51
|
Wu H, Jin M, Liu Y, Wang S, Liu C, Quan X, Jin M, Gao Z, Jin Y. A self-targeting MOFs nanoplatform for treating metastatic triple-negative breast cancer through tumor microenvironment remodeling and chemotherapy potentiation. Int J Pharm 2024; 664:124625. [PMID: 39182743 DOI: 10.1016/j.ijpharm.2024.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal subtype of breast cancer with disappointing treatment and high mortality. Tumor microenvironment (TME) plays an important role in the invasion and metastasis of TNBC through multiple complex processes. Most anti-metastatic therapies only focus on cancer cells themselves or interfering with single factors of the metastasis process, which is often related to poor outcomes. Thus, effective TNBC treatment relies on regulating multiple key metastasis-related aspects of the TME. Herein, a self-targeting Metal-Organic Frameworks (MOFs) nanoplatform (named as MTX-PEG@TPL@ZIF-8) was designed to improve treatment of TNBC through tumor microenvironment remodeling and chemotherapy potentiation. The self-targeting MOF nanoplatform is consist of ZIF-8 nanoparticles loaded triptolide (TPL) and followed by the coating with methotrexate-polyethylene glycol conjugates (MTX-PEG). Due to MTX's affinity for the overexpressed folate receptor on tumor cell surfaces, MTX-PEG@TPL@ZIF-8 enables effective accumulation and deep penetration in the tumor area by an MTX-mediated self-targeting strategy. This MOF nanoplatform could promptly release the medication after penetrating the tumor cell, due to pH-triggered degradation. Its anti-metastasis mechanism is to inhibit tumor invasion and metastasis by down-regulating the expression of Vimentin, MMP-2 and MMP-9 and increasing the expression of E-cadherin, upregulation of cleaved caspase-3 and cleaved caspase-9 protein expression promote the apoptosis of tumor cells, thereby reducing their migration. It also downregulated the expression of VEGF and CD31 protein to inhibit the generation of neovascularization. Overall, these findings suggest the self-targeting MOF nanoplatform offers new insights into the treatment of metastatic TNBC by TME remodeling and potentiating chemotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Jin
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuquan Quan
- Department of Orthopedic Surgery, Yanbian University Hospital, Yanji, Jilin Province 133000, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China.
| |
Collapse
|
52
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
53
|
Hrubesz G, Leigh J, Ng TL. Understanding the relationship between breast cancer, immune checkpoint inhibitors, and gut microbiota: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:31. [PMID: 39534584 PMCID: PMC11557166 DOI: 10.21037/tbcr-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The composition of gut microbiota plays an important role in predicting and influencing outcomes of cancer treated with immunotherapy. Our objective is to summarize the role of gut microbiota and immunotherapy in breast cancer. Methods A systematic search from inception until July 2024 of key search terms including immunity, breast neoplasm, gastrointestinal microbiome/microbiota, fecal microbiota transplantation, pro- and prebiotics, antibiotics and immunotherapy using EMBASE, MEDLINE and CENTRAL was conducted. The results were screened by two reviewers independently and synthesized and presented descriptively. Key Content and Findings Thirteen studies (5 clinical, 8 pre-clinical) met the eligibility criteria and were published from 2020-2024. Clinical studies showed that the composition and diversity of gut microbiota was associated with patient response to immunotherapy. In pre-clinical studies, dysbiotic states induced by obesity, antibiotics, and diet were associated with immunosuppression and influenced response to programmed cell death-ligand 1 (PD-L1) inhibitors. Microbiota-modulating treatments such as probiotics showed the ability to enhance response to immunotherapy, indicating their potential use as adjunct therapies in breast cancer treatment. Conclusions The composition of gut microbiota could help predict the chance of response to immunotherapy, and modulating gut microbiota has the potential to enhance the efficacy of chemo-immunotherapy in breast cancer. However, the available data relating to breast cancer are limited. Larger prospective studies are required to further elucidate their role as a biomarker and treatment.
Collapse
Affiliation(s)
- Gabriella Hrubesz
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Jennifer Leigh
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Terry L Ng
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| |
Collapse
|
54
|
Deng X, Liu J. Narrative review on efficacy and safety of anti-angiogenesis in combination with immunotherapy in the treatment of breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:32. [PMID: 39534580 PMCID: PMC11557168 DOI: 10.21037/tbcr-24-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective Breast cancer was the second frequently diagnosed cancer in 2022 among all cancers. Besides classical chemotherapy and radiation, immunotherapy and targeted therapy are both identical treatment options for patients with advanced breast cancer. Immunotherapy is a therapeutic approach to control and eliminate tumors by restarting and maintaining the tumor-immunity cycle and restoring the body's normal anti-tumor immune response. Immunotherapy alone or in combination with other therapies has been shown to be clinically beneficial in a variety of solid tumors with a manageable safety profile. However, immunotherapy alone cannot fully satisfy the therapeutic needs for patients with breast cancer. Therefore, there is an urgent need for immunotherapy to be combined with other therapeutic approaches to increase treatment efficacy. Methods We systematically searched PubMed database for relevant studies published over the past 5 years. Articles were screened for eligibility and key data extracted. Key Content and Findings We assess the current breast cancer treatment landscape, summarizing efficacy and safety of recent immunotherapy, chemotherapy combined with immunotherapy, immunotherapy combined with anti-angiogenic therapy. In the treatment of breast cancer, aiming to promote further research and applications of this novel treatment regimen in patients with breast cancer. Since anti-angiogenic therapy can reprogramme the tumor immune microenvironment, immunotherapy in combination with anti-angiogenic therapy might have a synergistic effect, igniting a new hope for immunotherapy for breast cancer patients. The review's conclusions offer insightful information on the state of breast cancer treatment today. In the end, improving clinical practice and pertinent research for immunotherapy combination therapy will contribute to bettering patient outcomes, raising quality of life, and creating more potent treatments. Conclusions This review emphasizes the potential of immunotherapy combinations, especially with anti-angiogenic therapeutic regimens, as a viable strategy for the treatment of breast cancer through a thorough study of the literature. To improve treatment approaches, lessen side effects for patients, and find trustworthy biomarkers to forecast response to immunotherapy combo medicines, further research is necessary.
Collapse
Affiliation(s)
- Xueman Deng
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieqiong Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
56
|
Sabu N, Attia Hussein Mahmoud H, Salazar González JF, Naruboina N, Esteban Rojas Prieto S, Govender S, Ruthvik Phani Narayan V, Priyank Batukbhai B, Ahmadi Y. Role of Immunotherapy in Conjunction With the Surgical Treatment of Breast Cancer: Preoperative and Postoperative Applications. Cureus 2024; 16:e71441. [PMID: 39539894 PMCID: PMC11559439 DOI: 10.7759/cureus.71441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is one of the most common cancers in the world. Since the appearance of molecular medicine, the perspective of breast cancer treatment has changed, making it more successful in comparison with the treatment during previous years. Numerous ongoing trials are exploring the capacity of immunotherapy, mainly in immune checkpoint inhibitors (ICIs), in conjunction with conventional therapies or with antibody-drug conjugates (ADCs). The current narrative review discusses the advantages and limitations of immunotherapy in breast cancer treatment in conjunction with the surgical options available. Going through the modern capacity of surgery treatment and how the use of immunotherapy in conjunction with it has emerged as a transformative approach to breast cancer and listing the main complications and adverse effects caused by ICIs. We searched Google Scholar, PubMed, MEDLINE, and EMBASS. Fourteen different articles showed that the use of cytokines and cancer vaccines revealed new possibilities to treat breast cancer with antibodies against PD-1/PD-L1 (pembrolizumab), PI3K/Akt/mTOR (alpelisib and everolimus), CAR T-cell (chimeric antigen receptor), PARP (poly ADP-ribose polymerase), and CTLA4 (cytotoxic T-lymphocyte-associated protein 4), and with representative relevance of changing in tumor microenvironment. Immunotherapy made it possible to reduce recurrences, after radiotherapy and surgery. Estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) targets show also a high effectivity. In recent years, the release of new strategies has become promising, for changing the microenvironment and de-escalation of therapy based on tumor biology, novel biomarkers, and tumor spread.
Collapse
Affiliation(s)
- Nagma Sabu
- Department of Surgery, University of Perpetual Help System Dalta - JONELTA Foundation School of Medicine, Las Pinas, PHL
| | | | | | | | | | - Seyanne Govender
- General Practice, American University of the Caribbean, Cupecoy, SXM
| | | | | | - Yasmin Ahmadi
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Muharraq, BHR
| |
Collapse
|
57
|
Chung HC, Saada-Bouzid E, Longo F, Yanez E, Im SA, Castanon E, Desautels DN, Graham DM, Garcia-Corbacho J, Lopez J, Dutcus C, Okpara CE, Ghori R, Jin F, Groisberg R, Korakis I. Lenvatinib plus pembrolizumab for patients with previously treated, advanced, triple-negative breast cancer: Results from the triple-negative breast cancer cohort of the phase 2 LEAP-005 Study. Cancer 2024; 130:3278-3288. [PMID: 39031824 DOI: 10.1002/cncr.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Novel treatments are needed for patients with advanced, triple-negative breast cancer (TNBC) that progresses or recurs after first-line treatment with chemotherapy. The authors report results from the TNBC cohort of the multicohort, open-label, single-arm, phase 2 LEAP-005 study of lenvatinib plus pembrolizumab in patients with advanced solid tumors (ClinicalTrials.gov identifier NCT03797326). METHODS Eligible patients had metastatic or unresectable TNBC with disease progression after one or two lines of therapy. Patients received lenvatinib (20 mg daily) plus pembrolizumab (200 mg every 3 weeks; up to 35 cycles). The primary end points were the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1, and safety (adverse events graded by the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0). Duration of response, progression-free survival, and overall survival were secondary end points. RESULTS Thirty-one patients were enrolled. The objective response rate by investigator assessment was 23% (95% confidence interval [CI], 10%-41%). Overall, the objective response rate by blinded independent central review (BICR) was 32% (95% CI, 17%-51%); and, in patients who had programmed cell death ligand 1 combined positive scores ≥10 (n = 8) and <10 (n = 22), the objective response rate was 50% (95% CI, 16%-84%) and 27% (95% CI, 11%-50%), respectively. The median duration of response by BICR was 12.1 months (range, from 3.0+ to 37.9+ months). The median progression-free survival by BICR was 5.1 months (95% CI, 1.9-11.8 months) and the median overall survival was 11.4 months (95% CI, 4.1-21.7 months). Treatment-related adverse events occurred in 94% of patients (grade 3, 52%; grade 4, 0%). One patient died due to a treatment-related adverse event of subarachnoid hemorrhage. CONCLUSIONS The combination of lenvatinib plus pembrolizumab demonstrated antitumor activity with a manageable safety profile in patients with previously treated, advanced TNBC.
