51
|
Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation. Front Cardiovasc Med 2021; 8:639727. [PMID: 33834043 PMCID: PMC8021767 DOI: 10.3389/fcvm.2021.639727] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
The relevance of PCSK9 in atherosclerosis progression is demonstrated by the benefits observed in patients that have followed PCSK9-targeted therapies. The impact of these therapies is attributed to the plasma lipid-lowering effect induced when LDLR hepatic expression levels are recovered after the suppression of soluble PCSK9. Different studies show that PCSK9 is involved in other mechanisms that take place at different stages during atherosclerosis development. Indeed, PCSK9 regulates the expression of key receptors expressed in macrophages that contribute to lipid-loading, foam cell formation and atherosclerotic plaque formation. PCSK9 is also a regulator of vascular inflammation and its expression correlates with pro-inflammatory cytokines release, inflammatory cell recruitment and plaque destabilization. Furthermore, anti-PCSK9 approaches have demonstrated that by inhibiting PCSK9 activity, the progression of atherosclerotic disease is diminished. PCSK9 also modulates thrombosis by modifying platelets steady-state, leukocyte recruitment and clot formation. In this review we evaluate recent findings on PCSK9 functions in cardiovascular diseases beyond LDL-cholesterol plasma levels regulation.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
52
|
Development of a novel, fully human, anti-PCSK9 antibody with potent hypolipidemic activity by utilizing phage display-based strategy. EBioMedicine 2021; 65:103250. [PMID: 33647772 PMCID: PMC7921758 DOI: 10.1016/j.ebiom.2021.103250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. Methods A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. Findings Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10−6 s−1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. Interpretation FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.
Collapse
|
53
|
The Cholesterol-Lowering Effect of Capsella Bursa-Pastoris Is Mediated via SREBP2 and HNF-1α-Regulated PCSK9 Inhibition in Obese Mice and HepG2 Cells. Foods 2021; 10:foods10020408. [PMID: 33673187 PMCID: PMC7918551 DOI: 10.3390/foods10020408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study was to investigate the mechanism by which capsella bursa-pastoris ethanol extract (CBE), containing 17.5 milligrams of icaritin per kilogram of the extract, and icaritin, mediate hypocholesterolemic activity via the low-density lipoprotein receptor (LDLR) and pro-protein convertase subtilisin/kexin type 9 (PCSK9) in obese mice and HepG2 cells. CBE significantly attenuated serum total and LDL cholesterol levels in obese mice, which was associated with significantly decreased PCSK9 gene expression. HepG2 cells were cultured using delipidated serum (DLPS), and CBE significantly reduced PCSK9 and maintained the LDLR level. CBE co-treatment with rosuvastatin attenuated statin-mediated PCSK9 expression, and further increased LDLR. The icaritin contained in CBE decreased intracellular PCSK9 and LDLR levels by suppressing transcription factors SREBP2 and HNF-1α. Icaritin also significantly suppressed the extracellular PCSK9 level, which likely contributed to post-translational stabilization of LDLR in the HepG2 cells. PCSK9 inhibition by CBE is actively attributed to icaritin, and the use of CBE and icaritin could be an alternative therapeutic approach in the treatment of hypercholesterolemia.
Collapse
|
54
|
Shen H, Feng S, Lu Y, Jiang L, Yang T, Wang Z. Correlation between plasma proprotein convertase subtilisin/kexin type 9 and blood lipids in patients with newly diagnosed primary nephrotic syndrome. Ren Fail 2021; 42:405-412. [PMID: 32349585 PMCID: PMC7241483 DOI: 10.1080/0886022x.2020.1756846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a major post-transcriptional regulator of low-density lipoprotein receptor degradation. Recently, PCSK9 was shown to be overexpressed by liver cells in rats with proteinuria. However, the levels of PCSK9 in newly diagnosed primary nephrotic syndrome (PNS) patients and correlations involving PCSK9 and blood lipids are not clearly understood. Methods One hundred and sixteen patients who were newly diagnosed with PNS were enrolled in this study. Results Plasma PCSK9 levels in PNS patients were significantly higher than those in healthy controls [310.86 (250.87, 390.25) ng/ml vs 255.67 (202.26, 320.26) ng/ml, p = 0.002]. Plasma PCSK9 in PNS patients was positively correlated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (γ = 0.246, p = 0.008, and γ = 0.183, p = 0.049). When plasma PCSK9 was >267.60 ng/ml, the risk of developing hypercholesterolemia significantly increased in PNS patients (OR = 6.40, 95% CI 2.06–19.87, p = 0.001). When plasma PCSK9 was >255.05 ng/ml, the risk of developing higher levels of LDL-C significantly increased in PNS patients (OR = 3.83, 95%CI 1.25–11.68, p = 0.018). Conclusions Plasma PCSK9 levels in newly diagnosed PNS patients were markedly increased, and elevated PCSK9 abundance was positively correlated with elevated serum TC and LDL-C levels, suggesting that PCSK9 may emerge as a novel therapeutic target in NS-associated hypercholesterolemia.
Collapse
Affiliation(s)
- Huaying Shen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Feng
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Lu
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linsen Jiang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Yang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Wang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
55
|
Li X, Hu X, Pan T, Dong L, Ding L, Wang Z, Song R, Wang X, Wang N, Zhang Y, Wang J, Yang B. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed Pharmacother 2021; 133:110802. [PMID: 33202286 DOI: 10.1016/j.biopha.2020.110802] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Hyperlipidaemia is one of the major risk factors for atherosclerosis, coronary heart disease, stroke and diabetes. In the present study, we synthesized a new anthraquinone compound, 1,8-dihydroxy-3-succinic acid monoethyl ester-6-methylanthraquinone, and named it Kanglexin (KLX). The aim of this study was to evaluate whether KLX has a lipid-lowering effect and to explore the potential molecular mechanism. In this study, Sprague-Dawley rats were fed a high fat diet (HFD) for 5 weeks to establish a hyperlipidaemia model; then, the rats were orally administered KLX (20, 40, and 80 mg kg-1·d-1) or atorvastatin calcium (AT, 10 mg kg-1·d-1) once a day for 2 weeks. KLX had prominent effects on reducing blood lipids, hepatic lipid accumulation, body weight and the ratio of liver weight/body weight. Furthermore, KLXdramatically reduced the total cholesterol (TC) and triglyceride (TG) levels and lipid accumulation in a HepG2 cell model of dyslipidaemia induced by 1 mmol/L oleic acid (OA). KLX may decrease lipid levels by phosphorylating adenosine monophosphate-activated protein kinase (AMPK) and the downstream sterol regulatory element binding protein 2 (SREBP-2)/proprotein convertase subtilisin/kexin type 9 (PCSK9)/low-density lipoprotein receptor (LDLR) signalling pathway in the HFD rats and OA-treated HepG2 cells. The effects of KLX on the AMPK/SREBP-2/PCSK9/LDLR signalling pathway were abolished when AMPK was inhibited by compound C (a specific AMPK inhibitor) in HepG2 cells. In summary, KLX has an efficient lipid-lowering effect mediated by activation of the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Our findings may provide new insight into and evidence for the discovery of a new lipid-lowering drug for the prevention and treatment of hyperlipidaemia, fatty liver, and cardiovascular disease in the clinic.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xueling Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Tengfei Pan
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Lei Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Lili Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical CO. LTD, Jiangsu, Lianyungang 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang 222001, China.
| | - Rui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xiuzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
56
|
Busuioc RM, Covic A, Kanbay M, Banach M, Burlacu A, Mircescu G. Protein convertase subtilisin/kexin type 9 biology in nephrotic syndrome: implications for use as therapy. Nephrol Dial Transplant 2020; 35:1663-1674. [PMID: 31157893 DOI: 10.1093/ndt/gfz108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/12/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) levels almost constantly increased in patients with nephrotic syndrome (NS). Protein convertase subtilisin/kexin type 9 (PCSK9) [accelerates LDL-receptor (LDL-R) degradation] is overexpressed by liver cells in NS. Their levels, correlated inversely to LDL-R expression and directly to LDL-C, seem to play a central role in hypercholesterolaemia in NS. Hypersynthesis resulting from sterol regulatory element-binding protein dysfunction, hyperactivity induced by c-inhibitor of apoptosis protein expressed in response to stimulation by tumour necrosis factor-α produced by damaged podocytes and hypo-clearance are the main possible mechanisms. Increased LDL-C may damage all kidney cell populations (podocytes, mesangial and tubular cells) in a similar manner. Intracellular cholesterol accumulation produces oxidative stress, foam cell formation and apoptosis, all favoured by local inflammation. The cumulative effect of cellular lesions is worsened proteinuria and kidney function loss. Accordingly, NS patients should be considered high risk and treated by lowering LDL-C. However, there is still not enough evidence determining whether lipid-lowering agents are helpful in managing dyslipidaemia in NS. Based on good efficacy and safety proved in the general population, therapeutic modulation of PCSK9 via antibody therapy might be a reasonable solution. This article explores the established and forthcoming evidence implicating PCSK9 in LDL-C dysregulation in NS.
