51
|
Duan R, Ginsburg E, Vonderhaar BK. Estrogen stimulates transcription from the human prolactin distal promoter through AP1 and estrogen responsive elements in T47D human breast cancer cells. Mol Cell Endocrinol 2008; 281:9-18. [PMID: 18022314 DOI: 10.1016/j.mce.2007.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/02/2007] [Indexed: 12/29/2022]
Abstract
Human prolactin (hPRL) is a pleiotropic and versatile hormone that exercises more than 300 biological activities through binding to its cognate receptors. Recently, multiple studies have implicated hPRL in the development of human breast cancer. As a target of hPRL, both normal and neoplastic human breast cells also synthesize and secrete hPRL, which therefore establishes an autocrine/paracrine action loop in the mammary gland. In contrast to the extensive studies of regulation of hPRL expression in the pituitary gland, regulation of hPRL in mammary tissue and human breast cancer cells has not been extensively addressed. Extrapituitary PRL expression is primarily regulated by a distal promoter located 5.8 kb upstream to the pituitary promoter. As a result of alternative promoter usage, extrapituitary PRL is regulated by different signalling pathways and different hormones, cytokines or neuropeptides compared to regulation in the pituitary. Here, we present evidence that shows estrogen directly induces hPRL gene expression in T47D human breast cancer cells. We have identified a functional, non-canonical estrogen responsive element (ERE) and an AP1 site located in the hPRL distal promoter. Gel shift and chromatin immunoprecipitation assays demonstrated that both estrogen receptor (ER)alpha and ERbeta directly bind to the ERE. However, only ERalpha interacts with AP1 proteins that bind to the AP1 site in the hPRL distal promoter. Promoter-reporter gene studies demonstrate that both ERE and AP1 sites are required for full induction of the promoter activity by estradiol. Our studies suggest that the interactions between estrogens, ERs, the ERE and AP1 transcription factors in regulation of autocrine/paracrine PRL in the human breast may be critical for oncogenesis and may contribute to progression of breast cancer.
Collapse
Affiliation(s)
- Renqin Duan
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4254, USA
| | | | | |
Collapse
|
52
|
Conneely OM, Mulac-Jericevic B, Arnett-Mansfield R. Progesterone Signaling in Mammary Gland Development. PROGESTINS AND THE MAMMARY GLAND 2008. [DOI: 10.1007/2789_2008_075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
53
|
Hiremath M, Lydon JP, Cowin P. The pattern of beta-catenin responsiveness within the mammary gland is regulated by progesterone receptor. Development 2007; 134:3703-12. [PMID: 17881490 DOI: 10.1242/dev.006585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experiments involving beta-catenin loss- and gain-of-function in the mammary gland have decisively demonstrated the role of this protein in normal alveologenesis. However, the relationship between hormonal and beta-catenin signaling has not been investigated. In this study, we demonstrate that activated beta-catenin rescues alveologenesis in progesterone receptor (PR; Pgr)-null mice during pregnancy. Two distinct subsets of mammary cells respond to expression of DeltaN89beta-catenin. Cells at ductal tips are inherently beta-catenin-responsive and form alveoli in the absence of PR. However, PR activity confers beta-catenin responsiveness to progenitor cells along the lateral ductal borders in the virgin gland. Once activated by beta-catenin, responding cells switch on an alveolar differentiation program that is indistinguishable from that observed in pregnancy and is curtailed by PR signaling.
Collapse
Affiliation(s)
- Minoti Hiremath
- Department of Cell Biology, NYU School of Medicine, MSB 618, 550 1st Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
54
|
Nagy T, Wei H, Shen TL, Peng X, Liang CC, Gan B, Guan JL. Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J Biol Chem 2007; 282:31766-76. [PMID: 17716968 DOI: 10.1074/jbc.m705403200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Integrin-mediated cell adhesion and signaling is required for mammary gland development and functions. As a major mediator of integrin signaling, focal adhesion kinase (FAK) has been implicated to play a role in the survival, proliferation, and differentiation of mammary epithelial cells in previously studies in vitro. To assess the role of FAK in vivo, we created mice in which FAK is selectively deleted in mammary epithelial cells. The mammary gland FAK conditional knock-out (MFCKO) mice are viable, fertile, and macroscopically indistinguishable from the control littermates. In virgin MFCKO mice, mammary ductal elongation is retarded at 5 weeks of age but reaches the full extent by 8 weeks of age compared with the control mice. However, the MFCKO females are unable to nurse their pups due to severe lobulo-alveolar hypoplasia and secretory immaturity during pregnancy and lactation. Analysis of the mammary epithelial cells in MFCKO mice showed reduced Erk phosphorylation, expression of cyclin D1, and a corresponding decrease in proliferative capability compared with the littermate controls. In addition, phosphorylation of STAT5 and expression of whey acidic protein are significantly reduced in the mammary glands of MFCKO mice, suggesting defective secretory maturation in these mice. Therefore, the combination of the severe lobulo-alveolar hypoplasia and defective secretory differentiation is responsible for the inability of the MFCKO females to nurse their pups. Together, these results provide strong support for a role of FAK in the mammary gland development and function in vivo.
Collapse
Affiliation(s)
- Tamas Nagy
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Lindvall C, Bu W, Williams BO, Li Y. Wnt Signaling, Stem Cells, and the Cellular Origin of Breast Cancer. ACTA ACUST UNITED AC 2007; 3:157-68. [PMID: 17873348 DOI: 10.1007/s12015-007-0025-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
The breast epithelium comprises cells at different stages of differentiation, including stem cells, progenitor cells, and more differentiated epithelial and myoepithelial cells. Wnt signaling plays a critical role in regulating stem/progenitor cells in the mammary gland as well as other tissue compartments. Furthermore, there is strong evidence suggesting that aberrant activation of Wnt signaling induces mammary tumors from stem/progenitor cells, and that Wnt exerts its oncogenic effects through LRP5/6-mediated activation of beta-catenin and mTOR pathways. Recent studies using avian retrovirus-mediated introduction of oncogenes into a small subset of somatic mammary cells suggest that polyoma middle T antigen (PyMT) may also preferentially transform stem/progenitor cells. These observations suggest that stem/progenitor cells in the mammary gland may be especially susceptible to oncogenic transformation. Whether more differentiated cells may also be transformed by particular oncogenes is actively debated; it is presently unclear whether stem cells or differentiated mammary cells are more susceptible to transformation by individual oncogenes. Better stem cell and progenitor cell markers as well as the ability to specifically target oncogenes into different mammary cell types will be needed to determine the spectrum of oncogene transformation for stem cells versus more differentiated cells.