Collapse
Affiliation(s)
- Hyun Cheol Chung
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Esma Saada-Bouzid
- Department of Medical Oncology, Cote d'Azur University, Centre Antoine Lacassagne, Nice, France
| | - Federico Longo
- Medical Oncology Department, Ramón y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria, Centro de Investigación Biomédica en Red Cáncer, Alcalá University, Madrid, Spain
| | - Eduardo Yanez
- Oncology-Hematology Unit, University of Frontera, Araucanía, Chile
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eduardo Castanon
- Department of Oncology, Clínica Universidad de Navarra, Madrid, Spain
| | - Danielle N Desautels
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Donna M Graham
- Experimental Cancer Medicine Team, The Christie National Health Service Foundation Trust, Manchester, UK
- University of Manchester, Manchester, UK
| | | | - Juanita Lopez
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, UK
| | | | | | - Razi Ghori
- Merck & Co., Inc., Rahway, New Jersey, USA
| | - Fan Jin
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Iphigenie Korakis
- Department of Medicine and Clinical Research Unit, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse (IUCT-Oncopole), Toulouse, France
| |
Collapse
|
58
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
59
|
Silva V, Matos C. Recent updates in the therapeutic uses of Pembrolizumab: a brief narrative review. Clin Transl Oncol 2024; 26:2431-2443. [PMID: 38658461 DOI: 10.1007/s12094-024-03491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Treatment of cancer has been improved with the discovery of biological drugs that act as immune checkpoint inhibitors. In 2017, FDA designated pembrolizumab, an immune checkpoint inhibitor employed in immunotherapy, as the first tissue-agnostic cancer treatment. OBJECTIVES To review pembrolizumab's use in oncology, gather and examine the latest discoveries regarding the effectiveness of pembrolizumab in cancer treatment. METHODOLOGY A literature review was conducted through PubMed(Medline) from January 2015 to December 2023 using "pembrolizumab", "cancer" and "treatment" as search terms. RESULTS Pembrolizumab demonstrated effectiveness as primary treatment for metastatic nonsmall cell lung cancer, unresectable esophageal cancer, head and neck squamous cell carcinoma and alternative treatment for notable triple-negative breast cancer, biliary, colorectal, endometrial, renal cell, cervical carcinoma, and high microsatellite instability or mismatch repair deficiencies tumors. Pediatric applications include treatment for refractory Hodgkin lymphoma. CONCLUSION Evolving research on pembrolizumab allows a deeper clinical understanding, despite challenges as variable patient responses. Pembrolizumab has emerged as a pivotal breakthrough in cancer treatment, improving patient outcomes and safety.
Collapse
Affiliation(s)
- Vítor Silva
- Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561, Coimbra, Portugal
| | - Cristiano Matos
- QLV Research Consulting, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School Pharmacy, 3046-854, Coimbra, Portugal.
| |
Collapse
|
60
|
Quintana A, Saini KS, Vidal L, Peg V, Slebe F, Loibl S, Curigliano G, Schmid P, Cortes J. Window of opportunity trials with immune checkpoint inhibitors in triple-negative breast cancer. ESMO Open 2024; 9:103713. [PMID: 39357122 PMCID: PMC11480225 DOI: 10.1016/j.esmoop.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 08/18/2024] [Indexed: 10/04/2024] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have a relatively poor clinical outcome. The immune checkpoint inhibitor (ICI) pembrolizumab combined with chemotherapy is the current standard of care in TNBC patients with stage II and III. Monotherapy with ICIs has not been comprehensively assessed in the neoadjuvant setting in TNBC patients, given unfavorable results in metastatic trials. ICIs, however, have been tested in the window of opportunity (WOO) before surgery or standard chemotherapy-based neoadjuvant treatment. The WOO design is well suited to assess an ICI alone or in combination with other ICIs, targeted therapy, radiotherapy or cryotherapy, and measure their pharmacodynamic and clinical effect in this treatment-naive population. Some patients show a good response to ICIs in WOO studies. Biomarkers like tumor-infiltrating lymphocytes, programmed death ligand-1, and interferon-γ signature may predict activity and may identify patients likely to benefit from ICIs. Moreover, an increase in tumor-infiltrating lymphocytes, programmed death ligand-1 expression or T cell receptor expansion following administration of ICIs in the WOO setting could potentially inform of immunotherapy benefit, which would allow tailoring further treatment. This article reviews WOO trials that assessed immunotherapy in the early-stage TNBC population, and how these results could be translated to test de-escalation strategies of neoadjuvant chemotherapy and immunotherapy without compromising a patient's prognosis.
Collapse
Affiliation(s)
- A Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain.
| | - K S Saini
- Fortrea, Inc., Durham, USA; Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK
| | | | - V Peg
- Biomedical Research Network Centre in Oncology (CIBERONC), Madrid; Department of Pathology, Vall d'Hebron University Hospital, Barcelona; Departament of Medicine, Universitat Autonoma de Barcelona, Barcelona
| | - F Slebe
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain; Oncoclínicas & Co, Jersey City, New Jersey and Sao Paulo, Brazil
| | - S Loibl
- German Breast Group, GBG Forschungs GmbH, Neu-Isenburg, Germany
| | - G Curigliano
- European Institute of Oncology, IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - P Schmid
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - J Cortes
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain; Oncoclínicas & Co, Jersey City, New Jersey and Sao Paulo, Brazil; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid; International Breast Cancer Center, Pangaea Oncology, Quironsalud Group, Barcelona; IOB Madrid, Institute of Oncology, Hospital Beata Maria Ana, Madrid, Spain
| |
Collapse
|
61
|
Sahin TK, Guven DC. Prognostic impact of myosteatosis on survival with immune checkpoint inhibitors: A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:829-836. [PMID: 39181534 DOI: 10.1016/j.clnesp.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Myosteatosis has emerged as a promising prognostic biomarker for survival outcomes in patients with advanced cancer. However, recent research has yielded conflicting results on the association between myosteatosis and survival in patients treated with immune checkpoint inhibitors (ICIs). Therefore, we performed this systematic review and meta-analysis to evaluate the association between myosteatosis and survival outcomes in patients treated with ICIs. METHODS We conducted a systematic review using Pubmed, Web of Science, and Scopus databases for studies published until June 10, 2024. This protocol was registered in the PROSPERO database (Registration Number: CRD42023466337). We performed the meta-analyses with the generic inverse-variance method with a random effects model. RESULTS Eleven studies involving 1362 patients were included. The pooled analysis showed that patients with myosteatosis had a significantly higher risk of death compared to patients without myosteatosis (HR: 1.61, 95% CI: 1.23-2.12, p < 0.001). Subgroup analysis revealed this association was stronger in melanoma patients (HR: 2.07, 95% CI: 1.09-3.94, p = 0.030). Furthermore, patients with myosteatosis had an increased risk of progression or death than those without myosteatosis (HR: 1.31, 95% CI: 1.05-1.64, p = 0.020). CONCLUSION Myosteatosis is associated with a higher risk of death in ICI-treated patients. Further research in larger cohorts is needed to standardize the definition of myosteatosis as well as the true mechanistic association between myosteatosis and survival in patients treated with ICIs.
Collapse
Affiliation(s)
| | - Deniz Can Guven
- Health Sciences University, Elazig City Hospital, Elazig, Turkey.
| |
Collapse
|
62
|
QI X, ZHOU S, PETERSON CB, WANG Y, FANG X, WANG ML, SHEN C. Meta-analysis of Censored Adverse Events. THE NEW ENGLAND JOURNAL OF STATISTICS IN DATA SCIENCE 2024; 2:380-392. [PMID: 39991459 PMCID: PMC11845246 DOI: 10.51387/24-nejsds62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Meta-analysis is a powerful tool for assessing drug safety by combining treatment-related toxicological findings across multiple studies, as clinical trials are typically underpowered for detecting adverse drug effects. However, incomplete reporting of adverse events (AEs) in published clinical studies is frequently encountered, especially if the observed number of AEs is below a pre-specified study-dependent threshold. Ignoring the censored AE information, often found in lower frequency, can significantly bias the estimated incidence rate of AEs. Despite its importance, this prevalent issue in meta-analysis has received little statistical or analytic attention in the literature. To address this challenge, we propose a Bayesian approach to accommodating the censored and possibly rare AEs for meta-analysis of safety data. Through simulation studies, we demonstrate that the proposed method can improve accuracy in point and interval estimation of incidence probabilities, particularly in the presence of censored data. Overall, the proposed method provides a practical solution that can facilitate better-informed decisions regarding drug safety.