Collapse
Affiliation(s)
| | - Adrian Covic
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Nephrology Clinic, Dialysis and Renal Transplant Center - 'C.I. Parhon' University Hospital Iasi, Romania
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Alexandru Burlacu
- "Gr. T. Popa," University of Medicine and Pharmacy, Iasi, Romania.,Head of Department of Interventional Cardiology - Cardiovascular Diseases Institute Iasi, Romania
| | - Gabriel Mircescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
57
|
PCSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys 2020; 704:108717. [PMID: 33307067 DOI: 10.1016/j.abb.2020.108717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
PCSK9 plays a critical role in cholesterol metabolism via the PCSK9-LDLR axis. Liver-derived, circulating PCSK9 has become a novel drug target in lipid-lowering therapy. Accumulative evidence supports the possible association between PCSK9 and cardiac diseases and their risk factors. PCSK9 exerts various effects in the heart independently of LDL-cholesterol regulation. Acute myocardial infarction (AMI) induces local and systemic inflammation and reactive oxygen species generation, resulting in increased PCSK9 expression in hepatocytes and cardiomyocytes. PCSK9 upregulation promotes excessive autophagy and apoptosis in cardiomyocytes, thereby contributing to cardiac insufficiency. PCSK9 might also participate in the pathophysiology of heart failure by regulating fatty acid metabolism and cardiomyocyte contractility. It also promotes platelet activation and coagulation in patients with atrial fibrillation. PCSK9 is an independent predictor of aortic valve calcification and accelerates calcific aortic valve disease by regulating lipoprotein(a) catabolism. Accordingly, the use of PCSK9 inhibitors significantly reduced infarct sizes and arrhythmia and improves cardiac contractile function in a rat model of AMI. Circulating PCSK9 levels are positively correlated with age, diabetes mellitus, obesity, and hypertension. Here, we reviewed recent clinical and experimental studies exploring the association between PCSK9, cardiac diseases, and their related risk factors and aiming to identify possible underlying mechanisms.
Collapse
|
58
|
Wang D, Yang X, Chen Y, Gong K, Yu M, Gao Y, Wu X, Hu H, Liao C, Han J, Duan Y. Ascorbic acid enhances low-density lipoprotein receptor expression by suppressing proprotein convertase subtilisin/kexin 9 expression. J Biol Chem 2020; 295:15870-15882. [PMID: 32913121 DOI: 10.1074/jbc.ra120.015623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Indexed: 01/30/2023] Open
Abstract
Ascorbic acid, a water-soluble antioxidant, regulates various biological processes and is thought to influence cholesterol. However, little is known about the mechanisms underpinning ascorbic acid-mediated cholesterol metabolism. Here, we determined if ascorbic acid can regulate expression of proprotein convertase subtilisin/kexin 9 (PCSK9), which binds low-density lipoprotein receptor (LDLR) leading to its intracellular degradation, to influence low-density lipoprotein (LDL) metabolism. At cellular levels, ascorbic acid inhibited PCSK9 expression in HepG2 and Huh7 cell lines. Consequently, LDLR expression and cellular LDL uptake were enhanced. Similar effects of ascorbic acid on PCSK9 and LDLR expression were observed in mouse primary hepatocytes. Mechanistically, ascorbic acid suppressed PCSK9 expression in a forkhead box O3-dependent manner. In addition, ascorbic acid increased LDLR transcription by regulating sterol regulatory element-binding protein 2. In vivo, administration of ascorbic acid reduced serum PCSK9 levels and enhanced liver LDLR expression in C57BL/6J mice. Reciprocally, lack of ascorbic acid supplementation in L-gulono-γ-lactone oxidase deficient (Gulo -/-) mice increased circulating PCSK9 and LDL levels, and decreased liver LDLR expression, whereas ascorbic acid supplementation decreased PCSK9 and increased LDLR expression, ameliorating LDL levels in Gulo -/- mice fed a high fat diet. Moreover, ascorbic acid levels were negatively correlated to PCSK9, total and LDL levels in human serum samples. Taken together, these findings suggest that ascorbic acid reduces PCSK9 expression, leading to increased LDLR expression and cellular LDL uptake. Thus, supplementation of ascorbic acid may ameliorate lipid profiles in ascorbic acid-deficient species.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'An, China
| | - Yongyao Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ximei Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaqing Hu
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
59
|
Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition. Pharmacol Res 2020; 161:105205. [DOI: 10.1016/j.phrs.2020.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 01/06/2023]
|
60
|
Awadallah S, Taneera J, Mohammed AK, Unnikannan H, Sulaiman N. Combined intake of glucose-and lipid-lowering medications further elevates plasma levels of PCSK9 in type 2 diabetes patients. Diabetes Metab Syndr 2020; 14:2087-2092. [PMID: 33142230 DOI: 10.1016/j.dsx.2020.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM This study examined the status of plasma levels of protein convertase subtilisin/kexin 9 (PCSK9) in association with glucose-and lipid-lowering medications in subjects with type 2 diabetes (T2D). METHODS This study comprised 177 diabetics and 115 non-diabetic subjects recruited from the United Arab Emirates National Diabetes Study (UAEDIAB). Clinical and biomedical data were collected by standard techniques. Plasma levels of PCSK9 were determined using ELISA. RESULTS PCSK9 levels were higher in diabetics than non-diabetics (P < 0.001). Diabetics with disease duration >5 years, HbA1c > 7.0%, or male subjects, had significantly higher levels of PCSK9 than their counterparts (P < 0.05). Regression analysis revealed that HbA1c and age are predictors for PCSK9 in T2D subjects. Diabetic subjects with abnormal lipids profile on lipid-lowering medications had a higher level of PCSK9 compared to those with normal lipids profile (85.6 ± 40.5 vs. 63.7 ± 39.5 ng/ml, respectively; P < 0.01). Diabetics on combined intake of insulin and oral glucose-lowering drugs had higher levels of PCSK9 than those not taking any (86.1 ± 41.6 vs 69.7 ± 36.1 ng/ml, respectively; P < 0.05). The highest levels of PCSK9 however, were in diabetics on combined lipid- and glucose-lowering therapy when compared to those, not on any (96.2 ± 34.0 vs 66.0 ± 35.1 ng/ml, respectively; P < 0.01). CONCLUSIONS Age and HbA1c are the most predictors for the elevated levels of PCSK9 in Emirati T2D subjects. Combined therapy of glucose-and lipid-lowering medications further elevates plasma levels of PCSK9 in diabetic subjects.
Collapse
Affiliation(s)
- Samir Awadallah
- Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates; College of Health Sciences, University of Sharjah, United Arab Emirates.
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates; College of Medicine, Department of basic medical sciences, University of Sharjah, United Arab Emirates
| | | | - Hema Unnikannan
- Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, United Arab Emirates; College of Medicine, Department of family medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
61
|
PCSK9: A Potential Therapeutic Target for Sepsis. J Immunol Res 2020; 2020:2687692. [PMID: 33123601 PMCID: PMC7584934 DOI: 10.1155/2020/2687692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host response to infection. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is often upregulated in the presence of sepsis and infectious diseases. In sepsis, PCSK9 degraded the low-density lipoprotein cholesterol (LDL) receptors (LDL-R) of the hepatocytes and the very low-density lipoprotein cholesterol receptors (VLDL-R) of the adipocytes, which then subsequently reduced pathogenic lipid uptake and clearance/sequestration. Moreover, it might improve cholesterol accumulation and augment toll-like receptor function in macrophages, which supported inflammatory responses. Accordingly, PCSK9 might show detrimental effects on immune host response and survival in sepsis. However, the exact roles of PCSK9 in the pathogenesis of sepsis are still not well defined. In this review, we summarized the literatures focusing on the roles of PCSK9 in sepsis. Our review provided an additional insight in the role of PCSK9 in sepsis, which might serve as a potential target for the treatment of sepsis.
Collapse
|
62
|
Panagiotopoulou O, Chiesa ST, Tousoulis D, Charakida M. Dyslipidaemias and Cardiovascular Disease: Focus on the Role of PCSK9 Inhibitors. Curr Med Chem 2020; 27:4494-4521. [PMID: 31453780 DOI: 10.2174/0929867326666190827151012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Genetic, experimental and clinical studies have consistently confirmed that inhibition of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) can result in significant lowering of LDL-C and two fully human PCSK9 monoclonal antibodies have received regulatory approval for use in highrisk patients. Co-administration of PCSK9 with statins has resulted in extremely low LDL-C levels with excellent short-term safety profiles. While results from Phase III clinical trials provided significant evidence about the role of PCSK9 inhibitors in reducing cardiovascular event rates, their impact on mortality remains less clear. PCSK9 inhibitor therapy can be considered for high-risk patients who are likely to experience significant cardiovascular risk reduction.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Scott T Chiesa
- UCL Institute of Cardiovascular Sciences, London, United Kingdom
| | | | - Marietta Charakida
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
63
|
Molecular mechanism linking a novel PCSK9 copy number variant to severe hypercholesterolemia. Atherosclerosis 2020; 304:39-43. [DOI: 10.1016/j.atherosclerosis.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
|
64
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
65
|
Gallego-Colon E, Daum A, Yosefy C. Statins and PCSK9 inhibitors: A new lipid-lowering therapy. Eur J Pharmacol 2020; 878:173114. [PMID: 32302598 DOI: 10.1016/j.ejphar.2020.173114] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 11/28/2022]
Abstract
The clinical benefit of lipid-lowering therapies is to reduce circulating levels of atherogenic particles and to ameliorate the risk of atherosclerotic cardiovascular disease (ASCVD). The completion of two major clinical trials on PCSK9 inhibitors (PCSK9i), the FOURIER and the ODYSSEY outcome trials, has marked the beginning of a new era of lipid-lowering drugs. PCSK9i, evolocumab and alirocumab, are monoclonal antibodies that inactivate the liver proprotein convertase subtilisin kexin 9 (PCSK9). Inhibition of PCSK9 increases the number of low-density lipoprotein (LDL) receptors available leading to a profound reduction in circulating LDL particles. By preventing LDL receptor destruction, PCSK9i as adjunct to statin therapy can reduce LDL-C by 50-60% above that achieved by statin therapy alone. In addition, PCSK9i in combination with high-dose statins may reduce cardiovascular events and all-cause mortality in patients with clinical ASCVD. Based on evidence from clinical trials, the 2019 European Society of Cardiology (ESC)/European Atherosclerosis Society (EAS) guidelines for the management of dyslipidemias now include the use of PCSK9i to very high-risk ASCVD patients who are not achieving treatment goals on a maximum tolerated dose of a statin and ezetimibe. However, the cost-effectiveness of PCSK9i therapy is limited to secondary prevention in high-risk patients. This review outlines the main clinical trials leading to a change in the guidelines, clinical practice as well as the future challenges of PCSK9i therapy.
