51
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
52
|
Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomater 2021; 133:46-57. [PMID: 33974949 DOI: 10.1016/j.actbio.2021.04.052] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
To present knowledge, macrophages are found in all tissues of the human body. They are a cell population with high plasticity which come with a multitude of functions which appear to be adapted to the respective tissue niche and micro-environment in which they reside. Bone harbors multiple macrophage subpopulations, with the osteoclasts as classical representative of a bone resorbing cells and osteomacs as a bone tissue resident macrophage first described by the expression of F4/80. Both subtypes are found throughout all phases in bone healing. In vivo data on bone regeneration have demonstrated their essential role in initiating the healing cascade (inflammatory phase) but also of the later phases of healing (e.g. endochondral and intramembranous bone formation). To participate in such diverse processes macrophages have to be highly plastic in their functionality. Thus, the widely used M1/M2 paradigm to distinguish macrophage subpopulations may not mirror the comprehensive role of the dynamics of macrophage plasticity. From a clinical perspective it is especially relevant to distinguish what drives macrophages in impaired healing scenarios, implant loosening or infections, where their specific role of a misbalanced inflammatory setting is so far only partially known. With this review we aim at illustrating current knowledge and gaps of knowledge on macrophage plasticity and function during the cascades of regeneration and reconstitution of bone tissue. We propose aspects of the known biological mechanisms of macrophages and their specific subsets that might serve as targets to control their function in impaired healing and eventually support a scar-free regeneration. STATEMENT OF SIGNIFICANCE: Macrophages are essential for successful regeneration. In scar-free healing such as in bone, a complete failure of healing was shown if macrophages were depleted; the M1/M2 switch appears to be key to the progression from pro-inflammation to regeneration. However, experimental data illustrate that the classical M1/M2 paradigm does not completely mirror the complexity of observed macrophage functions during bone healing and thus demands a broader perspective. Within this review we discuss the high degree of plasticity of macrophages and the relevant contribution of the different and more specific M2 subtypes (M2a-M2f) during (bone) regeneration. It summarizes the versatile roles of macrophages in skeletal regeneration and thereby highlights potential target points for immunomodulatory approaches to enable or even foster bone repair.
Collapse
|
53
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
54
|
Kuo PJ, Rau CS, Wu SC, Lin CW, Huang LH, Lu TH, Wu YC, Wu CJ, Tsai CW, Hsieh CH. Exosomes Secreted by Adipose-Derived Stem Cells Following FK506 Stimulation Reduce Autophagy of Macrophages in Spine after Nerve Crush Injury. Int J Mol Sci 2021; 22:9628. [PMID: 34502537 PMCID: PMC8431814 DOI: 10.3390/ijms22179628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages emerge in the milieu around innervated neurons after nerve injuries. Following nerve injury, autophagy is induced in macrophages and affects the regulation of inflammatory responses. It is closely linked to neuroinflammation, while the immunosuppressive drug tacrolimus (FK506) enhances nerve regeneration following nerve crush injury and nerve allotransplantation with additional neuroprotective and neurotrophic functions. The combined use of FK506 and adipose-derived stem cells (ADSCs) was employed in cell therapy for organ transplantation and vascularized composite allotransplantation. This study aimed to investigate the topical application of exosomes secreted by ADSCs following FK506 treatment (ADSC-F-exo) to the injured nerve in a mouse model of sciatic nerve crush injury. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile the potential exosomal proteins involved in autophagy. Immunohistochemical analysis revealed that nerve crush injuries significantly induced autophagy in the dorsal root ganglia and dorsal horn of the spinal segments. Locally applied ADSC-F-exo significantly reduced autophagy of macrophages in the spinal segments after nerve crush injury. Proteomic analysis showed that of the 22 abundant exosomal proteins detected in ADSC-F-exo, heat shock protein family A member 8 (HSPA8) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) are involved in exosome-mediated autophagy reduction.
Collapse
Affiliation(s)
- Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chia-Wei Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Tsu-Hsiang Lu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, LinKou 33333, Taiwan
| |
Collapse
|
55
|
Yamashita M, Niisato M, Kawasaki Y, Karaman S, Robciuc MR, Shibata Y, Ishida Y, Nishio R, Masuda T, Sugai T, Ono M, Tuder RM, Alitalo K, Yamauchi K. VEGF-C/VEGFR-3 signaling in macrophages ameliorates acute lung injury. Eur Respir J 2021; 59:13993003.00880-2021. [PMID: 34446463 DOI: 10.1183/13993003.00880-2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. OBJECTIVES We investigated the ameliorative effects of vascular endothelial growth factor receptor-3 (VEGFR-3)/VEGF-C signaling in macrophages in lipopolysaccharide-induced lung injury. METHODS Lipopolysaccharides were intranasally injected into wild-type and transgenic mice. Gain- and loss- of VEGF-C/VEGFR-3 signaling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3, or, anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. MEASUREMENTS AND MAIN RESULTS The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage fluid (BALF) interleukin (IL)-10, but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to the mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3 deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of extrinsic apoptotic neutrophils, and VEGF-C/VEGFR-3 signaling increased efferocytosis via upregulation of integrin alpha v in the macrophages. We also found that incubation with BALF from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreases VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS VEGFR-3/VEGF-C signaling in macrophages ameliorates experimental lung injury. This mechanism may provide an explanation also for ARDS resolution.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| | - Miyuki Niisato
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasushi Kawasaki
- Department of Health Chemistry, Iwate Medical University School of Pharmacology, Shiwa, Japan
| | - Sinem Karaman
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Marius R Robciuc
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Yuji Shibata
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Yoji Ishida
- Department of Hematology, Iwate Medical University School of Medicine, Japan
| | | | - Tomoyuki Masuda
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Tamotsu Sugai
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Masao Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, CO, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
56
|
Liu X, Shi GP, Guo J. Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Front Cell Dev Biol 2021; 9:659666. [PMID: 34368120 PMCID: PMC8343105 DOI: 10.3389/fcell.2021.659666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Pressure overload and heart failure are among the leading causes of cardiovascular morbidity and mortality. Accumulating evidence suggests that inflammatory cell activation and release of inflammatory mediators are of vital importance during the pathogenesis of these cardiac diseases. Yet, the roles of innate immune cells and subsequent inflammatory events in these processes remain poorly understood. Here, we outline the possible underlying mechanisms of innate immune cell participation, including mast cells, macrophages, monocytes, neutrophils, dendritic cells, eosinophils, and natural killer T cells in these pathological processes. Although these cells accumulate in the atrium or ventricles at different time points after pressure overload, their cardioprotective or cardiodestructive activities differ from each other. Among them, mast cells, neutrophils, and dendritic cells exert detrimental function in experimental models, whereas eosinophils and natural killer T cells display cardioprotective activities. Depending on their subsets, macrophages and monocytes may exacerbate cardiodysfunction or negatively regulate cardiac hypertrophy and remodeling. Pressure overload stimulates the secretion of cytokines, chemokines, and growth factors from innate immune cells and even resident cardiomyocytes that together assist innate immune cell infiltration into injured heart. These infiltrates are involved in pro-hypertrophic events and cardiac fibroblast activation. Immune regulation of cardiac innate immune cells becomes a promising therapeutic approach in experimental cardiac disease treatment, highlighting the significance of their clinical evaluation in humans.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Junli Guo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
57
|
Howell KL, Kaji DA, Li TM, Montero A, Yeoh K, Nasser P, Huang AH. Macrophage depletion impairs neonatal tendon regeneration. FASEB J 2021; 35:e21618. [PMID: 33982337 DOI: 10.1096/fj.202100049r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Tendons are dense connective tissues that transmit muscle forces to the skeleton. After adult injury, healing potential is generally poor and dominated by scar formation. Although the immune response is a key feature of healing, the specific immune cells and signals that drive tendon healing have not been fully defined. In particular, the immune regulators underlying tendon regeneration are almost completely unknown due to a paucity of tendon regeneration models. Using a mouse model of neonatal tendon regeneration, we screened for immune-related markers and identified upregulation of several genes associated with inflammation, macrophage chemotaxis, and TGFβ signaling after injury. Depletion of macrophages using AP20187 treatment of MaFIA mice resulted in impaired functional healing, reduced cell proliferation, reduced ScxGFP+ neo-tendon formation, and altered tendon gene expression. Collectively, these results show that inflammation is a key component of neonatal tendon regeneration and demonstrate a requirement for macrophages in effective functional healing.