Collapse
Affiliation(s)
- Xinyue QI
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shouhao ZHOU
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Christine B. PETERSON
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yucai WANG
- Department of Hematology, Mayo Clinic, Rochester, MN
| | - Xinying FANG
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Michael L. WANG
- Department of Lymphoma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chan SHEN
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
63
|
Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and Future of Immunotherapy for Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3250. [PMID: 39409871 PMCID: PMC11475478 DOI: 10.3390/cancers16193250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), human epidermal growth factor receptor 2 (HER2), and progesterone receptors (PRs). TNBC has the poorest prognosis among breast cancer subtypes and is more likely to respond to immunotherapy due to its higher expression of PD-L1 and a greater percentage of tumor-infiltrating lymphocytes. Immunotherapy has revolutionized TNBC treatment, especially with the FDA's approval of pembrolizumab (Keytruda) combined with chemotherapy for advanced cases, opening new avenues for treating this deadly disease. Although immunotherapy can significantly improve patient outcomes in a subset of patients, achieving the desired response rate for all remains an unmet clinical goal. Strategies that enhance responses to immune checkpoint blockade, including combining immunotherapy with chemotherapy, molecularly targeted therapy, or radiotherapy, may improve response rates and clinical outcomes. In this review, we provide a short background on TNBC and immunotherapy and explore the different types of immunotherapy strategies that are currently being evaluated in TNBC. Additionally, we review why combination strategies may be beneficial, provide an overview of the combination strategies, and discuss the novel immunotherapeutic opportunities that may be approved in the near future for TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
64
|
Wang J, Tian L, Barr T, Jin L, Chen Y, Li Z, Wang G, Liu JC, Wang LS, Zhang J, Hsu D, Feng M, Caligiuri MA, Yu J. Enhanced treatment of breast cancer brain metastases with oncolytic virus expressing anti-CD47 antibody and temozolomide. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200824. [PMID: 39035202 PMCID: PMC11260018 DOI: 10.1016/j.omton.2024.200824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Lewei Jin
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yuqing Chen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhiyao Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Ge Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jian-Chang Liu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Li-Shu Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| |
Collapse
|
65
|
Im SA, Cortes J, Cescon DW, Yusof MM, Iwata H, Masuda N, Takano T, Huang CS, Chung CF, Tsugawa K, Park YH, Matsumoto K, Inoue K, Kwong A, Loi S, Fu W, Pan W, Karantza V, Rugo HS, Schmid P. Results from the randomized KEYNOTE-355 study of pembrolizumab plus chemotherapy for Asian patients with advanced TNBC. NPJ Breast Cancer 2024; 10:79. [PMID: 39266535 PMCID: PMC11393332 DOI: 10.1038/s41523-024-00679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 09/14/2024] Open
Abstract
In the phase 3 KEYNOTE-355 study (NCT02819518), pembrolizumab plus chemotherapy demonstrated statistically significant and clinically meaningful improvements in progression-free survival (PFS) and overall survival (OS) versus placebo plus chemotherapy among patients with previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (TNBC) and programmed cell death ligand 1 (PD-L1) combined positive score (CPS) ≥ 10 tumors. We analyzed outcomes for the subgroup of patients enrolled in Asia in KEYNOTE-355. Patients received pembrolizumab 200 mg or placebo (2:1 randomization) every 3 weeks for 35 cycles plus investigator's choice chemotherapy. Primary endpoints were PFS per Response Evaluation Criteria in Solid Tumors version 1.1 and OS. Among patients enrolled in Hong Kong, Japan, Korea, Malaysia and Taiwan (pembrolizumab plus chemotherapy, n = 113; placebo plus chemotherapy, n = 47), 117 (73.1%) had PD-L1 CPS ≥ 1 and 56 (35.0%) had PD-L1 CPS ≥ 10. Median time from randomization to data cutoff (June 15, 2021) was 43.8 (range, 36.8‒53.2) months (intent-to-treat [ITT] population). Hazard ratios (HRs [95% CI]) for PFS in the CPS ≥ 10, CPS ≥ 1, and ITT populations were 0.48 (0.24‒0.98), 0.58 (0.37‒0.91), and 0.66 (0.44‒0.99), respectively. Corresponding HRs (95% CI) for OS were 0.54 (0.28‒1.04), 0.62 (0.40‒0.97), and 0.57 (0.39‒0.84). Grade 3/4 treatment-related adverse events (AEs) occurred in 77.9% versus 78.7% of patients with pembrolizumab plus chemotherapy versus placebo plus chemotherapy. No grade 5 AEs occurred. Clinically meaningful improvement in PFS and OS with manageable toxicity were observed with pembrolizumab plus chemotherapy versus placebo plus chemotherapy in patients enrolled in Asia with previously untreated, inoperable or metastatic TNBC.Trial registration: ClinicalTrials.gov, NCT02819518.
Collapse
Affiliation(s)
- Seock-Ah Im
- Seoul National University Hospital, Seoul National University College of Medicine, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - David W Cescon
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mastura Md Yusof
- Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hiroji Iwata
- Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Norikazu Masuda
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshimi Takano
- The Cancer Institute Hospital of JFCR, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Chiun-Sheng Huang
- National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Feng Chung
- Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | | | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | - Ava Kwong
- Division of Breast Surgery, The University of Hong Kong, Queen Mary and Tung Wah Hospital, Hong Kong, China
- The University of Hong Kong-ShenZhen Hospital, Shenzhen, China
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Australia
| | - Wei Fu
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| |
Collapse
|
66
|
Subramani R, Chatterjee A, Pedroza DA, Poudel S, Rajkumar P, Annabi J, Penner E, Lakshmanaswamy R. 2-methoxyestradiol inhibits the malignant behavior of triple negative breast cancer cells by altering their miRNome. Front Oncol 2024; 14:1371792. [PMID: 39328201 PMCID: PMC11424607 DOI: 10.3389/fonc.2024.1371792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancer with no effective targeted treatment currently available. Estrogen and its metabolites influence the growth of mammary cancer. Previously, we demonstrated the anti-cancer effects of 2-methoxyestradiol (2ME2) on mammary carcinogenesis. Materials and methods In the present study, we investigated the effects of 2ME2 on TNBC cells. TNBC (MDA-MB-231 and MDA-MB-468) and non-tumorigenic breast (MCF10A) cell lines were used to determine the effects of 2ME2 on cell proliferation (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; MTS assay), cell cycle (flow cytometric assay), migration (transwell migration assay), invasion (matrigel invasion assay), apoptosis (annexin V/propidium iodide assay), colony formation (soft agar assay), and miRNome (human miRNA profiling array). The miRNome data were analyzed using the c-BioPortal and Xena platforms. Moreover, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and reactome pathway analyses were performed. Results We found that 2ME2 effectively inhibited cell proliferation and induced apoptosis. Furthermore, 2ME2 treatment arrested TNBC cells in the S-phase of the cell cycle. Treatment with 2ME2 also significantly decreased the aggressiveness of TNBC cells by inhibiting their migration and invasion. In addition, 2ME2 altered the miRNA expression in these cells. In silico analysis of the miRNome profile of 2ME2-treated MDA-MB-468 cells revealed that miRNAs altered the target genes involved in many different cancer hallmarks. Conclusion 2ME2 inhibits triple negative breast cancer by impacting major cellular processes like proliferation, apoptosis, metastasis, etc. It further modifies gene expression by altering the miRNome of triple negative breast cancer cells. Overall, our findings suggest 2ME2 as a potent anti-cancer drug for the treatment of TNBC.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Animesh Chatterjee
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Diego A Pedroza
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Preetha Rajkumar
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, United States
| | - Jeffrey Annabi
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Elizabeth Penner
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, United States
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, United States
| |
Collapse
|
67
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
68
|
Chen YC, Zheng WZ, Liu CP, Zhao YQ, Li JW, Du ZS, Zhai TT, Lin HY, Shi WQ, Cai SQ, Pan F, Qiu SQ. Pan-cancer analysis reveals CCL5/CSF2 as potential predictive biomarkers for immune checkpoint inhibitors. Cancer Cell Int 2024; 24:311. [PMID: 39256838 PMCID: PMC11389493 DOI: 10.1186/s12935-024-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Currently, there are no optimal biomarkers available for distinguishing patients who will respond to immune checkpoint inhibitors (ICIs) therapies. Consequently, the exploration of novel biomarkers that can predict responsiveness to ICIs is crucial in the field of immunotherapy. METHODS We estimated the proportions of 22 immune cell components in 10 cancer types (6,128 tumors) using the CIBERSORT algorithm, and further classified patients based on their tumor immune cell proportions in a pan-cancer setting using k-means clustering. Differentially expressed immune genes between the patient subgroups were identified, and potential predictive biomarkers for ICIs were explored. Finally, the predictive value of the identified biomarkers was verified in patients with urothelial carcinoma (UC) and esophageal squamous cell carcinoma (ESCC) who received ICIs. RESULTS Our study identified two subgroups of patients with distinct immune infiltrating phenotypes and differing clinical outcomes. The patient subgroup with improved outcomes displayed tumors enriched with genes related to immune response regulation and pathway activation. Furthermore, CCL5 and CSF2 were identified as immune-related hub-genes and were found to be prognostic in a pan-cancer setting. Importantly, UC and ESCC patients with high expression of CCL5 and low expression of CSF2 responded better to ICIs. CONCLUSION We demonstrated CCL5 and CSF2 as potential novel biomarkers for predicting the response to ICIs in patients with UC and ESCC. The predictive value of these biomarkers in other cancer types warrants further evaluation in future studies.
Collapse
Affiliation(s)
- Yi-Chao Chen
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Wei-Zhong Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Chun-Peng Liu
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Yong-Qiang Zhao
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Jun-Wei Li
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Ze-Sen Du
- Surgical Oncology Department, Shantou Central Hospital, Shantou, 515041, China
| | - Tian-Tian Zhai
- Radiation Oncology Department, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Shan-Qing Cai
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Feng Pan
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
| | - Si-Qi Qiu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| |
Collapse
|
69
|
Ndongwe T, Zhou AA, Ganga NP, Matawo N, Sibanda U, Chidziwa TV, Witika BA, Krause RWM, Matlou GG, Siwe-Noundou X. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: an updated review (year 2005 to date). DISCOVER NANO 2024; 19:138. [PMID: 39225730 PMCID: PMC11372008 DOI: 10.1186/s11671-024-04089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterised by the lack or low expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. TNBC has a high recurrence rate, swiftly metastasizes, and has a high mortality rate. Subsequently, the increase in cases of TNBC has signaled the need for treatment strategies with improved drug delivery systems. New diagnostic approaches, chemical entities, formulations particular those in the nanometric range have emerged after extensive scientific research as alternative strategies for TNBC treatment. As compared to contemporary cancer therapy, nanoparticles offer peculiar tunable features namely small size, shape, electrical charge, magnetic and fluorescent properties. Specifically in targeted drug delivery, nanoparticles have been demonstrated to be highly efficient in encapsulating, functionalization, and conjugation. Presently, nanoparticles have ignited and transformed the approach in photodynamic therapy, bioimaging, use of theranostics and precision medicine delivery in breast cancer. Correspondingly, recent years have witnessed a drastic rise in literature pertaining to treatment of TNBC using nanomaterials. Subsequently, this manuscript aims to present a state-of-the-art of nanomaterials advance on TNBC treatment; the ubiquitous utility use of nanomaterials such as liposomes, dendrimers, solid lipid nanomaterials, gold nanomaterials and quantum dots as anticancer agents and drug delivery systems in TNBC.
Collapse
Affiliation(s)
- Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Angel-Alberta Zhou
- Department of Pharmacy, School of Health Science, University of KwaZulu Natal, Durban, South Africa
| | - Nelisa Paidamwoyo Ganga
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyaradzo Matawo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Unami Sibanda
- Pharmaceutics Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Tinotenda Vanessa Chidziwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Rui W M Krause
- Chemistry Department, Faculty of Science, Rhodes University, Grahamstown, South Africa
| | - Gauta Gold Matlou
- Electron Microscopy Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| |
Collapse
|
70
|
Sergent P, Pinto-Cárdenas JC, Carrillo AJA, Dávalos DL, Pérez MDG, Lechuga DAM, Alonso-Miguel D, Schaafsma E, Cuarenta AJ, Muñoz DC, Zarabanda Y, Palisoul SM, Lewis PJ, Kolling FW, Affonso de Oliveira JF, Steinmetz NF, Rothstein JL, Lines L, Noelle RJ, Fiering S, Arias-Pulido H. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024; 13:1478. [PMID: 39273048 PMCID: PMC11394642 DOI: 10.3390/cells13171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1-4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC.
