51
|
Is dynamic autocrine insulin signaling possible? A mathematical model predicts picomolar concentrations of extracellular monomeric insulin within human pancreatic islets. PLoS One 2013; 8:e64860. [PMID: 23798995 PMCID: PMC3682990 DOI: 10.1371/journal.pone.0064860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 04/19/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather than constitutive and saturated.
Collapse
|
52
|
Lim GE, Piske M, Johnson JD. 14-3-3 proteins are essential signalling hubs for beta cell survival. Diabetologia 2013; 56:825-37. [PMID: 23354124 DOI: 10.1007/s00125-012-2820-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/11/2012] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Diabetes is characterised by pancreatic beta cell death and dysfunction, resulting from unbalanced pro-survival and pro-death signalling. The 14-3-3 proteins are molecular adaptors that integrate numerous signalling pathways, including the v-raf-leukaemia viral oncogene 1 (RAF1)/B cell leukaemia/lymphoma 2 (BCL-2)-associated agonist of cell death (BAD) pathway, which we have previously implicated in insulin-dependent beta cell survival. Nevertheless, the roles of 14-3-3 proteins in beta cell fate and function have not been investigated. METHODS We examined the abundance, localisation, modulation and roles of 14-3-3 proteins using quantitative RT-PCR, immunoblot or imaging. MIN6 cells or mouse islets cells were manipulated with inhibitors, short interfering RNA (siRNA) or plasmids overexpressing 14-3-3. RESULTS We first characterised the abundance and subcellular location of all seven 14-3-3 isoforms in mouse and human beta cells. Most isoforms were cytoplasmic, except 14-3-3σ, which appeared to be nuclear. Analysis of 14-3-3 abundance under stress conditions revealed distinct modulation in mouse islets and MIN6 cells. Generalised 14-3-3 inhibition promoted apoptosis and dysfunction, and siRNA-mediated knockdown revealed isoform-specific roles in caspase-3-dependent beta cell apoptosis, with a clear role for 14-3-3ζ. Overabundance of 14-3-3ζ sequestered BAD-BCL2-associated X protein (BAX) from mitochondria, attenuated Dp5 (also known as Hrk) and Puma (also known as Bbc3) induction, and increased survival in response to pro-inflammatory cytokines or thapsigargin. Anti-apoptotic insulin treatment increased the sequestration of BAD/BAX by 14-3-3ζ. BAD mutants that were unable to bind 14-3-3ζ localised to mitochondria and induced apoptosis. CONCLUSIONS/INTERPRETATION This first study of the 14-3-3 family in beta cells revealed specific regulation, localisation and anti-apoptotic roles among the isoforms. Focus on 14-3-3ζ revealed its importance in preventing BAD-BAX mitochondrial localisation and protecting beta cells from multiple stresses. Thus, some 14-3-3 proteins are pro-survival signalling hubs.
Collapse
Affiliation(s)
- G E Lim
- Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, 5358 Life Sciences Building, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
53
|
Chen L, Zhao Y, Zheng D, Ju S, Shen Y, Guo L. Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway. Int J Endocrinol 2013; 2013:854623. [PMID: 24382962 PMCID: PMC3871501 DOI: 10.1155/2013/854623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/10/2013] [Accepted: 11/10/2013] [Indexed: 01/15/2023] Open
Abstract
Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10(-10) to 10(-6) M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10(-10) to 10(-6) M). However, the OX1R antagonist SB334867 (10(-6) M), the PI3K antagonist wortmannin (10(-8) M), the AKT antagonist PF-04691502 (10(-6) M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
- *Yuyan Zhao:
| | - Delu Zheng
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Shujing Ju
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Shen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
54
|
Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16:723-37. [PMID: 23217255 DOI: 10.1016/j.cmet.2012.10.019] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/26/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemia is associated with obesity and pancreatic islet hyperplasia, but whether insulin causes these phenomena or is a compensatory response has remained unsettled for decades. We examined the role of insulin hypersecretion in diet-induced obesity by varying the pancreas-specific Ins1 gene dosage in mice lacking Ins2 gene expression in the pancreas, thymus, and brain. Age-dependent increases in fasting insulin and β cell mass were absent in Ins1(+/-):Ins2(-/-) mice fed a high-fat diet when compared to Ins1(+/+):Ins2(-/-) littermate controls. Remarkably, Ins1(+/-):Ins2(-/-) mice were completely protected from diet-induced obesity. Genetic prevention of chronic hyperinsulinemia in this model reprogrammed white adipose tissue to express uncoupling protein 1 and increase energy expenditure. Normalization of adipocyte size and activation of energy expenditure genes in white adipose tissue was associated with reduced inflammation, reduced fatty acid spillover, and reduced hepatic steatosis. Thus, we provide genetic evidence that pathological circulating hyperinsulinemia drives diet-induced obesity and its complications.