Collapse
Affiliation(s)
- Charlotta Lindvall
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | | | | | | |
Collapse
|
56
|
Abstract
The mouse mammary gland is a complex tissue that proliferates and differentiates under the control of systemic hormones during puberty, pregnancy and lactation. Once a highly branched milk duct system has been established, during mid/late pregnancy, alveoli, little saccular outpouchings, sprout all over the ductal system and differentiate to become the sites of milk secretion. Here, we review the emerging network of the signaling pathways that connects hormonal stimuli with locally produced signaling molecules and the components of intracellular pathways that regulate alveologenesis and lactation. The powerful tools of mouse genetics have been instrumental in uncovering many of the signaling components involved in controlling alveolar and lactogenic differentiation.
Collapse
Affiliation(s)
- Cathrin Brisken
- National Center of Competence in Research (NCCR) Molecular Oncology, Swiss Institute for Experimental Cancer Research (ISREC), 155 Chemin des Boveresses, CH-1066, Epalinges, Lausanne, Switzerland.
| | | |
Collapse
|
57
|
Grimm SL, Bu W, Longley MA, Roop DR, Li Y, Rosen JM. Keratin 6 is not essential for mammary gland development. Breast Cancer Res 2006; 8:R29. [PMID: 16790075 PMCID: PMC1557733 DOI: 10.1186/bcr1504] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/26/2006] [Accepted: 05/25/2006] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Keratin 6 (K6) has previously been identified as a marker of early mammary gland development and has also been proposed to be a marker of mammary gland progenitor cells. However, the function of K6 in the mammary gland was not known, so we examined the expression pattern of the protein during both embryonic and postnatal mammary development, as well as the mammary gland phenotype of mice that were null for both K6a and K6b isoforms. METHOD Immunostaining was performed to determine the expression pattern of K6a throughout mammary gland development, from the embryonic mammary bud to lactation. Double immunofluorescence was used to co-localize K6 with known markers of mammary gland development. Wild-type and K6ab-null mammary tissues were transplanted into the cleared fat pads of nude mice and the outgrowths were analyzed for morphology by whole-mount staining and for markers of mammary epithelium by immunostaining. Finally, progesterone receptor (PR) and bromodeoxyuridine co-localization was quantified by double immunofluorescence in wild-type and K6ab-null mammary outgrowths. RESULTS Here we report that K6 is expressed earlier than described previously, by embryonic day 16.5. K6a is the predominant isoform expressed in the mammary gland, localized in the body cells and luminal epithelial cells but not in the cap cells or myoepithelial cells. Co-localization studies showed that most K6a-positive cells express steroid receptors but do not proliferate. When both the K6a and K6b genes are deleted, mammary gland development appears normal, with similar expression of most molecular markers examined in both the pubertal gland and the mature gland. Loss of K6a and K6b, however, leads to an increase in the number of steroid-receptor-positive cells, and increased co-localization of steroid receptor expression and proliferation was observed. CONCLUSION Although K6a was not essential for mammary gland development, loss of both K6a and K6b resulted in an increase in PR-positive mammary epithelial cells and decreased proliferation after exposure to steroid hormones. There was also increased co-localization of PR and bromodeoxyuridine, suggesting alterations in patterning events important for normal lobuloalveolar development.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wen Bu
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary Ann Longley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dennis R Roop
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi Li
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
58
|
Huang Y, Li X, Jiang J, Frank SJ. Prolactin modulates phosphorylation, signaling and trafficking of epidermal growth factor receptor in human T47D breast cancer cells. Oncogene 2006; 25:7565-76. [PMID: 16785991 DOI: 10.1038/sj.onc.1209740] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prolactin (PRL) is a polypeptide hormone produced by the anterior pituitary gland and other sites that acts both systemically and locally to cause lactation and other biological effects by interacting with the PRL receptor, a Janus kinase (JAK)2-coupled cytokine receptor family member, and activating downstream signal pathways. Recent evidence suggests PRL is a player in the pathogenesis and progression of breast cancer. Epidermal growth factor (EGF) also has effects on breast tissue, working through its receptors, epidermal growth factor receptor (EGFR) and ErbB-2 (c-neu, HER2), both intrinsic tyrosine kinase growth factor receptors. EGFR promotes pubertal breast ductal morphogenesis in mice, and both EGFR and ErbB-2 are relevant in pathogenesis and behavior of breast and other human cancers. Previous studies showed that PRL and EGF synergize to enhance motility in the human breast cancer cell line, T47D. In this study, we explored crosstalk between the PRL and EGF signaling pathways in T47D cells, with an ultimate aim of understanding how these two important factors might work together in vivo to affect breast cancer behavior. Both PRL and EGF caused robust signaling in T47D cells; PRL acutely activated JAK2, signal transducer and activator of transcription-5 (STAT5), and extracellular signal-regulated kinase-1 and -2 (ERK1 and ERK2), whereas EGF caused EGFR activation and consequent src homology collagen (SHC) activation and ERK activation. Notably, PRL also caused phosphorylation of the EGFR and ErbB-2 at sites detected by PTP101, an antibody that recognizes threonine phosphorylation at consensus motifs for ERK-induced phosphorylation. PRL-induced PTP101-reactive phosphorylation was prevented by pretreatment with PD98059, an ERK pathway inhibitor. Furthermore, PRL synergized with EGF in activating SHC and ERK and transactivating a luciferase reporter driven by c-fos gene enhancer elements, suggesting that PRL allowed markedly enhanced EGF signaling. This was accompanied by substantial inhibition of EGF-induced EGFR downregulation when PRL and EGF cotreatment was compared to EGF treatment alone. This effect of PRL was abrogated by ERK pathway inhibitor pretreatment. Our data suggest that PRL synergistically augments EGF signaling in T47D breast cancer cells at least in part by lessening EGF-induced EGFR downregulation and that this effect requires PRL-induced ERK activity and threonine phosphorylation of EGFR.