Collapse
Affiliation(s)
- Petra Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | | | | | - Daniel Luna Dávalos
- VETCONNECT Diagnóstico por imagen, Via Toledo, 2952 Mas Palomas, Monterrey 64780, Nuevo León, Mexico;
| | | | - Dora Alicia Mendoza Lechuga
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Abigail Jiménez Cuarenta
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | - Diana Cárdenas Muñoz
- Centro Veterinario Valles, Zapopan 45070, Jalisco, Mexico; (A.J.A.C.); (M.D.G.P.); (D.A.M.L.); (A.J.C.); (D.C.M.)
| | | | - Scott M. Palisoul
- Department of Pathology and Laboratory Medicine at Dartmouth Hitchcock Health, Center for Clinical Genomics and Advanced Technology, Lebanon, NH 03756, USA;
| | - Petra J. Lewis
- Department of Radiology Dartmouth Health Geisel School of Medicine, Lebanon, NH 03755, USA;
| | - Fred W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (J.F.A.d.O.); (N.F.S.)
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (J.F.A.d.O.); (N.F.S.)
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (L.L.); (R.J.N.); (S.F.)
| |
Collapse
|
71
|
Ribeiro R, Carvalho FM, Baiocchi G, Guindalini RSC, da Cunha JR, Anjos CHD, de Nadai Costa C, Gifoni ACLVC, Neto RC, Cagnacci AQC, Carneiro VCG, Calabrich A, Moretti-Marques R, Pinheiro RN, de Castro Ribeiro HS. Guidelines of the Brazilian Society of Surgical Oncology for anatomopathological, immunohistochemical, and molecular testing in female tumors. J Surg Oncol 2024; 130:882-895. [PMID: 39038206 DOI: 10.1002/jso.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Precision medicine has revolutionized oncology, providing more personalized diagnosis, treatment, and monitoring for patients with cancer. In the context of female-specific tumors, such as breast, ovarian, endometrial, and cervical cancer, proper tissue collection and handling are essential for obtaining tissue, immunohistochemical (IHC), and molecular data to guide therapeutic decisions. OBJECTIVES To establish guidelines for the collection and handling of tumor tissue, to enhance the quality of samples for histopathological, IHC, genomic, and molecular analyses. These guidelines are fundamental in informing therapeutic decisions in cancer treatment. METHOD The guidelines were developed by a multidisciplinary panel of renowned specialists between June 12, 2013 and February 12, 2024. Initially, the panel deliberated on critical and controversial topics related to conducting precision medicine studies focusing on female tumors. Subsequently, 22 pivotal topics were identified within the framework and assigned to groups. These groups reviewed relevant literature and drafted preliminary recommendations. Following this, the recommendations were reviewed by the coordinators and received unanimous approval. Finally, the groups made the final adjustments, classified the level of evidence, and ranked the recommendations. CONCLUSION The collection of surgical samples requires minimum quality standards to enable histopathological, IHC, genomic, and molecular analyses. These analyses provide crucial data for informing therapeutic decisions, significantly impacting potential survival gains for patients with female tumors.
Collapse
Affiliation(s)
- Reitan Ribeiro
- Department of Gynecology Oncology, Erasto Gaertner Hospital, Curitiba, Paraná, Brazil
| | - Filomena Marino Carvalho
- Department of Pathology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Glauco Baiocchi
- Department of Gynecologic Oncology, AC Camargo Cancer Center , São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Renato Cagnacci Neto
- Department of Mastology, Breast Cancer Reference Center, AC Camargo Cancer, CenterSão Paulo, São Paulo, Brazil
| | - Allyne Queiroz Carneiro Cagnacci
- Department of Oncology, Oncology Center, Hospital Alemão Oswaldo Cruz, São Paulo, São Paulo, Brazil
- Hereditary Cancer Department, Instituto do Câncer do Estado de São Paulo (ICESPSP), São Paulo, São Paulo, Brazil
| | - Vandré Cabral Gomes Carneiro
- Department of Gynecology Oncology, Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
- Research Department, Hospital de Câncer de Pernambuco, Recife, Brazil
- Department of Oncogenetic, Oncologia D'OR, Recife, Pernambuco, Brazil
| | - Aknar Calabrich
- Department of Oncology, Clínica AMO/DASA, Salvador, Bahia, Brazil
| | - Renato Moretti-Marques
- Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
72
|
Hassan M, Tutar L, Sari-Ak D, Rasul A, Basheer E, Tutar Y. Non-genetic heterogeneity and immune subtyping in breast cancer: Implications for immunotherapy and targeted therapeutics. Transl Oncol 2024; 47:102055. [PMID: 39002207 PMCID: PMC11299575 DOI: 10.1016/j.tranon.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Breast cancer (BC) is a complex and multifactorial disease, driven by genetic alterations that promote tumor growth and progression. However, recent research has highlighted the importance of non-genetic factors in shaping cancer evolution and influencing therapeutic outcomes. Non-genetic heterogeneity refers to diverse subpopulations of cancer cells within breast tumors, exhibiting distinct phenotypic and functional properties. These subpopulations can arise through various mechanisms, including clonal evolution, genetic changes, epigenetic changes, and reversible phenotypic transitions. Although genetic and epigenetic changes are important points of the pathology of breast cancer yet, the immune system also plays a crucial role in its progression. In clinical management, histologic and molecular classification of BC are used. Immunological subtyping of BC has gained attention in recent years as compared to traditional techniques. Intratumoral heterogeneity revealed by immunological microenvironment (IME) has opened novel opportunities for immunotherapy research. This systematic review is focused on non-genetic variability to identify and interlink immunological subgroups in breast cancer. This review provides a deep understanding of adaptive methods adopted by tumor cells to withstand changes in the tumor microenvironment and selective pressure imposed by medications. These adaptive methods include alterations in drug targets, immune system evasion, activation of survival pathways, and alterations in metabolism. Understanding non-genetic heterogeneity is essential for the development of targeted therapies.
Collapse
Affiliation(s)
- Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kırsehir Ahi Evran University, Kırsehir, Turkey
| | - Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical, Sciences Government College University Faisalabad, Pakistan
| | - Yusuf Tutar
- Faculty of Medicine, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
73
|
Bischoff H, Espié M, Petit T. Neoadjuvant Therapy: Current Landscape and Future Horizons for ER-Positive/HER2-Negative and Triple-Negative Early Breast Cancer. Curr Treat Options Oncol 2024; 25:1210-1224. [PMID: 39145854 PMCID: PMC11416407 DOI: 10.1007/s11864-024-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
OPINION STATEMENT Navigating the complex landscape of breast cancer treatment involves distinct strategies for luminal and triple-negative subtypes. While neoadjuvant chemotherapy historically dominates the approach for aggressive triple-negative tumors, recent evidence highlights the transformative impact of immunotherapy, alongside chemotherapy, in reshaping treatment paradigms. In luminal cancers, endocrine therapy, notably aromatase inhibitors, demonstrates promising outcomes in postmenopausal patients with low-grade luminal A tumors. However, integrating targeted therapies like CDK4/6 inhibitors in neoadjuvant setting remains inconclusive. Identifying predictive factors for treatment response, especially in luminal tumors, poses a challenge, emphasizing the necessity for ongoing research. A multidisciplinary approach, tailored to individual patient profiles, is crucial for maximizing efficacy while minimizing toxicity. As we strive to optimize breast cancer management, a comprehensive understanding of the distinct characteristics and treatment implications of luminal and triple-negative subtypes, including the transformative role of immunotherapy, is essential for informed decision-making and personalized care.
Collapse
Affiliation(s)
- Hervé Bischoff
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, 67033, Strasbourg, France.
| | - Marc Espié
- Medical Oncology Department, Hôpital Saint Louis, Paris, France
| | - Thierry Petit
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, ICANS, 17 Rue Albert Calmette, 67033, Strasbourg, France
| |
Collapse
|
74
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
75
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
76
|
Wen QE, Li L, Feng RQ, Li DH, Qiao C, Xu XS, Zhang YJ. Recent Advances in Immunotherapy for Breast Cancer: A Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:497-516. [PMID: 39220564 PMCID: PMC11365501 DOI: 10.2147/bctt.s482504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is one of the most common malignant tumors in women in the world, and its incidence is increasing year by year, which seriously threatens the physical and mental health of women. Triple negative breast cancer (TNBC) is a special molecular type of breast cancer in which estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 are negative. Compared with other molecular types of breast cancer, triple-negative breast cancer (TNBC) has high aggressiveness and metastasis, high recurrence rate, lack of effective therapeutic targets, and usually poor clinical treatment effect. Chemotherapy was the main therapeutic means used in the past. With the advent of the immune era, immunotherapy has made a lot of progress in the treatment of triple-negative breast cancer (TNBC), bringing new therapeutic hope for the treatment of triple-negative breast cancer. This review combines the results of cutting-edge medical research, mainly summarizes the research progress of immunotherapy, and summarizes the main treatment methods of triple-negative breast cancer (TNBC) immunotherapy, including immune checkpoint inhibitors, tumor vaccines, adoptive immunotherapy and the application of traditional Chinese and western medicine. It provides a new idea for the treatment of triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Liang Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - De-Hui Li
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xiao-Song Xu
- Scientific research Center, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Yan-Jing Zhang
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
77
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
78
|
Chen H, Lu Z, Ni X, Zhang H, Chen G, Wu X, Ding M. The development of anti-PD-1 antibody-induced spinal cord injury in bone marrow transplant C57BL/6 Rag1-/- mouse model. Immunotherapy 2024; 16:975-985. [PMID: 39115961 PMCID: PMC11486090 DOI: 10.1080/1750743x.2024.2383557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Aims: This paper was to scrutinize the toxicity mechanism of anti-programmed death 1 (anti-PD-1) therapy-caused spinal cord injury (SCI).Methods: Bone marrow transplant Rag1-/- mice were used to establish SCI model.Results: Anti-PD-1 results in SCI via CD8+ T-cells activation, while excessive activation of CD8+ T-cells further aggravated SCI. Both anti-PD-1 and the activation of CD8+ T-cells induced the expression of apoptosis-related perforin, GrB and FasL, but suppressed PI-9 level. The opposite results were observed in the effects of neuroserpin on these factors. CD8+ T-cells activation induced neurotoxicity via upregulation perforin, GrB and FasL and inhibiting PI-9. Additionally, neuroserpin suppressed CD8+ T-cells activation via perforin/GrB/PI-9/FasL pathways.Conclusion: These results may provide theoretical foundation for the clinical treatment of SCI caused by anti-PD-1.