Collapse
Affiliation(s)
- Enrique Gallego-Colon
- Cardiology Department, Barzilai University Medical Center, Ben-Gurion University, Ashkelon, Israel.
| | - Aner Daum
- Cardiology Department, Barzilai University Medical Center, Ben-Gurion University, Ashkelon, Israel
| | - Chaim Yosefy
- Cardiology Department, Barzilai University Medical Center, Ben-Gurion University, Ashkelon, Israel
| |
Collapse
|
66
|
Could PCSK9 be a new therapeutic target of Eugenol? In vitro and in silico evaluation of hypothesis. Med Hypotheses 2020; 136:109513. [DOI: 10.1016/j.mehy.2019.109513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
|
67
|
Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis 2020; 297:111-119. [DOI: 10.1016/j.atherosclerosis.2020.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
|
68
|
Shafabakhsh R, Reiner Ž, Hallajzadeh J, Mirsafaei L, Asemi Z. Are anti-inflammatory agents and nutraceuticals - novel inhibitors of PCSK9? Crit Rev Food Sci Nutr 2020; 61:325-336. [PMID: 32090592 DOI: 10.1080/10408398.2020.1731678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease which increases the lysosomal degradation of low density lipoprotein receptor (LDLR) resulting in elevated serum LDL-cholesterol levels. Elevated LDL-cholesterol is the main risk factor for cardiovascular disease (CVD). Antibodies to PCSK9 decrease LDL-cholesterol. Recent studies have suggested a direct relationship between PCSK9 and inflammation and the potential inhibitory effects of anti-inflammatory agents against this enzyme. Nutraceuticals are natural compounds, which have numerous anti-inflammatory and lipid-lowering effects. In this review we focus on anti-inflammatory substances and nutraceuticals, which are beneficial in treatment of dyslipidemia. We also reviewed the recent findings concerning the role of PCSK9 as the main target for molecular mechanisms of these substances.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
69
|
A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine 2020; 52:102650. [PMID: 32058941 PMCID: PMC7026728 DOI: 10.1016/j.ebiom.2020.102650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that down-regulates hepatic low-density lipoprotein receptor (LDLR) by binding and shuttling LDLR to lysosomes for degradation. The development of therapy that inhibits PCSK9 has attracted considerable attention for the management of cardiovascular disease risk. However, only monoclonal antibodies of PCSK9 have reached the clinic use. Oral administration of small-molecule transcriptional inhibitors has the potential to become a therapeutic option. Methods Here, we developed a cell-based small molecule screening platform to identify transcriptional inhibitors of PCSK9. Through high-throughput screening and a series of evaluation, we found several active compounds. After detailed investigation on the pharmacological effect and molecular mechanistic characterization, 7030B-C5 was identified as a potential small-molecule PCSK9 inhibitor. Findings Our data showed that 7030B-C5 down-regulated PCSK9 expression and increased the total cellular LDLR protein and its mediated LDL-C uptake by HepG2 cells. In both C57BL/6 J and ApoE KO mice, oral administration of 7030B-C5 reduced hepatic and plasma PCSK9 level and increased hepatic LDLR expression. Most importantly, 7030B-C5 inhibited lesions in en face aortas and aortic root in ApoE KO mice with a slight amelioration of lipid profiles. We further provide evidences suggesting that transcriptional regulation of PCSK9 by 7030B-C5 mostly depend on the transcriptional factor HNF1α and FoxO3. Furthermore, FoxO1 was found to play an important role in 7030B-C5 mediated integration of hepatic glucose and lipid metabolism. Interpretation 7030B-C5 with potential suppressive effect of PCSK9 expression may serve as a promising lead compound for drug development of cholesterol/glucose homeostasis and cardiovascular disease therapy. Fund This work was supported by grants from the National Natural Science Foundation of China (81473214, 81402929, and 81621064), the Drug Innovation Major Project of China (2018ZX09711001-003-006, 2018ZX09711001-007 and 2018ZX09735001-002), CAMS Innovation Fund for Medical Sciences (2016-I2M-2-002, 2016-I2M-1-011 and 2017-I2M-1-008), Beijing Natural Science Foundation (7162129).
Collapse
|
70
|
Yang HX, Zhang M, Long SY, Tuo QH, Tian Y, Chen JX, Zhang CP, Liao DF. Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 2019; 500:81-86. [PMID: 31770510 DOI: 10.1016/j.cca.2019.09.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
The SREBP2/LDLR pathway is sensitive to cholesterol content in the endoplasmic reticulum (ER), while membrane low-density lipoprotein receptor (LDLR) is influenced by sterol response element binding protein 2 (SREBP2), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL). LDL-C, one of the risk factors in cardiovascular disease, is cleared through endocytosis recycling of LDLR. Therefore, we propose that a balance between LDLR endocytosis recycling and PCSK9-mediated and IDOL-mediated lysosomal LDLR degradation is responsible for cholesterol homeostasis in the ER. For statins that decrease serum LDL-C levels via cholesterol synthesis inhibition, the mechanism by which the statins increase the membrane LDLR may be regulated by cholesterol homeostasis in the ER.
Collapse
Affiliation(s)
- Hui-Xian Yang
- Institute of Cardiovascular Disease, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Jian-Xiong Chen
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China; Department Pharmacology & Toxicology, University of Mississippi Medical Center, USA
| | - Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China.
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China.
| |
Collapse
|
71
|
Alakbarzade V, Pereira AC. What Proportion of Patients Admitted with Stroke or Transient Ischemic Attack May Be Suitable for Newer Cholesterol-Lowering Treatment? J Stroke Cerebrovasc Dis 2019; 29:104457. [PMID: 31732461 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Protein convertase subtilisin-kexin type 9 (PCSK9) inhibitors effectively clear low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C). We evaluated stroke admissions potentially eligible for more intensive cholesterol treatment. METHODS Retrospective analysis of consecutive admissions to a hyperacute stroke unit over 5 months in 2017. Records were individually searched. Data were collected on diagnosis, risk factors, and stroke work-up. European Society of Cardiology and European Atherosclerosis Society guidelines for the management of dyslipidaemias were used for screening patients eligible for PCSK9 inhibitors. RESULTS Of 650 patient admissions: 351 (54%) had acute ischemic stroke or transient ischemic attack (TIA), 80 (12%) hemorrhage, and 219 (34%) mimic syndromes. Patients with hemorrhage (n = 80), mimic syndromes (n = 219), and absent LDL-C, or non-HDL-C testing (n = 27) were subsequently excluded. 324 patients with acute ischemic stroke and TIA were further screened for PCSK9-inhibitor treatment eligibility. Forty-one (13%) patients with LDL-C greater than or equal to 1.8mmol/L (≥70 mg/dL) on maximal tolerated statin dose and with concomitant "very high vascular risk" were identified. "Very high vascular risk" was defined as a documented history of cardiovascular disease and/or peripheral arterial disease. Of 41 patients eligible for PCSK9 inhibitors, median age was 82 years (range 53-96); median vascular risk factors were 2 (range 1-5); 7 (17%) had TIA; 13 (31%) had history of preceding cerebrovascular events, 13 (31%) diabetes mellitus, 17 (42%) cardioembolic events, 9 (22%) lacunar syndrome, 11 (22%) symptomatic internal carotid artery stenosis (n = 9 were >70%), and 4 (10%) undetermined aetiology. Eighty-three percent patients eligible for PCSK9 inhibitors also had non-HDL-C values greater than or equal to 2.6 mmol/L. CONCLUSIONS Up to 13% of unselected acute ischemic stroke or TIA patients admitted to a hyper-acute stroke unit were potentially suitable for more intensive cholesterol treatment. Our data may act as a useful guide for sample size selection in future stroke trials testing PCSK9 inhibitors.