Collapse
Affiliation(s)
- Y Huang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | | | | | | |
Collapse
|
59
|
Yang L, Hu Y, Li X, Zhao J, Hou Y. Prolactin modulates the functions of murine spleen CD11c-positive dendritic cells. Int Immunopharmacol 2006; 6:1478-86. [PMID: 16846842 DOI: 10.1016/j.intimp.2006.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/15/2006] [Accepted: 05/02/2006] [Indexed: 11/17/2022]
Abstract
Prolactin (PRL), an anterior pituitary polypeptide hormone, has been shown to have a role in the immunomodulation. Some reports have shown the importance of PRL in activating lymphocytes and macrophages. To further investigate the effect of PRL on the immune system in vitro, murine spleen CD11c-positive dendritic cells (SDCs) were treated with various concentrations of PRL for 24 h, then their viability, phenotype, nuclear factor kappa B p65 (NF-kappaBp65), endocytosis, stimulatory capacity, and cytokine expression were analyzed. The results showed that PRL increased the viability and stimulatory capacity of SDCs, up-regulated the expressions of MHC-11 and CD40 while decreased the level of CD54 on SDCs. Furthermore, PRL decreased the level of NF-kappaBp65 and the endocytosis of SDCs. In addition, PRL increased the expressions of IL-6, IL-10, IL-12 and TNF-alpha in SDCs. These data suggested that PRL might regulate the physiological and pathological immune responses by changing the viability, phenotype, NF-kappaBp65, endocytosis, stimulatory capacity, and cytokine expression of SDCs.
Collapse
Affiliation(s)
- Linsong Yang
- Immunology and Reproductive Biology Lab, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, PR China
| | | | | | | | | |
Collapse
|
60
|
Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, Honjo T, Hennighausen L. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 2006; 293:565-80. [PMID: 16581056 DOI: 10.1016/j.ydbio.2006.02.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 11/30/2022]
Abstract
Mammary alveoli are composed of luminal (secretory) and basal (myoepithelial) cells, which are descendants of a common stem cell. This study addressed the role of RBP-J-dependent Notch signaling in the formation, maintenance and cellular composition of alveoli during pregnancy. For this purpose, the genes encoding RBP-J, the shared transcriptional mediator of Notch receptors, and Pofut1, a fucosyltransferase required for the activity of Notch receptors, were deleted in mammary progenitor cells in the mouse using Cre-mediated recombination. Loss of RBP-J and Pofut1 led to an accumulation of basal cell clusters characterized by the presence of cytokeratins (K5) and K14 and smooth muscle actin (SMA) during pregnancy. Hormonal stimulation of mutant tissue induced the expression of the basal cell transcription factor p63 in luminal cells and excessive proliferation of basal cells. A transient enrichment of K6-positive luminal cells was observed upon hormonal treatment suggesting a temporary arrest at an immature stage prior to transdifferentiation and expansion as basal cells. Despite the extensive proliferation of RBP-J-null basal cells during pregnancy, hormonal withdrawal during involution resulted in complete remodeling and the restoration of normal tissue architecture. We propose that the Notch-RBP-J pathway regulates alveolar development during pregnancy by maintaining luminal cell fate and preventing uncontrolled basal cell proliferation.
Collapse
Affiliation(s)
- Krista D Buono
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res 2006; 8:207. [PMID: 16677418 PMCID: PMC1557712 DOI: 10.1186/bcr1411] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Massive tissue remodelling occurs within the mammary gland during pregnancy, resulting in the formation of lobuloalveoli that are capable of milk secretion. Endocrine signals generated predominantly by prolactin and progesterone operate the alveolar switch to initiate these developmental events. Here we review the current understanding of the components of the alveolar switch and conclude with an examination of the role of the ets transcription factor Elf5. We propose that Elf5 is a key regulator of the alveolar switch.
Collapse
Affiliation(s)
- Samantha R Oakes
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Heidi N Hilton
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Christopher J Ormandy
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
62
|
Yang J, Zhao B, Baracos VE, Kennelly JJ. Effects of bovine somatotropin on beta-casein mRNA levels in mammary tissue of lactating cows. J Dairy Sci 2006; 88:2806-12. [PMID: 16027194 DOI: 10.3168/jds.s0022-0302(05)72960-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bovine somatotropin (bST) increases milk production in lactating cows through its effect on nutrient partition and maintenance of mammary cell function. A positive relationship between bST treatment and abundance of beta-casein mRNA in mammary tissues from lactating cows was hypothesized. In mammary tissue isolated from 14 midlactation Holstein cows, beta-casein mRNA was 35.4% higher among 7 cows receiving continuous bST infusions at 29 mg/d for 63 d compared with tissue from 7 untreated control cows. To investigate whether increased beta-casein mRNA resulted from a direct effect of bST on the mammary gland, explants of mammary tissue from other lactating cows that had not received bST were incubated with bST and prolactin in 2 experiments. Mammary explant cultures taken from 2 lactating cows that had not been milked for 48 h were supplemented with either prolactin or bST. Both prolactin and bST stimulated higher levels of beta-casein mRNA in the mammary explants compared with their non-supplemented counterparts. Explant cultures from 4 additional lactating cows were prepared from rear quarter mammary tissue subjected to milking intervals of 6 h for right rear quarters or 20 h for left rear quarters. Both bST- and prolactin-mediated increases in beta-casein mRNA were dependent on milking intervals. That is, levels of beta-casein mRNA were increased by bST or prolactin supplementation in explants isolated from the mammary quarters biopsied 20 h after milking but not for those biopsied at 6 h after milking. Results are consistent with a potential role for bST in up-regulating or sparing beta-casein mRNA levels in lactating bovine mammary tissue in a manner similar to prolactin.
Collapse
Affiliation(s)
- J Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu 96822, USA.
| | | | | | | |
Collapse
|
63
|
|
64
|
Abstract
Unique developmental features during puberty, pregnancy, lactation and post-lactation make the mammary gland a prime object to explore genetic circuits that control the specification, proliferation, differentiation, survival and death of cells. Steroids and simple peptide hormones initiate and carry out complex developmental programmes, and reverse genetics has been used to define the underlying mechanistic connections.