Collapse
Affiliation(s)
- Huachun Chen
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Zhouxiao Lu
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Xiaowei Ni
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Hui Zhang
- Institute of Pharmacology, Jinhua Food & Drug Inspection & Testing Research Institute, Jinhua, 321002, Zhejiang, China
| | - Guiyuan Chen
- School of Medicine, Jinhua Polytechnic, Jinhua, 321007, Zhejiang, China
| | - Xiaoyu Wu
- Department of Respiratory & Critical Care Medicine, Jinhua Guangfu Cancer Hospital, Jinhua, 321001, Zhejiang, China
| | - Mingxing Ding
- School of Medicine, Jinhua Polytechnic, Jinhua, 321007, Zhejiang, China
| |
Collapse
|
79
|
Mustafin RN. Prospects for breast cancer immunotherapy using microRNAs and transposable elements as objects. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1011-1026. [PMID: 39351441 PMCID: PMC11438560 DOI: 10.37349/etat.2024.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/04/2024] [Indexed: 10/04/2024] Open
Abstract
One of the directions in treatment of chemoresistant breast cancer (BC) may include new methods of activating the immune response against tumor cells. Clinically used checkpoint inhibition using antibodies to PD-1 and PD-L1 works in some patients, but the lack of biomarkers means number of respondents is low. The possibility of combining this method with chemotherapy is limited by an increased risk of toxic liver damage, development of immune-related pneumonitis, and thyroid dysfunction. This article includes introduction into the clinic of new methods of immunotherapy for BC, among which epigenetic activation of retroelements, double-stranded transcripts of which stimulate the interferon response against the tumor, is promising. For this purpose, inhibitors of DNA methyltransferase*, histone deacetylase* and histone methyltransferase* are used (* subtitles in the main text). Their antitumor effect is also mediated by removal of repressive epigenetic marks from tumor suppressor genes. However, numerous studies have proven the role of retroelements in the carcinogenesis of various malignant neoplasms, including BC. Moreover, endogenous retroviruses HERV-K and LINE1 retrotransposons are planned to be used as diagnostic biomarkers for BC. Therefore, a rational approach to using viral mimicry in antitumor therapy of BC may be the simultaneous suppression of specific retrotransposons (drivers for carcinogenesis) using reverse transcriptase inhibitors and silencing of specific transposons involved in carcinogenesis using complementary microRNAs. To determine possible pathways of influence in this direction, 35 specific transposon-derived microRNAs* changes in BC were identified, which can become guides for targeted therapy of BC.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ministry of Health of Russia, 450008 Ufa, Russia
| |
Collapse
|
80
|
Stanton S, Schmitz F, Copeland W, DellAringa J, Newhall K, Disis M. Populations of triple negative and hormone receptor positive HER2 negative breast tumors share immune gene profiles. RESEARCH SQUARE 2024:rs.3.rs-4542494. [PMID: 39149486 PMCID: PMC11326399 DOI: 10.21203/rs.3.rs-4542494/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In breast cancer, triple negative (TN) breast cancer has most responses to immune checkpoint inhibitor (ICI) therapy. Lymphocyte infiltrate does not impact prognosis in Hormone receptor positive HER2 negative (HR + HER2-) breast tumors and few HR + HER2- tumors respond to ICI. We contrasted immune-associated gene expression between 119 TN and 475 HR + HER2- breast tumors from The Cancer Genome Atlas (TCGA) and confirmed our findings in 299 TN and 1369 HR + HER2- breast tumors in the METABRIC database. TN and HR+ HER2- tumors grouped into immune-high or -low tumors, both subtypes were represented in the immune-high group. The largest difference between the immune-high TN and HR + HER2- tumors was TN tumors had more abundant Th1 and Th2 CD4+ T cells while HR + HER2- tumors had more abundant fibroblasts (log2FC > 0.3; p < 10×10-10). This suggests an immune-high signature is not dictated by breast cancer subtype, but fibroblast subsets associated with worse outcome were higher in the immune-high HR + HER2- tumors.
Collapse
|
81
|
Chen B, Deng Y, Ren X, Zhao J, Jiang C. CRISPR/Cas9 screening: unraveling cancer immunotherapy's 'Rosetta Stone'. Trends Mol Med 2024; 30:736-749. [PMID: 38763850 DOI: 10.1016/j.molmed.2024.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-based technology, a powerful toolset for the unbiased functional genomic screening of biological processes, has facilitated several scientific breakthroughs in the biomedical field. Cancer immunotherapy has advanced the treatment of numerous malignancies that previously had restricted treatment options or unfavorable outcomes. In the realm of cancer immunotherapy, the application of CRISPR/CRISPR-associated protein 9 (Cas9)-based genetic perturbation screening has enabled the identification of genes, biomarkers, and signaling pathways that govern various cancer immunoreactivities, as well as the development of effective immunotherapeutic targets. In this review, we summarize the advances in CRISPR/Cas9-based screening for cancer immunotherapy and outline the immunotherapeutic targets identified via CRISPR screening based on cancer-type classification.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yanrong Deng
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jianhong Zhao
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
82
|
Meng J, Yang Y, Lv J, Lv H, Zhao X, Zhang L, Shi W, Yang Z, Mei X, Chen X, Ma J, Zhang Z, Shao Z, Yu X, Guo X. CXCR6 expression correlates with radiotherapy response and immune context in triple-negative breast cancer-experimental studies. Int J Surg 2024; 110:4695-4707. [PMID: 39143706 PMCID: PMC11325934 DOI: 10.1097/js9.0000000000001546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The chemokine receptor CXCR6 is critical for sustained tumor control mediated by CD8+ cytotoxic T cells (CTLs) in tumors. Previous studies have shown that ionizing radiation induces an inflamed immune contexture by upregulating CXCR6. However, the clinical significance of CXCR6 expression in triple-negative breast cancer (TNBC) and its correlation with radiotherapy remains unknown. This study aimed to clarify the prognostic value of CXCR6 and its role in the breast tumor microenvironment (TME). METHODS The messenger RNA and protein expression of CXCR6 in human TNBC and their association with survival were analyzed. The role of CXCR6 in the immune context was investigated using a combination of single-cell RNA sequencing, bulk transcriptome sequencing data, and fluorescence-based multiplex immunohistochemistry (mIHC) techniques. RESULTS Elevated CXCR6 expression correlated with better clinical outcomes and superior response to adjuvant radiotherapy and immunotherapy in TNBC. CXCR6 fostered an immunostimulatory microenvironment characterized by upregulated cytotoxic markers. We also found that CXCR6 plays a crucial role in regulating the differentiation of CD8+ T cells and the intercellular communication of immune cell subtypes, thus shaping the TME. CONCLUSIONS This study highlights the emerging role of CXCR6 in shaping the TME and targeting CXCR6 may be a promising strategy for improving the effectiveness of radiotherapy and immunotherapy in TNBC.
Collapse
Affiliation(s)
- Jin Meng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Jiaojie Lv
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Xu Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center
- Shanghai Key Laboratory of Radiation Oncology
- Department of Oncology, Shanghai Medical College, Fudan University
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, People's Republic of China
| |
Collapse
|
83
|
Yang C, Liu H, Feng X, Shi H, Jiang Y, Li J, Tan J. Research hotspots and frontiers of neoadjuvant therapy in triple-negative breast cancer: a bibliometric analysis of publications between 2002 and 2023. Int J Surg 2024; 110:4976-4992. [PMID: 39143709 PMCID: PMC11326012 DOI: 10.1097/js9.0000000000001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with poor prognosis, and neoadjuvant therapy (NAT) has emerged as an important component in managing advanced-stage patients by providing surgical opportunities and improving survival outcomes. A search of publications on NAT for TNBC from 2002 to 2023 was conducted through the Web of Science core collection. A comprehensive bibliometric analysis was conducted on the data using CiteSpace, VOSviewer, and Bibliometrix. The analysis revealed a continuous and steady growth in the number of articles published in this field over the past 20 years. The United States has made significant contributions to this field, with The University of Texas MD Anderson Cancer Center publishing the most articles. Loibl, S. from Germany was found to be the most published author with 54 articles. Analysis of the journals showed that the Journal of Clinical Oncology is the most cited journal. Combined with the keyword co-occurrence analysis and clustering analysis, current research topic focuses on treatment regimens and disease prognosis. Dual-map overlay of the journals indicates that the research trend is gradually shifting from molecular biology and genetics to immunology and clinical research. Combination therapy, including immunotherapy, may be the future direction for NAT treatment of TNBC. Overall, this study provides valuable insights into the current research status, latest advancements, and emerging development trend of NAT for TNBC.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Hui Liu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University
| | - Xing Feng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
- Department of Hepatobiliary, Breast and Thyroid Surgery, The People’s Hospital of Liangping District, Chongqing, China
| | - Han Shi
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Yuchan Jiang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Junfeng Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| | - Jinxiang Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
84
|
Testing new anticancer drugs before curative locoregional therapies: MDICT 2024 recommendations. ESMO Open 2024; 9:103649. [PMID: 39059061 PMCID: PMC11338105 DOI: 10.1016/j.esmoop.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Advances in the treatment of cancer have resulted in improved outcomes for patients, but improving the cure rate is a major unmet need. While testing new anticancer drugs in the earliest settings may be attractive as the chance of benefit may be greatest, it is also a setting where researchers must ensure patients are not harmed, by either over or undertreatment, or denial of timely standard curative treatments. The Methodology for the Development of Innovative Cancer Therapies Taskforce (MDICT) meets immediately before the ESMO-Targeted Anticancer Therapies (ESMO-TAT) meeting, usually held annually in Paris, France, to address questions that are considered important for early academic clinical trials. The focus of the MDICT 2024 was on early, signal-seeking phase clinical trials of new drugs conducted in the neoadjuvant (NEO) setting (NEO-ECTs) rather than pivotal confirmatory NEO trials (NEO-CONFs), which are typically phase III in design. Recommendations encompass four key concepts: patient engagement, reviewing risk-benefit ratio and clinical/ethical equipoise, the requirement for a randomization to reduce bias and allow robust conclusions to be drawn, and the selection of appropriate endpoints. The careful design of NEO-ECTs will allow the testing of new anticancer treatments in earlier disease settings where activity is hoped to result in higher cure rates, while also ensuring that patients are not harmed by delays to curative/definitive treatments nor by long-term or late-onset toxicity and morbidity. Additional research and investigation are required to further define and refine robust endpoints for use in this setting, including imaging, tissue and blood based endpoints.