Collapse
Affiliation(s)
- Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Pardo FN, Altirriba J, Pradas-Juni M, García A, Ahlgren U, Barberà A, Slebe JC, Yáñez AJ, Gomis R, Gasa R. The role of Raf-1 kinase inhibitor protein in the regulation of pancreatic beta cell proliferation in mice. Diabetologia 2012; 55:3331-40. [PMID: 22926403 DOI: 10.1007/s00125-012-2696-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/27/2012] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Manoeuvres aimed at increasing beta cell mass have been proposed as regenerative medicine strategies for diabetes treatment. Raf-1 kinase inhibitor protein 1 (RKIP1) is a common regulatory node of the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and therefore may be involved in regulation of beta cell homeostasis. The aim of this study was to investigate the involvement of RKIP1 in the control of beta cell mass and function. METHODS Rkip1 (also known as Pebp1) knockout (Rkip1 (-/-)) mice were characterised in terms of pancreatic and glucose homeostasis, including morphological and functional analysis. Glucose tolerance and insulin sensitivity were examined, followed by assessment of glucose-induced insulin secretion in isolated islets and beta cell mass quantification through morphometry. Further characterisation included determination of endocrine and exocrine proliferation, apoptosis, MAPK activation and whole genome gene expression assays. Capacity to reverse a diabetic phenotype was assessed in adult Rkip1 (-/-) mice after streptozotocin treatment. RESULTS Rkip1 (-/-) mice exhibit a moderately larger pancreas and increased beta cell mass and pancreatic insulin content, which correlate with an overall improvement in whole body glucose tolerance. This phenotype is established in young postnatal stages and involves enhanced cellular proliferation without significant alterations in cell death. Importantly, adult Rkip1 (-/-) mice exhibit rapid reversal of streptozotocin-induced diabetes compared with control mice. CONCLUSIONS/INTERPRETATION These data implicate RKIP1 in the regulation of pancreatic growth and beta cell expansion, thus revealing RKIP1 as a potential pharmacological target to promote beta cell regeneration.
Collapse
Affiliation(s)
- F N Pardo
- Laboratory of Diabetes and Obesity, IDIBAPS, Centre Esther Koplowitz, Rosselló 153, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lavezzi JR, Thorn SR, O'Meara MC, LoTurco D, Brown LD, Hay WW, Rozance PJ. Increased fetal insulin concentrations for one week fail to improve insulin secretion or β-cell mass in fetal sheep with chronically reduced glucose supply. Am J Physiol Regul Integr Comp Physiol 2012; 304:R50-8. [PMID: 23135788 DOI: 10.1152/ajpregu.00413.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal undernutrition during pregnancy and placental insufficiency are characterized by impaired development of fetal pancreatic β-cells. Prolonged reduced glucose supply to the fetus is a feature of both. It is unknown if reduced glucose supply, independent of other complications of maternal undernutrition and placental insufficiency, would cause similar β-cell defects. Therefore, we measured fetal insulin secretion and β-cell mass following prolonged reduced fetal glucose supply in sheep. We also tested whether restoring physiological insulin concentrations would correct any β-cell defects. Pregnant sheep received either a direct saline infusion (CON = control, n = 5) or an insulin infusion (HG = hypoglycemic, n = 5) for 8 wk in late gestation (75 to 134 days) to decrease maternal glucose concentrations and reduce fetal glucose supply. A separate group of HG fetuses also received a direct fetal insulin infusion for the final week of the study with a dextrose infusion to prevent a further fall in glucose concentration [hypoglycemic + insulin (HG+I), n = 4]. Maximum glucose-stimulated insulin concentrations were 45% lower in HG fetuses compared with CON fetuses. β-Cell, pancreatic, and fetal mass were 50%, 37%, and 40% lower in HG compared with CON fetuses, respectively (P < 0.05). Insulin secretion and β-cell mass did not improve in the HG+I fetuses. These results indicate that chronically reduced fetal glucose supply is sufficient to reduce pancreatic insulin secretion in response to glucose, primarily due to reduced pancreatic and β-cell mass, and is not correctable with insulin.
Collapse
Affiliation(s)
- Jinny R Lavezzi
- Perinatal Research Center, Section of Neonatology, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Szabat M, Lynn FC, Hoffman BG, Kieffer TJ, Allan DW, Johnson JD. Maintenance of β-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes 2012; 61:1365-71. [PMID: 22618775 PMCID: PMC3357305 DOI: 10.2337/db11-1361] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marta Szabat
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
58
|
Wang YF, Khan M, van den Berg HA. Interaction of fast and slow dynamics in endocrine control systems with an application to β-cell dynamics. Math Biosci 2011; 235:8-18. [PMID: 22063267 DOI: 10.1016/j.mbs.2011.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 01/11/2023]
Abstract
Endocrine dynamics spans a wide range of time scales, from rapid responses to physiological challenges to with slow responses that adapt the system to the demands placed on it. We outline a non-linear averaging procedure to extract the slower dynamics in a way that accounts properly for the non-linear dynamics of the faster time scale and is applicable to a hierarchy of more than two time scales, although we restrict our discussion to two scales for the sake of clarity. The procedure is exact if the slow time scale is infinitely slow (the dimensionless ε-quantity is the period of the fast time scale fluctuation times an upper bound to the slow time scale rate of change). However, even for an imperfect separation of time scales we find that this construction provides an excellent approximation for the slow-time dynamics at considerably reduced computational cost. Besides the computation advantage, the averaged equation provided a qualitative insight into the interaction of the time scales. We demonstrate the procedure and its advantages by applying the theory to the model described by Tolić et al. [I.M. Tolić, E. Mosekilde, J. Sturis, Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion, J. Theor. Biol. 207 (2000) 361-375.] for ultradian dynamics of the glucose-insulin homeostasis feedback system, extended to include β-cell dynamics. We find that the dynamics of the β-cell mass are dependent not only on the glycemic load (amount of glucose administered to the system), but also on the way this load is applied (i.e. three meals daily versus constant infusion), effects that are lost in the inappropriate methods used by the earlier authors. Furthermore, we find that the loss of the protection against apoptosis conferred by insulin that occurs at elevated levels of insulin has a functional role in keeping the β-cell mass in check without compromising regulatory function. We also find that replenishment of β-cells from a rapidly proliferating pool of cells, as opposed to the slow turn-over which characterises fully differentiated β-cells, is essential to the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Yi-Fang Wang
- Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
59
|
Ohtani M, Ohura K, Oka T. Involvement of P2X receptors in the regulation of insulin secretion, proliferation and survival in mouse pancreatic β-cells. Cell Physiol Biochem 2011; 28:355-66. [PMID: 21865744 DOI: 10.1159/000331752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2011] [Indexed: 12/18/2022] Open
Abstract
In order to clarify the functional role of ionotropic purinergic (P2X) receptors in pancreatic β-cells, we examined the effect of several P2 receptor agonists and antagonists on insulin secretion by mouse pancreatic islets, mouse Beta-TC6 cell proliferation and survival of dispersed islet cells in culture. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed the expression of mRNAs of P2X(4) receptor in mouse islets and P2X(1), P2X(2), P2X(3), P2X(4), P2X(5) and P2X(7) receptors in Beta-TC6 cells. The presence of P2X(4) receptor proteins in islets and Beta-TC6 cells was confirmed by immunofluorescent staining and Western blot analysis. We have previously found that the functional P2Y(1) receptor but not P2Y(2) and P2Y(4) receptors was present in islets. In this study we found that a nonspecific P2 receptor agonist, ATP (1 μM) stimulated insulin secretion by islets in the presence of high glucose (20 mM) in culture. The effect of ATP was partially inhibited by a P2 receptor antagonist PPADS as well as a P2Y(1) receptor antagonist MRS2179. In addition, a P2X(4) receptor potentiator ivermectin per se augmented glucose-induced insulin secretion and slightly potentiated the effect of ATP. These results suggested the involvement of P2Y(1)and P2X receptors. We also found that ATP inhibited proliferation of Beta-TC6 cells in a concentration-dependent manner during 72 h culture. The inhibitory effect of ATP was completely reversed by PPADS and partially by treating cells with small interfering RNA targeted for P2X(4) receptor mRNA. Furthermore, we found that the phosphorylation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) was suppressed by treatment with ATP in Beta-TC6 cells. In addition, we found that ATP reduced the cell viability and DNA synthesis of islet cells in culture. The effect of ATP on the cell viability was blocked by PPADS or MRS2179. These results suggested that P2X receptors as well as the P2Y(1) receptor played a role in the modulation of insulin secretion, proliferation and cell viability in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Masahiro Ohtani
- Department of Pharmacology, Osaka Dental University, Hirakata, Japan
| | | | | |
Collapse
|
60
|
Alejandro EU, Lim GE, Mehran AE, Hu X, Taghizadeh F, Pelipeychenko D, Baccarini M, Johnson JD. Pancreatic β-cell Raf-1 is required for glucose tolerance, insulin secretion, and insulin 2 transcription. FASEB J 2011; 25:3884-95. [PMID: 21817126 DOI: 10.1096/fj.10-180349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulation of glucose homeostasis by insulin depends on pancreatic β-cell growth, survival, and function. Raf-1 kinase is a major downstream target of several growth factors that promote proliferation and survival of many cell types, including the pancreatic β cells. We have previously reported that insulin protects β cells from apoptosis and promotes proliferation by activating Raf-1 signaling in cultured human islets, mouse islets, and MIN6 cells. As Raf-1 activity is critical for basal apoptosis and insulin secretion in vitro, we hypothesized that Raf-1 may play an important role in glucose homeostasis in vivo. To test this hypothesis, we utilized the Cre-loxP recombination system to obtain a pancreatic β-cell-specific ablation of Raf-1 kinase gene (RIPCre(+/+):Raf-1(flox/flox)) and a complete set of littermate controls (RIPCre(+/+):Raf-1(wt/wt)). RIPCre(+/+):Raf-1(flox/flox) mice were viable, and no effects on weight gain were observed. RIPCre(+/+):Raf-1(flox/flox) mice had increased fasting blood glucose levels and impaired glucose tolerance but normal insulin tolerance compared to littermate controls. Insulin secretion in vivo and in isolated islets was markedly impaired, but there was no apparent effect on the exocytosis machinery. However, islet insulin protein and insulin 2 mRNA, but not insulin 1 mRNA, were dramatically reduced in Raf-1-knockout mice. Analysis of insulin 2 knockout mice demonstrated that this reduction in mRNA was sufficient to impair in vivo insulin secretion. Our data further indicate that Raf-1 specifically and acutely regulates insulin 2 mRNA via negative action on Foxo1, which has been shown to selectively control the insulin 2 gene. This work provides the first direct evidence that Raf-1 signaling is essential for the regulation of basal insulin transcription and the supply of releasable insulin in vivo.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Laboratory of Molecular Signalling in Diabetes, Diabetes Research Group, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Kang HM, Park S, Kim H. Insulin-like growth factor 2 enhances insulinogenic differentiation of human eyelid adipose stem cells via the insulin receptor. Cell Prolif 2011; 44:254-63. [PMID: 21535266 DOI: 10.1111/j.1365-2184.2011.00755.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Previously, we have isolated stem cells (HEAC) from human eyelid adipose tissue and functionally differentiated them into insulin-secreting cells. In the present study, we examined whether insulin family members might influence insulinogenic differentiation of HEAC. MATERIALS AND METHODS Following culture in differentiation media containing insulin family member or not, cells were examined for gene expression, protein expression and, particularly, insulin and C-peptide secretion, in response to high glucose challenge. Using antibodies against the specific receptor, target receptor mediating effect of the insulin family member was investigated. RESULTS Insulin treatment during culture had little effect on either insulin or C-peptide secretion from HEAC, against high glucose challenge after culture. However, insulin-like growth factor (IGF) 1 treatment decreased both secretions, and interestingly, IGF2 greatly increased the secretions. HEAC treated with IGF2 had strong expression of Pdx1, Isl1, Pax6 and PC1/3 genes, and distinct staining after insulin and C-peptide antibodies, and dithizone. IGF2-enhanced insulinogenic differentiation was totally blocked by antibody against insulin receptor (IR), but not by anti-IGF1 receptor (IGF1R). Differentiated HEAC expressed both IR and IGF1R genes, whereas they expressed neither IGF2 nor IGF2R genes. CONCLUSIONS From these results, it is suggested that IGF1 might inhibit insulinogenic differentiation of HEAC, whereas IGF2 enhances differentiation, and that enhancement of IGF2 appeared to be mediated via IR.