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
65
|
Taneja SS, Ha S, Swenson NK, Huang HY, Lee P, Melamed J, Shapiro E, Garabedian MJ, Logan SK. Cell-specific regulation of androgen receptor phosphorylation in vivo. J Biol Chem 2005; 280:40916-24. [PMID: 16210317 DOI: 10.1074/jbc.m508442200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological ramifications of phosphorylation of the androgen receptor (AR) are largely unknown. To examine the phosphorylation of AR at serine 213, a putative substrate for Akt, a phosphorylation site-specific antibody was generated. The use of this antibody indicated that AR Ser-213 is phosphorylated in vivo and that phosphorylation is tightly regulated in a cell type-specific manner. Furthermore, Ser-213 phosphorylation took place with rapid kinetics and was inhibited by the phosphatidylinositol 3-kinase inhibitor LY294002. Phosphorylation occurred in response to R1881 and dihydrotestosterone but weakly if at all in response to testosterone. It did not occur in response to AR antagonists or growth factor stimulation in the absence of an AR agonist. Transcription assays using an AR-responsive reporter gene construct showed that activated phosphatidylinositol 3-kinase inhibited transcription mediated by wild type AR but not that of a mutant AR variant (S213A), which could not be phosphorylated at Ser-213. By immunohistochemistry, the AR Ser(P)-213 antigen was detected in prostate epithelial but not stromal cells despite the fact that an antibody recognizing both phosphorylated and non-phosphorylated forms of AR demonstrates that AR is present in both cell types as expected. In fetal tissue the AR-Ser(P)-213 antigen was present in epithelial cells of the urogenital sinus when endogenous androgen levels were high and activated Akt was prevalent, but absent at a later stage of development when endogenous androgen levels were low and Akt activation was minimal. Immunoreactivity was evident in differentiated cells lining the lumen of the urogenital sinus but not in rapidly dividing, Ki67 positive cells within the developing prostate or stromal tissue, suggesting that site-specific phosphorylation of AR Ser-213 by cellular kinases occurs in a non-proliferating cellular milieu.
Collapse
Affiliation(s)
- Samir S Taneja
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Grimm SL, Contreras A, Barcellos-Hoff MH, Rosen JM. Cell cycle defects contribute to a block in hormone-induced mammary gland proliferation in CCAAT/enhancer-binding protein (C/EBPbeta)-null mice. J Biol Chem 2005; 280:36301-9. [PMID: 16120603 DOI: 10.1074/jbc.m508167200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In contrast to hormone-dependent breast cancer, steroid hormone-induced proliferation in the normal mammary gland does not occur in the steroid-receptor positive cells but rather in adjacent cells via paracrine signaling involving several local growth factors. To help elucidate the mechanisms involved in the block in proliferation in hormone-receptor positive cells, we have utilized a CCAAT/enhancer binding protein (C/EBPbeta)-null mouse model. Loss of this transcription factor results in increased steroid and prolactin receptor expression concomitant with a 10-fold decrease in proliferation in response to pregnancy hormones. To determine the basis for this decrease, several markers of cell cycle progression were analyzed in wild type and C/EBPbeta-null mammary epithelial cells (MECs). These studies indicated that cell cycle progression in C/EBPbeta-null MECs is blocked at the G1/S transition. C/EBPbeta-null mammary glands display substantially increased levels of the activated form of transforming growth factor beta, a potent inhibitor of epithelial cell proliferation, as well as increased downstream Smad2 expression and signaling. While cyclin D1 levels were equivalent, cyclin E expression was markedly reduced in C/EBPbeta-null as compared with wildtype MECs. In addition, increased p27 stability and retention in the nucleus and decreased levels of the cdc25a phosphatase contributed to a significant loss of cdk2 kinase activity. Collectively, these changes prevent C/EBPbeta-null mammary epithelial cells from responding to hormone-induced proliferative signals.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
67
|
Ewan KBR, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:409-17. [PMID: 16049327 PMCID: PMC1603552 DOI: 10.1016/s0002-9440(10)62985-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 01/05/2023]
Abstract
Transforming growth factor (TGF)-beta1 is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor (ER)-alpha cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF-beta1 is necessary for the quiescence of ER-alpha-positive populations, we examined mouse mammary epithelial glands at estrus. Approximately 35% of epithelial cells showed TGF-beta1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF-beta signaling is autocrine. Nuclear Smad co-localized with nuclear ER-alpha. To test whether TGF-beta inhibits proliferation, we examined genetically engineered mice with different levels of TGF-beta1. ER-alpha co-localization with markers of proliferation (ie, Ki-67 or bromodeoxyuridine) at estrus was significantly increased in the mammary glands of Tgf beta1 C57/bl/129SV heterozygote mice. This relationship was maintained after pregnancy but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF-beta1 via the MMTV promoter suppressed proliferation of ER-alpha-positive cells. Thus, TGF-beta1 activation functionally restrains ER-alpha-positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF-beta1 dysregulation may promote proliferation of ER-alpha-positive cells associated with breast cancer risk in humans.