Collapse
Affiliation(s)
- Kristen L Howell
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Li
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenji Yeoh
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
58
|
Sabel BO, Brand K, Rueckel J, Hoppe B, Fink N, Bartling S. Macrophage ablation significantly reduces uptake of imaging probe into organs of the reticuloendothelial system. Acta Radiol 2021; 62:882-889. [PMID: 32772706 DOI: 10.1177/0284185120943048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Macrophages engulf particulate contrast media, which is pivotal for biomedical imaging. PURPOSE To introduce a macrophage ablation animal model by showing its power to manipulate the kinetics of imaging probes. MATERIAL AND METHODS The kinetics of a particulate computed tomography (CT) contrast media was compared in macrophage ablative mice and normal mice. Liposomes (size 220 µg), loaded with clodronate, were injected into the peritoneum of three C57BL/6 mice. On the third day, 200 µL of the particulate agent ExiTron nano 6000 were injected into three macrophage-ablative mice and three control mice. CT scans were acquired before and 3 min, 1 h, 6 h, and 24 h after the ExiTron application. The animals were sacrificed, and their spleens and livers removed. Relative CT values (CTV) were measured and analyzed. RESULTS Liver and spleen enhancement of treated mice and controls were increasing over time. The median peak values were different with 225 CTV for treated mice and 582 CTV for controls in the liver (P = 0.032) and 431 CTV for treated and 974 CTV in controls in the spleen (P = 0.016). CONCLUSION Macrophage ablation leads to a decrease of enhancement in organs containing high numbers of macrophages, but only marginal changes in macrophage-poor organs. Macrophage ablation can influence the phagocytic activity and thus opens new potentials to investigate and manipulate the uptake of imaging probes.
Collapse
Affiliation(s)
- Bastian O Sabel
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
- Institute for Clinical Radiology, University Hospital Munich, Munich, Germany
| | | | - Johannes Rueckel
- Institute for Clinical Radiology, University Hospital Munich, Munich, Germany
| | - Boj Hoppe
- Institute for Clinical Radiology, University Hospital Munich, Munich, Germany
| | - Nicola Fink
- Institute for Clinical Radiology, University Hospital Munich, Munich, Germany
| | - Soenke Bartling
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
- Department of Clinical Radiology and Nuclear Medicine, Mannheim University Medical Center, Mannheim, Germany
| |
Collapse
|
59
|
McKell MC, Crowther RR, Schmidt SM, Robillard MC, Cantrell R, Lehn MA, Janssen EM, Qualls JE. Promotion of Anti-Tuberculosis Macrophage Activity by L-Arginine in the Absence of Nitric Oxide. Front Immunol 2021; 12:653571. [PMID: 34054815 PMCID: PMC8160513 DOI: 10.3389/fimmu.2021.653571] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Macrophages are indispensable immune cells tasked at eliminating intracellular pathogens. Mycobacterium tuberculosis (Mtb), one of the most virulent intracellular bacterial pathogens known to man, infects and resides within macrophages. While macrophages can be provoked by extracellular stimuli to inhibit and kill Mtb bacilli, these host defense mechanisms can be blocked by limiting nutritional metabolites, such as amino acids. The amino acid L-arginine has been well described to enhance immune function, especially in the context of driving macrophage nitric oxide (NO) production in mice. In this study, we aimed to establish the necessity of L-arginine on anti-Mtb macrophage function independent of NO. Utilizing an in vitro system, we identified that macrophages relied on NO for only half of their L-arginine-mediated host defenses and this L-arginine-mediated defense in the absence of NO was associated with enhanced macrophage numbers and viability. Additionally, we observed macrophage glycolysis to be driven by both L-arginine and mechanistic target of rapamycin (mTOR), and inhibition of glycolysis or mTOR reduced macrophage control of Mtb as well as macrophage number and viability in the presence of L-arginine. Our data underscore L-arginine as an essential nutrient for macrophage function, not only by fueling anti-mycobacterial NO production, but also as a central regulator of macrophage metabolism and additional host defense mechanisms.
Collapse
Affiliation(s)
- Melanie C McKell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca R Crowther
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stephanie M Schmidt
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michelle C Robillard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rachel Cantrell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria A Lehn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Edith M Janssen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
60
|
Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Rep 2021; 6:e883. [PMID: 33981926 PMCID: PMC8108585 DOI: 10.1097/pr9.0000000000000883] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Molecular and cellular interactions among spinal dorsal horn neurons and microglia, the resident macrophages of the central nervous system, contribute to the induction and maintenance of neuropathic pain after peripheral nerve injury. Emerging evidence also demonstrates that reciprocal interactions between macrophages and nociceptive sensory neurons in the dorsal root ganglion contribute to the initiation and persistence of nerve injury-induced mechanical hypersensitivity (allodynia). We previously reported that sensory neuron-derived colony-stimulating factor 1 (CSF1), by engaging the CSF1 receptor (CSF1R) that is expressed by both microglia and macrophages, triggers the nerve injury-induced expansion of both resident microglia in the spinal cord and macrophages in the dorsal root ganglion and induces their respective contributions to the neuropathic pain phenotype. Here, we review recent research and discuss unanswered questions regarding CSF1/CSF1R-mediated microglial and macrophage signaling in the generation of neuropathic pain.
Collapse
|
61
|
De Logu F, Marini M, Landini L, Souza Monteiro de Araujo D, Bartalucci N, Trevisan G, Bruno G, Marangoni M, Schmidt BL, Bunnett NW, Geppetti P, Nassini R. Peripheral Nerve Resident Macrophages and Schwann Cells Mediate Cancer-Induced Pain. Cancer Res 2021; 81:3387-3401. [PMID: 33771895 DOI: 10.1158/0008-5472.can-20-3326] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/13/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress, and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain. SIGNIFICANCE: Schwann cell TRPA1 sustains cancer pain through release of M-CSF and oxidative stress, which promote the expansion and the proalgesic actions of intraneural macrophages. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3387/F1.large.jpg.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | | | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, Brazil
| | - Gennaro Bruno
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Martina Marangoni
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, Department of Neuroscience and Physiology, and Neuroscience Institute, School of Medicine, New York University, New York
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| |
Collapse
|
62
|
Sensory neuron-associated macrophages as novel modulators of neuropathic pain. Pain Rep 2021; 6:e873. [PMID: 33981924 PMCID: PMC8108583 DOI: 10.1097/pr9.0000000000000873] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system comprises an infinity of neural networks that act in the communication between the central nervous system and the most diverse tissues of the body. Along with the extension of the primary sensory neurons (axons and cell bodies), a population of resident macrophages has been described. These newly called sensory neuron-associated macrophages (sNAMs) seem to play an essential role in physiological and pathophysiological processes, including infection, autoimmunity, nerve degeneration/regeneration, and chronic neuropathic pain. After different types of peripheral nerve injury, there is an increase in the number and activation of sNAMs in the sciatic nerve and sensory ganglia. The activation of sNAMs and their participation in neuropathic pain development depends on the stimulation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors, chemokines/cytokines, and microRNAs. On activation, sNAMs trigger the production of critical inflammatory mediators such as proinflammatory cytokines (eg, TNF and IL-1β) and reactive oxygen species that can act in the amplification of primary sensory neurons sensitization. On the other hand, there is evidence that sNAMs can produce antinociceptive mediators (eg, IL-10) that counteract neuropathic pain development. This review will present the cellular and molecular mechanisms behind the participation of sNAMs in peripheral nerve injury-induced neuropathic pain development. Understanding how sNAMs are activated and responding to nerve injury can help set novel targets for the control of neuropathic pain.
Collapse
|
63
|
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 2021; 184:1330-1347.e13. [PMID: 33636130 PMCID: PMC7938889 DOI: 10.1016/j.cell.2021.02.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Michelle M McDonald
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Weng Hua Khoo
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Pei Ying Ng
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Ya Xiao
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jad Zamerli
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Thatcher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Wunna Kyaw
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Abigail K Grootveld
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Imogen Moran
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Danyal Butt
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Akira Nguyen
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alexander Corr
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Sean Warren
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Yongxiao Li
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sindhu T Mohanty
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Niall Byrne
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rachael L Terry
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Marija K Simic
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Ryan Chai
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Scott E Youlten
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jessica A Pettitt
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Abi-Hanna
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mischa Lundberg
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | | | | | - Paul Timpson
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Woei Ming Lee
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul A Baldock
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Michael J Rogers
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Robert Brink
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Peter I Croucher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia.
| | - Tri Giang Phan
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
64
|
van den Bosch MHJ. Osteoarthritis year in review 2020: biology. Osteoarthritis Cartilage 2021; 29:143-150. [PMID: 33242602 DOI: 10.1016/j.joca.2020.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
This year in review about osteoarthritis biology highlights a selection of articles published between the 2019 and 2020 Osteoarthritis Research Society International (OARSI) World Congress meetings, within the field of osteoarthritis biology. Highlights were selected from PubMed searches covering osteoarthritis (OA) cartilage, subchondral bone, synovium and aging. Subsequently, a personal selection was based on new and emerging themes together with common research topics that were studied by multiple groups. Themes discussed include novel insights into the inflammatory changes during OA, with a number of noteworthy publications concerning the role of macrophages in healthy and osteoarthritic joints. Next, the application of mesenchymal stem cells as OA-dampening therapy is discussed, including possible ways to improve their efficacy by pre-treatment. Other significant themes including treatment of OA with metformin, enhancing autophagy to alleviate OA and the involvement of the gastro-intestinal microbiome in development of OA symptoms and structural damage are discussed. An effort was made to connect the seemingly distant topics from which the overarching conclusion can be drawn that over the last year promising breakthroughs have been achieved in further understanding the biology of OA development and that new therapeutic possibilities have been explored.