Collapse
Affiliation(s)
- H M Kang
- Department of Biotechnology, Seoul Women's University, Kongnung-dong, Nowon-gu, Seoul, Korea
| | | | | |
Collapse
|
62
|
Salpeter SJ, Klochendler A, Weinberg-Corem N, Porat S, Granot Z, Shapiro AMJ, Magnuson MA, Eden A, Grimsby J, Glaser B, Dor Y. Glucose regulates cyclin D2 expression in quiescent and replicating pancreatic β-cells through glycolysis and calcium channels. Endocrinology 2011; 152:2589-98. [PMID: 21521747 PMCID: PMC3115606 DOI: 10.1210/en.2010-1372] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G(2)-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication.
Collapse
Affiliation(s)
- Seth J Salpeter
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yang YHC, Szabat M, Bragagnini C, Kott K, Helgason CD, Hoffman BG, Johnson JD. Paracrine signalling loops in adult human and mouse pancreatic islets: netrins modulate beta cell apoptosis signalling via dependence receptors. Diabetologia 2011; 54:828-42. [PMID: 21212933 DOI: 10.1007/s00125-010-2012-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/08/2010] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Adult pancreatic islets contain multiple cell types that produce and secrete well characterised hormones, including insulin, glucagon and somatostatin. Although it is increasingly apparent that islets release and respond to more secreted factors than previously thought, systematic analyses are lacking. We therefore sought to identify potential autocrine and/or paracrine islet growth factor loops, and to characterise the function of the netrin family of islet-secreted factors and their receptors, which have been previously unreported in adult islets. METHODS Gene expression databases, islet-specific tag sequencing libraries and microarray datasets of FACS purified beta cells were used to compile a list of secreted factors and receptors present in mouse or human islets. Netrins and their receptors were further assessed using RT-PCR, Western blot analysis and immunofluorescence staining. The roles of netrin-1 and netrin-4 in beta cell function, apoptosis and proliferation were also examined. RESULTS We identified 233 secreted factors and 234 secreted factor receptors in islets. The presence of netrins and their receptors was further confirmed. Downregulation of caspase-3 activation was observed when MIN6 cells were exposed to exogenous netrin-1 and netrin-4 under hyperglycaemic conditions. Reduction in caspase-3 cleavage was linked to the decrease in dependence receptors, neogenin and unc-5 homologue A, as well as the activation of Akt and extracellular signal-regulated protein kinase (ERK) signalling. CONCLUSIONS/INTERPRETATION Our results highlight the large number of potential islet growth factors and point to a context-dependent pro-survival role for netrins in adult beta cells. Since diabetes results from a deficiency in functional beta cell mass, these studies are important steps towards developing novel therapies to improve beta cell survival.
Collapse
Affiliation(s)
- Y H C Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, 5358 Life Sciences Building, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
64
|
A multi-parameter, high-content, high-throughput screening platform to identify natural compounds that modulate insulin and Pdx1 expression. PLoS One 2010; 5:e12958. [PMID: 20886041 PMCID: PMC2944895 DOI: 10.1371/journal.pone.0012958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/02/2010] [Indexed: 01/01/2023] Open
Abstract
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.
Collapse
|
65
|
Wang H, Gambosova K, Cooper ZA, Holloway MP, Kassai A, Izquierdo D, Cleveland K, Boney CM, Altura RA. EGF regulates survivin stability through the Raf-1/ERK pathway in insulin-secreting pancreatic β-cells. BMC Mol Biol 2010; 11:66. [PMID: 20807437 PMCID: PMC2940765 DOI: 10.1186/1471-2199-11-66] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/31/2010] [Indexed: 11/11/2022] Open
Abstract
Background Postnatal expansion of the pancreatic β-cell mass is required to maintain glucose homeostasis immediately after birth. This β-cell expansion is regulated by multiple growth factors, including glucose, insulin, insulin-like growth factor (IGF-1) and epidermal growth factor (EGF). These mitogens signal through several downstream pathways (AKT, ERK, STAT3, and JNK) to regulate the survival and proliferation of β-cells. Survivin, an oncofetal protein with both pro-proliferative and anti-apoptotic properties, is a known transcriptional target of both IGF-1 and EGF in cancer cells. Here, we analyzed the effects of the β-cell mitogens IGF-1 and EGF on survivin regulation in the established pancreatic β-cell model cell lines, MIN6 and INS-1 and in primary mouse islets. Results In pancreatic β-cells, treatment with glucose, insulin, or EGF increased survivin protein levels at early time points. By contrast, no significant effects on survivin were observed following IGF-1 treatment. EGF-stimulated increases in survivin protein were abrogated in the presence of downstream inhibitors of the Raf-1/MEK/ERK pathway. EGF had no significant effect on survivin transcription however it prolonged the half-life of the survivin protein and stabilized survivin protein levels by inhibiting surviving ubiquitination. Conclusions This study defines a novel mechanism of survivin regulation by EGF through the Raf-1/MEK/ERK pathway in pancreatic β-cells, via prolongation of survivin protein half-life and inhibition of the ubiquitin-mediated proteasomal degradation pathway. This mechanism may be important for regulating β-cell expansion after birth.