Collapse
Affiliation(s)
- Vafa Alakbarzade
- Royal Cornwall Hospitals NHS Trust; Department of Neurology, Truro, United Kingdom.
| | - Anthony C Pereira
- St George's University Hospitals NHS Foundation Trust, Department of Neurology, London, United Kingdom
| |
Collapse
|
72
|
Lunasin Improves the LDL-C Lowering Efficacy of Simvastatin via Inhibiting PCSK9 Expression in Hepatocytes and ApoE -/- Mice. Molecules 2019; 24:molecules24224140. [PMID: 31731717 PMCID: PMC6891362 DOI: 10.3390/molecules24224140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 μM simvastatin and 5 μM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE−/− mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE−/− mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment.
Collapse
|
73
|
Leucker TM, Weiss RG, Schär M, Bonanno G, Mathews L, Jones SR, Brown TT, Moore R, Afework Y, Gerstenblith G, Hays AG. Coronary Endothelial Dysfunction Is Associated With Elevated Serum PCSK9 Levels in People With HIV Independent of Low-Density Lipoprotein Cholesterol. J Am Heart Assoc 2019; 7:e009996. [PMID: 30371326 PMCID: PMC6404863 DOI: 10.1161/jaha.118.009996] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background HIV+ people are at increased risk of coronary artery disease, but the responsible mechanisms are incompletely understood. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is traditionally recognized for its importance in cholesterol metabolism; however, recent data suggest an additional, low‐density lipoprotein receptor–independent adverse effect on endothelial cell inflammation and function. We tested the hypotheses that PCSK9 levels are increased and that abnormal coronary endothelial function is related to PCSK9 serum levels in HIV+ individuals. Methods and Results Forty‐eight HIV+ participants receiving antiretroviral therapy with suppressed viral replication, without coronary artery disease, and 15 age‐ and low‐density lipoprotein cholesterol–matched healthy HIV− subjects underwent magnetic resonance imaging to measure coronary endothelial function, quantified as percentage change in coronary artery cross‐sectional area during isometric handgrip exercise, an endothelial‐dependent stressor; and blood was obtained for serum PCSK9 and systemic vascular biomarkers. Data are presented as mean±SD. Mean serum PCSK9 was 65% higher in the HIV+ subjects (302±146 ng/mL) than in the HIV− controls (183±52 ng/mL, P<0.0001). Coronary endothelial function was significantly reduced in the HIV+ versus HIV− subjects (percentage change in coronary artery cross‐sectional area, 2.9±9.6% versus 11.1±3.7%; P<0.0001) and inversely related to PCSK9 (R=−0.51, P<0.0001). Markers of endothelial activation and injury, P‐selectin and thrombomodulin, were also significantly increased in the HIV+ subjects; and P‐selectin was directly correlated with serum PCSK9 (R=0.31, P=0.0144). Conclusions Serum PCSK9 levels are increased in treated HIV+ individuals and are associated with abnormal coronary endothelial function, an established measure of vascular health.
Collapse
Affiliation(s)
- Thorsten M Leucker
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Robert G Weiss
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD.,2 Division of Magnetic Resonance Research Department of Radiology Johns Hopkins University School of Medicine Baltimore MD
| | - Michael Schär
- 2 Division of Magnetic Resonance Research Department of Radiology Johns Hopkins University School of Medicine Baltimore MD
| | - Gabriele Bonanno
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD.,2 Division of Magnetic Resonance Research Department of Radiology Johns Hopkins University School of Medicine Baltimore MD
| | - Lena Mathews
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Steven R Jones
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Todd T Brown
- 3 Division of Endocrinology, Diabetes and Metabolism Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Richard Moore
- 4 Division of Infectious Diseases Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Yohannes Afework
- 2 Division of Magnetic Resonance Research Department of Radiology Johns Hopkins University School of Medicine Baltimore MD
| | - Gary Gerstenblith
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Allison G Hays
- 1 Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| |
Collapse
|
74
|
Spolitu S, Okamoto H, Dai W, Zadroga JA, Wittchen ES, Gromada J, Ozcan L. Hepatic Glucagon Signaling Regulates PCSK9 and Low-Density Lipoprotein Cholesterol. Circ Res 2019; 124:38-51. [PMID: 30582457 DOI: 10.1161/circresaha.118.313648] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Glucagon is a key hormone that regulates the adaptive metabolic responses to fasting. In addition to maintaining glucose homeostasis, glucagon participates in the regulation of cholesterol metabolism; however, the molecular pathways underlying this effect are incompletely understood. OBJECTIVE We sought to determine the role of hepatic Gcgr (glucagon receptor) signaling in plasma cholesterol regulation and identify its underlying molecular mechanisms. METHODS AND RESULTS We show that Gcgr signaling plays an essential role in LDL-C (low-density lipoprotein cholesterol) homeostasis through regulating the PCSK9 (proprotein convertase subtilisin/kexin type 9) levels. Silencing of hepatic Gcgr or inhibition of glucagon action increased hepatic and plasma PCSK9 and resulted in lower LDLR (LDL receptor) protein and increased plasma LDL-C. Conversely, treatment of wild-type (WT) mice with glucagon lowered LDL-C levels, whereas this response was abrogated in Pcsk9-/- and Ldlr-/- mice. Our gain- and loss-of-function studies identified Epac2 (exchange protein activated by cAMP-2) and Rap1 (Ras-related protein-1) as the downstream mediators of glucagon's action on PCSK9 homeostasis. Moreover, mechanistic studies revealed that glucagon affected the half-life of PCSK9 protein without changing the level of its mRNA, indicating that Gcgr signaling regulates PCSK9 degradation. CONCLUSIONS These findings provide novel insights into the molecular interplay between hepatic glucagon signaling and lipid metabolism and describe a new posttranscriptional mechanism of PCSK9 regulation.
Collapse
Affiliation(s)
- Stefano Spolitu
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Wen Dai
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - John A Zadroga
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill (E.S.W.)
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Lale Ozcan
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| |
Collapse
|
75
|
Mikaeeli S, Susan‐Resiga D, Girard E, Ben Djoudi Ouadda A, Day R, Prost S, Seidah NG. Functional analysis of natural
PCSK
9 mutants in modern and archaic humans. FEBS J 2019; 287:515-528. [DOI: 10.1111/febs.15036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sepideh Mikaeeli
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Delia Susan‐Resiga
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Emmanuelle Girard
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Ali Ben Djoudi Ouadda
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Robert Day
- Department of Surgery/Urology Division Faculté de Médecine et des Sciences de la Santé Institut de Pharmacologie de Sherbrooke Université de Sherbrooke Canada
| | - Stefan Prost
- LOEWE‐Center for Translational Biodiversity Genomics Senckenberg Nature Research Society Frankfurt Germany
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| |
Collapse
|
76
|
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) is a serine protease with a key role in regulating plasma low-density lipoprotein (LDL) concentration. Since its discovery via parallel molecular biology and clinical genetics studies in 2003, work to characterize PCSK9 has shed new light on the life-cycle of the low-density lipoprotein receptor and the molecular basis of familial hypercholesterolaemia. These discoveries have also led to the advent of the PCSK9 inhibitors, a new generation of low-density lipoprotein cholesterol (LDL-C) lowering drugs. Clinical trials have shown these agents to be both safe and capable of unprecedented reductions in LDL-C, and it is hoped they may herald a new era of cardiovascular disease prevention. As such, the still evolving PCSK9 story serves as a particularly successful example of translational medicine. This review provides a summary of the principal PCSK9 research findings, which underpin our current understanding of its function and clinical relevance.
Collapse
Affiliation(s)
- Jonathan Malo
- Clinical Biochemistry, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Arun Parajuli
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Simon W Walker
- Clinical Biochemistry, Royal Infirmary Edinburgh, Edinburgh, UK
| |
Collapse
|
77
|
Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7284767. [PMID: 31281844 PMCID: PMC6590504 DOI: 10.1155/2019/7284767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 01/06/2023]
Abstract
The potential of oxidized-LDL (Ox-LDL) to elicit inflammatory responses in macrophages leading to the atherosclerosis (AS) progression is well known. Since proprotein convertase subtilisin/Kexin-9 (PCSK-9), the posttranslational regulator of LDL-receptor, is associated with elevated LDL in the circulation, the present report was aimed to uncover the ameliorative effects of Ginkgolide B, a terpenic lactone from Ginkgo biloba, against Ox-LDL-induced alterations in cholesterol metabolism in HUVECs. Consequently, our results demonstrated that incubation with Ox-LDL significantly upregulated the PCSK-9 expression in HUVECs, which was significantly downregulated, both at mRNA and protein level, after Ginkgolide B treatment via subsequent suppression of sterol element binding protein (SREBP-2) expression. Moreover, Ginkgolide B-mediated inhibition of PCSK-9 activity was also validated by in silico methods which revealed that it interferes the PSCK-9 interaction with LDL-receptor (LDL-R). Interestingly, Ox-LDL-induced LDL-R expression was further enhanced by Ginkgolide B treatment in HUVECs. Moreover, Ginkgolide B treatment lead to downregulation of lectin-like Ox-LDL receptor (LOX-1) and NADPH oxidase (NOX-4) expression which was upregulated in Ox-LDL-treated HUVECs, along with the attenuation of mitochondrial ROS generation. Furthermore, Ginkgolide B significantly inhibited the augmented expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in Ox-LDL-activated HUVECs. Ginkgolide B also significantly ameliorated the inflammatory response in Ox-LDL-activated HUVECs by suppressing the expression of IL-1α, IL-1β, IL-6, CXCL-1, CXCL-2, and monocyte chemotactic protein (MCP-1), at mRNA and protein level. Our in vitro and in silico study established that Ginkgolide B alleviated the Ox-LDL-induced inflammatory cascades and altered lipid metabolism in HUVECs by suppressing the PCSK-9 and, thus, could be established as a treasured alternative therapeutic candidate in the atherosclerosis management.