Collapse
Affiliation(s)
- Kenneth B R Ewan
- Life Sciences Division, Bldg. 74-355, 1 Cyclotron Rd., Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | | | | | | | | | | |
Collapse
|
68
|
Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA. Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 2005; 19:1765-78. [PMID: 15746191 PMCID: PMC1630766 DOI: 10.1210/me.2004-0339] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the important roles of both prolactin (PRL) and 17beta-estradiol (E2) in normal mammary development as well as in breast cancer, and coexpression of the estrogen receptor (ER) and PRL receptor in many mammary tumors, the interactions between PRL and E2 in breast cancer have not been well studied. The activating protein 1 (AP-1) transcription factor, a known regulator of processes essential for normal growth and development as well as carcinogenesis, is a potential site for cross-talk between these hormones in breast cancer cells. Here we demonstrate that PRL and E2 cooperatively enhance the activity of AP-1 in MCF-7-derived cells. In addition to the acute PRL-induced ERK1/2 activation, PRL and E2 also individually elicited delayed, sustained rises in levels of phosphorylated p38 and especially ERK1/2. Together, these hormones increased the dynamic phosphorylation of ERK1/2 and c-Fos, and induced c-fos promoter activity. Synergistic activation of the transcription factor, Elk-1, reflected the PRL-E2 interaction at ERK1/2 and is a likely mechanism for activation of the c-fos promoter via the serum response element. The enhanced AP-1 activity resulting from the interaction of these hormones may increase expression of many target genes that are critical for oncogenesis and may contribute to neoplastic progression.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Schuler
- Address all correspondence and requests for reprints to: L.A. Schuler, Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, Wisconsin 53706. E-mail:
| |
Collapse
|
69
|
Tilli MT, Reiter R, Oh AS, Henke RT, McDonnell K, Gallicano GI, Furth PA, Riegel AT. Overexpression of an N-Terminally Truncated Isoform of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 Leads to Altered Proliferation of Mammary Epithelial Cells in Transgenic Mice. Mol Endocrinol 2005; 19:644-56. [PMID: 15550471 DOI: 10.1210/me.2004-0106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Amplified in breast cancer 1 (AIB1, also known as ACTR, SRC-3, RAC-3, TRAM-1, p/CIP) is a member of the p160 nuclear receptor coactivator family involved in transcriptional regulation of genes activated through steroid receptors, such as estrogen receptor α (ERα). The AIB1 gene and a more active N-terminally deleted isoform (AIB1-Δ3) are overexpressed in breast cancer. To determine the role of AIB1-Δ3 in breast cancer pathogenesis, we generated transgenic mice with human cytomegalovirus immediate early gene 1 (hCMVIE1) promoter-driven over-expression of human AIB1/ACTR-Δ3 (CMVAIB1/ACTR-Δ3 mice). AIB1/ACTR-Δ3 transgene mRNA expression was confirmed in CMV-AIB1/ACTR-Δ3 mammary glands by in situ hybridization. These mice demonstrated significantly increased mammary epithelial cell proliferation (P < 0.003), cyclin D1 expression (P = 0.002), IGF-I receptor protein expression (P = 0.026), mammary gland mass (P < 0.05), and altered expression of CCAAT/enhancer binding protein isoforms (P = 0.029). At 13 months of age, mammary ductal ectasia was found in CMV-AIB1/ACTR-Δ3 mice, but secondary and tertiary branching patterns were normal. There were no changes in the expression patterns of either ERα or Stat5a, a downstream mediator of prolactin signaling. Serum IGF-I levels were not altered in the transgenic mice. These data indicate that overexpression of the AIB1/ACTR-Δ3 isoform resulted in altered mammary epithelial cell growth. The observed changes in cell proliferation and gene expression are consistent with alterations in growth factor signaling that are thought to contribute to either initiation or progression of breast cancer. These results are consistent with the hypothesis that the N-terminally deleted isoform of AIB1 can play a role in breast cancer development and/or progression.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Antigens, Viral/genetics
- Blotting, Southern
- Blotting, Western
- Breast Neoplasms/embryology
- Cell Proliferation
- Cyclin D1/metabolism
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/metabolism
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation
- Genotype
- Humans
- Immediate-Early Proteins/genetics
- Immunoblotting
- Immunohistochemistry
- In Situ Hybridization
- Insulin-Like Growth Factor I/biosynthesis
- Insulin-Like Growth Factor I/metabolism
- Mammary Glands, Animal
- Mammary Glands, Human/metabolism
- Mammary Neoplasms, Animal
- Mice
- Mice, Transgenic
- Milk Proteins/chemistry
- Models, Genetic
- Nuclear Receptor Coactivator 3
- Promoter Regions, Genetic
- Protein Isoforms
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/chemistry
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transgenes
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Maddalena T Tilli
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Research Building, Room E307, 3970 Reservoir Road, Washington, D.C. 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Mulac-Jericevic B, Conneely OM. Reproductive tissue-selective actions of progesterone receptors. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:19-37. [PMID: 15704466 DOI: 10.1007/3-540-27147-3_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- B Mulac-Jericevic
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
71
|
Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004; 128:139-46. [PMID: 15280552 DOI: 10.1530/rep.1.00189] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The steroid hormone, progesterone, plays a central coordinate role in diverse events associated with female reproduction. In humans and other vertebrates, the biological activity of progesterone is mediated by modulation of the transcriptional activity of two progesterone receptors, PR-A and PR-B. These receptors arise from the same gene and exhibit both overlapping and distinct transcriptional activities in vitro. To delineate the individual roles of PR-A and PR-B in vivo, we have generated mouse models in which expression of a single PR isoform has been ablated. Analysis of the reproductive phenotypes of these mice has indicated that PR-A and PR-B mediate mostly distinct but partially overlapping reproductive responses to progesterone. While selective ablation of the PR-A protein (PR-A knockout mice, PRAKO mice) shows normal mammary gland response to progesterone but severe uterine hyperplasia and ovarian abnormalities, ablation of PR-B protein (PRBKO mice) does not affect biological responses of the ovary or uterus to progesterone but results in reduced pregnancy-associated mammary gland morphogenesis. The distinct tissue-specific reproductive responses to progesterone exhibited by these isoforms are due to regulation of distinct subsets of progesterone-dependent target genes by the individual PR isoforms. This review will summarize our current understanding of the selective contribution of PR isoforms to the cellular and molecular actions of progesterone in reproductive tissues.
Collapse
Affiliation(s)
- Biserka Mulac-Jericevic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
72
|
Jackson-Fisher AJ, Bellinger G, Ramabhadran R, Morris JK, Lee KF, Stern DF. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci U S A 2004; 101:17138-43. [PMID: 15569931 PMCID: PMC535384 DOI: 10.1073/pnas.0407057101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Indexed: 12/16/2022] Open
Abstract
The ERBB2/HER2/NEU receptor tyrosine kinase gene is amplified in up to 30% of human breast cancers. The frequent and specific selection of this receptor kinase gene for amplification in breast cancer implies that it has important normal functions in the mammary gland. To investigate the functions of ErbB2 during normal mouse mammary gland development, we transplanted mammary buds from genetically rescued ErbB2(-/-) embryos that express ErbB2 in the cardiac muscle. ErbB2(-/-) mammary buds transplanted to a wild-type mammary fat pad support outgrowth of an epithelial tree that advances only slowly through the mammary fat pad at puberty. This penetration defect is associated with structural defects in terminal end buds, characterized by a decrease in body cell number, an increased presence of cap-like cells in the prelumenal compartment, and the presence of large luminal spaces. Lobuloalveolar development was not affected in glands that developed from ErbB2(-/-) transplanted tissue. The results may have implications for the aggressive phenotypes associated with ERBB2-overexpressing mammary carcinomas.