Collapse
Affiliation(s)
- Haijuan Wang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Szabat M, Johnson JD, Piret JM. Reciprocal modulation of adult beta cell maturity by activin A and follistatin. Diabetologia 2010; 53:1680-9. [PMID: 20440469 DOI: 10.1007/s00125-010-1758-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 03/22/2010] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The functional maturity of pancreatic beta cells is impaired in diabetes mellitus. We sought to define factors that can influence adult beta cell maturation status and function. METHODS MIN6 cells labelled with a Pdx1 monomeric red fluorescent protein-Ins1 enhanced green fluorescent protein dual reporter lentivirus were used to screen candidate growth and/or differentiation factors using image-based approaches with confirmation by real-time RT-PCR and assays of beta cell function using primary mouse islets. RESULTS Activin A strikingly decreased the number of mature beta cells and increased the number of immature beta cells. While activins are critical for pancreatic morphogenesis, their role in adult beta cells remains controversial. In primary islets and MIN6 cells, activin A significantly decreased the expression of insulin and several genes associated with beta cell maturity (e.g. Pdx1, Mafa, Glut2 [also known as Slc2a2]). Genes found in immature beta cells (e.g. Mafb) tended to be upregulated by activin A. Insulin secretion was also reduced by activin A. In addition, activin A-treated MIN6 cells proliferated faster than non-treated cells. The effects of endogenous activin A on beta cells were completely reversed by exogenous follistatin. CONCLUSIONS/INTERPRETATION These results suggest that autocrine and/or paracrine activin A signalling exerts a suppressive effect on adult beta cell maturation and function. Thus, the maturation state of adult beta cells can be modulated by external factors in culture. Interventions inhibiting activin or its signalling pathways may improve beta cell function. Understanding of maturation and plasticity of adult pancreatic tissue has significant implications for islet regeneration and for in vitro generation of functional beta cells.
Collapse
Affiliation(s)
- M Szabat
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
67
|
Atkinson LL, Topp BG, Au J, Vinerian HV, Dhatt N, Finegood DT. Quantification of the relationship between glycemia and beta-cell mass adaptation in vivo. Can J Physiol Pharmacol 2010; 87:602-9. [PMID: 19767884 DOI: 10.1139/y09-044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-cell mass dynamics play an important role in the adaptation to obesity, as well as in the pathogenesis of type 2 diabetes. Here we used a 24-hour modified hyperglycemic clamp protocol to investigate the effect of increasing glucose concentrations (15, 20, 25, or 35 mmol/L) on beta-cell mass and rates of beta-cell replication, death, and neogenesis in 6-week-old Sprague Dawley rats (n = 40). During the first 4 h of glucose infusion, plasma insulin levels rose to an approximate steady state in each group, but by the end of 24 h, there was no difference in insulin levels between any of the groups. There was also no difference in beta-cell mass between groups. Mean beta-cell replication rates displayed a linear relationship to mean plasma glucose levels in all hyperglycemic animals (r(2) = 0.98, p < 0.05). Relative to the uninfused basal control animals, replication rates were significantly reduced in the 15 mmol/L glucose group. The percentage of TUNEL-positive beta-cells was not different between groups. There was also no significant difference in markers of neogenesis. Thus, these data demonstrate that hyperglycemia for 24 h had no effect on beta-cell mass, death, or neogenesis in 6-week-old Sprague Dawley rats. We demonstrate a linear relationship, however, between hyperglycemia and beta-cell replication rates in vivo.
Collapse
Affiliation(s)
- Laura L Atkinson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
68
|
Alejandro EU, Kalynyak TB, Taghizadeh F, Gwiazda KS, Rawstron EK, Jacob KJ, Johnson JD. Acute insulin signaling in pancreatic beta-cells is mediated by multiple Raf-1 dependent pathways. Endocrinology 2010; 151:502-12. [PMID: 20056832 PMCID: PMC2817610 DOI: 10.1210/en.2009-0678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin enhances the proliferation and survival of pancreatic beta-cells, but its mechanisms remain unclear. We hypothesized that Raf-1, a kinase upstream of both ERK and Bad, might be a critical target of insulin in beta-cells. To test this hypothesis, we treated human and mouse islets as well as MIN6 beta-cells with multiple insulin concentrations and examined putative downstream targets using immunoblotting, immunoprecipitation, quantitative fluorescent imaging, and cell death assays. Low doses of insulin rapidly activated Raf-1 by dephosphorylating serine 259 and phosphorylating serine 338 in human islets, mouse islets, and MIN6 cells. The phosphorylation of ERK by insulin was eliminated by exposure to a Raf inhibitor (GW5074) or transfection with a dominant-negative Raf-1 mutant. Insulin also enhanced the interaction between mitochondrial Raf-1 and Bcl-2 agonist of cell death (Bad), promoting Bad inactivation via its phosphorylation on serine 112. Insulin-stimulated ERK phosphorylation was abrogated by calcium chelation, calcineurin and calmodulin-dependent protein kinase II inhibitors, and Ned-19, a nicotinic acid adenine dinucleotide phosphate receptor (NAADPR) antagonist. Blocking Raf-1 and Ca(2+) signaling resulted in nonadditive beta-cell death. Autocrine insulin signaling partly accounted for the effects of glucose on ERK phosphorylation. Our results demonstrate that Raf-1 is a critical target of insulin in primary beta-cells. Activation of Raf-1 leads to both an ERK-dependent pathway that involves nicotinic acid adenine dinucleotide phosphate-sensitive Ca(2+) stores and Ca(2+)-dependent phosphorylation events, and an ERK-independent pathway that involves Bad inactivation at the mitochondria. Together our findings identify a novel insulin signaling pathway in beta-cells and shed light on insulin's antiapoptotic and mitogenic mechanisms.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Cellular and Physiological Sciences, University of British Columbia, 5358 Life Sciences Building, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
69
|
Mechanisms of pancreatic beta-cell apoptosis in diabetes and its therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:447-62. [PMID: 20217509 DOI: 10.1007/978-90-481-3271-3_19] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetes occurs when beta-cells no longer function properly or have been destroyed. Pancreatic beta-cell death by apoptosis contributes significantly in both autoimmune type 1 diabetes and type 2 diabetes. Pancreatic beta-cell death can be induced by multiple stresses in both major types of diabetes. There are also several rare forms of diabetes, including Wolcott-Rallison syndrome, Wolfram syndrome, as well as some forms of maturity onset diabetes of the young that are caused by mutations in genes that may play important roles in beta-cell survival. The use of islet transplantation as a treatment for diabetes is also limited by excessive beta-cell apoptosis. Mechanistic insights into the control of pancreatic beta-cell apoptosis are therefore important for the prevention and treatment of diabetes. Indeed, a substantial quantity of research has been dedicated to this area over the past decade. In this chapter, we review the factors that influence the propensity of beta-cells to undergo apoptosis and the mechanisms of this programmed cell death in the initiation and progression of diabetes.