Collapse
Affiliation(s)
- M H J van den Bosch
- Experimental Rheumatology, Radboud university medical center Nijmegen, the Netherlands..
| |
Collapse
|
65
|
Phan QT, Liu R, Tan WH, Imangali N, Cheong B, Schartl M, Winkler C. Macrophages Switch to an Osteo-Modulatory Profile Upon RANKL Induction in a Medaka ( Oryzias latipes) Osteoporosis Model. JBMR Plus 2020; 4:e10409. [PMID: 33210062 PMCID: PMC7657398 DOI: 10.1002/jbm4.10409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, osteoclasts differentiate from macrophages in the monocyte lineage. Although many factors driving osteoclast formation are known, the detailed processes underlying precursor recruitment, differentiation, and interaction of macrophages with other cell types involved in bone remodeling are poorly understood. Using live imaging in a transgenic medaka osteoporosis model, where ectopic osteoclasts are induced by RANKL expression, we show that a subset of macrophages is recruited to bone matrix to physically interact with bone-forming osteoblast progenitors. These macrophages subsequently differentiate into cathepsin K- (ctsk-) positive osteoclasts. One day later, other macrophages are recruited to clear dying osteoclasts from resorbed bone by phagocytosis. To better understand the molecular changes underlying these dynamic processes, we performed transcriptome profiling of activated macrophages upon RANKL induction. This revealed an upregulation of several bone-related transcripts. Besides osteoclast markers, we unexpectedly also found expression of osteoblast-promoting signals in activated macrophages, suggesting a possible non-cell autonomous role in osteogenesis. Finally, we show that macrophage differentiation into osteoclasts is dependent on inflammatory signals. Medaka deficient for TNFα or treated with the TNFα-inhibitor pentoxifylline exhibited impaired macrophage recruitment and osteoclast differentiation. These results show the involvement of inflammatory signals and the dynamics of a distinct subset of macrophages during osteoclast formation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Benedict Cheong
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Manfred Schartl
- Department of Developmental Biochemistry, BiocenterUniversity of WürzburgWürzburgGermany
- The Xiphophorus Genetic Stock CenterTexas State UniversitySan MarcosTexasUSA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
66
|
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183:94-109.e23. [PMID: 32937105 DOI: 10.1016/j.cell.2020.08.031] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- José A Nicolás-Ávila
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Ana V Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades respiratorias (CIBERES), Madrid 28029, Spain
| | | | - María Sánchez-Díaz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elena Díaz-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrea Rubio-Ponce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jackson LiangYao Li
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Juan A Quintana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | | | - Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Paqui G Través
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | | | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28009, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
| | - Noelia A-González
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Institute of Immunology, University of Muenster, Muenster 48149, Germany
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Georgiana Crainiciuc
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Gabriela Guzmán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Hospital Universitario La Paz, IdIPaz, Madrid 28046, Spain
| | - Jagoba Larrazabal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Greg Lemke
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Luis Jesús Jimenez-Borreguero
- CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; Hospital Universitario de La Princesa, Madrid 28006, Spain
| | | | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid 28029, Spain; Unidad de Biomedicina IIBM-Universidad de las Palmas de Gran Canaria (ULPGC) (Unidad Asociada al CSIC), Las Palmas 35001, Spain; Instituto Universitario de Investigaciónes Biomédicas y Sanitarias, ULPGC, Las Palmas 35016, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra, CIBERNED, Barcelona 08003, Spain; ICREA, Barcelona 08908, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; IIS- Fundación Jiménez Díaz Hospital, Madrid 28040, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Lai Guan Ng
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Silvia G Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Molecular Cardiology, ICS-Maugeri IRCCS, Pavia 27100, Italy; Department of Molecular Medicine, University of Pavia, Pavia 2700, Italy
| | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Mario D Cordero
- Oral Medicine Department, University of Sevilla, Seville 41009, Spain; Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR) y la Universidad Europea del Atlántico (UNEATLANTICO), Seville 41009, Spain; Fundación Universitaria Iberoamericana (FUNIBER), Barcelona 08005, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - José A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de fragilidad y envejecimiento saludable (CIBERFES), Madrid 28029, Spain.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.
| |
Collapse
|
67
|
Hozain S, Cottrell J. CDllb+ targeted depletion of macrophages negatively affects bone fracture healing. Bone 2020; 138:115479. [PMID: 32535290 DOI: 10.1016/j.bone.2020.115479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023]
Abstract
Inflammation is an important part of the fracture repair process which requires osteogenic cells to interact with innate immune cells such as macrophages. All murine macrophages express the F4/80 cell surface marker but they may be further subdivided into two main phenotypes: M1 (proinflammatory) or M2 (anti-inflammatory) based on surface marker expression and function. Macrophages polarize between these two main classes in response to inflammation while differentially regulating the healing process. Studies have shown that F4/80+ cell ablation impairs fracture healing, however, the distinct phenotypes that participate in the early healing process is unclear. We hypothesized that the M1 subtype is essential for the early steps of fracture healing and their depletion would impair fracture repair. To test this hypothesis, M1 (F4/80+/MHCII+/CD86+/CDllb+) macrophages were depleted using a saporin conjugated Mac-1 antibody (Mac1SAP) in vitro using primary macrophages and in vivo using a mouse femur fracture model. Primary macrophages isolated from mice femoral bone marrow were either left undifferentiated (+PBS), differentiated into M1 macrophages (+LPS), or differentiated to M2 macrophages (+IL-4), and then treated with either vehicle or 10 pM Mac1SAP. Samples were collected at day 2 and 5 post Mac1SAP treatment. Macrophage subtypes were identified by flow cytometry and cytokine secretion profiles were quantified using xMAP. For the in vivo model, mice were treated with Mac1SAP 24 h prior to fracture. Femur bone marrow samples were collected and analyzed by flow cytometry, xMAP, immunohistochemistry, MicroCT, and histology. The results demonstrated that Mac1SAP significantly depleted M1 macrophages both in vivo and in vitro. Mac1SAP treatment altered expression of 75% of cytokines in vitro and 30% of cytokines in vivo including IL-6, TNF-a, and IP-10. In both the in vitro and in vivo models, the M1 subtype correlated highly with cytokines G-CSF, IL-1α, IL-6, IL-10, LIX, KC, MCP-1, IP-10, MIP1α, MIP1β, RANTES, IL-9, IL-2 and TNFα. M1 depletion was also found to reduced callus properties at day 14 via microCT analysis. Overall, the data suggests that depletion of M1 macrophages by Mac1SAP treatment alters the cytokine expression profiles during early bone repair which ultimately impairs bone healing.
Collapse
Affiliation(s)
- Sarah Hozain
- Seton Hall University, South Orange, NJ 07079, United States of America
| | - Jessica Cottrell
- Seton Hall University, South Orange, NJ 07079, United States of America.
| |
Collapse
|
68
|
Feng T, Gao Z, Kou S, Huang X, Jiang Z, Lu Z, Meng J, Lin CP, Zhang H. No Evidence for Erythro-Myeloid Progenitor-Derived Vascular Endothelial Cells in Multiple Organs. Circ Res 2020; 127:1221-1232. [PMID: 32791884 DOI: 10.1161/circresaha.120.317442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Endothelial cells are thought to emerge de novo from the mesoderm to form the entire circulatory system. Recently, erythro-myeloid progenitors (EMPs) have been proposed to be another remarkable developmental origin for blood vessels in multiple organs, including the hindbrain, liver, lung, and heart, as demonstrated by lineage tracing studies using different genetic tools. These observations challenge the current consensus that intraembryonic vessels are thought to expand solely by the proliferation of preexisting endothelial cells. Resolution of this controversy over the developmental origin of endothelial cells is crucial for developing future therapeutics for vessel-dependent organ repair and regeneration. OBJECTIVE To examine the contribution of EMPs to intraembryonic endothelial cells. METHODS AND RESULTS We first used a transgenic mouse expressing a tamoxifen-inducible Mer-iCre fusion protein driven by the Csf1r (colony stimulating factor 1 receptor) promoter. Genetic lineage tracing based on Csf1r-Mer-iCre-Mer showed no contribution of EMPs to brain endothelial cells identified by several markers. We also generated a knock-in mouse line by inserting an internal ribosome entry site-iCre cassette into the 3' untranslated region of Csf1r gene to further investigate the cellular fates of EMPs. Similarly, we did not find any Csf1r-ires-iCre traced endothelial cells in brain, liver, lung, or heart in development either. Additionally, we found that Kit (KIT proto-oncogene receptor tyrosine kinase) was expressed not only in EMPs but also in embryonic hindbrain endothelial cells. Therefore, Kit promoter-driven recombinase, such as Kit-CreER, is a flawed tool for lineage tracing when examining the contribution of EMPs to hindbrain endothelial cells. We also traced CD45 (protein tyrosine phosphatase receptor type C; Ptprc)+ circulating EMPs and did not find any CD45 lineage-derived endothelial cells during development. CONCLUSIONS Our study suggested that EMPs are not the origin of intraembryonic endothelial cells.