Collapse
|
78
|
Bermudez-Lopez M, Forne C, Amigo N, Bozic M, Arroyo D, Bretones T, Alonso N, Cambray S, Del Pino MD, Mauricio D, Gorriz JL, Fernandez E, Valdivielso JM. An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients. Expert Opin Ther Targets 2019; 23:619-630. [PMID: 31100024 DOI: 10.1080/14728222.2019.1620206] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Chronic kidney disease (CKD) is an independent risk factor for atherosclerotic disease. We hypothesized that CKD promotes a proatherogenic lipid profile modifying lipoprotein composition and particle number. Methods: Cross-sectional study in 395 non-diabetic individuals (209 CKD patients and 186 controls) without statin therapy. Conventional lipid determinations were combined with advanced lipoprotein profiling by nuclear magnetic resonance, and their discrimination ability was assessed by machine learning. Results: CKD patients showed an increase of very-low-density (VLDL) particles and a reduction of LDL particle size. Cholesterol and triglyceride content of VLDLs and intermediate-density (IDL) particles increased. However, low-density (LDL) and high-density (HDL) lipoproteins gained triglycerides and lost cholesterol. Total-Cholesterol, HDL-Cholesterol, LDL-Cholesterol, non-HDL-Cholesterol and Proprotein convertase subtilisin-kexin type (PCSK9) were negatively associated with CKD stages, whereas triglycerides, lipoprotein(a), remnant cholesterol, and the PCSK9/LDL-Cholesterol ratio were positively associated. PCSK9 was positively associated with total-Cholesterol, LDL-Cholesterol, LDL-triglycerides, LDL particle number, IDL-Cholesterol, and remnant cholesterol. Machine learning analysis by random forest revealed that new parameters have a higher discrimination ability to classify patients into the CKD group, compared to traditional parameters alone: area under the ROC curve (95% CI), .789 (.711, .853) vs .687 (.611, .755). Conclusions: non-diabetic CKD patients have a hidden proatherogenic lipoprotein profile.
Collapse
Affiliation(s)
- Marcelino Bermudez-Lopez
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain
| | - Carles Forne
- b Biostatistics Unit , IRBLleida , Lleida , Spain.,c Department of Basic Medical Sciences , University of Lleida , Lleida , Spain
| | | | - Milica Bozic
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain
| | - David Arroyo
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain.,e Servicio de nefrología , Hospital Universitario Severo Ochoa , Leganés , Spain
| | - Teresa Bretones
- f Department of Cardiology , Hospital Universitario Puerta del Mar , Cádiz , Spain
| | - Nuria Alonso
- g Endocrinology and Nutrition Department , Hospital Universitari Germans Trias i Pujol , Badalona , Spain.,h Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM) , Barcelona , Spain
| | - Serafi Cambray
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain
| | | | - Didac Mauricio
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain.,h Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM) , Barcelona , Spain.,j Endocrinology and Nutrition Department , Hospital de la Santa Creu i Sant Pau , Barcelona , Spain
| | - Jose Luis Gorriz
- k Hospital Clínico Universitario Valencia , Universitat de Valencia, INCLIVA , Lleida , Spain
| | - Elvira Fernandez
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain
| | - Jose Manuel Valdivielso
- a Vascular & Renal Translational Research Group , IRBLleida, Spain and Spanish Research Network for Renal Diseases (RedInRen. ISCIII) , Lleida , Spain
| |
Collapse
|
79
|
Singh AB, Kan CFK, Kraemer FB, Sobel RA, Liu J. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2019; 316:E880-E894. [PMID: 30721098 PMCID: PMC6580179 DOI: 10.1152/ajpendo.00503.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-chain acyl-CoA synthetase 4 (ACSL4) has a unique substrate specificity for arachidonic acid. Hepatic ACSL4 is coregulated with the phospholipid (PL)-remodeling enzyme lysophosphatidylcholine (LPC) acyltransferase 3 by peroxisome proliferator-activated receptor δ to modulate the plasma triglyceride (TG) metabolism. In this study, we investigated the acute effects of hepatic ACSL4 deficiency on lipid metabolism in adult mice fed a high-fat diet (HFD). Adenovirus-mediated expression of a mouse ACSL4 shRNA (Ad-shAcsl4) in the liver of HFD-fed mice led to a 43% reduction of hepatic arachidonoyl-CoA synthetase activity and a 53% decrease in ACSL4 protein levels compared with mice receiving control adenovirus (Ad-shLacZ). Attenuated ACSL4 expression resulted in a substantial decrease in circulating VLDL-TG levels without affecting plasma cholesterol. Lipidomics profiling revealed that knocking down ACSL4 altered liver PL compositions, with the greatest impact on accumulation of abundant LPC species (LPC 16:0 and LPC 18:0) and lysophosphatidylethanolamine (LPE) species (LPE 16:0 and LPE 18:0). In addition, fasting glucose and insulin levels were higher in Ad-shAcsl4-transduced mice versus control (Ad-shLacZ). Glucose tolerance testing further indicated an insulin-resistant phenotype upon knockdown of ACSL4. These results provide the first in vivo evidence that ACSL4 plays a role in plasma TG and glucose metabolism and hepatic PL synthesis of hyperlipidemic mice.
Collapse
Affiliation(s)
- Amar B Singh
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Chin Fung K Kan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Ochsner Clinical School, University of Queensland School of Medicine , New Orleans, Louisiana
| | - Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine , Stanford, California
- Stanford Diabetes Research Center, Stanford University School of Medicine , Stanford, California
| | - Raymond A Sobel
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Pathology, Stanford University School of Medicine , Stanford, California
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
80
|
Mäkelä KA, Leppäluoto J, Jokelainen J, Jämsä T, Keinänen-Kiukaanniemi S, Herzig KH. Effect of Physical Activity on Plasma PCSK9 in Subjects With High Risk for Type 2 Diabetes. Front Physiol 2019; 10:456. [PMID: 31114503 PMCID: PMC6502968 DOI: 10.3389/fphys.2019.00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/01/2019] [Indexed: 01/07/2023] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a liver serine protease regulating LDL cholesterol metabolism. PCSK9 binds to LDL receptors and guides them to lysosomes for degradation, thus increasing the amount of circulating LDL cholesterol. The aim of the study was to investigate associations between physical activity and plasma PCSK9 in subjects with high risk for type 2 diabetes (T2D). Methods Sixty-eight subjects from both genders with a high risk for T2D were included to a randomized controlled trial with a 3-month physical activity intervention. Physical activity intensities and frequencies were monitored throughout the intervention using a hip worn portable accelerometer. The plasma was collected before and after intervention for analysis of PCSK9 and cardiovascular biomarkers. Results Plasma PCSK9 did not relate to physical activity although number of steps were 46% higher in the intervention group than in the control group (p < 0.029). Total cholesterol was positively correlated with plasma PCSK9 (R = 0.320, p = 0.008), while maximal oxygen uptake was negatively associated (R = -0.252, p = 0.044). After the physical activity intervention PCSK9 levels were even stronger inversely associated with maximal oxygen uptake (R = -0.410, p = 0.0008) and positively correlated with HDL cholesterol (R = 0.264, p = 0.030). Interestingly, plasma PCSK9 levels were higher in the beginning than at the end of the study. Conclusion The low physical activity that our subjects with high risk for T2D could perform did not influence plasma PCSK9 levels. Intervention with higher physical activities might be more effective in influencing PCSK9 levels.
Collapse
Affiliation(s)
- Kari Antero Mäkelä
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juhani Leppäluoto
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jari Jokelainen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Jämsä
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Health Center of Oulu, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
81
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
82
|
Comparative effects of high-dose atorvastatin versus rosuvastatin on lipid parameters, oxidized low-density lipoprotein, and proprotein convertase subtilisin kexin 9 in acute coronary syndrome. Coron Artery Dis 2019; 30:285-290. [PMID: 30741744 DOI: 10.1097/mca.0000000000000715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM Current guidelines recommend administration of high-dose statins in acute coronary syndrome (ACS). It has been reported that statins upregulate proprotein convertase subtilisin kexin 9 (PCSK9) mRNA expression and increase circulating PCSK9 levels. We aimed to compare the effects of high-dose atorvastatin and rosuvastatin on serum oxidized low-density lipoprotein (oxidized-LDL) and PCSK9 levels in statin-naive patients with ACS. PATIENTS AND METHODS One hundred and six patients with ACS were enrolled in this study. The patients were assigned randomly to receive atorvastatin (80 mg/day) or rosuvastatin (40 mg/day) by using a ratio of 1 : 1 in randomization. The levels of total cholesterol (TC), triglyceride, high-density lipoprotein cholesterol, LDL-cholesterol, oxidized-LDL, and PCSK9 were compared between groups after a 4-week treatment. RESULTS Our study population included 53 patients in the atorvastatin group (age: 58.13±11.30 years, 11.32% female) and 53 patients in the rosuvastatin group (age: 59.08±12.44 years, 15.09% female). In both groups, lipid parameters, oxidized-LDL, and PCSK9 values changed significantly according to the baseline following treatment. High-dose atorvastatin and rosuvastatin induced similar decreases in LDL-cholesterol, oxidized-LDL, and triglyceride levels and similarly increased in high-density lipoprotein cholesterol and PCSK9 levels (P>0.05). CONCLUSION We showed that atorvastatin and rosuvastatin treatment regimens have comparable effects on lipid parameters and PCSK9 levels in ACS patients.
