soluble PECAM-1 were markedly elevated in septic patients that developed DIC, with a correspondingly poorer outcome. PECAM-1 knockout exhibited more severe DIC and poorer outcome in the LPS induced- and cecal ligation and puncture-induced DIC model, which could be alleviated by tissue factor inhibitor. This phenomenon seemed to be equally linked to PECAM-1 expression by both endothelial and blood cells. Furthermore, PECAM-1 was found to exert its protective effect on developing septic DIC by the following 2 distinct mechanisms: the inhibition of macrophage pyroptosis and the acceleration of the restoration of the endothelial cell barrier. Taken together, these results implicate PECAM-1 as a potentially attractive target for the development of novel therapeutics to manage and treat septic DIC.
Collapse
Affiliation(s)
- Lili Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Danying Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| |
Collapse
|
98
|
Yoon S, Lim J, Park CM, Lee DS, Park JB, Choi K, Yoo K, Gil E, Yoon KW. Thromboelastographic Evaluation in Patients with Severe Sepsis or Septic Shock: A Preliminary Analysis. JOURNAL OF ACUTE CARE SURGERY 2020. [DOI: 10.17479/jacs.2020.10.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
99
|
Yang Y, Chen J, Yang J, Yi C, Yang F, Gao W, Li Z, Bai X. Predictive value of soluble fibrinogen-like protein 2 for survival in traumatic patients with sepsis. Clin Chim Acta 2020; 510:196-202. [PMID: 32679128 DOI: 10.1016/j.cca.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite significant advances in the diagnosis and management of sepsis and trauma over the past few decades, severe infection and injury continue to represent major public health challenges. Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. In this study, we evaluated whether soluble fibrinogen-like protein 2 (sFGL2) can serve as a biomarker to predict the development of sepsis in trauma patients. METHODS sFGL2 concentrations were determined by ELISA assays in sera of 75 trauma patients clinically classified into non-sepsis group and sepsis group. For comparison, 15 age- and sex-matched healthy individuals were included. RESULTS sFGL2 concentrations were dramatically elevated in trauma patients compared to healthy controls. In the patient group, the patients with sepsis showed a significant increase in sFGL2 concentrations compared with non-septic patients. Moreover, non-survivors of septic patients displayed higher sFGL2 concentrations compared with survivors. In addition, sFGL2 concentrations were positively correlated with Sequential Organ Failure Assessment (SOFA) scores, serum IL-8 and IL-10 concentrations, but reversely correlated with Glasgow coma scale (GCS) scores, platelet and lymphocyte counts. Furthermore, sFGL2 was found to be an independent predictor of 28-day mortality in traumatic patients with sepsis by logistic regression analysis. CONCLUSION sFGL2 concentrations were significantly correlated with the development and mortality of sepsis in traumatic patients. Thus, sFGL2 may serve as a potential indicator for traumatic patients with sepsis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Chen
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashen Yang
- Second Clinical College, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Gao
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangjun Bai
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
100
|
Morandi A, Cipriani E, Parolini F, Consonni D, Calderini E, Franzini S, Leva E. The coagulation profile as a marker for acute appendicitis in the paediatric population: Retrospective study. Afr J Paediatr Surg 2020; 17:59-63. [PMID: 33342835 PMCID: PMC8051619 DOI: 10.4103/ajps.ajps_52_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Appendicitis is the commonest and most frequently misdiagnosed acute abdominal surgical illness in the paediatric population worldwide. The aim of this study is to evaluate the role of coagulation profile in acute appendicitis (AA) in children. MATERIALS AND METHODS we retrospectively collected data of patients submitted to appendectomy from 2011 to 2017. According to histopathology, patients were divided into three groups: not histologically confirmed AA (NAA), simple AA (SAA) and complicated AA (CAA). White blood cell (WBC) count, relative neutrophilia (Neutr%), C-reactive protein (CRP), prothrombin time ratio (PTratio), activated partial thromboplastin time ratio (APTTratio) and fibrinogen (Fib) were compared among groups. RESULTS Three hundred and seven patients were included: 57 NAA, 184 SAA and 66 CAA. WBC was significantly different among groups: CAA (mean 16.67 × 103/ml), SAA (14.73 × 103/ml, P= 0.01) and NAA (10.85 × 103/ml, P< 0.0001). Significant differences were found for Neutr% (mean CAA 81.14 vs. SAA 77.03 P= 0.006, vs. NAA 63.86 P< 0.0001) and CRP (mean NAA 2.56, SAA 3.26, CAA 11.58, P< 0.0001). PTratio and Fib increased with the severity of AA receiver operator characteristic curves were similar for CRP (0.739), Fib (0.726), WBC (0.746) and Neutr% (0.754), while for PTratio and aPTTratio were 0.634 and 0.441, respectively. CONCLUSIONS extrinsic coagulation pathway is altered in AA, especially in CAA. Coagulation can be useful in the diagnostic and perioperative anaesthetic management of AA in children. Fib seems to have the highest accuracy.
Collapse
Affiliation(s)
- Anna Morandi
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Filippo Parolini
- Department of Pediatric Surgery, Spedali Civili Children's Hospital, Brescia, Italy
| | - Dario Consonni
- Department of Epidemiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Calderini
- Department of Anesthesia and Pediatric Intensive Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Franzini
- Department of Anesthesia and Pediatric Intensive Care, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pediatric Anaestesia and Intensive Care, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Ernesto Leva
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan; Università Degli Studi of Milan, Italy
| |
Collapse
|