Collapse
Affiliation(s)
- Teng Feng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zibei Gao
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Shan Kou
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Xinyan Huang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| |
Collapse
|
69
|
Filiberti A, Gmyrek GB, Montgomery ML, Sallack R, Carr DJJ. Loss of Osteopontin Expression Reduces HSV-1-Induced Corneal Opacity. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32785676 PMCID: PMC7441335 DOI: 10.1167/iovs.61.10.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal opacity and neovascularization (NV) are often described as outcomes of severe herpes simplex virus type 1 (HSV-1) infection. The current study investigated the role of colony-stimulating factor 1 receptor (CSF1R)+ cells and soluble factors in the progression of HSV-1-induced corneal NV and opacity. Methods MaFIA mice were infected with 500 plaque-forming units of HSV-1 in the cornea following scarification. From day 10 to day 13 post-infection (pi), mice were treated with 40 µg/day of AP20187 (macrophage ablation) or vehicle intraperitoneally. For osteopontin (OPN) neutralization experiments, C57BL/6 mice were infected as above and treated with 2 µg of goat anti-mouse OPN or isotypic control IgG subconjunctivally every 2 days from day 4 to day 12 pi. Mice were euthanized on day 14 pi, and tissue was processed for immunohistochemistry to quantify NV and opacity by confocal microscopy and absorbance or detection of pro- and anti-angiogenic and inflammatory factors and cells by suspension array analysis and flow cytometry, respectively. Results In the absence of CSF1R+ cells, HSV-1-induced blood and lymphatic vessel growth was muted. These results correlated with a loss in fibroblast growth factor type 2 (FGF-2) and an increase in OPN expression in the infected cornea. However, a reduction in OPN expression in mice did not alter corneal NV but significantly reduced opacity. Conclusions Our data suggest that CSF1R+ cell depletion results in a significant reduction in HSV-1-induced corneal NV that correlates with the loss of FGF-2 expression. A reduction in OPN expression was aligned with a significant drop in opacity associated with reduced corneal collagen disruption.
Collapse
Affiliation(s)
- Adrian Filiberti
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Micaela L Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Renee Sallack
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
70
|
De Logu F, De Prá SDT, de David Antoniazzi CT, Kudsi SQ, Ferro PR, Landini L, Rigo FK, de Bem Silveira G, Silveira PCL, Oliveira SM, Marini M, Mattei G, Ferreira J, Geppetti P, Nassini R, Trevisan G. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav Immun 2020; 88:535-546. [PMID: 32315759 DOI: 10.1016/j.bbi.2020.04.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome type I (CRPS-I) is characterized by intractable chronic pain. Poor understanding of the underlying mechanisms of CRPS-I accounts for the current unsatisfactory treatment. Antioxidants and antagonists of the oxidative stress-sensitive channel, the transient receptor potential ankyrin 1 (TRPA1), have been found to attenuate acute nociception and delayed allodynia in models of CRPS-I, evoked by ischemia and reperfusion (I/R) of rodent hind limb (chronic post ischemia pain, CPIP). However, it is unknown how I/R may lead to chronic pain mediated by TRPA1. Here, we report that the prolonged (day 1-15) mechanical and cold allodynia in the hind limb of CPIP mice was attenuated permanently in Trpa1-/- mice and transiently after administration of TRPA1 antagonists (A-967079 and HC-030031) or an antioxidant (α-lipoic acid). Indomethacin treatment was, however, ineffective. We also found that I/R increased macrophage (F4/80+ cell) number and oxidative stress markers, including 4-hydroxynonenal (4-HNE), in the injured tibial nerve. Macrophage-deleted MaFIA (Macrophage Fas-Induced Apoptosis) mice did not show I/R-evoked endoneurial cell infiltration, increased 4-HNE and mechanical and cold allodynia. Furthermore, Trpa1-/- mice did not show any increase in macrophage number and 4-HNE in the injured nerve trunk. Notably, in mice with selective deletion of Schwann cell TRPA1 (Plp1-CreERT;Trpa1fl/fl mice), increases in macrophage infiltration, 4-HNE and mechanical and cold allodynia were attenuated. In the present mouse model of CRPS-I, we propose that the initial oxidative stress burst that follows reperfusion activates a feed forward mechanism that entails resident macrophages and Schwann cell TRPA1 of the injured tibial nerve to sustain chronic neuroinflammation and allodynia. Repeated treatment one hour before and for 3 days after I/R with a TRPA1 antagonist permanently protected CPIP mice against neuroinflammation and allodynia, indicating possible novel therapeutic strategies for CRPS-I.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Samira Dal-Toé De Prá
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil
| | | | - Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria (RS), Brazil
| | - Paula Ronsani Ferro
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil
| | - Lorenzo Landini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Flávia Karine Rigo
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil
| | - Gustavo de Bem Silveira
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil
| | - Paulo Cesar Lock Silveira
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria (RS), Brazil
| | - Matilde Marini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, 50139 Florence, Italy
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (SC), Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy.
| | - Gabriela Trevisan
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000 Criciúma (SC), Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria (RS), Brazil.
| |
Collapse
|
71
|
Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020; 21:E5207. [PMID: 32717819 PMCID: PMC7432207 DOI: 10.3390/ijms21155207] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
72
|
Bain CC, Gibson DA, Steers NJ, Boufea K, Louwe PA, Doherty C, González-Huici V, Gentek R, Magalhaes-Pinto M, Shaw T, Bajénoff M, Bénézech C, Walmsley SR, Dockrell DH, Saunders PTK, Batada NN, Jenkins SJ. Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Sci Immunol 2020; 5:eabc4466. [PMID: 32561560 PMCID: PMC7610697 DOI: 10.1126/sciimmunol.abc4466] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Macrophages reside in the body cavities where they maintain serosal homeostasis and provide immune surveillance. Peritoneal macrophages are implicated in the etiology of pathologies including peritonitis, endometriosis, and metastatic cancer; thus, understanding the factors that govern their behavior is vital. Using a combination of fate mapping techniques, we have investigated the impact of sex and age on murine peritoneal macrophage differentiation, turnover, and function. We demonstrate that the sexually dimorphic replenishment of peritoneal macrophages from the bone marrow, which is high in males and very low in females, is driven by changes in the local microenvironment that arise upon sexual maturation. Population and single-cell RNA sequencing revealed marked dimorphisms in gene expression between male and female peritoneal macrophages that was, in part, explained by differences in composition of these populations. By estimating the time of residency of different subsets within the cavity and assessing development of dimorphisms with age and in monocytopenic Ccr2 -/- mice, we demonstrate that key sex-dependent features of peritoneal macrophages are a function of the differential rate of replenishment from the bone marrow, whereas others are reliant on local microenvironment signals. We demonstrate that the dimorphic turnover of peritoneal macrophages contributes to differences in the ability to protect against pneumococcal peritonitis between the sexes. These data highlight the importance of considering both sex and age in susceptibility to inflammatory and infectious diseases.
Collapse
Affiliation(s)
- C C Bain
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| | - D A Gibson
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N J Steers
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - K Boufea
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - P A Louwe
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C Doherty
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - V González-Huici
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - R Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - M Magalhaes-Pinto
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - T Shaw
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, UK
| | - M Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - C Bénézech
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - S R Walmsley
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - D H Dockrell
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - P T K Saunders
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N N Batada
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - S J Jenkins
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
73
|
Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials 2020; 243:119920. [PMID: 32179303 PMCID: PMC7191325 DOI: 10.1016/j.biomaterials.2020.119920] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
Abstract
Macrophages are among the first cells to interact with biomaterials and ultimately determine their integrative fate. Biomaterial surface characteristics like roughness and hydrophilicity can activate macrophages to an anti-inflammatory phenotype. Wnt signaling, a key cell proliferation and differentiation pathway, has been associated with dysregulated macrophage activity in disease. However, the role Wnt signaling plays in macrophage activation and response to biomaterials is unknown. The aim of this study was to characterize the regulation of Wnt signaling in macrophages during classical pro- and anti-inflammatory polarization and in their response to smooth, rough, and rough-hydrophilic titanium (Ti) surfaces. Peri-implant Wnt signaling in macrophage-ablated (MaFIA) mice instrumented with intramedullary Ti rods was significantly attenuated compared to untreated controls. Wnt ligand mRNA were upregulated in a surface modification-dependent manner in macrophages isolated from the surface of Ti implanted in C57Bl/6 mice. In vitro, Wnt mRNAs were regulated in primary murine bone-marrow-derived macrophages cultured on Ti in a surface modification-dependent manner. When macrophageal Wnt secretion was inhibited, macrophage sensitivity to both physical and biological stimuli was abrogated. Loss of macrophage-derived Wnts also impaired recruitment of mesenchymal stem cells and T-cells to Ti implants in vivo. Finally, inhibition of integrin signaling decreased surface-dependent upregulation of Wnt genes. These results suggest that Wnt signaling regulates macrophage response to biomaterials and that macrophages are an important source of Wnt ligands during inflammation and healing.