Collapse
|
85
|
Xu X, Lu Y, Cao L, Miao Y, Li Y, Cui Y, Han T. Tumor-intrinsic P2RY6 drives immunosuppression by enhancing PGE 2 production. Cell Rep 2024; 43:114469. [PMID: 38996067 DOI: 10.1016/j.celrep.2024.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Despite the success of anti-programmed cell death-1 (anti-PD-1) immunotherapy, many cancer patients remain unresponsive, and reliable predictive biomarkers are lacking. Here, we show that aberrant expression of the pyrimidinergic receptor P2RY6 is frequent in human cancers and causes immune evasion. In mouse syngeneic and human xenograft tumor models, ectopic expression of P2RY6 shapes an immunosuppressive tumor microenvironment (TME) to enhance tumor growth and resistance to immunotherapy, whereas deletion of P2RY6 from tumors with high P2RY6 expression inflames the TME to inhibit tumor growth. As a G protein-coupled receptor, P2RY6 activates Gq/phospholipase C-β signaling and stimulates the synthesis of prostaglandin E2, which is a key mediator of immunosuppression in the TME. In contrast to the essential role of P2RY6 in tumors, global deletion of P2ry6 from mice does not compromise viability. Our study thus nominates P2RY6 as a precision immunotherapy target for patients with high tumor-intrinsic P2RY6 expression.
Collapse
Affiliation(s)
- Xilong Xu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yi Lu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Miao
- National Institute of Biological Sciences, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yamei Li
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Cui
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
86
|
Mohanty A, Lee M, Mohapatra A, Lee H, Vasukutty A, Baek S, Lee JY, Park IK. "Three-in-one": A Photoactivable Nanoplatform Evokes Anti-Immune Response by Inhibiting BRD4-cMYC-PDL1 Axis to Intensify Photo-Immunotherapy. Adv Healthc Mater 2024; 13:e2304093. [PMID: 38409920 DOI: 10.1002/adhm.202304093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Combinatorial immuno-cancer therapy is recognized as a promising approach for efficiently treating malignant tumors. Yet, the development of multifunctional nanomedicine capable of precise tumor targeting, remote activation, and immune-regulating drug delivery remains a significant challenge. In this study, nanoparticles loaded with an immune checkpoint inhibitor (JQ-1) using polypyrrole/hyaluronic acid (PPyHA/JQ-1) are developed. These nanoparticles offer active tumor targeting, photothermal tumor ablation using near-infrared light, and laser-controlled JQ-1 release for efficient breast cancer treatment. When the molecular weight of HA varies (from 6.8 kDa to 3 MDa) in the PPyHA nanoparticles, it is found that the nanoparticles synthesized using 1 MDa HA, referred to as PPyHA (1 m), show the most suitable properties, including small hydrodynamic size, high surface HA contents, and colloidal stability. Upon 808 nm laser irradiation, PPyHA/JQ-1 elevates the temperature above 55 °C, which is sufficient for thermal ablation and active release of JQ-1 in the tumor microenvironment (TME). Notably, the controlled release of JQ-1 substantially inhibits the expression of cancer-promoting genes. Furthermore, PPyHA/JQ-1 effectively suppresses the expression of programmed cell death ligand 1 (PD-L1) and prolongs dendritic cell maturation and CD8+ T cell activation against the tumor both in vitro and in vivo. PPyHA/JQ-1 treatment simultaneously provides a significant tumor regression through photothermal therapy and immune checkpoint blockade, leading to a durable antitumor-immune response. Overall, "Three-in-one" immunotherapeutic photo-activable nanoparticles have the potential to be beneficial for a targeted combinatorial treatment approach for TNBC.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Seonguk Baek
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
- DR Cure Inc., Hwasun, 58128, Republic of Korea
| |
Collapse
|
87
|
Wang Y, Sun Y, Lu F, Zhao X, Nie Z, Zhu F, He B. Efficacy and safety of a combination treatment of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis. Clin Transl Oncol 2024; 26:1725-1737. [PMID: 38587602 DOI: 10.1007/s12094-024-03396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) in combination with chemotherapy have showed its benefits in clinical studies, and here we conducted a further evaluation on the safety and efficacy of this treatment strategy. METHODS A systematic literature review was conducted in PubMed, Embase and Cochrane Library to identify clinical studies on ICIs and chemotherapy for metastatic breast cancer. The primary efficacy endpoints were progression-free survival (PFS) and overall survival (OS), and adverse events (AEs) were analyzed. Random or fixed effects models were used to estimate pooled Hazard ratio (HR), odds ratio (OR) and the data of 95% confidence interval (CI) depend on the Heterogeneity. Cochrane risk assessment tool was used to assess risk of bias. We also drew forest plots and funnel plots, respectively. RESULTS Seven studies with intend-to-treat (ITT) population for 3255 patients were analyzed. ICIs pooled therapy showed clinical benefits compared with chemotherapy alone, improving PFS (HR = 0.81, 95% CI: 0.74-0.90) of patients with metastatic triple negative breast cancer (mTNBC), especially in patients with PD-L1-positive tumors. However, it had no effect on OS (HR = 0.92, 95% CI 0.85-1.01). Besides, mTNBC patients received pooled therapy were less frequently to have AEs (OR = 1.30, 95% CI: 1.09-1.54). In patients with metastatic Human Epidermal Growth Factor Receptor 2 (HER2) negative breast cancer, pooled therapy showed no benefit for PFS (HR = 0.80, 95% CI: 0.50-1.28) and OS (HR = 0.87, 95% CI: 0.48-1.58). CONCLUSION Pooled therapy had improved PFS in mTNBC patients, especially in patients with PD-L1-positive tumors, and it was less likely to cause grade ≥ 3 AEs.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yalan Sun
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fang Lu
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xianghong Zhao
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhenlin Nie
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Feng Zhu
- Department of Laboratory Medicine, Nanjing Jiangning People's Hospital, 68 Gushan Road, Jiangning District, Nanjing, Jiangsu, 211100, China.
| | - Bangshun He
- School of Basic-Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
- Deparment of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
88
|
He Z, Yang H, Chen Q, Chen YPP, Qin H, He W, Chen Z. Role of TAP1 in the identification of immune-hot tumor microenvironment and its prognostic significance for immunotherapeutic efficacy in gastric carcinoma. J Gastrointest Oncol 2024; 15:890-907. [PMID: 38989426 PMCID: PMC11231864 DOI: 10.21037/jgo-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gastric cancer (GC), a multifaceted gastrointestinal malignancy, is the fourth most prevalent contributor to cancer-related fatalities globally. As a member of the ATP-binding cassette (ABC) family, transporter associated with antigen processing 1 (TAP1) is crucial for conveying antigen peptides from the cytoplasm to the lumen of the endoplasmic reticulum and subsequently loading them onto the major histocompatibility complex (MHC) class I molecules. Recent studies have established the biological significance of TAP1 in upholding tumor survival and facilitating immune evasion by remodeling the tumor microenvironment (TME) and orchestrating immune infiltration. The study was conducted to elucidate the association of TAP1 expression with immunological characteristics, and sought to exploit the value of TAP1 as a biomarker reflecting the inflamed TME and immunotherapeutic response. Methods RNA-sequencing profiles and clinical annotations were obtained from The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) cohort and Gene Expression Omnibus (GEO) portal. Preprocessing was conducting using the limma package. Weighted gene co-expression network analysis (WGCNA) was used to identify gene modules and TAP1 co-expressed genes (CEGs) based on correlation patterns. Consensus clustering and silhouette analysis determined the optimal number of TAP1-related groups. Gene expression profiles were integrated and classified using the pamr package. The Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate immunological characteristics. Differential expression analysis was conducted using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Single-cell RNA sequencing (scRNA-seq) datasets were analyzed using the Seurat toolkit to characterize cell types. Results Within this investigation, no significant differences in TAP1 expression were observed among patients exhibiting various clinicopathological features, indicating that TAP1 expression was not specific to molecular subtypes. Subsequent analysis revealed a positive correlation between TAP1 and diverse immunological traits, encompassing immunomodulators, tumor-infiltrating immune cells, as well as immune checkpoints across multiple datasets. Besides, within a GC immunotherapy cohort, individuals displaying high TAP1 expression demonstrated an increased likelihood of achieving complete remission (CR) post-treatment, suggesting heightened sensitivity to immunotherapy. In the clinical cohort, TAP1 overexpression in GC patients was positively correlated with CD8. Conclusions TAP1 appears linked to an inflamed TME and serves as a prospective biomarker for discerning immunological attributes and gauging immunotherapeutic responses in GC, particularly in identifying immune-reactive tumors.