Collapse
|
83
|
Cao S, Xu P, Yan J, Liu H, Liu L, Cheng L, Qiu F, Kang N. Berberrubine and its analog, hydroxypropyl-berberrubine, regulate LDLR and PCSK9 expression via the ERK signal pathway to exert cholesterol-lowering effects in human hepatoma HepG2 cells. J Cell Biochem 2019; 120:1340-1349. [PMID: 30335889 DOI: 10.1002/jcb.27102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/27/2018] [Indexed: 01/24/2023]
Abstract
Berberine (BBR), the major isoquinoline alkaloid in Chinese herb Rhizoma coptidis, has significant lipid-lowering effect by upregulating hepatic low-density lipoprotein receptor (LDLR) expression. In a previous study, we have indicated that berberrubine (M3), a major metabolite of BBR in vivo, displays the most potential hypolipidemic effects via upregulating LDLR expression in human hepatoma (HepG2) cells compared with BBR and 3 other metabolites. Accordingly, 9 M3 analogs (A1-A9) were modified at the C9 position. We aimed to find a new promising agent by evaluating the cholesterol-lowering effect and clarifying the related molecular mechanism. In the current study, the cellular cholesterol content was assayed with a commercial cholesterol assay kit. Real-time polymerase chain reaction and Western blot assay were used to explore the molecular mechanism of M3 and its analogs on the hypolipidemic effect. Among M3 and its analogs, hydroxypropyl-berberrubine (A8) exhibited the highest potential effects on the upregulation of LDLR expression, which was accompanied by a steady decline of proprotein convertase subtilisin/kexin type 9 (PCSK9) messenger RNA and protein levels. Furthermore, inhibition of extracellular signal-regulated kinase (ERK) activity with PD98059 prevented the upregulation of LDLR and downregulation of PCSK9 induced by A8. The current study revealed that M3 and its structurally modified analog, A8, could regulate hepatic LDLR and PCSK9 expression to exert lipid-lowering effects via the ERK signal pathway, while A8 showed a stronger effect and might be a promising drug candidate against hyperlipidemia.
Collapse
Affiliation(s)
- Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peixiang Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiankun Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Science and Technology, Agricultural University of Hebei, Huanghua, China
| | - Hui Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lina Cheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
84
|
Tuñón J, Badimón L, Bochaton-Piallat ML, Cariou B, Daemen MJ, Egido J, Evans PC, Hoefer IE, Ketelhuth DFJ, Lutgens E, Matter CM, Monaco C, Steffens S, Stroes E, Vindis C, Weber C, Bäck M. Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovasc Res 2019; 115:10-19. [PMID: 30534957 PMCID: PMC6302260 DOI: 10.1093/cvr/cvy293] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dysregulated lipid metabolism induces an inflammatory and immune response leading to atherosclerosis. Conversely, inflammation may alter lipid metabolism. Recent treatment strategies in secondary prevention of atherosclerosis support beneficial effects of both anti-inflammatory and lipid-lowering therapies beyond current targets. There is a controversy about the possibility that anti-inflammatory effects of lipid-lowering therapy may be either independent or not of a decrease in low-density lipoprotein cholesterol. In this Position Paper, we critically interpret and integrate the results obtained in both experimental and clinical studies on anti-inflammatory actions of lipid-lowering therapy and the mechanisms involved. We highlight that: (i) besides decreasing cholesterol through different mechanisms, most lipid-lowering therapies share anti-inflammatory and immunomodulatory properties, and the anti-inflammatory response to lipid-lowering may be relevant to predict the effect of treatment, (ii) using surrogates for both lipid metabolism and inflammation as biomarkers or vascular inflammation imaging in future studies may contribute to a better understanding of the relative importance of different mechanisms of action, and (iii) comparative studies of further lipid lowering, anti-inflammation and a combination of both are crucial to identify effects that are specific or shared for each treatment strategy.
Collapse
Affiliation(s)
- José Tuñón
- Department of Cardiology, Fundación Jiménez Díaz, Autónoma University and CiberCV, Avenida Reyes Católicos 2, Madrid, Spain
| | - Lina Badimón
- Cardiovascular Sciences Institute (ICCC) and CiberCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Bertrand Cariou
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Mat J Daemen
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jesus Egido
- Fundación Jiménez Díaz, Autónoma University and CIBERDEM, Madrid, Spain
| | | | - Imo E Hoefer
- University Medical Centre Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Academic Medical Center, Amsterdam, The Netherlands
- University of Amsterdam, Amsterdam, The Netherlands
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Sabine Steffens
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Cécile Vindis
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Christian Weber
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Magnus Bäck
- Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
85
|
Mba CM, Mbacham W, Sobngwi E, Mbanya JC. Is PCSK9 Associated with Plasma Lipid Levels in a Sub-Saharan African Population of Patients with Obesity and Type 2 Diabetes? Diabetes Metab Syndr Obes 2019; 12:2791-2797. [PMID: 32021342 PMCID: PMC6946635 DOI: 10.2147/dmso.s234243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of circulating LDL cholesterol. There are inconsistent data in some populations concerning the association between PCSK9, LDL and CRP. The emerging importance of the inhibition of PCSK9 for the treatment of hypercholesterolemia warrants investigations in different populations. The aim of this study from a Sub-Saharan African population was to evaluate the association between PCSK9 and hs-CRP levels and plasma lipid levels in patients with type 2 diabetes (T2D) and obese and lean controls. PATIENTS AND METHODS A cross-sectional analytical study was conducted in a major hospital in Yaoundé, Cameroon in a cohort of 162 participants (53% females). There were 54 non-obese T2D patients matched for age and sex to 54 obese nondiabetic and 54 nondiabetic lean subjects. PCSK9 level was assessed by sandwich ELISA method and hsCRP by nephelometry. RESULTS PCSK9 and hs-CRP levels were significantly higher in obese and T2D subjects when compared to lean controls (p<0.001 and p=0.002, respectively). The association between PCSK9 and triglyceride levels in the overall population was gender dependent (p=0.04) and subgroup analysis showed a significant positive correlation between PCSK9 and triglyceride levels in males but not in females (r=0.56, p=0.02 and r=0.2 and p=0.1, respectively). Multilinear regression analysis identified BMI as an independent predictor for PCSK9 levels and this association was maintained after adjustment for confounders; adjusted β-coefficient; 36.1 (95% CI; 29.2-47.4). We did not find an association between PCSK9 and any plasma lipid levels in obese and T2D subjects, nor between PCSK9 and hs-CRP levels. CONCLUSION Obese and type 2 diabetes subjects have higher PCSK9 levels when compared to lean controls, suggesting that these metabolic states potentially impact PCSK9 levels in Cameroonian patients.
Collapse
Affiliation(s)
- Camille Maadjhou Mba
- Department of Physiological Sciences/Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Correspondence: Camille Maadjhou Mba Department of Physiological Sciences/Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, PO Box 1364, Yaoundé, Cameroon Email
| | - Wilfred Mbacham
- Department of Physiological Sciences/Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Eugène Sobngwi
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- National Obesity Center and Endocrine and Metabolic Diseases Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- National Obesity Center and Endocrine and Metabolic Diseases Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
86
|
Abstract
Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.