Collapse
Affiliation(s)
- Jefferson O Abaricia
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Manotri Chaubal
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
74
|
Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 2020; 28:544-554. [PMID: 31926267 PMCID: PMC7214213 DOI: 10.1016/j.joca.2019.12.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a family of degenerative diseases affecting multiple joint tissues. Despite the diverse etiology and pathogenesis of OA, increasing evidence suggests that macrophages can play a significant role in modulating joint inflammation, and thus OA severity, via various secreted mediators. Recent advances in next-generation sequencing technologies coupled with proteomic and epigenetic tools have greatly facilitated research to elucidate the embryonic origin of macrophages in various tissues including joint synovium. Furthermore, scientists have now begun to appreciate that macrophage polarization can span beyond the conventionally recognized binary states (i.e., pro-inflammatory M1-like vs anti-inflammatory M2-like) and may encompass a broad spectrum of phenotypes. Although the presence of these cells has been shown in multiple joint tissues, additional mechanistic studies are required to provide a comprehensive understanding of the precise role of these diverse macrophage populations in OA onset and progression. New approaches that can modulate macrophages into desired functional phenotypes may provide novel therapeutic strategies for preventing OA or enhancing cartilage repair and regeneration.
Collapse
Affiliation(s)
- C-L Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - N S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - M A Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - K H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - F Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
75
|
Bailey K, Furman B, Zeitlin J, Kimmerling K, Wu CL, Guilak F, Olson S. Intra-articular depletion of macrophages increases acute synovitis and alters macrophage polarity in the injured mouse knee. Osteoarthritis Cartilage 2020; 28:626-638. [PMID: 32044353 PMCID: PMC8963860 DOI: 10.1016/j.joca.2020.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Acute synovial inflammation following joint trauma is associated with posttraumatic arthritis. Synovial macrophages have been implicated in degenerative changes. In this study, we sought to elucidate the role of intra-articular macrophages in the acute inflammatory response to fracture in the mouse knee. METHOD A closed articular fracture was induced in two models of synovial macrophage depletion: genetically-modified MaFIA mice administered AP20187 to induce programmed macrophage apoptosis, and wild-type C57BL/6 mice administered clodronate liposomes, both via intra-articular injection. Synovial inflammation, bone morphology, and levels of F4/80+ macrophages, NOS2+ M1 macrophages, and CD206+ M2 macrophages were quantified 7 days after fracture using histology and micro-computed tomography. RESULTS Intra-articular macrophage depletion with joint injury did not reduce acute synovitis or the number of synovial macrophages 7 days after fracture in either macrophage-depleted MaFIA mice or in clodronate-treated C57BL/6 mice. In macrophage-depleted MaFIA mice, macrophage polarity shifted to a dominance of M1 macrophages and a reduction of M2 macrophages in the synovial stroma, indicating a shift in M1/M2 macrophage ratio in the joint following injury. Interestingly, MaFIA mice depleted 2 days prior to fracture demonstrated increased synovitis (P = 0.003), reduced bone mineral density (P = 0.0004), higher levels of M1 macrophages (P = 0.013), and lower levels of M2 macrophages (not statistically significant, P=0.084) compared to control-treated MaFIA mice. CONCLUSION Our findings indicate that macrophages play a critical immunomodulatory role in the acute inflammatory response surrounding joint injury and suggest that inhibition of macrophage function can have prominent effects on joint inflammation and bone homeostasis after joint trauma.
Collapse
Affiliation(s)
- K.N. Bailey
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA, Department of Orthopaedic Surgery, University of California San Francisco, CA, 94143, USA
| | - B.D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - J. Zeitlin
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - K.A. Kimmerling
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - C.-L. Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA, Shriners Hospitals for Children – St. Louis, St. Louis, MO, 63110, USA
| | - F. Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA, Shriners Hospitals for Children – St. Louis, St. Louis, MO, 63110, USA
| | - S.A. Olson
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA,Address correspondence and reprint requests to: S.A. Olson, Duke University Medical Center, Box 3389, Durham, NC, 27710, USA. Tel.: (919) 668 3000; fax: (919) 668 2933. (S.A. Olson)
| |
Collapse
|
76
|
Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, Mauffrey P, Irbah L, Treffeisen E, Franz S, Boissonnas A, Combadière C, Ito M, Plikus MV, Romeo PH. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. SCIENCE ADVANCES 2020; 6:eaay3704. [PMID: 32219160 PMCID: PMC7083618 DOI: 10.1126/sciadv.aay3704] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Collapse
Affiliation(s)
- Denise Gay
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
| | - Giulia Ghinatti
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rubén A. Ferrer
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Chae Ho Lim
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Shohei Murakami
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Nathalie Gault
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Isabelle Rombeau
- Charles River Laboratories, 169 Bois des Oncins, 69210 Saint-Germain-Nuelles, France
| | - Philippe Mauffrey
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Lamya Irbah
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Elsa Treffeisen
- Department of Pediatrics, Cohen Children's Medical Center Northwell Health, New Hyde Park, NY 11040, USA
| | - Sandra Franz
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
- DFG-German Research Council Transregio 67, Leipzig-Dresden, Germany
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| |
Collapse
|
77
|
Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, Guan Z, Braz JM, Basbaum AI. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun 2020; 11:264. [PMID: 31937758 PMCID: PMC6959328 DOI: 10.1038/s41467-019-13839-2] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management. Interactions among spinal dorsal horn neurons and microglia contribute to the induction and maintenance of neuropathic pain after peripheral nerve injury. The authors show that depletion of macrophages in the dorsal root ganglia prevents and reverses ongoing nerve injury-induced hypersensitivity.
Collapse
Affiliation(s)
- Xiaobing Yu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA.
| | - Hongju Liu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA.,Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Katherine A Hamel
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Maelig G Morvan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Stephen Yu
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jacqueline Leff
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
78
|
Kurd NS, Lutes LK, Yoon J, Chan SW, Dzhagalov IL, Hoover AR, Robey EA. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 2019; 8:48097. [PMID: 31868579 PMCID: PMC6957271 DOI: 10.7554/elife.48097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.
Collapse
Affiliation(s)
- Nadia S Kurd
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jaewon Yoon
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivan L Dzhagalov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
79
|
Intravital multiphoton microscopy as a novel tool in the field of immunopharmacology. Pharmacol Ther 2019; 206:107429. [PMID: 31689449 DOI: 10.1016/j.pharmthera.2019.107429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 11/22/2022]
Abstract
Intravital microscopy with multiphoton excitation is a recently developed optical imaging technique for deep tissue imaging without fixation or sectioning, which permits examination of fundamental concepts regarding the dynamic nature of cells under physiological and pathological conditions in living animals. This novel technique also offers exciting opportunities for pharmacological research by providing new platforms for the study of cellular dynamics in response to drugs in vivo. Moreover, fluorescent chemical probes for functional or molecular analysis in single cells in vivo play important roles in pharmacology. For example, we have recently revealed the pharmacodynamic actions of different biological agents for the treatment of rheumatoid arthritis (RA) in vivo by directly visualizing drug-induced cellular behaviors and functions of osteoclasts on bone surfaces. This review focuses on the principles and advantages of intravital imaging for the dissection of pharmacological mechanisms, and discusses how such imaging can contribute to the drug development process, introducing recent trials that evaluated the in vivo pharmacological effects of various agents.
Collapse
|
80
|
Abstract
There are growing interests to study the molecular and cellular interactions among immune cells and sensory neurons in the dorsal root ganglia after peripheral nerve injury. Peripheral monocytic cells, including macrophages, are known to respond to a tissue injury through phagocytosis, antigen presentation, and cytokine release. Emerging evidence has implicated the contribution of dorsal root ganglia macrophages to neuropathic pain development and axonal repair in the context of nerve injury. Rapidly phenotyping (or "rapid isolation of") the response of dorsal root ganglia macrophages in the context of nerve injury is desired to identify the unknown neuroimmune factors. Here we demonstrate how our lab rapidly and effectively isolates macrophages from the dorsal root ganglia using an enzyme-free mechanical dissociation protocol. The samples are kept on ice throughout to limit cellular stress. This protocol is far less time consuming compared to the standard enzymatic protocol and has been routinely used for our Fluorescence-activated Cell Sorting analysis.