Collapse
Affiliation(s)
- Zehua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Hong Yang
- Department of Anesthesia Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Huabo Qin
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Wanrong He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Zhihui Chen
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
89
|
Oey O, Wijaya W, Redfern A. Eribulin in breast cancer: Current insights and therapeutic perspectives. World J Exp Med 2024; 14:92558. [PMID: 38948420 PMCID: PMC11212747 DOI: 10.5493/wjem.v14.i2.92558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 06/19/2024] Open
Abstract
Eribulin is a non-taxane synthetic analogue approved in many countries as third-line treatment for the treatment of patients with metastatic breast cancer. In addition to its mitotic property, eribulin has non-mitotic properties including but not limited to, its ability to induce phenotypic reversal of epithelial to mesenchymal transition, vascular remodelling, reduction in immunosuppressive tumour microenvironment. Since approval, there has been a surge in studies investigating the application of eribulin as an earlier-line treatment and also in combination with other agents such as immunotherapy and targeted therapy across all breast cancer sub-types, including hormone receptor positive, HER2 positive and triple negative breast cancer, many demonstrating promising activity. This review will focus on the application of eribulin in the treatment of metastatic breast cancer across all subtypes including its role as an earlier-line agent, its toxicity profile, and potential future directions.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands 6009, WA, Australia
| | - Wynne Wijaya
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Internal Medicine, Universitas Gadjah Mada, Sleman 55281, Indonesia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
90
|
Pan F, Liu J, Chen Y, Zhu B, Chen W, Yang Y, Zhu C, Zhao H, Liu X, Xu Y, Xu X, Huo L, Xie L, Wang R, Gu J, Huang G. Chemotherapy-induced high expression of IL23A enhances efficacy of anti-PD-1 therapy in TNBC by co-activating the PI3K-AKT signaling pathway of CTLs. Sci Rep 2024; 14:14248. [PMID: 38902343 PMCID: PMC11189934 DOI: 10.1038/s41598-024-65129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Treatment of advanced triple-negative breast cancer (TNBC) is a great challenge in clinical practice. The immune checkpoints are a category of immunosuppressive molecules that cancer could hijack and impede anti-tumor immunity. Targeting immune checkpoints, such as anti-programmed cell death 1 (PD-1) therapy, is a promising therapeutic strategy in TNBC. The efficacy and safety of PD-1 monoclonal antibody (mAb) with chemotherapy have been validated in TNBC patients. However, the precise mechanisms underlying the synergistic effect of chemotherapy and anti-PD-1 therapy have not been elucidated, causing the TNBC patients that might benefit from this combination regimen not to be well selected. In the present work, we found that IL-23, an immunological cytokine, is significantly upregulated after chemotherapy in TNBC cells and plays a vital role in enhancing the anti-tumor immune response of cytotoxic T cells (CTLs), especially in combination with PD-1 mAb. In addition, the combination of IL-23 and PD-1 mAb could synergistically inhibit the expression of Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1), which is a regulatory subunit of PI3K and inhibit p110 activity, and promote phosphorylation of AKT in TNBC-specific CTLs. Our findings might provide a molecular marker that could be used to predict the effects of combination chemotherapy therapy and PD-1 mAb in TNBC.
Collapse
Affiliation(s)
- Fan Pan
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Jiajing Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Ningbo University, Liuting Road 59#, Ningbo, 315010, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing University, Hankou Road 22#, Nanjing, 210093, China
| | - Binghan Zhu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, China
| | - Weiwei Chen
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yuchen Yang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Chunyan Zhu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Hua Zhao
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaobei Liu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Yichen Xu
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China
| | - Li Xie
- Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, China.
| | - Rui Wang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| | - Guichun Huang
- Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Eastern Zhongshan Road 305#, Nanjing, 210002, China.
| |
Collapse
|
91
|
Demirsoy S, Tran H, Liu J, Li Y, Yang S, Aregawi D, Glantz MJ, Jacob NK, Walter V, Schell TD, Olmez I. Targeting Tyro3, Axl, and MerTK Receptor Tyrosine Kinases Significantly Sensitizes Triple-Negative Breast Cancer to CDK4/6 Inhibition. Cancers (Basel) 2024; 16:2253. [PMID: 38927958 PMCID: PMC11202171 DOI: 10.3390/cancers16122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastasis and mortality rates. Given the lack of actionable targets such as ER and HER2, TNBC still remains an unmet therapeutic challenge. Despite harboring high CDK4/6 expression levels, the efficacy of CDK4/6 inhibition in TNBC has been limited due to the emergence of resistance. The resistance to CDK4/6 inhibition is mainly mediated by RB1 inactivation. Since our aim is to overcome resistance to CDK4/6 inhibition, in this study, we primarily used the cell lines that do not express RB1. Following a screening for activated receptor tyrosine kinases (RTKs) upon CDK4/6 inhibition, we identified the TAM (Tyro3, Axl, and MerTK) RTKs as a crucial therapeutic vulnerability in TNBC. We show that targeting the TAM receptors with a novel inhibitor, sitravatinib, significantly sensitizes TNBC to CDK4/6 inhibitors. Upon prolonged HER2 inhibitor treatment, HER2+ breast cancers suppress HER2 expression, physiologically transforming into TNBC-like cells. We further show that the combined treatment is highly effective against drug-resistant HER2+ breast cancer as well. Following quantitative proteomics and RNA-seq data analysis, we extended our study into the immunophenotyping of TNBC. Given the roles of the TAM receptors in promoting the creation of an immunosuppressive tumor microenvironment (TME), we further demonstrate that the combination of CDK4/6 inhibitor abemaciclib and sitravatinib modifies the immune landscape of TNBC to favor immune checkpoint blockade. Overall, our study offers a novel and highly effective combination therapy against TNBC and potentially treatment-resistant HER2+ breast cancer that can be rapidly moved to the clinic.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Ha Tran
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liu
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Yunzhan Li
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Shengyu Yang
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Dawit Aregawi
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Michael J. Glantz
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | | | - Vonn Walter
- Departments of Public Health Sciences, Penn State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Departments of Microbiology and Immunology, Penn State University, Hershey, PA 17033, USA
| | - Inan Olmez
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| |
Collapse
|
92
|
Xiang K, Zhang M, Yang B, Liu X, Wang Y, Liu H, Song Y, Yuan Y, Zhang L, Wen T, Zhang GW. TM-Score predicts immunotherapy efficacy and improves the performance of the machine learning prognostic model in gastric cancer. Int Immunopharmacol 2024; 134:112224. [PMID: 38723370 DOI: 10.1016/j.intimp.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.
Collapse
Affiliation(s)
- Kanghui Xiang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Minghui Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yusi Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hengxin Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujia Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yonghui Yuan
- Liaoning Cancer Hospital & Institute, Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Guang-Wei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
93
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
94
|
Townsend MJ, Benque IJ, Li M, Grover S. Review article: Contemporary management of gastrointestinal, pancreatic and hepatic toxicities of immune checkpoint inhibitors. Aliment Pharmacol Ther 2024; 59:1350-1365. [PMID: 38590108 DOI: 10.1111/apt.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are effective oncologic agents which frequently cause immune-related adverse events (irAEs) which can impact multiple organ systems. Onco-Gastroenterology is a novel and emerging subspecialty within gastroenterology focused on cancer treatment-related complications. Gastroenterologists must be prepared to identify and manage diverse immune-mediated toxicities including enterocolitis, hepatitis, pancreatitis and other ICI-induced toxicities. AIM To provide a narrative review of the epidemiology, diagnostic evaluation and management of checkpoint inhibitor-induced gastrointestinal and hepatic toxicities. METHODS We searched Cochrane and PubMed databases for articles published through August 2023. RESULTS Gastrointestinal and hepatic irAEs include most commonly enterocolitis and hepatitis, but also pancreatitis, oesophagitis, gastritis, motility disorders (gastroparesis) and other rarer toxicities. Guidelines from the National Comprehensive Cancer Network, American Society of Clinical Oncology and European Society for Medical Oncology, in combination with emerging cohort and clinical trial data, offer strategies for management of ICI toxicities. Evaluation of irAEs severity by formal classification and clinical stability, and a thorough workup for alternative etiologies which may clinically mimic irAEs underlie initial management. Treatments include corticosteroids, biologics and other immunosuppressive agents plus supportive care; decisions on dosing, timing and choice of steroid adjuncts and potential for subsequent checkpoint inhibitor dosing are nuanced and toxicity-specific. CONCLUSIONS Expanding clinical trial and cohort data have clarified the epidemiology and clinical characteristics of gastrointestinal, pancreatic and hepatic toxicities of ICIs. Guidelines, though valuable, remain based principally on retrospective cohort data. Quality prospective, controlled studies may refine algorithms for treatment and potential immunotherapy rechallenge.
Collapse
Affiliation(s)
- Matthew J Townsend
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Isaac J Benque
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael Li
- University of California San Francisco School of Medicine, San Francisco, California, USA
- Division of Gastroenterology, University of California San Francisco Medical Center, San Francisco, California, USA
| | - Shilpa Grover
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
95
|
Michaels E, Chen N, Nanda R. The Role of Immunotherapy in Triple-Negative Breast Cancer (TNBC). Clin Breast Cancer 2024; 24:263-270. [PMID: 38582617 DOI: 10.1016/j.clbc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 04/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, generally associated with a high risk of recurrence and poor prognosis. Our understanding of the heterogeneity of TNBC has increased over the past decade, and with it a recognition that some TNBCs are immunogenically active. This finding has led to the investigation of immunotherapy-based approaches for treatment of both early and advanced-stage TNBC. In this review, we provide an overview of the biologic rationale for immunotherapy use in TNBC, and review data from seminal trials which have culminated in the approval of immunotherapy for both early and advanced TNBC. Identification of predictive biomarkers to aid in treatment selection, development of novel treatment combinations to combat resistance, and refinement of therapeutic targets enables continued improvement in outcomes with immunotherapy for TNBC.
Collapse
Affiliation(s)
- Elena Michaels
- Department of Medicine, The University of Chicago Medicine, Chicago, IL
| | - Nan Chen
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Rita Nanda
- Department of Medicine, The University of Chicago Medicine, Chicago, IL; Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL.
| |
Collapse
|
96
|
Van Cauwenberge J, Van Baelen K, Maetens M, Geukens T, Nguyen HL, Nevelsteen I, Smeets A, Deblander A, Neven P, Koolen S, Wildiers H, Punie K, Desmedt C. Reporting on patient's body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review. Breast Cancer Res 2024; 26:81. [PMID: 38778365 PMCID: PMC11112918 DOI: 10.1186/s13058-024-01832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most drugs according to the body mass index (BMI). Here, we conducted a systematic review on recent clinical drug trials to document the dosing regimen of recent drugs, the reporting of BMI and the possible exclusion of patients according to BMI, other adiposity measurements and/or diabetes (leading comorbidity of obesity). We further explored whether treatment efficacy was evaluated according to BMI. METHODS A search of Pubmed and ClinicalTrials.gov was performed to identify phase I-IV trials investigating novel systemic breast cancer treatments. Dosing regimens and exclusion based on BMI, adiposity measurements or diabetes, documentation of BMI and subgroup analyses according to BMI were assessed. RESULTS 495 trials evaluating 26 different drugs were included. Most of the drugs (21/26, 81%) were given in a fixed dose independent of patient weight. BMI was an exclusion criterion in 3 out of 495 trials. Patients with diabetes, the leading comorbidity of obesity, were excluded in 67/495 trials (13.5%). Distribution of patients according to BMI was mentioned in 8% of the manuscripts, subgroup analysis was performed in 2 trials. No other measures of adiposity/body composition were mentioned in any of the trials. Retrospective analyses on the impact of BMI were performed in 6 trials. CONCLUSIONS Patient adiposity is hardly considered as most novel drug treatments are given in a fixed dose. BMI is generally not reported in recent trials and few secondary analyses are performed. Given the prevalence of patients with obesity and the impact obesity can have on pharmacokinetics and cancer biology, more attention should be given by investigators and study sponsors to reporting patient's BMI and evaluating its impact on treatment efficacy and toxicity.