Collapse
MESH Headings
- Animals
- Epithelium/abnormalities
- Epithelium/growth & development
- Female
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/transplantation
- Mammary Neoplasms, Animal/etiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Rats
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
Collapse
Affiliation(s)
- Amy J Jackson-Fisher
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
This review presents a brief synopsis of recent progress in the area of cancer stem cells, with emphasis on leukemia and breast cancer, and discusses potential limitations to accomplishing the ultimate goal of eradicating residual disease in cancer.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3498, USA
| | | |
Collapse
|
74
|
Chi AL, Lim S, Wang TC. Characterization of a CCAAT-enhancer element of trefoil factor family 2 (TFF2) promoter in MCF-7 cells. Peptides 2004; 25:839-47. [PMID: 15177880 DOI: 10.1016/j.peptides.2003.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 11/20/2003] [Indexed: 11/17/2022]
Abstract
Trefoil factors family 2 (TFF2), also known as spasmolytic polypeptide, is primarily expressed in the mucus neck cells of gastrointestinal tracts. It has been proposed that TFF2 plays an important physiological role in protection, repair, and healing of gastrointestinal mucosa. To investigate the cis-acting regulatory element that control TFF2 tissue-specific expression, we studied the basal TFF2 promoter activity through transient transfection in several human cancer cell lines. Expression of TFF2 was found to be significantly greater in human breast cancer MCF-7 cells compared to other cancer cells. Results from TFF2 promoter luciferase reporter constructs revealed that the basal level of TFF2 promoter activity was overall more than two-fold higher in MCF-7 cells compared to that of other cell lines examined. Using EMSA assays and site-directed mutagenesis, we identified a cell line-specific transcriptional regulation element located in the TFF2 promoter 5'-flank sequence at -32/-27, and which contains a CCAAT/enhance binding proteins (C/EBPs) consensus-binding site. Mutation of this consensus site reduced the basal promoter activity by more than 50% in MCF-7 cells but had no effect in human gastric cancer cells. In conclusion, we have identified a CCAAT sequence as a cell line-specific cis-acting regulatory element that may contribute to the high level expression of TFF2 in MCF-7 cells. These results also suggest the possibility that TFF2 could play a role in mammary gland tumorigenesis.
Collapse
Affiliation(s)
- Alfred L Chi
- Gastroenterology Division, University of Massachusetts Medical Centre, Worcester 01655, USA
| | | | | |
Collapse
|
75
|
Gourdou I, Paly J, Hue-Beauvais C, Pessemesse L, Clark J, Djiane J. Expression by Transgenesis of a Constitutively Active Mutant Form of the Prolactin Receptor Induces Premature Abnormal Development of the Mouse Mammary Gland and Lactation Failure1. Biol Reprod 2004; 70:718-28. [PMID: 14613905 DOI: 10.1095/biolreprod.103.019448] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prolactin (PRL) initiates signal transduction by inducing homodimerization of PRL receptor (PRL-R). We have previously developed a mutant form of the PRL-R in which a part of the extracellular domain is deleted. This receptor constitutively activates protein gene transcription. We examined the oligomerization of the mutant PRL-R using two differently epitope-tagged receptors in a coimmunoprecipitation assay. It was shown that mutant receptor dimers were formed in a ligand-independent manner, which may explain the constitutive activity on milk protein gene expression. To study the biological activity of this mutant PRL-R on mammary gland development, we generated two lines of transgenic mice expressing the corresponding cDNA specifically in the mammary epithelial cells. For both transgenic lines, the mammary gland of 8-wk-old virgin mice was overdeveloped with numerous dilated ductal and alveolar structures, whereas only a limited duct network was present in wild-type animals at the same age. During pregnancy, the ducts and alveoli of transgenic mice were more developed than those of control animals. At parturition, the transgenic animals failed to lactate and nourish their offspring, and the involution of the mammary gland was strongly delayed. In conclusion, the expression of a constitutively active PRL-R by transgenesis induces a premature and abnormal mammary development and impairs terminal differentiation and milk production at the end of pregnancy.
Collapse
Affiliation(s)
- Isabelle Gourdou
- Unité d'Endocrinologie Moléculaire, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
76
|
Hovey RC, Trott JF. Morphogenesis of mammary gland development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 554:219-28. [PMID: 15384579 DOI: 10.1007/978-1-4757-4242-8_19] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland in females is a dynamic, orchestrated process that occurs throughout postnatal development. Initiated during embryogenesis, epithelial cells advance into the underlying stromal matrix to form a primitive rudimentary structure. With the onset of puberty this anlage then responds to hormonal and local cues to rapidly establish a ductal network. Whereas in mice this network is relatively simple, in humans there is significantly more branching morphogenesis to develop terminal duct lobular unit structures. With the onset of pregnancy and associated changes in the hormonal and local environment, alveolar development progresses to establish a gland that is densely filled with alveolar structures by the end of pregnancy. Concomitantly, mammary epithelial cells within the gland begin to attain their unique ability to synthesize various milk constituents, such that by parturition, functional lactogenesis can be realized.
Collapse
Affiliation(s)
- Russell C Hovey
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
77
|
Functional Characterization of Mammary Stem Cells. Toxicol Pathol 2004. [DOI: 10.1080/714592174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
78
|
Gutzman JH, Miller KK, Schuler LA. Endogenous human prolactin and not exogenous human prolactin induces estrogen receptor alpha and prolactin receptor expression and increases estrogen responsiveness in breast cancer cells. J Steroid Biochem Mol Biol 2004; 88:69-77. [PMID: 15026085 DOI: 10.1016/j.jsbmb.2003.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 10/27/2003] [Indexed: 01/12/2023]
Abstract
Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into account the recent discovery that PRL is synthesized by human mammary cells, permitting autocrine/paracrine activity. To examine the effects of this endogenous PRL, we engineered MCF7 cells to inducibly overexpress human prolactin (hPRL). Using this Tet-On MCF7hPRL cell line, we studied effects on cell growth, PRLR, ER alpha, and PgR levels, and estrogen target genes. Induced endogenous hPRL, but not exogenous hPRL, increased ER alpha levels as well as estrogen responsiveness in these cells, suggesting that effects on breast cancer development and progression by estrogen may be amplified by cross-regulation of ER alpha levels by endogenous hPRL. The long PRLR isoform was also upregulated by endogenous, but not exogenous PRL. This model will allow investigation of endogenous hPRL in mammary epithelial cells and will enable further dissection of PRL effects on other hormone signaling pathways to determine the role of PRL in breast cancer.