Collapse
Affiliation(s)
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, Université de Nantes, CHU Nantes, Nantes, France
| | - G Kees Hovingh
- Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands.
| |
Collapse
|
87
|
Qu L, Li D, Gao X, Li Y, Wu J, Zou W. Di'ao Xinxuekang Capsule, a Chinese Medicinal Product, Decreases Serum Lipids Levels in High-Fat Diet-Fed ApoE -/- Mice by Downregulating PCSK9. Front Pharmacol 2018; 9:1170. [PMID: 30443213 PMCID: PMC6221936 DOI: 10.3389/fphar.2018.01170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Numerous risk factors are responsible for the development of atherosclerosis, for which an increased serum level of low-density lipoprotein cholesterol (LDL-C) is a driving force. By binding to the low-density lipoprotein cholesterol receptor (LDLR) and inducing LDLR degradation, proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis regulation. The inducement of PCSK9 expression is also an important reason for statin intolerance. The Di'ao Xinxuekang (DXXK) capsule extracted from Dioscorea nipponica Makino is a well-known traditional Chinese herbal medicinal product used in atherosclerotic cardiovascular disease. Although DXXK has been widely used in atherosclerotic cardiovascular treatment for nearly 30 years, studies on the potential mechanisms of the lipid-lowering effect are very limited. The purpose of the present study was to demonstrate the possible involvement of the PCSK9/LDLR signaling pathway in the lipid-lowering and antiatherosclerotic effect of DXXK in high-fat diet-fed ApoE-/- mice. The results showed that DXXK treatment alleviated hyperlipidemia, fat accumulation, and atherosclerosis formation in ApoE-/- mice. Furthermore, changes in the expression of PCSK9 mRNA in liver tissue and the circulating PCSK9 level in ApoE-/- mice were both reversed after DXXK treatment, and upregulation of LDLR in the liver was also detected in the protein level in DXXK-treated mice. Our study is the first to show that DXXK could alleviate lipid disorder and ameliorate atherosclerosis with downregulation of the PCSK9 in high-fat diet-fed ApoE-/- mice, suggesting that DXXK may be a potential novel therapeutic treatment and may support statin action in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Liping Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Didi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongwei Li
- Department of New Drug Research and Development, National Engineering Research Center for Natural Medicines, Chengdu, China
| | - Jianming Wu
- Laboratory of Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
88
|
Wong TY, Tan YQ, Lin SM, Leung LK. Co-administrating apigenin in a high-cholesterol diet prevents hypercholesterolaemia in golden hamsters. J Pharm Pharmacol 2018; 70:1253-1261. [DOI: 10.1111/jphp.12953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
Abstract
Abstract
Objectives
Hypercholesterolaemia is a major risk factor for developing atherosclerosis. Increased consumption of fruits and vegetables is recommended to hypercholesterolaemic patients. In this study, the hypocholesterolaemic effect of apigenin and luteolin was evaluated in a hamster model.
Methods
Hamsters were put on a high-cholesterol diet for 9 weeks, and apigenin or luteolin was administered in the diet at 60 and 300 ppm.
Key findings
Both apigenin and luteolin supplementations could attenuate the aorta plaque formation by 30% and 20%, respectively. Apigenin-fed hamsters at both dosages displayed a 1.5-fold increase in hepatic Ldlr expression and a 40% reduction in non-HDL cholesterol level as compared with those in the control fed a high-cholesterol (HC) diet. Besides, faecal elimination of cholesterol was facilitated by 20% in the hamsters with high apigenin consumption. Suppressing the expression of the cholesterol transporter ncp1l1 in the intestinal mucosa could block the cholesterol absorption and promote its elimination. The differential regulations of ncp1l1 and Ldlr appeared to be the underlying hypocholesterolaemic mechanism of apigenin in this model system. Luteolin supplementation, on the other hand, had no effect on the blood cholesterol.
Conclusions
This study illustrated that dietary administration of apigenin attenuated HC feeding-induced hypercholesterolemia in hamsters.
Collapse
Affiliation(s)
- Tsz Yan Wong
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shu-mei Lin
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
89
|
Association between plasma levels of PCSK9 and the presence of coronary artery disease in Japanese. Heart Vessels 2018; 34:19-28. [PMID: 29974199 DOI: 10.1007/s00380-018-1218-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
The ability of pro-protein convertase subtilisin/kexin type 9 (PCSK9) levels to predict the presence or severity of coronary artery disease (CAD) remains controversial. The purpose of this study was to investigate these associations. We enrolled 393 patients who were clinically suspected to have CAD or who had at least one cardiac risk factor and underwent multidetector-row computed tomography coronary angiography. The presence of CAD (≥50% coronary stenosis), the number of significantly stenosed coronary vessels, and plasma levels of PCSK9 by ELISA were analyzed. Plasma PCSK9 levels (log-transformed data) were significantly associated with the presence of CAD. Next, we divided the patients into two groups (non-statin and statin groups) according to statin treatment. PCSK9 levels in the non-statin group were significantly lower than those in the statin group. There were no significant differences in PCSK9 levels between the absence and presence of CAD in the statin group. However, in the non-statin group, PCSK9 levels in patients with CAD were significantly higher than those in patients without CAD. PCSK9 levels, in addition to age, gender, BMI, DM and HDL-C, were independently associated with the presence of CAD by a multivariable analysis. In conclusion, our results demonstrated that plasma PCSK9 levels may be a marker for evaluating the presence of CAD.
Collapse
|
90
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
91
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS, Liu MH. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed Pharmacother 2018; 104:36-44. [PMID: 29758414 DOI: 10.1016/j.biopha.2018.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elevated plasma low-density lipoprotein cholesterol (LDL-C) is an important risk factor for cardiovascular diseases. Statins are the most widely used therapy for patients with hyperlipidemia. However, a significant residual cardiovascular risk remains in some patients even after maximally tolerated statin therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a new pharmacologically therapeutic target for decreasing LDL-C. PCSK9 reduces LDL intake from circulation by enhancing LDLR degradation and preventing LDLR recirculation to the cell surface. Moreover, PCSK9 inhibitors have been approved for patients with either familial hypercholesterolemia or atherosclerotic cardiovascular disease, who require additional reduction of LDL-C. In addition, PCSK9 inhibition combined with statins has been used as a new approach to help reduce LDL-C levels in patients with either statin intolerance or unattainable LDL goal. This review will discuss the emerging anti-PCSK9 therapies in the regulation of cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province, 516002, China
| | - Le-Le Xiao
- Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China; Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
92
|
Abstract
Unknown 15 years ago, PCSK9 (proprotein convertase subtilisin/kexin type 9) is now common parlance among scientists and clinicians interested in prevention and treatment of atherosclerotic cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that it uncovered previously unknown biology but rather that these important scientific insights have been translated into an effective medical therapy in record time. Indeed, the translation of this discovery to novel therapeutic serves as one of the best examples of how genetic insights can be leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far from complete. Here, we review major scientific understandings as they relate to the role of PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that therapies designed to inhibit its action are having in the clinical setting.
Collapse
Affiliation(s)
- Michael D Shapiro
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland
| | - Hagai Tavori
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland
| | - Sergio Fazio
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland.
| |
Collapse
|
93
|
Choi HK, Hwang JT, Nam TG, Kim SH, Min DK, Park SW, Chung MY. Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct 2018; 8:4582-4591. [PMID: 29130084 DOI: 10.1039/c7fo00562h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Statins mediate the transactivation of PCSK9, which in turn limits their cholesterol-lowering effects via LDL receptor (LDLR) degradation. The objective of the present study was to investigate the mechanism of action by which Welsh onion (Allium fistulosum L. [family Amaryllidaceae]) extract (WOE) regulates LDLR and PCSK9. HepG2 cells were cultured under lipid depletion conditions using a medium supplemented with delipidated serum (DLPS). WOE (50, 100, 200, and 400 μg ml-1) significantly attenuated the DLPS-mediated increases in LDLR, PCSK9, and SREBP2 gene expression. While WOE treatment maintained the DLPS-mediated increases in LDLR protein expression, it dose-dependently and significantly attenuated the DLPS-mediated increases in the protein content of PCSK9. The suppression of PCSK9 was associated with the WOE-mediated reductions in SREBP2, but not HNF1α. WOE also dose-dependently reduced PCSK9 protein expression that was otherwise markedly induced by concomitant statin treatment. WOE-mediated PCSK9 inhibition contributed to LDLR lysosomal degradation suppression, and subsequent LDLR protein stabilization. HPLC analysis indicated that WOE contains kaempferol, quercetin, ferulic acid, and p-coumaric acid. Kaempferol and p-coumaric acid contributed to the maintenance of LDLR expression by inhibiting PCSK9 in lipid depleted HepG2 cells. Altogether, these findings suggest that WOE inhibits PCSK9 transcription and protein expression via the reduction of SREBP2, and decreased PCSK9 further contributes to LDLR degradation prevention and LDLR protein stabilization under conditions of lipoprotein deficiency. The PCSK9 inhibition-mediated mechanism of WOE was likely attributed to the action of kaempferol and p-coumaric acid present in WOE.
Collapse
Affiliation(s)
- Hyo-Kyoung Choi
- Korea Food Research Institute, Seongnam City, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
94
|
Chae HS, You BH, Kim DY, Lee H, Ko HW, Ko HJ, Choi YH, Choi SS, Chin YW. Sauchinone controls hepatic cholesterol homeostasis by the negative regulation of PCSK9 transcriptional network. Sci Rep 2018; 8:6737. [PMID: 29712938 PMCID: PMC5928089 DOI: 10.1038/s41598-018-24935-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Whole-transcriptome analysis and western blotting of sauchinone-treated HepG2 cells demonstrated that sauchinone regulated genes relevant to cholesterol metabolism and synthesis. In particular, it was found that the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) was downregulated, and the expression of low density lipoprotein receptor (LDLR) was upregulated in sauchinone-treated HepG2 cells. Consequently, LDL-cholesterol (LDL-C) uptake was increased. As a transcriptional regulator of PCSK9 expression, sterol regulatory elements binding protein-2 (SREBP-2) was proposed by transcriptome analysis and western blotting. Oral administration of sauchinone increased hepatic LDLR through PCSK9 inhibition in obese mice and showed the reduced serum LDL-C levels and downstream targets of SREBP-2. Thus, it is evident that sauchinone reduces hepatic steatosis by downregulating the expression of hepatic PCSK9 via SREBP-2.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Dong-Yeop Kim
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hankyu Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
95
|
He M, Hou J, Wang L, Zheng M, Fang T, Wang X, Xia J. Actinidia chinensis Planch root extract inhibits cholesterol metabolism in hepatocellular carcinoma through upregulation of PCSK9. Oncotarget 2018; 8:42136-42148. [PMID: 28178673 PMCID: PMC5522055 DOI: 10.18632/oncotarget.15010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3′-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.