Collapse
|
70
|
Morpurgo G, Fioretti B, Catacuzzeno L. The main product of specialized tissues regulates cell life and may cause neoplastic transformation. Med Hypotheses 2009; 74:847-54. [PMID: 20036074 DOI: 10.1016/j.mehy.2009.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 11/15/2022]
Abstract
Many tissues and cells in vertebrates are highly specialized and devoted to a single function through the action of a single molecule, that we call the "main product" (MP) of the cell. The hypothesis here proposed is that these MPs control all aspects of the cell life, namely activity, division, differentiation and apoptosis. Evidences supporting this hypothesis are reported for the immune system, pancreatic beta-cells, melanocytes, connective tissues, thyroid cells, skin and erythroid cells. In all cases cell division and differentiation is promoted by a normal activity of the MP, while hyperactivity leads to cell apoptosis. Evidences are also provided that alterations of the activity of the MP may elicit pathological disorders; in particular mutations altering the structure of the MP may elicit tumoural transformation.
Collapse
Affiliation(s)
- Giorgio Morpurgo
- Dipartimento di Biologia Cellulare e Ambientale, Universita' di Perugia, Perugia, Italy
| | | | | |
Collapse
|
71
|
Widenmaier SB, Ao Z, Kim SJ, Warnock G, McIntosh CHS. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem 2009; 284:30372-82. [PMID: 19748889 DOI: 10.1074/jbc.m109.060178] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, insulin biosynthesis, and beta-cell proliferation and survival. In previous studies GIP was shown to promote beta-cell survival by modulating the activity of multiple signaling modules and regulating gene transcription of pro- and anti-apoptotic bcl-2 family proteins. We have now evaluated the mechanisms by which GIP regulates the dynamic interactions between cytoplasmic bcl-2 family members and the mitochondria in INS-1 cells during apoptosis induced by treatment with staurosporine (STS), an activator of the mitochondria-mediated apoptotic pathway. STS induced translocation of bad and bimEL, activation of mitochondrial bax, release of mitochondrial cytochrome c, cleavage of caspase-3, and apoptosis. Each response was significantly diminished by GIP. Using selective enzyme inhibitors, overexpression of dominant-negative Akt, and Akt siRNA, it was demonstrated that GIP promoted beta-cell survival via Akt-dependent suppression of p38 MAPK and JNK and that combined inhibition was sufficient to explain the entire pro-survival responses to GIP during STS treatment. This signaling pathway also explained the pro-survival effects of GIP on INS-1 cells exposed to two other promoters of stress: thapsigargin (endoplasmic reticulum stress) and etoposide (genotoxic stress). Importantly, we discovered that GIP suppressed p38 MAPK and JNK via Akt-mediated changes in the phosphorylation state of the apoptosis signal-regulating kinase 1 in INS-1 cells and human islets, resulting in inhibition of its activity. Inhibition of apoptosis by GIP is therefore mediated via a key pathway involving Akt-dependent inhibition of apoptosis signal-regulating kinase 1, which subsequently prevents the pro-apoptotic actions of p38 MAPK and JNK.
Collapse
Affiliation(s)
- Scott B Widenmaier
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
72
|
Li J, Johnson JD. MATHEMATICAL MODELS OF SUBCUTANEOUS INJECTION OF INSULIN ANALOGUES: A MINI-REVIEW. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B 2009; 12:401-414. [PMID: 21572588 PMCID: PMC3093671 DOI: 10.3934/dcdsb.2009.12.401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last three decades, several models relevant to the subcutaneous injection of insulin analogues have appeared in the literature. Most of them model the absorption of insulin analogues in the injection depot and then compute the plasma insulin concentration. The most recent systemic models directly simulate the plasma insulin dynamics. These models have been and/or can be applied to the technology of the insulin pump or to the coming closed-loop systems, also known as the artificial pancreas. In this paper, we selectively review these models in detail and at point out that these models provide key building blocks for some important endeavors into physiological questions of insulin secretion and action. For example, it is not clear at this time whether or not picomolar doses of insulin are found near the islets and there is no experimental method to assess this in vivo. This is of interest because picomolar concentrations of insulin have been found to be effective at blocking beta-cell death and increasing beta-cell growth in recent cell culture experiments.