Collapse
Affiliation(s)
- Xiaobing Yu
- Department of Anesthesia and Perioperative Care, University of California San Francisco;
| | - Jacqueline Leff
- Department of Anesthesia and Perioperative Care, University of California San Francisco
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco;
| |
Collapse
|
81
|
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol 2019; 107:205-219. [PMID: 31330095 DOI: 10.1002/jlb.mr0519-143r] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
82
|
Chang CL, Weigel AV, Ioannou MS, Pasolli HA, Xu CS, Peale DR, Shtengel G, Freeman M, Hess HF, Blackstone C, Lippincott-Schwartz J. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol 2019; 218:2583-2599. [PMID: 31227594 PMCID: PMC6683741 DOI: 10.1083/jcb.201902061] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles that transfer lipids to various organelles including peroxisomes. Here, we show that the hereditary spastic paraplegia protein M1 Spastin, a membrane-bound AAA ATPase found on LDs, coordinates fatty acid (FA) trafficking from LDs to peroxisomes through two interrelated mechanisms. First, M1 Spastin forms a tethering complex with peroxisomal ABCD1 to promote LD-peroxisome contact formation. Second, M1 Spastin recruits the membrane-shaping ESCRT-III proteins IST1 and CHMP1B to LDs via its MIT domain to facilitate LD-to-peroxisome FA trafficking, possibly through IST1- and CHMP1B-dependent modifications in LD membrane morphology. Furthermore, LD-to-peroxisome FA trafficking mediated by M1 Spastin is required to relieve LDs of lipid peroxidation. M1 Spastin's dual roles in tethering LDs to peroxisomes and in recruiting ESCRT-III components to LD-peroxisome contact sites for FA trafficking may underlie the pathogenesis of diseases associated with defective FA metabolism in LDs and peroxisomes.
Collapse
Affiliation(s)
- Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Maria S Ioannou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - David R Peale
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
83
|
Evans TA, Barkauskas DS, Silver J. Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells. Exp Neurol 2019; 320:112972. [PMID: 31234058 DOI: 10.1016/j.expneurol.2019.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Intravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.
Collapse
Affiliation(s)
- Teresa A Evans
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | | | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
84
|
Saini Y, Lewis BW, Yu D, Dang H, Livraghi-Butrico A, Del Piero F, O'Neal WK, Boucher RC. Effect of LysM+ macrophage depletion on lung pathology in mice with chronic bronchitis. Physiol Rep 2019; 6:e13677. [PMID: 29667749 PMCID: PMC5904692 DOI: 10.14814/phy2.13677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/04/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022] Open
Abstract
Macrophages (MΦ) are key sentinels of respiratory exposure to inhaled environmental stimuli. In normal “healthy” tissues, MΦ are believed to be a dormant cell type that, upon exposure to stress‐causing stimuli, may get activated to exhibit pro‐ or anti‐inflammatory roles. To test whether stress present in chronic bronchitic (CB) airways triggers MΦ to manifest protective or detrimental responses, the DTA+ (LysM‐regulated Diphtheria Toxin A expressing) strain with partial MΦ‐deficiency was crossed with the Scnn1b‐Tg mouse model of CB and the progenies were studied at 4–5 weeks of age. Compared with DTA− littermates, the DTA+ mice had ~50% reduction in bronchoalveolar lavage (BAL) MΦ, and the recovered MΦ were immature, phenotypically distinct, and functionally defective. DTA+/Scnn1b‐Tg mice exhibited a similar depletion of LysM+ MΦ offset by a significant increase in LysM‐ MΦ in the BAL. In DTA+/Scnn1b‐Tg mice, lung disease was more severe than in DTA−/Scnn1b‐Tg littermates, as indicated by an increased incidence of mucus plugging, mucous cells, airway inflammation, higher levels of cytokines/chemokines (KC, TNF‐α, MIP‐2, M‐CSF, IL‐5, and IL‐17), and worsened alveolar airspace enlargement. DTA+/Scnn1b‐Tg mice exhibited increased occurrence of lymphoid nodules, which was concomitant with elevated levels of immunoglobulins in BAL. Collectively, these data indicate that numerical deficiency of MΦ in stressed airspaces is responded via compensatory increase in the recruitment of immature MΦ and altered non‐MΦ effector cell‐centered responses, for example, mucus production and adaptive immune defense. Overall, these data identify dynamic roles of MΦ in moderating, rather than exacerbating, the severity of lung disease in a model of CB.
Collapse
Affiliation(s)
- Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dongfang Yu
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
85
|
Santamaria-Barria JA, Zeng S, Greer JB, Beckman MJ, Seifert AM, Cohen NA, Zhang JQ, Crawley MH, Green BL, Loo JK, Maltbaek JH, DeMatteo RP. Csf1r or Mer inhibition delays liver regeneration via suppression of Kupffer cells. PLoS One 2019; 14:e0216275. [PMID: 31042769 PMCID: PMC6493758 DOI: 10.1371/journal.pone.0216275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Murine Kupffer cells (KCs) comprise CD11bhi and F4/80hi subsets. Tissue-resident macrophages are known to express the tyrosine kinase receptors colony-stimulating factor 1 receptor (Csf1r) and Mer. However, the expression of Csf1r and Mer on KC subsets and the importance of these tyrosine kinases during liver regeneration (LR) are unknown. METHODS KCs from wild-type and Csf1r-GFP mice were characterized by flow cytometry. Partial hepatectomy (PH) was performed in mice treated with clodronate liposomes, a Csf1r small molecule inhibitor or depleting antibody, or a small molecule Mer inhibitor. Sera and livers were analyzed. The function of sorted KC subsets was tested in vitro. RESULTS Mer was specifically expressed on tissue-resident F4/80hi KCs, 55% of which also expressed Csf1r. Mer+Csf1r+ and Mer+Csf1r- KCs had distinct expression of macrophage markers. Csf1r inhibition in mice reduced F4/80hi KCs by approximately 50%, but did not affect CD11bhi KCs. Clodronate liposomes depleted F4/80hi KCs, but also altered levels of other intrahepatic leukocytes. Csf1r inhibition delayed LR, as demonstrated by a 20% reduction in liver-to-body weight ratios 7 days after PH. At 36h after PH, Csf1r inhibition increased serum ALT and histological liver injury, and decreased liver cell proliferation. A small molecule inhibitor of Mer did not alter the percentage of KCs or their proliferation and just modestly delayed LR. In vitro, Csf1r or Mer inhibition did not decrease KC viability, but did attenuate their cytokine response to stimulation. CONCLUSIONS F4/80hi KCs are Mer+ and can be subdivided based on Csf1r expression. Csf1r or Mer inhibition each reduces KC cytokine production and delays LR.
Collapse
Affiliation(s)
- Juan A. Santamaria-Barria
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shan Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jonathan B. Greer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Michael J. Beckman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Adrian M. Seifert
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Noah A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jennifer Q. Zhang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Megan H. Crawley
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Benjamin L. Green
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jennifer K. Loo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Joanna H. Maltbaek
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ronald P. DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
86
|
Zhang Y, Koradia A, Kamato D, Popat A, Little PJ, Ta HT. Treatment of atherosclerotic plaque: perspectives on theranostics. ACTA ACUST UNITED AC 2019; 71:1029-1043. [PMID: 31025381 DOI: 10.1111/jphp.13092] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 03/16/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Atherosclerosis, a progressive condition characterised by the build-up of plaque due to the accumulation of low-density lipoprotein and fibrous substances in the damaged arteries, is the major underlying pathology of most cardiovascular diseases. Despite the evidence of the efficacy of the present treatments for atherosclerosis, the complex and poorly understood underlying mechanisms of atherosclerosis development and progression have prevented them from reaching their full potential. Novel alternative treatments like usage of nanomedicines and theranostics are gaining attention of the researchers worldwide. This review will briefly discuss the current medications for the disease and explore potential future developments based on theranostics nanomaterials that may help resolve atherosclerotic cardiovascular disease. KEY FINDINGS Various drugs can slow the effects of atherosclerosis. They include hyperlipidaemia medications, anti-platelet drugs, hypertension and hyperglycaemia medications. Most of the theranostic agents developed for atherosclerosis have shown the feasibility of rapid and noninvasive diagnosis, as well as effective and specific treatment in animal models. However, there are still some limitation exist in their structure design, stability, targeting efficacy, toxicity and production, which should be optimized in order to develop clinically acceptable nanoparticle based theronostics for atherosclerosis. SUMMARY Current medications for atherosclerosis and potential theranostic nanomaterials developed for the disease are discussed in the current review. Further investigations remain to be carried out to achieve clinical translation of theranostic agents for atherosclerosis.