Collapse
Affiliation(s)
- Mingyan He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayun Hou
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Wang
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minghuan Zheng
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
96
|
Matthan NR, Solano-Aguilar G, Meng H, Lamon-Fava S, Goldbaum A, Walker ME, Jang S, Lakshman S, Molokin A, Xie Y, Beshah E, Stanley J, Urban Jr. JF, Lichtenstein AH. The Ossabaw Pig Is a Suitable Translational Model to Evaluate Dietary Patterns and Coronary Artery Disease Risk. J Nutr 2018; 148:542-551. [PMID: 29659954 PMCID: PMC6669954 DOI: 10.1093/jn/nxy002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Animal models that mimic diet-induced human pathogenesis of chronic diseases are of increasing importance in preclinical studies. The Ossabaw pig is an established model for obesity-related metabolic disorders when fed extreme diets in caloric excess. Objective To increase the translational nature of this model, we evaluated the effect of diets resembling 2 human dietary patterns, the Western diet (WD) and the Heart Healthy Diet (HHD), without or with atorvastatin (-S or +S) therapy, on cardiometabolic risk factors and atherosclerosis development. Methods Ossabaw pigs (n = 32; 16 boars and 16 gilts, aged 5-8 wk) were randomized according to a 2 × 2 factorial design into 4 groups (WD-S, WD+S, HHD-S, and HHD+S) and were fed the respective diets for 6 mo. The WD (high in saturated fat, cholesterol, and refined grain) and the HHD (high in unsaturated fat, whole grain, and fruit and vegetables) were isocaloric [38% of energy (%E) from fat, 47%E from carbohydrate, and 15%E from protein]. Body composition was determined by using dual-energy X-ray absorptiometry, serum fatty acid (FA) profiles by gas chromatography, cardiometabolic risk profile by standard procedures, and degree of atherosclerosis by histopathology. Results Serum FA profiles reflected the predominant dietary FA. Pigs fed the WD had 1- to 4-fold higher concentrations of LDL cholesterol, non-HDL cholesterol, HDL cholesterol, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor α (TNF-α), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) compared with HHD-fed pigs (all P-diet < 0.05). Statin therapy significantly lowered concentrations of LDL cholesterol (-39%), non-HDL cholesterol (-38%), and triglycerides (-6%) (P-statin < 0.02). A greater degree of atheromatous changes (macrophage infiltration, foam cells, fatty streaks) and lesion incidence was documented in the coronary arteries (P-diet < 0.05), as well as 2- to 3-fold higher lipid deposition in the aortic arch or thoracic aorta of WD- compared with HHD-fed pigs (P-diet < 0.001). Conclusions Ossabaw pigs manifested a dyslipidemic and inflammatory profile accompanied by early-stage atherosclerosis when fed a WD compared with an HHD, which was moderately reduced by atorvastatin therapy. This phenotype presents a translational model to examine mechanistic pathways of whole food-based dietary patterns on atherosclerosis development.
Collapse
Affiliation(s)
- Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Gloria Solano-Aguilar
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Huicui Meng
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Audrey Goldbaum
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Maura E Walker
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Saebyeol Jang
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Sukla Lakshman
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Aleksey Molokin
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Yue Xie
- Department of Parasitology, Sichuan Agricultural University, College of Veterinary Medicine, Chengdu, China
| | - Ethiopia Beshah
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | | | - Joseph F Urban Jr.
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
97
|
|
98
|
Yu P, Xiong T, Tenedero CB, Lebeau P, Ni R, MacDonald ME, Gross PL, Austin RC, Trigatti BL. Rosuvastatin Reduces Aortic Sinus and Coronary Artery Atherosclerosis in SR-B1 (Scavenger Receptor Class B Type 1)/ApoE (Apolipoprotein E) Double Knockout Mice Independently of Plasma Cholesterol Lowering. Arterioscler Thromb Vasc Biol 2017; 38:26-39. [PMID: 29162602 PMCID: PMC5757666 DOI: 10.1161/atvbaha.117.305140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Rosuvastatin has been widely used in the primary and secondary prevention of coronary heart disease. However, its antiatherosclerotic properties have not been tested in a mouse model that could mimic human coronary heart disease. The present study was designed to test the effects of rosuvastatin on coronary artery atherosclerosis and myocardial fibrosis in SR-B1 (scavenger receptor class B type 1) and apoE (apolipoprotein E) double knockout mice. Approach and Results— Three-week-old SR-B1−/−/apoE−/− mice were injected daily with 10 mg/kg of rosuvastatin for 2 weeks. Compared with saline-treated mice, rosuvastatin-treated mice showed increased levels of hepatic PCSK9 (proprotein convertase subtilisin/kexin type-9) and LDLR (low-density lipoprotein receptor) message, increased plasma PCSK9 protein but decreased levels of hepatic LDLR protein and increased plasma total cholesterol associated with apoB (apolipoprotein B) 48-containing lipoproteins. In spite of this, rosuvastatin treatment was associated with decreased atherosclerosis in both the aortic sinus and coronary arteries and reduced platelet accumulation in atherosclerotic coronary arteries. Cardiac fibrosis and cardiomegaly were also attenuated in rosuvastatin-treated SR-B1−/−/apoE−/− mice. Two-week treatment with rosuvastatin resulted in significant decreases in markers of oxidized phospholipids in atherosclerotic plaques. In vitro analysis showed that incubation of bone marrow-derived macrophages with rosuvastatin substantially downregulated cluster of differentiation (CD)36 and inhibited oxidized LDL-induced foam cell formation. Conclusions— Rosuvastatin protected SR-B1−/−/apoE−/− mice against atherosclerosis and platelet accumulation in coronary arteries and attenuated myocardial fibrosis and cardiomegaly, despite increased plasma total cholesterol. The ability of rosuvastatin to reduce oxidized phospholipids in atherosclerotic plaques and inhibit macrophage foam cell formation may have contributed to this protection.
Collapse
Affiliation(s)
- Pei Yu
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Ting Xiong
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Christine B Tenedero
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Paul Lebeau
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Ran Ni
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Melissa E MacDonald
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Peter L Gross
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Richard C Austin
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- From the Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences (P.Y., T.X., C.B.T., R.N., M.E.M., P.L.G., R.C.A., B.L.T.), St. Joseph's Hamilton Healthcare and Hamilton Center for Kidney Research (P.L., R.C.A.), Department of Biochemistry and Biomedical Sciences (P.Y., T.X., C.B.T., M.E.M., B.L.T.), and Department of Medicine (P.L., R.N., P.L.G., R.C.A.), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
99
|
Yang JH, Cho SS, Kim KM, Kim JY, Kim EJ, Park EY, Lee JH, Ki SH. Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
100
|
Gong Y, Ma Y, Ye Z, Fu Z, Yang P, Gao B, Guo W, Hu D, Ye J, Ma S, Zhang F, Zhou L, Xu X, Li Z, Yang T, Zhou H. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017; 76:32-41. [PMID: 28987238 DOI: 10.1016/j.metabol.2017.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
CONTEXT Thyroid stimulating hormone (TSH) has received increasing attention as being closely associated with increased low-density lipoprotein cholesterol (LDL-c) level and higher atherosclerotic risks. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known for increasing circulating LDL-c level by inducing LDL receptor degradation. However, whether TSH influences hepatic PCSK9 expression and LDL-c metabolism remains unclear. METHODS First, the correlation between TSH and lipid profiles were investigated in euthyroid population and in subclinical hypothyroidism patients. Then, an in vitro study was conducted to validate the effects of TSH on hepatic PCSK9 expression in HepG2 cells. RESULTS Serum TSH concentrations positively correlated with LDL-c levels in euthyroid subjects. Subclinical hypothyroidism patients with higher serum TSH levels showed significantly increased serum PCSK9 levels than the matched euthyroid participants (151.29 (89.51-293.03) vs. 84.70 (34.98-141.72) ng/ml, P<0.001), along with increased LDL-c concentrations. In HepG2 cells, LDLR expression on the plasma membrane was decreased, and PCSK9 mRNA and protein levels were synchronously upregulated after recombinant human TSH (rhTSH) treatment, while the effects could be blocked by TSH receptor blocking antibody K1-70. Sterol regulatory element binding protein (SREBP) 1c and SREBP2 mRNA expressions were enhanced after rhTSH treatment, and specific siRNAs significantly inhibited the effects of rhTSH. Furthermore, there was a noticeable induction of PCSK9 expression by rhTSH even though HMGCR gene expression was silenced. CONCLUSION We conclude a regulating role of TSH on hepatic PCSK9 expression, which further contributing to a higher LDL-c level.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Yizhe Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Zhengqin Ye
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Panpan Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Beibei Gao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Guo
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dandan Hu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhong Li
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Key Laboratory of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, China.
| |
Collapse
|