Collapse
Affiliation(s)
- Jiaxu Li
- Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences; Department of Surgery, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
73
|
Szabat M, Luciani DS, Piret JM, Johnson JD. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus. Endocrinology 2009; 150:1627-35. [PMID: 19095744 DOI: 10.1210/en.2008-1224] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The enigmatic process of beta-cell maturation has significant implications for diabetes pathogenesis, and potential diabetes therapies. This study examined the dynamics and heterogeneity of insulin and pancreatic duodenal homeobox (Pdx)-1 gene expression in adult beta-cells. Insulin and Pdx1 expression were monitored in human and mouse islet cells and MIN6 cells using a Pdx1-monomeric red fluorescent protein/insulin-enhanced green fluorescent protein dual-reporter lentivirus. The majority of fluorescent cells were highly positive for both Pdx1 and insulin. Cells expressing Pdx1 but little or no insulin (Pdx1(+)/Ins(low)) comprised 15-25% of the total population. Time-lapse imaging demonstrated that Pdx1(+)/Ins(low) primary beta-cells and MIN6 cells could convert to Pdx1(+)/Ins(+) cells without cell division. Genes involved in the mature beta-cell phenotype (Glut2, MafA) were expressed at higher levels in Pdx1(+)/Ins(+) cells relative to Pdx1(+)/Ins(low) cells. Conversely, genes implicated in early beta-cell development (MafB, Nkx2.2) were enriched in Pdx1(+)/Ins(low) cells. Sorted Pdx1(+)/Ins(low) MIN6 cells had a higher replication rate and secreted less insulin relative to double-positive cells. Long-term phenotype tracking of Pdx1(+)/Ins(low) cells showed two groups, one that matured into Pdx1(+)/Ins(+) cells and one that remained immature. These results demonstrate that adult beta-cells pass through distinct maturation states, which is consistent with previously observed heterogeneity in insulin and Pdx1 expression in adult beta-cells. At a given time, a proportion of adult beta-cells share similar characteristics to functionally immature embryonic beta-cell progenitors. The maturation of adult beta-cells recapitulates development in that Pdx1 expression precedes the robust expression of insulin and other mature beta-cell genes. These results have implications for harnessing the maturation process for therapeutic purposes.
Collapse
Affiliation(s)
- Marta Szabat
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
74
|
Elagin RB, Balijepalli S, Diacovo MJ, Baekkeskov S, Jaume JC. Homing of GAD65 specific autoimmunity and development of insulitis requires expression of both DQ8 and human GAD65 in transgenic mice. J Autoimmun 2009; 33:50-7. [PMID: 19289270 DOI: 10.1016/j.jaut.2009.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 11/28/2022]
Abstract
MHC-class II genes determine susceptibility in human type-1 diabetes. In their context, presentation of target antigen(s) results in autoimmunity and beta-cell destruction. An animal model, in which human beta-cell autoantigen(s) are presented to effector cells in the context of human MHC-class II diabetes-susceptibility genes, would be desirable for studying molecular mechanisms of disease and developing antigen-specific immune-interventions. We report the development of antigen-specific insulitis in double-transgenic mice carrying the HLA-DQ8 diabetes-susceptibility haplotype and expressing the human autoantigen GAD65 in pancreatic beta-cells. Immunization with human GAD65 cDNA resulted in severe insulitis and low antibody levels in double-transgenic mice while control mice were mostly insulitis free. CFA/protein immunization resulted in high antibody levels and modest insulitis. Pancreatic lymphocytic infiltration progressed through stages (exocrine pancreas followed by peri- and intra-insulitis). Adoptive transfer of splenocytes from DNA-immunized mice resulted in development of insulitis in recipient transgenics. Our results show that immunization with a clinically relevant, type-1 diabetes human autoantigen, in a humanized genetic setting, results in the development of an immune response that homes to islets of Langerhans. This animal model will facilitate studies of autoimmunity to GAD65 in the context of HLA-DQ8, and development of methods to induce tolerance and prevent insulitis.
Collapse
Affiliation(s)
- Raya B Elagin
- Endocrinology, Diabetes and Metabolism Section, Department of Medicine, School of Medicine, University of Wisconsin-Madison, Madison, WI 53792-5148, USA
| | | | | | | | | |
Collapse
|
75
|
Sachdeva MM, Stoffers DA. Minireview: Meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion. Mol Endocrinol 2009; 23:747-58. [PMID: 19196831 DOI: 10.1210/me.2008-0400] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes results from pancreatic ss-cell failure in the setting of insulin resistance. This model of disease progression has received recent support from the results of genome-wide association studies that identify genes potentially regulating ss-cell growth and function as type 2 diabetes susceptibility loci. Normal ss-cell compensation for an increased insulin demand includes both enhanced insulin-secretory capacity and an expansion of morphological ss-cell mass, due largely to changes in the balance between ss-cell proliferation and apoptosis. Recent years have brought significant progress in the understanding of both extrinsic signals stimulating ss-cell growth as well as mediators intrinsic to the ss-cell that regulate the compensatory response. Here, we review the current knowledge of mechanisms underlying adaptive expansion of ss-cell mass, focusing on lessons learned from experimental models of physiologically occurring insulin-resistant states including diet-induced obesity and pregnancy, and highlighting the potential importance of interorgan cross talk. The identification of critical mediators of islet compensation may direct the development of future therapeutic strategies to enhance the response of ss-cells to insulin resistance.
Collapse
Affiliation(s)
- Mira M Sachdeva
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | |
Collapse
|
76
|
Abstract
Type 1 and type 2 diabetes mellitus together are predicted to affect over 300 million people worldwide by the year 2020. A relative or absolute paucity of functional β-cells is a central feature of both types of disease, and identifying the pathways that mediate the embryonic origin of new β-cells and mechanisms that underlie the proliferation of existing β-cells are major efforts in the fields of developmental and islet biology. A poor secretory response of existing β-cells to nutrients and hormones and the defects in hormone processing also contribute to the hyperglycemia observed in type 2 diabetes and has prompted studies aimed at enhancing β-cell function. The factors that contribute to a greater susceptibility in aging individuals to develop diabetes is currently unclear and may be linked to a poor turnover of β-cells and/or enhanced susceptibility of β-cells to apoptosis. This review is an update on the recent work in the areas of islet/β-cell regeneration and hormone processing that are relevant to the pathophysiology of the endocrine pancreas in type 1, type 2 and obesity-associated diabetes.