Collapse
Affiliation(s)
- Yicong Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Aayushi Koradia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Qld, Australia
| |
Collapse
|
87
|
Kurup SP, Anthony SM, Hancox LS, Vijay R, Pewe LL, Moioffer SJ, Sompallae R, Janse CJ, Khan SM, Harty JT. Monocyte-Derived CD11c + Cells Acquire Plasmodium from Hepatocytes to Prime CD8 T Cell Immunity to Liver-Stage Malaria. Cell Host Microbe 2019; 25:565-577.e6. [PMID: 30905437 DOI: 10.1016/j.chom.2019.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 01/16/2023]
Abstract
Plasmodium sporozoites inoculated by mosquitoes migrate to the liver and infect hepatocytes prior to release of merozoites that initiate symptomatic blood-stage malaria. Plasmodium parasites are thought to be restricted to hepatocytes throughout this obligate liver stage of development, and how liver-stage-expressed antigens prime productive CD8 T cell responses remains unknown. We found that a subset of liver-infiltrating monocyte-derived CD11c+ cells co-expressing F4/80, CD103, CD207, and CSF1R acquired parasites during the liver stage of malaria, but only after initial hepatocyte infection. These CD11c+ cells found in the infected liver and liver-draining lymph nodes exhibited transcriptionally and phenotypically enhanced antigen-presentation functions and primed protective CD8 T cell responses against Plasmodium liver-stage-restricted antigens. Our findings highlight a previously unrecognized aspect of Plasmodium biology and uncover the fundamental mechanism by which CD8 T cell responses are primed against liver-stage malaria antigens.
Collapse
Affiliation(s)
- Samarchith P Kurup
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Scott M Anthony
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lisa S Hancox
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Lecia L Pewe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven J Moioffer
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Ramakrishna Sompallae
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), 2333ZA Leiden, the Netherlands
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
88
|
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 2019; 196:80-89. [PMID: 29329642 PMCID: PMC6028312 DOI: 10.1016/j.biomaterials.2017.12.025] [Citation(s) in RCA: 596] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022]
Abstract
Recent research has brought about a clear understanding that successful fracture healing is based on carefully coordinated cross-talk between inflammatory and bone forming cells. In particular, the key role that macrophages play in the recruitment and regulation of the differentiation of mesenchymal stem cells (MSCs) during bone regeneration has been brought to focus. Indeed, animal studies have comprehensively demonstrated that fractures do not heal without the direct involvement of macrophages. Yet the exact mechanisms by which macrophages contribute to bone regeneration remain to be elucidated. Macrophage-derived paracrine signaling molecules such as Oncostatin M, Prostaglandin E2 (PGE2), and Bone Morphogenetic Protein-2 (BMP2) have been shown to play critical roles; however the relative importance of inflammatory (M1) and tissue regenerative (M2) macrophages in guiding MSC differentiation along the osteogenic pathway remains poorly understood. In this review, we summarize the current understanding of the interaction of macrophages and MSCs during bone regeneration, with the emphasis on the role of macrophages in regulating bone formation. The potential implications of aging to this cellular cross-talk are reviewed. Emerging treatment options to improve facture healing by utilizing or targeting MSC-macrophage crosstalk are also discussed.
Collapse
Affiliation(s)
- Jukka Pajarinen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Emmanuel Gibon
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke Kohno
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masahiro Maruyama
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karthik Nathan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Lu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
89
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
90
|
Warwick CA, Shutov LP, Shepherd AJ, Mohapatra DP, Usachev YM. Mechanisms underlying mechanical sensitization induced by complement C5a: the roles of macrophages, TRPV1, and calcitonin gene-related peptide receptors. Pain 2019; 160:702-711. [PMID: 30507785 PMCID: PMC6377341 DOI: 10.1097/j.pain.0000000000001449] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complement system significantly contributes to the development of inflammatory and neuropathic pain, but the underlying mechanisms are poorly understood. Recently, we identified the signaling pathway responsible for thermal hypersensitivity induced by the complement system component C5a. Here, we examine the mechanisms of another important action of C5a, induction of mechanical hypersensitivity. We found that intraplantar injection of C5a produced a dose-dependent mechanical sensitization and that this effect was blocked by chemogenetic ablation of macrophages in both male and female mice. Knockout of TRPV1 or pretreatment with the TRPV1 antagonists, AMG9810 or 5'-iodoresiniferatoxin (5'-IRTX), significantly reduced C5a-induced mechanical sensitization. Notably, local administration of 5'-IRTX 90 minutes after C5a injection resulted in a slow, but complete, reversal of mechanical sensitization, indicating that TRPV1 activity was required for maintaining C5a-induced mechanical hypersensitivity. This slow reversal suggests that neurogenic inflammation and neuropeptide release may be involved. Indeed, pretreatment with a calcitonin gene-related peptide (CGRP) receptor antagonist (but not an antagonist of the neurokinin 1 receptor) prevented C5a-induced mechanical sensitization. Furthermore, intraplantar injection of CGRP produced significant mechanical sensitization in both wild-type and TRPV1 knockout mice. Taken together, these findings suggest that C5a produces mechanical sensitization by initiating macrophage-to-sensory-neuron signaling cascade that involves activation of TRPV1 and CGRP receptor as critical steps in this process.
Collapse
Affiliation(s)
- Charles A. Warwick
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Leonid P. Shutov
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Andrew J. Shepherd
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Durga P. Mohapatra
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Yuriy M. Usachev
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
91
|
Shannon JG, Hinnebusch BJ. Intravital Confocal Microscopy of Dermal Innate Immune Responses to Flea-Transmitted Yersinia pestis. Methods Mol Biol 2019; 2010:57-68. [PMID: 31177431 PMCID: PMC11032071 DOI: 10.1007/978-1-4939-9541-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The technique known as intravital microscopy (IVM), when used in conjunction with transgenic mice expressing fluorescent proteins in various cell populations, is a powerful tool with the potential to provide new insights into host-pathogen interactions in infectious disease pathogenesis in vivo. Yersinia pestis, the causative agent of plague, is typically deposited in a host's skin during feeding of an infected flea. IVM has been used to characterize the innate immune response to Y. pestis in the skin and identify differences between the responses to needle-inoculated and flea-transmitted bacteria that would have been difficult, if not impossible, to detect by other means. Here we describe techniques used to image the neutrophil response to flea-transmitted Y. pestis in the dermis of live mice using conventional confocal microscopy.
Collapse
Affiliation(s)
- Jeffrey G Shannon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA.
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| |
Collapse
|
92
|
Cortegano I, Serrano N, Ruiz C, Rodríguez M, Prado C, Alía M, Hidalgo A, Cano E, de Andrés B, Gaspar ML. CD45 expression discriminates waves of embryonic megakaryocytes in the mouse. Haematologica 2018; 104:1853-1865. [PMID: 30573502 PMCID: PMC6717566 DOI: 10.3324/haematol.2018.192559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Embryonic megakaryopoiesis starts in the yolk sac on gestational day 7.5 as part of the primitive wave of hematopoiesis, and it continues in the fetal liver when this organ is colonized by hematopoietic progenitors between day 9.5 and 10.5, as the definitive hematopoiesis wave. We characterized the precise phenotype of embryo megakaryocytes in the liver at gestational day 11.5, identifying them as CD41++CD45-CD9++CD61+MPL+CD42c+ tetraploid cells that express megakaryocyte-specific transcripts and display differential traits when compared to those present in the yolk sac at the same age. In contrast to megakaryocytes from adult bone marrow, embryo megakaryocytes are CD45− until day 13.5 of gestation, as are both the megakaryocyte progenitors and megakaryocyte/erythroid-committed progenitors. At gestational day 11.5, liver and yolk sac also contain CD41+CD45+ and CD41+CD45− cells. These populations, and that of CD41++CD45−CD42c+ cells, isolated from liver, differentiate in culture into CD41++CD45−CD42c+ proplatelet-bearing megakaryocytes. Also present at this time are CD41−CD45++CD11b+ cells, which produce low numbers of CD41++CD45−CD42c+ megakaryocytes in vitro, as do fetal liver cells expressing the macrophage-specific Csf receptor-1 (Csf1r/CD115) from MaFIA transgenic mice, which give rise poorly to CD41++CD45−CD42c+ embryo megakaryocytes both in vivo and in vitro. In contrast, around 30% of adult megakaryocytes (CD41++CD45++CD9++CD42c+) from C57BL/6 and MaFIA mice express CD115. We propose that differential pathways operating in the mouse embryo liver at gestational day 11.5 beget CD41++CD45−CD42c+ embryo megakaryocytes that can be produced from CD41+CD45− or from CD41+CD45+ cells, at difference from those from bone marrow.