Collapse
Affiliation(s)
- Jennifer H Gutzman
- Department of Comparative Biosciences, 2015 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
79
|
Abstract
Prolactin (PRL) is one of a family of related hormones including growth hormone (GH) and placental lactogen (PL) that are hypothesized to have arisen from a common ancestral gene about 500 million years ago. Over 300 different functions of PRL have been reported, highlighting the importance of this pituitary hormone. PRL is also synthesized by a number of extra-pituitary tissues including the mammary gland and the uterus. Most of PRL's actions are mediated by the unmodified 23 kDa peptide, however, PRL may be modified post-translation, thereby altering its biological effects. PRL exerts these effects by binding to its receptor, a member of the class I cytokine receptor super-family. This activates a number of signaling pathways resulting in the transcription of genes necessary for the tissue specific changes induced by PRL. Mouse knockout models of the major forms of the PRL receptor have confirmed the importance of PRLs role in reproduction. Further knockout models have provided insight into the importance of PRL signaling intermediates and the advent of transcript profiling has allowed the elucidation of a number of PRL target genes.
Collapse
Affiliation(s)
- Jessica Harris
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
80
|
Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 2003; 100:15853-8. [PMID: 14668450 PMCID: PMC307657 DOI: 10.1073/pnas.2136825100] [Citation(s) in RCA: 426] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a genetically and clinically heterogeneous disease, and the contributions of different target cells and different oncogenic mutations to this heterogeneity are not well understood. Here we report that mammary tumors induced by components of the Wnt signaling pathway contain heterogeneous cell types and express early developmental markers, in contrast to tumors induced by other signaling elements. Expression of the Wnt-1 protooncogene in mammary glands of transgenic mice expands a population of epithelial cells expressing progenitor cell markers, keratin 6 and Sca-1; subsequent tumors express these markers and contain luminal epithelial and myoepithelial tumor cells that share a secondary mutation, loss of Pten, implying that they arose from a common progenitor. Mammary tumors arising in transgenic mice expressing beta-catenin and c-Myc, downstream components of the canonical Wnt signaling pathway, also contain a significant proportion of myoepithelial cells and cells expressing keratin 6. Progenitor cell markers and myoepithelial cells, however, are lacking in mammary tumors from transgenic mice expressing Neu, H-Ras, or polyoma middle T antigen. These results suggest that mammary stem cells and/or progenitors to mammary luminal epithelial and myoepithelial cells may be the targets for oncogenesis by Wnt-1 signaling elements. Thus, the developmental heterogeneity of different breast cancers is in part a consequence of differential effects of oncogenes on distinct cell types in the breast.
Collapse
Affiliation(s)
- Yi Li
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Welm B, Behbod F, Goodell MA, Rosen JM. Isolation and characterization of functional mammary gland stem cells. Cell Prolif 2003; 36 Suppl 1:17-32. [PMID: 14521513 PMCID: PMC3496772 DOI: 10.1046/j.1365-2184.36.s.1.3.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Significant advances in the stem-cell biology of several tissues, including the mammary gland, have occurred over the past several years. Recent progress on stem-cell fate determination, molecular markers, signalling pathways and niche interactions in haematopoietic, neuronal and muscle tissue may provide parallel insight into the biology of mammary epithelial stem cells. Taking advantage of approaches similar to those employed to isolate and characterize haematopoietic and epidermal stem cells, we have identified a mammary epithelial cell population with several stem/progenitor cell qualities. In this article, we review some recent data on mammary epithelial stem/progenitor cells in genetically engineered mouse models. We also discuss several potential molecular markers, including stem-cell antigen-1 (Sca-1), which may be useful for both the isolation of functional mammary epithelial stem/progenitor cells and the analysis of tumour aetiology and phenotype in genetically engineered mouse models. In different transgenic mammary tumour models, Sca-1 expression levels, as well as several other putative markers of progenitors including keratin-6, possess dramatically altered expression profiles. These data suggest that the heterogeneity of mouse models of breast cancer may partially reflect the selection or expansion of different progenitors.
Collapse
Affiliation(s)
- Bryan Welm
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA, and
- Department of Molecular and Cellular Biology and
| | | | - Margaret A. Goodell
- Center for Cell and Gene Therapy and Department of Paediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - J. M. Rosen
- Department of Molecular and Cellular Biology and
| |
Collapse
|
82
|
Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 2003; 68:771-8. [PMID: 14667967 DOI: 10.1016/s0039-128x(03)00126-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The steroid hormone, progesterone, is a central coordinator of all aspects of female reproductive activity. The physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed from a single gene as two protein isoforms and that are members of the nuclear receptor superfamily of transcription factors. Analysis of the structural and functional relationships of each isoform using in vitro systems has demonstrated that the PR-A and PR-B proteins have different transcription activation properties when liganded to progesterone. More recently, selective ablation of the PR-A and PR-B proteins in mice had facilitated examination of the contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are reflected in a distinct tissue-selective contribution of the individual isoforms to the reproductive activities of progesterone. In PR-A knock-out mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect response of the mammary gland or thymus to progesterone but results in severe abnormalities in ovarian and uterine function leading to female infertility. More recent studies using PR-B knock-out (PRBKO) mice have shown that ablation of PR-B does not affect either ovarian, uterine or thymic responses to progesterone but results in reduced mammary ductal morphogenesis and alveologenesis during pregnancy. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while the PR-B isoform is required to elicit normal proliferative and differentiative responses of the mammary gland to progesterone. This review will summarize our current understanding of the selective contribution of the two PR isoforms to progesterone action.