Collapse
Affiliation(s)
- Anke Assmann
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
77
|
Biphasic effect of insulin on beta cell apoptosis depending on glucose deprivation. FEBS Lett 2008; 582:3855-60. [DOI: 10.1016/j.febslet.2008.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 01/09/2023]
|
78
|
Jiang Y, Nishimura W, Devor-Henneman D, Kusewitt D, Wang H, Holloway MP, Dohi T, Sabo E, Robinson ML, Altieri DC, Sharma A, Altura RA. Postnatal expansion of the pancreatic beta-cell mass is dependent on survivin. Diabetes 2008; 57:2718-27. [PMID: 18599523 PMCID: PMC2551682 DOI: 10.2337/db08-0170] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/26/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Diabetes results from a deficiency of functional beta-cells due to both an increase in beta-cell death and an inhibition of beta-cell replication. The molecular mechanisms responsible for these effects in susceptible individuals are mostly unknown. The objective of this study was to determine whether a gene critical for cell division and cell survival in cancer cells, survivin, might also be important for beta-cells. RESEARCH DESIGN AND METHODS We generated mice harboring a conditional deletion of survivin in pancreatic endocrine cells using mice with a Pax-6-Cre transgene promoter construct driving tissue-specific expression of Cre-recombinase in these cells. We performed metabolic studies and immunohistochemical analyses to determine the effects of a mono- and biallelic deletion of survivin. RESULTS Selective deletion of survivin in pancreatic endocrine cells in the mouse had no discernible effects during embryogenesis but was associated with striking decreases in beta-cell number after birth, leading to hyperglycemia and early-onset diabetes by 4 weeks of age. Serum insulin levels were significantly decreased in animals lacking endocrine cell survivin, with relative stability of other hormones. Exogenous expression of survivin in mature beta-cells lacking endogenous survivin completely rescued the hyperglycemic phenotype and the decrease in beta-cell mass, confirming the specificity of the survivin effect in these cells. CONCLUSIONS Our findings implicate survivin in the maintenance of beta-cell mass through both replication and antiapoptotic mechanisms. Given the widespread involvement of survivin in cancer, a novel role for survivin may well be exploited in beta-cell regulation in diseased states, such as diabetes.
Collapse
Affiliation(s)
- Yuying Jiang
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Wataru Nishimura
- Joslin Diabetes Center, Harvard Medical School, Boston Massachusetts
| | | | - Donna Kusewitt
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio
| | - Haijuan Wang
- Department of Pediatrics, Brown University, Providence, Rhode Island
| | - Michael P. Holloway
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, Brown University, Providence, Rhode Island
| | - Takehiko Dohi
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Edmond Sabo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | | | - Dario C. Altieri
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arun Sharma
- Joslin Diabetes Center, Harvard Medical School, Boston Massachusetts
| | - Rachel A. Altura
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, Brown University, Providence, Rhode Island
| |
Collapse
|
79
|
Miller R, Cirulli V, Diaferia GR, Ninniri S, Hardiman G, Torbett BE, Benezra R, Crisa L. Switching-on survival and repair response programs in islet transplants by bone marrow-derived vasculogenic cells. Diabetes 2008; 57:2402-12. [PMID: 18519801 PMCID: PMC2518491 DOI: 10.2337/db08-0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 05/27/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Vascular progenitors of bone marrow origin participate to neovascularization at sites of wound healing and transplantation. We hypothesized that the biological purpose of this bone marrow-derived vascular component is to contribute angiogenic and survival functions distinct from those provided by the local tissue-derived vasculature. RESEARCH DESIGN AND METHODS AND RESULTS To address this hypothesis, we investigated the functional impact of bone marrow-derived vascular cells on pancreatic islets engraftment using bone marrow-reconstituted Id1(+/-)Id3(-/-) mice, a model of bone marrow-derived vasculogenesis. We show that, in this model, bone marrow-derived vasculogenic cells primarily contribute to the formation of new blood vessels within islet transplants. In contrast, graft revascularization in a wild-type background occurs by tissue-derived blood vessels only. Using these distinct transplant models in which bone marrow-and tissue-derived vasculature are virtually mutually exclusive, we demonstrate that bone marrow-derived vasculogenic cells exhibit enhanced angiogenic functions and support prompt activation of islets survival pathways, which significantly impact on islets engraftment and function. Moreover, gene profiling of vascular and inflammatory cells of the grafts demonstrate that neovascularization by bone marrow-derived cells is accompanied by the activation of a genetic program uniquely tuned to downregulate harmful inflammatory responses and to promote tissue repair. CONCLUSIONS These studies uncover the biological significance of bone marrow-derived vasculogenic cells in the response to injury during transplantation. Enhancing the contribution of bone marrow-derived vasculogenic cells to transplantation sites may help to overcome both limited angiogenic responses of the adult tissue-derived vasculature and untoward effects of inflammation on transplant engraftment.
Collapse
Affiliation(s)
- Robyn Miller
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Vincenzo Cirulli
- Department of Pediatrics, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Giuseppe R. Diaferia
- Department of Pediatrics, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Stefania Ninniri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Gary Hardiman
- Department of Medicine, Biomedical Genomics Microarray Facility, University of California, San Diego, La Jolla, California
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | | | - Laura Crisa
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|