Collapse
Affiliation(s)
- Isabel Cortegano
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Natalia Serrano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBMSO-CSIC), Madrid
| | - Carolina Ruiz
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Mercedes Rodríguez
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Carmen Prado
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Mario Alía
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares, Madrid
| | - Eva Cano
- Neuroinflamation Unit, Chronic Diseases Research Program, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Belén de Andrés
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| | - María-Luisa Gaspar
- Department of Immunology, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda
| |
Collapse
|
93
|
Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat Commun 2018; 9:5191. [PMID: 30518764 PMCID: PMC6281653 DOI: 10.1038/s41467-018-07666-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023] Open
Abstract
The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice. The rate of repair declines with age; however, exposure to young circulations can rejuvenate fracture repair, but how this is accomplished is unknown. Here, the authors identify proteins, including low-density lipoprotein receptor-related protein 1 (Lrp1), as being secreted from young macrophages and rejuvenating fracture repair in mice.
Collapse
|
94
|
Plein A, Fantin A, Denti L, Pollard JW, Ruhrberg C. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 2018; 562:223-228. [PMID: 30258231 PMCID: PMC6289247 DOI: 10.1038/s41586-018-0552-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
The earliest blood vessels in mammalian embryos are formed when endothelial cells differentiate from angioblasts and coalesce into tubular networks. Thereafter, the endothelium is thought to expand solely by proliferation of pre-existing endothelial cells. Here we show that a complementary source of endothelial cells is recruited into pre-existing vasculature after differentiation from the earliest precursors of erythrocytes, megakaryocytes and macrophages, the erythro-myeloid progenitors (EMPs) that are born in the yolk sac. A first wave of EMPs contributes endothelial cells to the yolk sac endothelium, and a second wave of EMPs colonizes the embryo and contributes endothelial cells to intraembryonic endothelium in multiple organs, where they persist into adulthood. By demonstrating that EMPs constitute a hitherto unrecognized source of endothelial cells, we reveal that embryonic blood vascular endothelium expands in a dual mechanism that involves both the proliferation of pre-existing endothelial cells and the incorporation of endothelial cells derived from haematopoietic precursors.
Collapse
Affiliation(s)
- Alice Plein
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
95
|
A Metabolism-Based Quorum Sensing Mechanism Contributes to Termination of Inflammatory Responses. Immunity 2018; 49:654-665.e5. [DOI: 10.1016/j.immuni.2018.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
|
96
|
Abstract
Peripheral nerve damage initiates a complex series of structural and cellular processes that culminate in chronic neuropathic pain. The recent success of a type 2 angiotensin II (Ang II) receptor (AT2R) antagonist in a phase II clinical trial for the treatment of postherpetic neuralgia suggests angiotensin signaling is involved in neuropathic pain. However, transcriptome analysis indicates a lack of AT2R gene (Agtr2) expression in human and rodent sensory ganglia, raising questions regarding the tissue/cell target underlying the analgesic effect of AT2R antagonism. We show that selective antagonism of AT2R attenuates neuropathic but not inflammatory mechanical and cold pain hypersensitivity behaviors in mice. Agtr2-expressing macrophages (MΦs) constitute the predominant immune cells that infiltrate the site of nerve injury. Interestingly, neuropathic mechanical and cold pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs and AT2R-null hematopoietic cell transplantation. Our study identifies AT2R on peripheral MΦs as a critical trigger for pain sensitization at the site of nerve injury, and therefore proposes a translatable peripheral mechanism underlying chronic neuropathic pain.
Collapse
|
97
|
The biology of serous cavity macrophages. Cell Immunol 2018; 330:126-135. [DOI: 10.1016/j.cellimm.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
98
|
Wein MN, Kronenberg HM. Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031237. [PMID: 29358318 DOI: 10.1101/cshperspect.a031237] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parathyroid hormone (PTH) exerts profound effects on skeletal homeostasis through multiple cellular and molecular mechanisms. Continuous hyperparathyroidism causes net loss of bone mass, despite accelerating bone formation by osteoblasts. Intermittent treatment with PTH analogs represents the only Food and Drug Administration (FDA)-approved bone anabolic osteoporosis treatment strategy. Functional PTH receptors are present on cells of the osteoblast lineage, ranging from early skeletal stem cells to matrix-embedded osteocytes. In addition, bone remodeling by osteoclasts liberates latent growth factors present within bone matrix. Here, we will provide an overview of the multiple cellular and molecular mechanisms through which PTH influences bone homeostasis. Notably, net skeletal effects of continuous versus intermittent can differ significantly. Where possible, we will highlight mechanisms through which continuous hyperparathyroidism leads to bone loss, and through which intermittent hyperparathyroidism boosts bone mass. Given the therapeutic usage of intermittent PTH (iPTH) treatment for osteoporosis, particular attention will be paid toward mechanisms underlying the bone anabolic effects of once daily PTH administration.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
99
|
He H, Chiu AC, Kanada M, Schaar BT, Krishnan V, Contag CH, Dorigo O. Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer. Mol Imaging Biol 2018; 19:694-702. [PMID: 28233218 DOI: 10.1007/s11307-017-1061-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Tumor-associated macrophages (TAMs) are often associated with a poor prognosis in cancer. To gain a better understanding of cellular recruitment and dynamics of TAM biology during cancer progression, we established a novel transgenic mouse model for in vivo imaging of luciferase-expressing macrophages. PROCEDURES B6.129P2-Lyz2tm1(cre)Ifo/J mice, which express Cre recombinase under the control of the lysozyme M promoter (LysM) were crossed to Cre-lox Luc reporter mice (RLG), to produce LysM-LG mice whose macrophages express luciferase. Cell-type-specific luciferase expression in these mice was verified by flow cytometry, and via in vivo bioluminescence imaging under conditions where macrophages were either stimulated with lipopolysaccharide or depleted with clodronate liposomes. The distribution of activated macrophages was longitudinally imaged in two immunocompetent LysM-LG mouse models with either B16 melanoma or ID8 ovarian cancer cells. RESULTS In vivo imaging of LysM-LG mice showed luciferase activity was generated by macrophages. Clodronate liposome-mediated depletion of macrophages lowered overall bioluminescence while lipopolysaccharide injection increased macrophage bioluminescence in both the B16 and ID8 models. Tracking macrophages weekly in tumor-bearing animals after intraperitoneal (i.p.) or intraovarian (i.o.) injection resulted in distinct, dynamic patterns of macrophage activity. Animals with metastatic ovarian cancer after i.p. injection exhibited significantly higher peritoneal macrophage activity compared to animals after i.o. injection. CONCLUSION The LysM-LG model allows tracking of macrophage recruitment and activation during disease initiation and progression in a noninvasive manner. This model provides a tool to visualize and monitor the benefit of pharmacological interventions targeting macrophages in preclinical models.
Collapse
Affiliation(s)
- Huanhuan He
- Departments of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alan C Chiu
- Departments of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Masamitsu Kanada
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bruce T Schaar
- Departments of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Venkatesh Krishnan
- Departments of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christopher H Contag
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Departments of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Oliver Dorigo
- Departments of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
100
|
Lim HY, Lim SY, Tan CK, Thiam CH, Goh CC, Carbajo D, Chew SHS, See P, Chakarov S, Wang XN, Lim LH, Johnson LA, Lum J, Fong CY, Bongso A, Biswas A, Goh C, Evrard M, Yeo KP, Basu R, Wang JK, Tan Y, Jain R, Tikoo S, Choong C, Weninger W, Poidinger M, Stanley RE, Collin M, Tan NS, Ng LG, Jackson DG, Ginhoux F, Angeli V. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity 2018; 49:326-341.e7. [PMID: 30054204 DOI: 10.1016/j.immuni.2018.06.008] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/01/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.
Collapse
Affiliation(s)
- Hwee Ying Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sheau Yng Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chek Kun Tan
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore 637551, Singapore
| | - Chung Hwee Thiam
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Daniel Carbajo
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Samantha Hui Shang Chew
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Peter See
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | | | - Xiao Nong Wang
- Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK
| | - Li Hui Lim
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Louise A Johnson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliff Hospital, Oxford OX3 9DS, UK
| | - Josephine Lum
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Chui Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119074, Singapore
| | - Chern Goh
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | - Kim Pin Yeo
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ranu Basu
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jun Kit Wang
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639977, Singapore
| | - Yingrou Tan
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW 2050, Australia
| | - Shweta Tikoo
- The Centenary Institute, Newtown, NSW 2050, Australia
| | - Cleo Choong
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639977, Singapore
| | | | | | - Richard E Stanley
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, UK
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; KK Women's and Children Hospital, Singapore 229899, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliff Hospital, Oxford OX3 9DS, UK
| | - Florent Ginhoux
- Singapore Immunology Network, A(∗)STAR, Singapore 138648, Singapore
| | - Véronique Angeli
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|