Collapse
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, M-511, Houston, TX 77030, USA.
| | | | | |
Collapse
|
83
|
Radisky DC, Hirai Y, Bissell MJ. Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol 2003; 13:426-34. [PMID: 12888295 PMCID: PMC2933193 DOI: 10.1016/s0962-8924(03)00146-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammary gland consists of a highly branched tubular epithelium surrounded by a complex mesenchymal stroma. Epimorphin is an extracellular protein that is expressed by mammary mesenchymal cells that directs epithelial morphogenesis. Depending upon the context of presentation--polar versus apolar--epimorphin can selectively direct two key processes of tubulogenesis: branching morphogenesis (processes involved in tubule initiation and extension) and luminal morphogenesis (required for enlargement of tubule caliber). Here, we outline the fundamentals of mammary gland development and describe the function of epimorphin in these processes. We conclude with a review of recent studies that suggest similar morphogenic roles for epimorphin in other glandular organs.
Collapse
Affiliation(s)
- Derek C. Radisky
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yohei Hirai
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries, Yokohama 244, Japan
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
84
|
Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 2003; 22:4664-74. [PMID: 12879011 PMCID: PMC1630768 DOI: 10.1038/sj.onc.1206619] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The role of prolactin in human breast cancer has been controversial. However, it is now apparent that human mammary epithelial cells can synthesize prolactin endogenously, permitting autocrine/paracrine actions within the mammary gland that are independent of pituitary prolactin. To model this local mammary production of prolactin (PRL), we have generated mice that overexpress prolactin within mammary epithelial cells under the control of a hormonally nonresponsive promoter, neu-related lipocalin (NRL). In each of the two examined NRL-PRL transgenic mouse lineages, female virgin mice display mammary developmental abnormalities, mammary intraepithelial neoplasias, and invasive neoplasms. Prolactin increases proliferation in morphologically normal alveoli and ducts, as well as in lesions. The tumors are of varied histotype, but papillary adenocarcinomas and adenosquamous neoplasms predominate. Neoplasms can be separated into two populations: one is estrogen receptor alpha (ERalpha) positive (greater than 15% of the cells stain for ERalpha), and the other is ERalpha- (<3%). ERalpha expression does not correlate with tumor histotype, or proliferative or apoptotic indices. These studies provide a mouse model of hormonally dependent breast cancer, and, perhaps most strikingly, a model in which some neoplasms retain ERalpha, as occurs in the human disease.
Collapse
Affiliation(s)
- Teresa A Rose-Hellekant
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Matthew D Schroeder
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Kennedy Gilchrist
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Eric P Sandgren
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
- *Correspondence: LA Schuler; E-mail:
| |
Collapse
|
85
|
Gass S, Harris J, Ormandy C, Brisken C. Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia 2003; 8:269-85. [PMID: 14973373 DOI: 10.1023/b:jomg.0000010029.85796.63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prolactin is an ancient hormone, with different functions in many species. The binding of prolactin to its receptor, a member of the cytokine receptor superfamily, results in the activation of different intracellular signaling pathways, such as JAK2/STAT5, MAP kinase, and PI3K/AKT. How prolactin elicits so many different biological responses remains unclear. Recently, microarray technology has been applied to identify prolactin target genes in different systems. Here, we attempt to summarize and compare the available data. Our comparison of the genes reported to be transcriptionally regulated by prolactin indicates that there are few genes in common between the different tissues. Among the organs studied, mammary and prostate glands displayed the largest number of overlaps in putative prolactin target genes. Some of the candidates have been implicated in tumorigenesis. The relevance and validation of microarray data, as well as comparison of the results obtained by different groups, will be discussed.
Collapse
Affiliation(s)
- Sandra Gass
- Swiss Institute for Experimental Cancer Research, National Center of Competence in Research Molecular Oncology, Epalinges s/Lausanne, Switzerland
| | | | | | | |
Collapse
|
86
|
Abstract
The CCAAT/enhancer binding protein (C/EBP) family of bZIP transcription factors control the proliferation and differentiation of a variety of tissues. While C/EBPalpha and -delta are also expressed in the mammary gland, the multiple protein isoforms of C/EBPbeta appear to play a critical role in mammary gland development and breast cancer. Targeted deletion of all the C/EBPbeta isoforms results in a severe inhibition of lobuloalveolar development and a block to functional differentiation, as well as more subtle changes in ductal morphogenesis. The altered expression of a number of molecular markers, including the progesterone, estrogen, and prolactin receptors, the transporter proteins (NKCC1 and aquaporin 5), and several markers of skin differentiation (Sprr2A and keratin 6), suggests that germline deletion of C/EBPbeta results in an altered cell fate. Thus, C/EBPbeta appears to play a role in the specification of progenitor cell fate not only in the mammary gland, but also in a number of other tissues.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
87
|
Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2003; 8:205-14. [PMID: 14635795 DOI: 10.1023/a:1025952924864] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The steroid hormone, progesterone (P), is a central coordinator of all aspects of female reproductive activity and plays a key role in pregnancy-associated mammary gland morphogenesis and mammary tumorigenesis. The effects of P on the mammary gland are mediated by two structurally and functionally distinct nuclear receptors PR-A and PR-B that arise from a single gene. Null mutation of both receptors in PR knockout (PRKO) mice has demonstrated a critical role for PRs in mediating pregnancy-associated mammary ductal branching and lobuloalveolar differentiation and in initiation of mammary tumors in response to carcinogen. Analysis of the molecular genetic pathways disrupted in PRKO mice has recently yielded important insights into the molecular mechanisms of regulation of mammary gland morphogenesis by PRs. In addition to its essential role in regulating proliferative and differentiative responses of the adult mammary gland during pregnancy, P plays a critical role in the protection against mammary tumorigenesis afforded by early parity. Thus, the effects of P on postnatal developmental plasticity of the mammary gland differ between young and adult glands. This review will summarize recent advances in our understanding of 1) the molecular mechanisms by which PRs mediate pregnancy-associated mammary gland morphogenesis, 2) the role of PRs in mediating tumorigenic responses of the adult mammary gland to carcinogen, and 3) the role of P in long-term protection of the juvenile mammary gland against tumorigenesis. In addition, we will summarize recent insights into the isoform selective contributions to some of these activities of PRs obtained from comparative analysis of P-dependent mammary gland development in PR isoform specific knockout mice lacking either the PR-A (PRAKO) or PR-B (PRBKO).
Collapse
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|