Collapse
Affiliation(s)
- Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ha Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne Deblander
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium.
| |
Collapse
|
97
|
Arulraj T, Wang H, Deshpande A, Varadhan R, Emens LA, Jaffee EM, Fertig EJ, Santa-Maria CA, Popel AS. Virtual patient analysis identifies strategies to improve the performance of predictive biomarkers for PD-1 blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595235. [PMID: 38826266 PMCID: PMC11142158 DOI: 10.1101/2024.05.21.595235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Patients with metastatic triple-negative breast cancer (TNBC) show variable responses to PD-1 inhibition. Efficient patient selection by predictive biomarkers would be desirable, but is hindered by the limited performance of existing biomarkers. Here, we leveraged in-silico patient cohorts generated using a quantitative systems pharmacology model of metastatic TNBC, informed by transcriptomic and clinical data, to explore potential ways to improve patient selection. We tested 90 biomarker candidates, including various cellular and molecular species, by a cutoff-based biomarker testing algorithm combined with machine learning-based feature selection. Combinations of pre-treatment biomarkers improved the specificity compared to single biomarkers at the cost of reduced sensitivity. On the other hand, early on-treatment biomarkers, such as the relative change in tumor diameter from baseline measured at two weeks after treatment initiation, achieved remarkably higher sensitivity and specificity. Further, blood-based biomarkers had a comparable ability to tumor- or lymph node-based biomarkers in identifying a subset of responders, potentially suggesting a less invasive way for patient selection.
Collapse
|
98
|
Chen L, Wei W, Sun J, Sun B, Deng R. Cordycepin enhances anti-tumor immunity in breast cancer by enhanceing ALB expression. Heliyon 2024; 10:e29903. [PMID: 38720766 PMCID: PMC11076851 DOI: 10.1016/j.heliyon.2024.e29903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Objective The treatment of breast cancer still faces great challenges, and it is necessary to continuously explore effective drugs and targets to promote immune precision medicine. This study aims to investigate the immune-related regulatory mechanism of cordycepin in breast cancer. Methods Network pharmacology was employed to discovery the action of cordyceps on breast cancer targets, molecular docking was employed to analyze the interaction pattern between core components and targets, and biological information analysis was used to explore the target-related immune mechanism and verified in vitro experiments. Results The results of this study indicate that cordycepin can effectively inhibit breast cancer. The roles of cordycepin's active component and its target gene ALB were elucidated through the combined use of network pharmacology and molecular docking. Bioinformatics analysis revealed convincing associations between ALB and many immune pathway marker genes. ALB was inhibited in tumor expression, and cordycepin was found to enhance the expression of ALB in vitro to play an anti-tumor role. Conclusion Cordycepin regulates immune suppression of tumor, which is expected to open a new chapter of breast cancer immunotherapy.
Collapse
Affiliation(s)
- Lin Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Weihao Wei
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jin Sun
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Beicheng Sun
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Rong Deng
- The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, China
| |
Collapse
|
99
|
Yu Y, Jia X, Chen S, Lai Z, Deng H, Mo Y, Xie X, Wang Z, Lin R, Ouyang W, Yao H, Wu J. Deciphering the role of apoptosis signature on the immune dynamics and therapeutic prognosis in breast cancer: Implication for immunotherapy. Front Genet 2024; 15:1332935. [PMID: 38756447 PMCID: PMC11097162 DOI: 10.3389/fgene.2024.1332935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Background: In breast cancer oncogenesis, the precise role of cell apoptosis holds untapped potential for prognostic and therapeutic insights. Thus, it is important to develop a model predicated for breast cancer patients' prognosis and immunotherapy response based on apoptosis-related signature. Methods: Our approach involved leveraging a training dataset from The Cancer Genome Atlas (TCGA) to construct an apoptosis-related gene prognostic model. The model's validity was then tested across several cohorts, including METABRIC, Sun Yat-sen Memorial Hospital Sun Yat-sen University (SYSMH), and IMvigor210, to ensure its applicability and robustness across different patient demographics and treatment scenarios. Furthermore, we utilized Quantitative Polymerase Chain Reaction (qPCR) analysis to explore the expression patterns of these model genes in breast cancer cell lines compared to immortalized mammary epithelial cell lines, aiming to confirm their differential expression and underline their significance in the context of breast cancer. Results: Through the development and validation of our prognostic model based on seven apoptosis-related genes, we have demonstrated its substantial predictive power for the survival outcomes of breast cancer patients. The model effectively stratified patients into high and low-risk categories, with high-risk patients showing significantly poorer overall survival in the training cohort and across all validation cohorts. Importantly, qPCR analysis confirmed that the genes constituting our model indeed exhibit differential expression in breast cancer cell lines when contrasted with immortalized mammary epithelial cell lines. Conclusion: Our study establishes a groundbreaking prognostic model using apoptosis-related genes to enhance the precision of breast cancer prognosis and treatment, particularly in predicting immunotherapy response.
Collapse
Affiliation(s)
- Yunfang Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Sunyu Chen
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zijia Lai
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Heran Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Mo
- School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xinxin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehua Wang
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Hong Kong Baptist University, Zhuhai, China
| | - Ruichong Lin
- School of Computer Engineering, Guangzhou Huali College, Guangzhou, China
- Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Phase I Clinical Trial Cent, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
100
|
Cortes J, Winer EP, Lipatov O, Im S, Gonçalves A, Muñoz‐Couselo E, Lee KS, Schmid P, Tamura K, Testa L, Witzel I, Ohtani S, Hund S, Kulangara K, Karantza V, Mejia JA, Ma J, Jelinic P, Huang L, Pruitt SK, Emancipator K. Contribution of tumour and immune cells to PD-L1 expression as a predictive biomarker in metastatic triple-negative breast cancer: exploratory analysis from KEYNOTE-119. J Pathol Clin Res 2024; 10:e12371. [PMID: 38627977 PMCID: PMC11021797 DOI: 10.1002/2056-4538.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
The efficacy of pembrolizumab monotherapy versus chemotherapy increased with increasing programmed death ligand 1 (PD-L1) expression, as quantified by combined positive score (CPS; PD-L1 expression on both tumour cells and immune cells) in patients with previously treated metastatic triple-negative breast cancer (mTNBC) in the phase 3 KEYNOTE-119 study. This exploratory analysis was conducted to determine whether the expression of PD-L1 on tumour cells contributes to the predictive value of PD-L1 CPS in mTNBC. PD-L1 expression in tumour samples was assessed using PD-L1 IHC 22C3 pharmDx and quantified using both CPS and tumour proportion score (TPS; PD-L1 expression on tumour cells alone). Calculated immune cell density (CID) was defined as CPS minus TPS. The ability of each scoring method (CPS, TPS, and CID) to predict clinical outcomes with pembrolizumab was evaluated. With pembrolizumab, the area under the receiver operating characteristic curve was 0.69 (95% CI = 0.58-0.80) for CPS, 0.55 (95% CI = 0.46-0.64) for TPS, and 0.67 (95% CI = 0.56-0.77) for CID. After correction for cutoff prevalence, CPS performed as well as, if not better than, CID with respect to predicting objective response rate, progression-free survival, and overall survival. Data from this exploratory analysis suggest that, although PD-L1 expression on immune cells alone is predictive of response to programmed death 1 blockade in mTNBC, adding tumour PD-L1 expression assessment (i.e. CPS, which combines immune cell and tumour cell PD-L1 expression) may improve prediction. PD-L1 CPS thus remains an effective and broadly applicable uniform scoring system for enriching response to programmed death 1 blockade with pembrolizumab in mTNBC as well as other tumour types.
Collapse
Affiliation(s)
- Javier Cortes
- Oncology DepartmentInternational Breast Cancer Center (BCC), Pangaea Oncology, QuirónsaludBarcelonaSpain
- Department of MedicineFaculty of Biomedical and Health Sciences, European University of MadridMadridSpain
| | - Eric P Winer
- Yale Cancer CenterYale School of MedicineNew HavenCTUSA
- Present address:
Yale Cancer CenterNew HavenCTUSA
| | - Oleg Lipatov
- Department of OncologyRepublican Clinical Oncology Dispensary of the Ministry of Public Health of Bashkortostan RepublicUfaRussia
| | - Seock‐Ah Im
- Department of Internal MedicineSeoul National University Cancer Research Institute, Seoul National University College of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Anthony Gonçalves
- Aix Marseille University, CNRS, INSERM, Department of Medical OncologyInstitut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Eva Muñoz‐Couselo
- Department of Medical OncologyVall d'Hebron University HospitalBarcelonaSpain
| | - Keun Seok Lee
- Department of Medical OncologyCenter for Breast Cancer, National Cancer CenterGoyangRepublic of Korea
| | - Peter Schmid
- Department of Cancer MedicineBarts ECMC, Barts Cancer Institute, Queen Mary University of London, and Barts Health NHS TrustLondonUK
| | - Kenji Tamura
- Department of Medical OncologyNational Cancer Center HospitalTokyoJapan
| | - Laura Testa
- Instituto do Câncer do Estado de São Paulo Octavio Frias de OliveiraHospital das Clínicas da Faculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
| | - Isabell Witzel
- Department of GynecologyUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Department of GynecologyUniversity of Zurich, University Hospital ZurichZurichSwitzerland
| | - Shoichiro Ohtani
- Division of Breast SurgeryHiroshima City Hiroshima Citizens HospitalHiroshimaJapan
| | - Stephanie Hund
- Diagnostics and Genomics GroupAgilent TechnologiesCarpinteriaCAUSA
| | - Karina Kulangara
- Diagnostics and Genomics GroupAgilent TechnologiesCarpinteriaCAUSA
| | | | - Jaime A Mejia
- Department of Medical OncologyMerck & Co., Inc.RahwayNJUSA
| | - Junshui Ma
- Early Development StatisticsMerck & Co., Inc.RahwayNJUSA
| | - Petar Jelinic
- Department of Medical OncologyMerck & Co., Inc.RahwayNJUSA
| | - Lingkang Huang
- Early Development StatisticsMerck & Co., Inc.RahwayNJUSA
| | - Scott K Pruitt
- Department of Medical OncologyMerck & Co., Inc.RahwayNJUSA
| | - Kenneth Emancipator
- Early Oncology DevelopmentMerck & Co., Inc.RahwayNJUSA
- Present address:
Precision Medicine, AbbVie, Inc.North ChicagoILUSA
| |
Collapse
|